Εμφανίζονται 1 - 20 Αποτελέσματα από 1.108 για την αναζήτηση '"ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ"', χρόνος αναζήτησης: 0,88δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The work was carried out within the framework of the scientific project “Development and practical implementation of software for creating digital twins of medium- and high-speed diesel engines of special transport”, carried out by the advanced engineerin, Работа выполнена в рамках научного проекта «Разработка и практическое внедрение программного обеспечения для создания цифровых двойников средне- и высокооборотных дизелей специального транспорта», выполняемого ПИШ двигателестроения и специальной техники «

    Πηγή: Mechanical engineering industry; Том 25, № 2 (2025); 22-39 ; Машиностроение; Том 25, № 2 (2025); 22-39 ; 2410-4744 ; 1990-8504

    Περιγραφή αρχείου: application/pdf

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Science & Technique; Том 23, № 5 (2024); 359-369 ; НАУКА и ТЕХНИКА; Том 23, № 5 (2024); 359-369 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2024-23-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2803/2348; Борисов, А. В. Тележка с омниколесами на плоскости и сфере / А. В. Борисов, А. А. Килин, И. С. Мамаев // Нелинейная динамика. 2011. Т. 7, № 4. С. 785–801.; Адамов, Б. И. Исследование динамики всенаправленной платформы при различных уровнях детализации моделей меканум-колес и контактных сил / Б. И. Адамов, А. И. Кобрин, Г. Р. Сайпулаев // XII Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики: сб. трудов: в 4 т. Уфа: Башкирский государственный университет, 2019. Т. 1. С. 522–524.; Адамов, Б. И. Идентификация параметров математической модели мобильной роботизированной платформы всенаправленного движения KUKA youBot / Б. И. Адамов, А. И. Кобрин // Мехатроника, автоматизация, управление. Т. 4, № 4. 2018. С. 251–258.; Изюмов, А. А. Моделирование системы управления движением мобильного робота / А. А. Изюмов // Сборник избр. ст. науч. сессии ТУСУР. 2020. № 1-1. С. 110–112.; Patel, P. S. Dynamic Simulation Model for Different Type of Wheeled Mobile Robotic Drives on Leveled Surface / P. S. Patel, R. Trivedi // Journal of Physics: Conference Series. 2020. Vol. 1706. P. 108–117. https://doi.org/10.1088/1742-6596/1706/1/012202.; Li, Yu. Modeling and Kinematics Simulation of a Mecanum Wheel Platform in RecurDyn / Yunwang Li [et al.] // Journal of Robotics. Vol. 2018. https://doi.org/10.1155/2018/9373580.; Радкевич, А. А. Математическая модель управления движением мобильного робота с колесами всенаправленного типа меканум / А. А. Радкевич [и др.] // Доклады БГУИР. 2024. Т. 22, № 1. С. 82–90. https://doi.org/10.35596/1729-7648-2024-22-1-82-90.; Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels / R. Pizá [et al.] // Applied Sciences. 2022. Vol. 12, No 7. P. 3560 https://doi.org/10.3390/app12073560.; Павлюковец, С. А. К вопросу управления мобильным роботом с колесами всенаправленного типа / С. А. Павлюковец [и др.] // BIG DATA и анализ высокого уровня = BIG DATA and Advanced Analytics: сб. науч. ст. IX Междунар. науч.-практ. конф., Минск, 17–18 мая 2023 г.: в 2 ч. / Белорусский государственный университет информатики и радиоэлектроники; редкол.: В. А. Богуш [и др.]. Минск, 2023. Ч. 2. С. 94–102.; Abdelrahman, M. A Description of the Dynamics of a Four-Wheel Mecanum Mobile System as a Basis for a Platform Concept for Special Purpose Vehicles for Disabled Persons / M. Abdelrahman [et al.] // 58-th Ilmenau Scientific Colloquium – Shaping the Future by Engineering, Ilmenau, 2014.; Hendzel, Z. Modeling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the Use of Lagrange Equations of the Second Kind / Z. Hendzel, J. Rykala // Int. J. of Applied Mechanics and Engineering. 2017. Vol. 22, No 1. P. 81–99. https://doi.org/10.1515/ijame-2017-0005.; Galati, R. Adaptive heading correction for an industrial heavy-duty omnidirectional robot / R. Galati, G. Mantriota, G. Reina // Scientific Reports. 2022. Vol. 12, Nо 1. Art. No 19608. https://doi.org/10.1038/s41598-022-24270-x.; https://sat.bntu.by/jour/article/view/2803

  13. 13
    Academic Journal

    Πηγή: Civil Aviation High Technologies; Том 27, № 2 (2024); 94-102 ; Научный вестник МГТУ ГА; Том 27, № 2 (2024); 94-102 ; 2542-0119 ; 2079-0619

    Περιγραφή αρχείου: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/2339/1388; https://avia.mstuca.ru/jour/article/view/2339/1389; Jorgensen, L., Saki, H. (2023). Design of aero engine structure. Bachelor’s thesis. University West. Uppsala, Sweden, 65 p.; Zichenkov, M.C., Ishmuratov, F.Z., Kuznecov, A.G. (2018). Studying the gyroscopic forces and structural damping joint impact on the wing flutter of the aeroelastic EuRAM model. Aerospace MAI Journal, vol. 25, no. 4, pp. 86–95. (in Russian); Ovchinnikov, V.V., Petrov, Yu.V. (2017). Numerical methods for the study of aircraft aeroelasticity: Monography. Moscow: Izdatelskiy dom Akademii imeni N.Ye. Zhukovskogo, 160 p. (in Russia); Ovchinnikov, V.V., Petrov Yu.V. (2020). Study of running engines inertial and gyroscopic properties influence on the dynamic system engine-pylon-wing structural capabilities. Civil Aviation High Technologies, vol. 23, no. 3, pp. 63–72. DOI:10.26467/2079-0619-2020-23-3-63-72; Fujino, M., Oyama, H., Omotani, H. (2003). Flutter characteristics of an over-thewing engine mount business-jet configuration. In: 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference. AIAA 2003-1942, pp. 1–12. DOI:10.2514/6. 2003-1942; Waitz, S., Hennings, H. (2015). The aeroelastic impact of engine thrust and gyroscopics on aircraft flutter instabilities. In: International Forum on Aeroelasticity and Structural Dynamics, IFASD-2015, pp. 1–15.; Wang, L., Wan, Z., Wu, Q., Yang, C. (2012). Aeroelastic modeling and analysis of the wing/engine system of a large aircraft. Procedia Engineering, vol. 31, pp. 879–885. DOI: 10.10 16/j.proeng.2012.01.1116; Zettel, S., Boswald, M., Winter, R. (2023). Jet-engine vibration model for the estimation of pylon-wing interface loads. DAGA, pp. 628–631.; Vermel, V.D., Zichenkov, M.Ch., Koryakin, A.N., Paryshev, S.E. (2020). Study of an experimental prototype simulating a mechanical vibration damper with rotational friction pairs. Journal of “Almaz – Antey” Air and Space Defence Corporation, no. 4 (35), pp. 77–86. DOI:10.38013/2542-0542-2020-4-77-86 (in Russian); Serov, M.V., Averyanov, G.M., Alexandrova, S.G. (2013). Experience of using vibration theory to practical issues of application of inertial dynamic vibration absorbers. Izvestiya MGTU “MAMI”, no. 1 (15), pp. 118–124. (in Russian); De Silva, C.W. (2007). Vibration damping, control, and design. 1st ed., CRC Press, 634 p.; Ünker, F., Çuvalci, O. (2015). Vibration control of a column using a gyroscope. In: Procedia-Social and Behavioral Sciences, vol. 195, pp. 2306–2315. DOI:10.1016/j.sbspro.2015.06.182; He, H., Xie, X., Wang, W. (2017). Vibration control of tower structure with multiple cardan gyroscopes. Shock and Vibration. 2017. Vol. 2017. Article ID 3548360. 11 pp. DOI:10.1155/2017/3548360 (accessed: 03.09.2023).; Soleymani, M., Norouzi, M. (2021). Active gyroscopic stabilizer to mitigate vibration in a multimegawatt wind turbine. Wind Energy, vol. 24, issue 7, pp. 720–736. DOI:10.1002/ we.2599 (accessed: 03.09.2023).; Sitnikov, D.V., Buran, A.A. (2021). The active dynamic vibration damper in nonstationary operation of a vibroactive unit. Omsk Scientific Bulletin, no. 4 (178), pp. 13–17. DOI:10.25206/1813- 8225-2021-178-13-17; https://avia.mstuca.ru/jour/article/view/2339

  14. 14
    Academic Journal

    Πηγή: Civil Aviation High Technologies; Том 27, № 2 (2024); 60-68 ; Научный вестник МГТУ ГА; Том 27, № 2 (2024); 60-68 ; 2542-0119 ; 2079-0619

    Περιγραφή αρχείου: application/pdf

    Relation: https://avia.mstuca.ru/jour/article/view/2336/1384; https://avia.mstuca.ru/jour/article/view/2336/1385; Goncharov, D.A., Pozhalostin, A.A. (2021). Experimental study of axisymmetric vibrations of a liquid in a cylindrical vessel with a porous partition. Russian Aeronautics, vol. 64, no. 1, pp. 71–77. DOI:10.3103/S1068799821010098; Borodkin, S.F., Kiselev, M.A., Ovchinnikov, V.V., Petrov, Yu.V. (2022). The impact of fuel fluidity in wing tanks on the aeroelasticity characterisics of an aircraft. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, no. 4, pp. 4–11. (in Russian); Ovchinnikov, V.V., Petrov, Yu.V. (2017). Numerical methods for studying the aeroelasticity of aircraft. Moscow: Izdatelkiy Dom Akademii imeni N.Ye. Zhukovskogo, 160 p. (in Russian); Kaneko, Sh., Nakamura, T., Inada, F., Kato, M., Ishihara, K., Nishihara, T., Langthjem, M.A. (Ed.). (2014). Flow-induced vibrations. Classifications and lessons from practical experiences. 2nd ed. Chapter 8: Vibrations in fluid–structure interaction systems. Academic Press, pp. 359–401. DOI:10.1016/ B978-0-08-098347-9.00008-4; Wang, Y., Ruan, C., Lu, S., Li, Z. (2023). A study on the movement characteristics of fuel in the fuel tank during the maneuvering process. Applied sciences, vol. 13, issue 15, ID: 8636. DOI:10.3390/app13158636 (accessed: 04.11.2023).; Dyachenko, M.I., Hung, N.D., Temnov, A.N. (2017). Fluctuations of liquid fuel in tanks with oil recovery units. Vestnik of Samara University. Aerospace and Mechanical Engineering, vol. 16, no. 2, pp. 23–25. DOI:10.18287/2541-7533-2017-16-2-23-35 (in Russian); Kalinichenko, V.A., Soe, A.N. (2015). Experimental study of coupled vibrations of a vessel with liquid. Vestnik MGTU imeni N.E. Baumana. Seriya Yestestvennyye nauki, no. 1 (58), pp. 14–25. (in Russian); Buzhinskii, V.A. (2020). Fluid oscillations in cylindrical tanks with longitudinal damping partitions. Fluid Dynamics, vol. 55, no. 1, pp. 7–19. DOI:10.31857/S0568528119060033; Krechko, A.V., Krikunov, V.A., Krechko, I.V. (2019). Impact of transverse partitions on the longitudinal stability of tanker. In: Sovremennyye prikladnyye issledovaniya: materialy tretyey natsionalnoy nauchno-prakticheskoy konferentsii. Novocherkassk: Yuzhno-Rossiyskiy gosudarstvennyy politekhnicheskiy universitet (NPI) imeni M.I. Platova, pp. 126–129. (in Russian); Popkov, A.A. (2020). Analysis of the dynamic behavior of the damping partition in the launch vehicle tank. In: Teoriya i praktika sovremennoy nauki: sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii. In 2 parts, part 1, pp.71–75. (in Russian); Bukreev, V.I., Chebotnikov, A.V. (2015). Water waves in a longitudinally oscillating container. Fluid Dynamics, vol. 50, no. 3, pp. 435–441.; Shamsoddini, R. (2018). Numerical investigation of vertical and horizontal baffle effects on liquid sloshing in a rectangular tank using an improved incompressible smoothed particle hydrodynamics method. Journal of Computational and Applied Research in Mechanical Engineering, vol. 8, no. 2, pp. 177–187. DOI:10.22061/jcarme.2019.2437.1231; Dalmon, A., Lepilliez, M., Tanguy, S. et al. (2019). Comparison between the FLUIDICS experiment and direct numerical simulations of fluid sloshing in spherical tanks under microgravity conditions. Microgravity Science and Technology, vol. 31, no. 1, pp. 123–138. DOI:10.1007/s12217-019-9675-4; Pozalostin, A.A., Goncharov, D.A. (2020). Longitudinal vibrations of a system of the liquid filled thin-walled rods. Natural and technical sciences, no. 6, pp. 14–17. (in Russian); Pozalostin, A.A., Goncharov, D.A. (2018). Experimental and analytical method for determining the logarithmic decrement of vibrations for the case of axisymmetric vibrations of an elastic tank with liquid. Natural and technical sciences, no. 6 (120), pp. 93–94. (in Russian); Bondarenko, A.Yu., Lixoded, A.I., Sidorov, V.V. (2020). Modeling of a space-rocket structures when subjected to active forces by mechanical analogs. Mathematical Models and Computer Simulations, vol. 32, no. 8, pp. 106–118. DOI:10.20948/mm-2020-08-07 (in Russian); Pozalostin, A.A. (2019). Mechanical analogies and vibrations of a tank with liquid. Problemy Mashinostroyeniya i Nadezhnosti Mashin, no. 7, pp. 15–19. DOI:10.1134/S0235711919070095 (in Russian); Vin, K., Temnov, A.N. (2019). Oscillations of a three-layer viscous fluid in a stationary tank. Engineering journal: science and innovation, no. 7 (91), 17 p. DOI:10.18698/2308-6033- 2019-7-1895 (accessed: 04.11.2023). (in Russian); https://avia.mstuca.ru/jour/article/view/2336

  15. 15
    Academic Journal

    Συγγραφείς: Alexander Osichev, Andrii Tkachenko

    Πηγή: Energy saving. Power engineering. Energy audit.; No. 5-6(159-160) (2021): Energy saving. Power engineering. Energy audit; 15-20
    Энергосбережение. Энергетика. Энергоаудит.; № 5-6(159-160) (2021): Енергозбереження. Енергетика. Енергоаудит.; 15-20
    Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; № 5-6(159-160) (2021): Енергозбереження. Енергетика. Енергоаудит.; 15-20

    Περιγραφή αρχείου: application/pdf

  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
    Conference

    Συγγραφείς: Schreder, A. S.

    Περιγραφή αρχείου: application/pdf

    Relation: Проблемы геологии и освоения недр : труды XXVII Международного молодежного научного симпозиума имени академика М.А. Усова, посвященного 160-летию со дня рождения академика В.А. Обручева и 140-летию академика М.А. Усова, основателям Сибирской горно-геологической школы, 3-7 апреля 2023 г., г. Томск. Т. 2; http://earchive.tpu.ru/handle/11683/77881

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/77881

  20. 20