Εμφανίζονται 1 - 20 Αποτελέσματα από 193 για την αναζήτηση '"Газотермическое напыление"', χρόνος αναζήτησης: 0,73δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: Стасенко, Д. Л.

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://elib.gstu.by/handle/220612/36891

  5. 5
  6. 6
    Conference

    Συνεισφορές: Крампит, Наталья Юрьевна

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/73603

  7. 7
  8. 8
  9. 9
  10. 10
    Conference

    Περιγραφή αρχείου: application/pdf

    Relation: Перспективные материалы конструкционного и функционального назначения : сборник научных трудов Международной научно-технической молодежной конференции, Томск, 17–21 октября 2022 г.; http://earchive.tpu.ru/handle/11683/74192

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/74192

  11. 11
    Academic Journal

    Θέμα γεωγραφικό: Гродно

    Περιγραφή αρχείου: application/pdf

    Relation: Процко, В. Ю. Определение толщины покрытия, образуемой единичной каплей расплава при газотермическом напылении поверхности вращающейся заготовки / В. Ю. Процко, Д. Л. Стасенко // Вестник Гродненского государственного университета имени Янки Купалы. Серия 6. Техника. – 2025. – Т. 15, № 1. – С. 6–14.; https://elib.gstu.by/handle/220612/41241; 669.017:539.213

    Διαθεσιμότητα: https://elib.gstu.by/handle/220612/41241

  12. 12
    Academic Journal

    Θέμα γεωγραφικό: Гомель

    Περιγραφή αρχείου: application/pdf

    Relation: Процко, В. Ю. Анализ методов предварительной обработки, обеспечивающей наилучшую адгезию при газотермическом напылении / М. Ю. Целуев, С. Н. Целуева // Современные проблемы машиноведения : сборник научных трудов : в 2 частях / Министерство образования Республики Беларусь, Гомельский государственный технический университет имени П. О. Сухого; под общ. ред. А. А. Бойко. – Гомель : ГГТУ им. П. О. Сухого, 2025. – Часть 1. – С. 57–61.; https://elib.gstu.by/handle/220612/41229; 669.017:539.213

    Διαθεσιμότητα: https://elib.gstu.by/handle/220612/41229

  13. 13
  14. 14
  15. 15
    Academic Journal

    Πηγή: Science & Technique; Том 20, № 5 (2021); 390-398 ; НАУКА и ТЕХНИКА; Том 20, № 5 (2021); 390-398 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2021-20-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2479/2148; Yugeswaran S., Amarnath P., Ananthapadmanabhan P.V., Pershin L., Mostaghimi J., Chandra S., Coyle T. W. (2021) Thermal Conductivity and Oxidation Behavior of Porous Inconel 625 Coating Interface Prepared by Dual-Injection Plasma Spraying. Surface and Coating Technology, 411, 126990. https://doi.org/10.1016/j.surfcoat.2021.126990; Pershin L., Mitrasinovic A., Mostaghimi J. (2013) Treatment of Refractory Powders by a Novel, High Enthalpy DC Plasma. Journal of Physics D: Applied Physics, 46 (22), 224019. https://doi.org/ 10.1088/0022-3727/46/22/224019; Salimijazi H. R., Ghasemi R., Mostaghimi J., Pershin L. (2016) Characterization of YSZ Coatings Deposited by Conventional DC and CO2/CH4 Torches. International Thermal Spray Conference (ITSC 2016) Proceedings, 2, 613-616.; Mostaghimi J., Pershin L., Salimijazi H., Nejad M., Ringuette M. (2021) Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces. Journal of Thermal Spray Technology, 30 (1-2), 1–15. https://doi.org/10.1007/s11666-021-01161-7; Sharifahmadian O., Salimijazi H. R., Fathi M.H., Mostaghimi J., Pershin L. (2013) Relationship between Surface Properties and Antibacterial Behavior of Wire Arc Spray Copper Coatings. Surface and Coating Technology,. 233, 74–79. https://doi.org/10.1016/j. surfcoat.2013.01.060; Wrona A., Bilewska K., Lis M., Kamińska M., Olszewski T., Pajzderski P., Więcław G., Jaśkiewicz M., Kamysz W. (2017) Antimicrobial Properties of Protective Coatings Produced by Plasma. Surface and Coating Technology, 318, 332–340. https://doi.org/10.1016/j.surfcoat.2017.01.101; Mitrasinovic A., Pershin L., Wen J. Z., Mostaghimi J. (2011) Recovery of Cu and Valuable Metals from E-Waste Using Thermal Plasma Treatment. JOM: the journal of the Minerals, Metals & Materials Society, 63 (8), 24–28. https://doi.org/10.1007/s11837-011-0132-0; Borrell A., Carpio P., Salvador M. D., Mataix D. B., Carnicer V., Orts M. J. (2021) Modification of the Properties of Al2O3/TZ-3YS Thermal Barrier Coating by the Addition of Silicon Carbide Particles and Fructose. Coatings, 11 (4), 387. https://doi.org/10.3390/coatings11040387; Kornienko E. E., Mul’ D. O., Rubtsova O. A., Vaschenko S. P., Kuzmin V. I., Gulyaev I. P., Sergachev D. V. (2016) Effect of Plasma Spraying Regimes on Structure and Properties of Ni3Al Coatings. Thermophysics and Aeromechanics, 23 (6), 919-928. https://doi.org/10.1134/S0869864316060147; Kuzmin V., Gulyaev I., Sergachev D., Vaschenko S., Kornienko E., Tokarev A. (2017) Equipment and Technologies of Air-Plasma Spraying of Functional Coatings. MATEC Web of Conferences, 129, 01052. https://doi.org/10.1051/matecconf/201712901052.; Bielyi A. V., Kalinitchenko A. S., Kukareko V. A., Devoino O. G. (2017) Surface engineering of structural materials with using of plasma and beam technologies. Minsk, Belorusskaya nauka Publ. 457 (in Russian).; Lee H., Ramachandran C. S., Pala Z., Sampath S. (2018) Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits. Journal of Thermal Spray Technology, 27 (6), 968-982. https://doi.org/10.1007/s11666-018-0731-1; Gorokhovski M., Karpenko E. I., Lockwood F. C., Messerle V. E., Trusov B. G., Ustimenko A. B. (2005) Plasma Technologies for Solid Fuels: Experiment and Theory. Journal of the Energy Institute, 78 (4), 157–171. https://doi.org/10.1179/174602205x68261; Barbin N. M., Terentiev D. I., Alexeev S. G., Barbina T. M. (2015) Thermodynamic Analysis of Radionuclides Be Behaviour in Products of Vapour Phase Hydrothermal Oxidation of Radioactive Graphite. Journal of Radioanalytical and Nuclear Chemistry, 307 (2), 1459–1470. https://doi.org/10.1007/s10967-015-4587-2; Marquesi A. R., Filho G. P., Gorbunov A. V., Halinouski A. A., Essiptchouk A. M., Sismanoglu B. N. (2015) Theoretical Assessment of Plasma Gasification Process of Low Grade Coal and Biomass Feedstock. Advances in Chemistry Research. Vol. 26, Chapter: 4. Nova Science Publishers, 57-76. https://doi.org/10.13140/RG.2.1.2567.4481; Carpinlioglu M. O., Sanlisoy A. (2018) Performance Assessment of Plasma Gasification for Waste to Energy Conversion: a Methodology for Thermodynamic Analysis. International Journal of Hydrogen Energy, 43 (25), 11493-11504. https://doi.org/10.1016/j.ijhydene.2017.08.147; Mourao R., Marquesi A. R., Gorbunov A. V., Filho G. P., Halinouski A. A., Otani C. (2015) Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129; Mountouris A., Voutsas E., Tassios D. (2006) Solid Waste Plasma Gasification: Equilibrium Model Development and Exergy Analysis. Energy Conversion and Management, 47 (13–14), 1723–1737. https://doi.org/10.1016/j.enconman.2005.10.015.; Bublievsky A.F., Sagas J. C., Gorbunov A. V., Maciel H. S., Bublievsky D. A., Filho G. P., Lacava P. T., Halinouski A. A., Testoni G. E. (2015) Similarity Relations of Power-Voltage Characteristics for Tornado Gliding Arc in Plasma-Assisted Combustion Processes. IEEE Transactions on Plasma Science, 43 (5), 1742–1746. https://doi. org/10.1109/TPS.2015.2419822; Matveev I. B., Messerle V. E., Ustimenko A. B. (2009) Plasma Gasification of Coal in Different Oxidants. IEEE Transactions on Plasma Science, 36 (6), 2947–2954. https://doi.org/10.1109/TPS.2008.2007643; Engel’sht V. S., Balan R. K. (2011) Chemical Thermodynamics of the Vapor-Oxygen Gasification of Graphite. High Temperature, 49 (5), 736–743. https://doi.org/10.1134/S0018151X11050063.; Zhukov M. F., Zasypkin I. M. (2007) Thermal Plasma Torches: Design, Characteristics and Applications. UK, Cambridge: Cambridge International Science Publishing. 596.; Oh S. Y., Yun S., Kim J. K. (2018) Process Integration and Design for Maximizing Energy Efficiency of a Coal Fired Power Plant Integrated with Amine-based CO2 Capture Process. Applied Energy, 216, 311–322. https://doi.org/10.1016/j.apenergy.2018.02.100.; NIST Chemistry WebBook. Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Units=SI&Mask=1#Thermo-Gas).; Zhou T., Francois B. (2009) Modeling and Control Design of Hydrogen Production Process for an Active Hydrogen/Wind Hybrid Power System. International Journal of Hydrogen Energy, 34 (1), 21–30. https://doi.org/10.1016/j.ijhydene.2008.10.030; Wastes of manufacturing of polyethylene products. Available at: https://www.wastecation.ru/code/33521000000 (in Russian).; Tsiamis D. A., Castaldi M. J. (2016) The Effects of Non-Recycled Plastics (NRP) on Gasification: A Quantitative Assessment. Technical report. Earth Engineering Center, City College, City University of New York, NY. 42.; Walters R. N., Hackett S. M., Lyon R. E. (2000) Heats of Combustion of High Temperature Polymers. Fire and Materials, 24 (5), 245-252. https://doi.org/10.1002/1099-1018(200009/10)24:53.0.co;2-7; Ng S. C., Chee K. K. (1993) Correlation between Heat of Combustion and Chemical Structure of Polymers. Polymer, 34 (18), 3870–3872. https://doi.org/10.1016/0032-3861(93)90513-A.; Grikina O. Ye., Stepanov N. F., Tatevskii V. M., Yarovoi S.S. (1971) Calculation of the Enthalpy and Entropy of Polymerization and Copolymerization Constants by the Structural-Element Contribution Method. Polymer Science U.S.S.R, 13 (3), 653–677. https://doi.org/10.1016/0032-3950(71)90031-1; Splitsto P. L., Johnson W. H. (1974) The Enthalpies of Combustion and Formation of Linear Polyethylene. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 78A (5), 611-616. https://doi.org/10.6028/jres.078A.038; Kashiwagi T., Harris R. H., Zhang X., Briber R. M., Cipriano B. H., Raghavan S. R., Awad W. H., Shields J. R. (2004) Flame Retardant Mechanism of Polyamide 6–Clay Nanocomposites. Polymer, 45 (3), 881–891. https://doi.org/10.1016/j.polymer.2003.11.036; Ur’yash V. F., Larina V. N., Kokurina N. Yu., Novoselova N. V. (2010) The Thermochemical Characteristics of Cellulose and its Mixtures with Water. Russian Journal of Physical Chemistry, 84 (6), 915–921. https://doi.org/10.1134/S0036024410060051; Blokhin A. V., Voitkevich O. V., Kabo G. J., Paulechka U. U., Shishonok M. V., Kabo A. G., Simirsky V. V. (2011) Thermodynamic Properties of Plant Biomass Components. Heat Capacity, Combustion Energy, and Gasification Equilibria of Cellulose. Journal of Chemical Engineering Data, 56, 3523–3531. https://doi.org/10.1021/je200270t; Demirbaş A. (2005) Estimating of Structural Composition of Wood and Non-Wood Biomass Samples. Energy Sources, 27 (8), 761–767. https://doi.org/10.1080/00908310490450971.; Ioelovich M. (2018) Energy Potential of Natural, Synthetic Polymers and Waste Materials A Review. Academic Journal of Polymer Science, 1 (1), 1–15. https://doi.org/10.19080/AJOP.2018.01.555553; Jessup R. S., Prosen E. (1950) Heats of Combustion and Formation of Cellulose and Nitrocellulose (Cellulose Nitrate). Journal of research of the National Bureau of Standards, 44 (4), 387–393. https://doi.org/10.6028/jres.044.034.; Zhang Y., Li B., Li H., Liu H. (2011) Thermodynamic Evaluation of Biomass Gasification with Air in Autothermal Gasifiers. Thermochimica Acta, 519 (1-2), 65–71. https://doi.org/10.1016/j.tca.2011.03.005; https://sat.bntu.by/jour/article/view/2479

  16. 16
  17. 17
    Conference

    Relation: Современные материалы и технологии новых поколений : сборник научных трудов II Международного молодежного конгресса, г. Томск, 30 сентября - 5 октября 2019 г. — Томск, 2019.; http://earchive.tpu.ru/handle/11683/56889

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/56889

  18. 18
    Report

    Συγγραφείς: Тун, Лилинь

    Συνεισφορές: Зенин, Борис Сергеевич

    Περιγραφή αρχείου: application/pdf

    Relation: Тун Л. Температурные условия формирования многослойных покрытий при газотермическом напылении : бакалаврская работа / Л. Тун; Национальный исследовательский Томский политехнический университет (ТПУ), Инженерная школа новых производственных технологий (ИШНПТ), Отделение материаловедения (ОМ); науч. рук. Б. С. Зенин. — Томск, 2021.; http://earchive.tpu.ru/handle/11683/67360

    Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/67360

  19. 19
    Academic Journal

    Συγγραφείς: Процко, В. Ю.

    Συνεισφορές: Стасенко, Д. Л.

    Θέμα γεωγραφικό: Гомель

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: https://elib.gstu.by/handle/220612/36891

  20. 20