Εμφανίζονται 1 - 20 Αποτελέσματα από 444 για την αναζήτηση '"ГРУДНОЕ ВСКАРМЛИВАНИЕ"', χρόνος αναζήτησης: 1,75δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: Рихсиев , У.Ш.

    Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 11 (2025): Eurasian Journal of Medical and Natural Sciences; 123-131 ; Евразийский журнал медицинских и естественных наук; Том 5 № 11 (2025): Евразийский журнал медицинских и естественных наук; 123-131 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 11 (2025): Евразийский журнал медицинских и естественных наук; 123-131 ; 2181-287X

    Περιγραφή αρχείου: application/pdf

  2. 2
    Academic Journal

    Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 245-253 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 245-253 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 245-253 ; 2181-287X

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Συνεισφορές: Not specified., Отсутствует.

    Πηγή: Current Pediatrics; Том 23, № 6 (2024); 447-455 ; Вопросы современной педиатрии; Том 23, № 6 (2024); 447-455 ; 1682-5535 ; 1682-5527

    Περιγραφή αρχείου: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3653/1415; Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ. 2001;79(8):780–790.; Chain E, Florey HW, Gardner AD, et al. THE CLASSIC: penicillin as a chemotherapeutic agent. Clin Orthop Relat Res. 2005;439:23–26. doi: https://doi.org/10.1097/01.blo.0000183429.83168.07; Сидоренко О.Д. Академик Зинаида Виссарионовна Ермольева и антибиотики (к 120-летию со дня рождения) // Известия Тимирязевской сельскохозяйственной академии. — 2019. — № 5. — С. 168–170. — doi: https://doi.org/10.34677/0021-342х-2019-5-168-170.; Nelson ML, Dinardo A, Hochberg J, Armelagos GJ. Brief communication: Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350-550 CE. Am J Phys Anthropol. 2010;143(1):151–154. doi: https://doi.org/10.1002/ajpa.21340; Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134. doi: https://doi.org/10.3389/fmicb.2010.00134; Chopra I, Hesse L, O’Neill A. Discovery and development of new anti-bacterial drugs. Pharmacochemistry Library. Trends in Drug Research III. 2002;32:213–225. doi: https://doi.org/10.1016/s0165-7208(02)80022-8; Gupta V, Datta P. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J Med Res. 2019; 149(2):97–106. doi: https://doi.org/10.4103/ijmr.IJMR_755_18; Terreni M, Taccani M, Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules. 2021; 26(9):2671. doi: https://doi.org/10.3390/molecules26092671; Yusuf E, Bax HI, Verkaik NJ, van Westreenen M. An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. J Clin Med. 2021;10(5):1068. doi: https://doi.org/10.3390/jcm10051068; Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018–2019. Discoveries (Craiova). 2019;7(4):e102. doi: https://doi.org/10.15190/d.2019.15; Zhang T, Smith MA, Camp PG, et al. Prescription drug dispensing profiles for one million children: a population-based analysis. Eur J Clin Pharmacol. 2013;69(3):581–588. doi: https://doi.org/10.1007/s00228-012-1343-1; Fink G, D’acremont V, Leslie HH, Cohen J. Antibiotic exposure among children younger than 5 years in low-income and middle-income countries: a cross-sectional study of nationally representative facility-based and household-based surveys. Lancet Infect Dis. 2020;20(2):179–187. doi: https://doi.org/10.1016/S1473-3099(19)30572-9; Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):e3463–e3470. doi: https://doi.org/10.1073/pnas.1717295115; Arnold A, Coventry LL, Foster MJ, et al. The Burden of SelfReported Antibiotic Allergies in Health Care and How to Address It: A Systematic Review of the Evidence. J Allergy Clin Immunol Pract. 2023;11(10):3133–3145.e3. doi: https://doi.org/10.1016/j.jaip.2023.06.025; Pammi M, O’Brien JL, Ajami NJ, et al. Development of the cutaneous microbiome in the preterm infant: A prospective longitudinal study. PLoS One. 2017;12(4):e0176669. doi: https://doi.org/10.1371/journal.pone.0176669; Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med. 2023;29(1):90. doi: https://doi.org/10.1186/s10020-023-00689-4; Thänert R, Sawhney SS, Schwartz DJ, Dantas G. The resistance within: Antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Cell Host Microbe. 2022;30(5):675–683. doi: https://doi.org/10.1016/j.chom.2022.03.013; Samarra A, Cabrera-Rubio R, Mart nez-Costa C, Collado MC. The role of Bifidobacterium genus in modulating the neonate microbiota: implications for antibiotic resistance acquisition in early life. Gut Microbes. 2024;16(1):2357176. doi: https://doi.org/10.1080/19490976.2024.2357176; Samarra A, Esteban-Torres M, Cabrera-Rubio R, et al. Maternalinfant antibiotic resistance genes transference: what do we know? Gut Microbes. 2023;15(1):2194797. doi: https://doi.org/10.1080/19490976.2023.2194797; Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167–176. doi: https://doi.org/10.2147/IDR.S48820; Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and Child Growth — First 1000 Days and Beyond. Trends Microbiol. 2019;27(2):131–147. doi: https://doi.org/10.1016/j.tim.2018.09.008; Беляева И.А., Намазова-Баранова Л.С., Бомбардирова Е.П. и др. Введение прикорма: «окно возможностей» формирования кишечной микробиоты и модулирования иммунных реакций // Вопросы современной педиатрии. — 2023. — Т. 22. — № 6. — С. 506–512. — doi: https://doi.org/10.15690/vsp.v22i6.2663; Pantazi AC, Balasa AL, Mihai CM, et al. Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients. 2023;15(16):3647. doi: https://doi.org/10.3390/nu15163647; Chu DM, Valentine GC, Seferovic MD, Aagaard KM. The Development of the Human Microbiome: Why Moms Matter. Gastroenterol Clin North Am. 2019;48(3):357–375. doi: https://doi.org/10.1016/j.gtc.2019.04.004; Stencel-Gabriel K, Gabriel I, Wiczkowski A, et al. Prenatal priming of cord blood T lymphocytes by microbiota in the maternal vagina. Am J Reprod Immunol. 2009;61(3):246–252. doi: https://doi.org/10.1111/j.1600-0897.2009.00687.x; Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi: https://doi.org/10.3389/fimmu.2014.00427; Gasparrini AJ, Wang B, Sun X, et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol. 2019;4(12):2285–2297. doi: https://doi.org/10.1038/s41564-019-0550-2; Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird’s-Eye View. Front Microbiol. 2017;8:1388. doi: https://doi.org/10.3389/fmicb.2017.01388; Busi SB, de Nies L, Habier J, et al. Persistence of birth modedependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Commun. 2021;1(1):8. doi: https://doi.org/10.1038/s43705-021-00003-5; Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. doi: https://doi.org/10.1126/scitranslmed.aad7121; Beller L, Deboutte W, Falony G, et al. Successional Stages in Infant Gut Microbiota Maturation. mBio. 2021;12(6):e0185721. doi: https://doi.org/10.1128/mBio.01857-21; Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. doi: https://doi.org/10.1126/science.aad9378; Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med. 2020;26(11): 1766–1775. doi: https://doi.org/10.1038/s41591-020-1095-x; Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteriamediated immune system imprinting early in life. Cell. 2021;184(15):3884–3898.e11. doi: https://doi.org/10.1016/j.cell.2021.05.030; Olin A, Henckel E, Chen Y, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174(5):1277–1292. e14. doi: https://doi.org/10.1016/j.cell.2018.06.045; Нормальная беременность: клинические рекомендации / Российское общество акушеров-гинекологов. Минздрав России; 2023. https://cr.minzdrav.gov.ru/recomend/288; Brokaw A, Furuta A, Dacanay M, et al. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol. 2021;11:720789. doi: https://doi.org/10.3389/fcimb.2021.720789; Nusman CM, Snoek L, van Leeuwen LM, et al. Group B Streptococcus Early-Onset Disease: New Preventive and Diagnostic Tools to Decrease the Burden of Antibiotic Use. Antibiotics (Basel). 2023;12(3):489. doi: https://doi.org/10.3390/antibiotics12030489; Le Doare K, O’Driscoll M, Turner K, et al. Intrapartum Antibiotic Chemoprophylaxis Policies for the Prevention of Group B Streptococcal Disease Worldwide: Systematic Review. Clin Infect Dis. 2017;65(suppl_2):S143–S151. doi: https://doi.org/10.1093/cid/cix654; Miselli F, Cuoghi Costantini R, Creti R, et al. Escherichia coli Is Overtaking Group B Streptococcus in Early-Onset Neonatal Sepsis. Microorganisms. 2022;10(10):1878. doi: https://doi.org/10.3390/microorganisms10101878; Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin No. 199: Use of Prophylactic Antibiotics in Labor and Delivery. Obstet Gynecol. 2018;132(3):e103–e119. doi: https://doi.org/10.1097/AOG.0000000000002833; Coker MO, Hoen AG, Dade E, et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG. 2020;127(2):217–227. doi: https://doi.org/10.1111/1471-0528.15799; Stearns JC, Simioni J, Gunn E, et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527. doi: https://doi.org/10.1038/s41598-017-16606-9; Rooney AM, Timberlake K, Brown KA, et al. Each Additional Day of Antibiotics Is Associated With Lower Gut Anaerobes in Neonatal Intensive Care Unit Patients. Clin Infect Dis. 2020;70(12): 2553–2560. doi: https://doi.org/10.1093/cid/ciz698; Azad MB, Konya T, Persaud RR, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016;123(6):983–993. doi: https://doi.org/10.1111/1471-0528.13601; Zhou P, Zhou Y, Liu B, et al. Perinatal Antibiotic Exposure Affects the Transmission between Maternal and Neonatal Microbiota and Is Associated with Early-Onset Sepsis. mSphere. 2020;5(1): e00984-19. doi: https://doi.org/10.1128/mSphere.00984-19; Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009;56(1):80–87. doi: https://doi.org/10.1111/j.1574-695X.2009.00553.x; Zwittink RD, Renes IB, van Lingen RA, et al. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis. 2018;37(3):475–483. doi: https://doi.org/10.1007/s10096-018-3193-y; Ainonen S, Tejesvi MV, Mahmud MR, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr Res. 2022;91(1):154–162. doi: https://doi.org/10.1038/s41390-021-01494-7; Zou ZH, Liu D, Li HD, et al. Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units. Ann Clin Microbiol Antimicrob. 2018;17(1):9. doi: https://doi.org/10.1186/s12941-018-0264-y; Cuna A, Morowitz MJ, Sampath V. Early antibiotics and risk for necrotizing enterocolitis in premature infants: A narrative review. Front Pediatr. 2023;11:1112812. doi: https://doi.org/10.3389/fped.2023.1112812; Raba AA, O’Sullivan A, Semberova J, et al. Are antibiotics a risk factor for the development of necrotizing enterocolitis-case-control retrospective study. Eur J Pediatr. 2019;178(6):923–928. doi: https://doi.org/10.1007/s00431-019-03373-0; Cunha AJLA, Santos AC, Medronho RA, Barros H. Use of antibiotics during pregnancy is associated with infection in children at four years of age in Portugal. Acta Paediatr. 2021;110(6): 1911–1915. doi: https://doi.org/10.1111/apa.15733; Miller JE, Wu C, Pedersen LH, et al. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. Int J Epidemiol. 2018;47(2): 561–571. doi: https://doi.org/10.1093/ije/dyx272; Loewen K, Monchka B, Mahmud SM, et al. Prenatal antibiotic exposure and childhood asthma: a population-based study. Eur Respir J. 2018;52(1):1702070 doi: https://doi.org/10.1183/13993003.02070-2017; Baron R, Taye M, Besseling-van der Vaart I, et al. The relationship of prenatal antibiotic exposure and infant antibiotic administration with childhood allergies: a systematic review. BMC Pediatr. 2020;20(1):312. doi: https://doi.org/10.1186/s12887-020-02042-8; Huang FQ, Lu CY, Wu SP, et al. Maternal exposure to antibiotics increases the risk of infant eczema before one year of life: a metaanalysis of observational studies. World J Pediatr. 2020;16(2): 143–151. doi: https://doi.org/10.1007/s12519-019-00301-y; Örtqvist AK, Lundholm C, Halfvarson J, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut. 2019;68(2):218–225. doi: https://doi.org/10.1136/gutjnl-2017-314352; Hamad AF, Alessi-Severini S, Mahmud SM, et al. Prenatal antibiotics exposure and the risk of autism spectrum disorders: a population-based cohort study. PLoS One. 2019;14(8):e0221921. doi: https://doi.org/10.1371/journal.pone.0221921; Leong KSW, McLay J, Derraik JGB, et al. Associations of prenatal and childhood antibiotic exposure with obesity at age 4 years. JAMA Netw Open. 2020;3(1):e1919681. doi: https://doi.org/10.1001/jamanetworkopen.2019.19681; Zhao L, Yang X, Liang Y, et al. Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Microbiol Spectr. 2024;12(2):e0317723. doi: https://doi.org/10.1128/spectrum.03177-23; Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 2009;11(12):2970–2988. doi: https://doi.org/10.1111/j.1462-2920.2009.01972.x; European Centre for Disease Prevention Control/European Medicines Agency Joint Working Group (ECDC/EMEA). The Bacterial Challenge: Time to React. Stockholm; 2009. 42 p. Available online: www.ecdc.europa.eu/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf. Accessed on August 12, 2024.; Sosa-Moreno A, Comstock SS, Sugino KY, et al. Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. PLoS One. 2020;15(6):e0234751. doi: https://doi.org/10.1371/journal.pone.0234751; Yassour M, Jason E, Hogstrom LJ, et al. Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Cell Host Microbe. 2018;24(1):146–154.e4. doi: https://doi.org/10.1016/j.chom.2018.06.007; Klassert TE, Zubiria-Barrera C, Kankel S, et al. Early Bacterial Colonization and Antibiotic Resistance Gene Acquisition in Newborns. Front Cell Infect Microbiol. 2020;10:332. doi: https://doi.org/10.3389/fcimb.2020.00332; Li X, Stokholm J, Brejnrod A, et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe. 2021;29(6):975–987.e4. doi: https://doi.org/10.1016/j.chom.2021.03.017; Duranti S, Lugli GA, Mancabelli L, et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol. 2017;83(3):e02894-16. doi: https://doi.org/10.1128/AEM.02894-16; Aires J, Doucet-Populaire F, Butel MJ. Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol. 2007;73(8): 2751–2754. doi: https://doi.org/10.1128/AEM.02459-06; Moubareck C, Lecso M, Pinloche E, et al. Inhibitory impact of bifidobacteria on the transfer of beta-lactam resistance among enterobacteriaceae in the gnotobiotic mouse digestive tract. Appl Environ Microbiol. 2007;73(3):855–860. doi: https://doi.org/10.1128/AEM.02001-06; Taft DH, Liu J, Maldonado-Gomez MX, et al. Bifidobacterial Dominance of the Gut in Early Life and Acquisition of Antimicrobial Resistance. mSphere. 2018;3(5):e00441-18. doi: https://doi.org/10.1128/mSphere.00441-18; Leo S, Cetiner OF, Pittet LF, et al. Metagenomics analysis of the neonatal intestinal resistome. Front Pediatr. 2023;11:1169651. doi: https://doi.org/10.3389/fped.2023.1169651; Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022;13(1):893. doi: https://doi.org/10.1038/s41467-022-28525-z; Patangia DV, Grimaud G, O’Shea CA, et al. Early life exposure of infants to benzylpenicillin and gentamicin is associated with a persistent amplification of the gut resistome. Microbiome. 2024;12(1):19. doi: https://doi.org/10.1186/s40168-023-01732-6; Huang MS, Cheng CC, Tseng SY, et al. Most commensally bactеrial strains in human milk of healthy mothers display multiple antibiotic resistance. Microbiologyopen. 2019;8:e00618. doi: https://doi.org/10.1002/mbo3.618; Li X, Zhou Y, Zhan X, et al. Breast milk is a potential reservoir for livestock-associated Staphylococcus aureus and communityassociated Staphylococcus aureus in Shanghai, China. Front Microbiol. 2018;8:2639. doi: https://doi.org/10.3389/fmicb.2017.02639; Behari P, Englund J, Alcasid G, et al. Transmission of methicillinresistant Staphylococcus aureus to preterm infants through breast milk. Infect Control Hosp Epidemiol. 2004;25(9):778–780. doi: https://doi.org/10.1086/502476; Pärnänen K, Karkman A, Hultman J, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018;9(1):3891. doi: https://doi.org/10.1038/s41467-018-06393-w; Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. doi: https://doi.org/10.3390/nu12030823; Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4653–4658. doi: https://doi.org/10.1073/pnas.1000083107; Puccio G, Alliet P, Cajozzo C, et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624–631. doi: https://doi.org/10.1097/MPG.0000000000001520; Yousuf EI, Carvalho M, Dizzell SE, et al. Persistence of Suspected Probiotic Organisms in Preterm Infant Gut Microbiota Weeks After Probiotic Supplementation in the NICU. Front Microbiol. 2020;11:574137. doi: https://doi.org/10.3389/fmicb.2020.574137; Esaiassen E, Hjerde E, Cavanagh JP, et al. Effects of Probiotic Supplementation on the Gut Microbiota and Antibiotic Resistome Development in Preterm Infants. Front Pediatr. 2018;6:347. doi: https://doi.org/10.3389/fped.2018.00347; Eor JY, Lee CS, Moon SH, et al. Effect of Probiotic-Fortified Infant Formula on Infant Gut Health and Microbiota Modulation. Food Sci Anim Resour. 2023;43(4):659–673. doi: https://doi.org/10.5851/kosfa.2023.e26; Zhong H, Wang XG, Wang J, et al. Impact of probiotics supplement on the gut microbiota in neonates with antibiotic exposure: an open-label single-center randomized parallel controlled study. World J Pediatr. 2021;17(4):385–393. doi: https://doi.org/10.1007/s12519-021-00443-y; van den Akker CHP, van Goudoever JB, Shamir R, et al. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr. 2020;70(5):664–680. doi: https://doi.org/10.1097/MPG.0000000000002655; Chang HY, Lin CY, Chiang Chiau JS, et al. Probiotic supplementation modifies the gut microbiota profile of very low birth weight preterm infants during hospitalization. Pediatr Neonatol. 2024;65(1):55–63. doi: https://doi.org/10.1016/j.pedneo.2023.06.002; Guitor AK, Yousuf EI, Raphenya AR, et al. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. Microbiome. 2022;10(1):136. doi: https://doi.org/10.1186/s40168-022-01327-7; Millan B, Park H, Hotte N, et al. Fecal Microbial Transplants Reduce Antibiotic-resistant Genes in Patients With Recurrent Clostridium difficile Infection. Clin Infect Dis. 2016;62(12): 1479–1486. doi: https://doi.org/10.1093/cid/ciw185; Lam KN, Spanogiannopoulos P, Soto-Perez P, et al. Phagedelivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 2021;37:109930. doi:10.1016/j.celrep.2021.109930

  4. 4
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 1 (2025); 17-23 ; Медицинский Совет; № 1 (2025); 17-23 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8961/7790; Prentice AM. Breastfeeding in the modern world. Ann Nutr Metab. 2022;78(Suppl 2):29–38. https://doi.org/10.1159/000524354.; Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–490. https://doi.org/10.1016/S01406736(15)01024-7.; Rollins NC, Bhandari N, Hajeebhoy N, Horton S, Lutter CK, Martines JC et al. Why invest, and what it will take to improve breastfeeding practices? Lancet. 2016;387(10017):491–504. https://doi.org/10.1016/S0140-6736(15)01044-2.; Kotowski J, Fowler C, Hourigan C, Orr F. Bottle-feeding an infant feeding modality: an integrative literature review. Matern Child Nutr. 2020;16(2):e12939. https://doi.org/10.1111/mcn.12939.; Zimmerman E, Thompson K. Clarifying nipple confusion. J Perinatol. 2015;35(11):895–899. https://doi.org/10.1038/jp.2015.83.; Боброва АМ, Рюмина ИИ, Кухарцева МВ, Нароган МВ. Значение ненутритивного сосания в становлении энтерального вскармливания недоношенного ребенка. Неонатология: новости, мнения, обучение. 2023;11(2):53–57. https://doi.org/10.33029/2308-2402-2023-11-2-53-57.; Кухарцева МВ, Боброва АМ, Рюмина ИИ, Нароган МВ. Оральная стимуляция как часть развивающего ухода в практике неонатолога. Неонатология: новости, мнения, обучение. 2023;11(2):30–38. https://doi.org/10.33029/2308-2402-2023-11-2-30-38.; Phillips R, VanNatta D, Chu J, Best A, Ruiz P, Oswalt T et al. Breastfeeding Practice Before Bottle-Feeding An Initiative to Increase the Rate of Breastfeeding for Preterm Infants at the Time of Neonatal Intensive Care Unit Discharge. Crit Care Nurs Clin North Am. 2024;36(2):251–260. https://doi.org/10.1016/j.cnc.2023.12.005.; Geddes DT, Sakalidis VS, Hepworth AR, McClellan HL, Kent JC, Lai CT, Hartmann PE. Tongue movement and intra‐oral vacuum of term infants during breastfeeding and feeding from an experimental teat that released milk under vacuum only. Early Hum Dev. 2012;88(6):443–449. https://doi.org/10.1016/j.earlhumdev.2011.10.012.; da Costa SP, van der Schans CP, Boelema SR, van der Meij E, Boerman MA, Bos AF. Sucking patterns in fullterm infants between birth and 10 weeks of age. Infant Behav Dev. 2010;33(1):61–67. https://doi.org/10.1016/j.infbeh.2009.11.007.; Ardran GM, Kemp FH, Lind J. A cineradiographic study of bottle feeding. Br J Radiol. 1958;31(361):11–22. https://doi.org/10.1259/0007-1285-31-361-11.; Goldfield EC, Richardson MJ, Lee KG, Margetts S. Coordination of sucking, swallowing, and breathing and oxygen saturation during early infant breast‐feeding and bottle‐feeding. Pediatr Res. 2006;60(4):450–455. https://doi.org/10.1203/01.pdr.0000238378.24238.9d.; Mathew OP. Nipple units for newborn infants: A functional comparison. Pediatrics. 1988;81(5):688–691. Available at: https://pubmed.ncbi.nlm.nih.gov/3357729/.; Pados BF, Park J, Dodrill P. Know the flow: Milk flow rates from bottle nipples used in the hospital and after discharge. Adv Neonatal Care. 2019;19(1):32–41. https://doi.org/10.1097/ANC.0000000000000538.; Pados BF, Park J, Thoyre SM, Estrem H, Nix WB. Milk Flow Rates from bottle nipples used after hospital discharge. MCN Am J Matern Child Nurs. 2016;41(4):237–243. https://doi.org/10.1097/NMC.0000000000000244.; Weber F, Woolridge MW, Baum JD. An ultrasonographic study of the organisation of sucking and swallowing by newborn infants. Dev Med Child Neurol. 1986;28(1):19–24. https://doi.org/10.1111/j.1469-8749.1986.tb03825.x.; McGrattan KE, Jansen GP, Barrera JM, Beckstrandhttps M. Exploring Alternative Methods to Reduce Milk Flow Rate From Infant Bottle Systems: Bottle Angle, Milk Volume, and Bottle Ventilation. Am J Speech Lang Pathol. 2023;32(5):2245–2253. https://doi.org/10.1044/2023_AJSLP-23-00109.; Matsubara M, Inoue M. A comparison of the movement of the mandible in infants between breastfeeding and bottle-feeding. J Nurs Sci Engineer. 2019;6(2):54–62. https://doi.org/10.24462/jnse.6.2_54.; Jiang L, Hassanipour F. Bio-Inspired Breastfeeding Simulator (BIBS): A Tool for Studying the Infant Feeding Mechanism. IEEE Trans Biomed Eng. 2020;67(11):3242–3252. https://doi.org/10.1109/TBME.2020.2980545.; Chanprapaph P, Sutchritpongsa S, Rojmahamongkol P, Chuchoang S, Arthan J, Komoltri C. The impact of teat and bottle design on nipple confusion: a double-blind randomized controlled trial. 2022. PREPRINT (Version 1). https://doi.org/10.21203/rs.3.rs-1494783/v1.; Whitfield KC, Ventura AK. Exploration of responsive feeding during breastfeeding versus bottle feeding of human milk: A within‐subject pilot study. Breastfeed Med. 2019;14(7):482–486. https://doi.org/10.1089/bfm.2019.0069.

  5. 5
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 1 (2025); 32-39 ; Медицинский Совет; № 1 (2025); 32-39 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8963/7792; Hansen K. Breastfeeding: a smart investment in people and in economies. Lancet. 2016;387(10017):416. https://doi.org/10.1016/S0140-6736(16)00012-X.; Парандовский Я. Мифология. Верования и легенды греков и римлян. М.: Детская литература; 1971. С. 140–272.; Wickes IG. A history of infant feeding. I. Primitive peoples; ancient works; Renaissance writers. Arch Dis Child. 1953;28(138):151–158. https://doi.org/10.1136/adc.28.138.151.; Osborn ML. The rent breasts: a brief history of wet-nursing. Midwife Health Visit Community Nurse. 1979;15(8):302–306. Available at: https://pubmed.ncbi.nlm.nih.gov/?term=The+rent+breasts%3A+A+brief+history+of+wet-.; Stevens EE, Patrick TE, Pickler R. A history of infant feeding. J Perinat Educ. 2009;18(2):32–39. https://doi.org/10.1624/105812409X426314.; Castilho SD, Rocha MA. Pacifier habit: history and multidisciplinary view. J Pediatr (Rio J). 2009;85(6):480–489. https://doi.org/10.2223/JPED.1951.; Белова ОВ (ред.). Контакты и конфликты в славянской и еврейской культурной традиции. М.; 2017. 384 c.; Weinberg F. Infant feeding through the ages. Can Fam Physician. 1993;39:2016–2020. Available at: https://pubmed.ncbi.nlm.nih.gov/8219849.; Мартин Р. Как мы делаем это: Эволюция и будущее репродуктивного поведения человека. М.: Альпина нонфикшн; 2016. 380 с. Режим доступа: https://nonfiction.ru/media/fragments/kak-my-delaem.pdf.; Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H et al. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants’ gut microbiota. Front Nutr. 2023;10:1194679. https://doi.org/10.3389/fnut.2023.1194679.; Скидан ИН, Гуляев АЕ, Зеленкин ИВ, Скидан ТН. Исторический экскурс в проблематику вскармливания детей. Вопросы питания. 2014;83(2):68–78. Режим доступа: https://www.voprosy-pitaniya.ru/en/jarticles_diet/266.html.; Макарова ИВ. Козье молоко для здоровья, долголетия и красоты. Советы опытного доктора для взрослых и малышей. М.: Центрполиграф; 2015. 197 с.; Гребнев ЯВ (ред.). Книга о козе. СПб.; 2005. 235 c.; Currier RW, Widness JA. A Brief History of Milk Hygiene and Its Impact on Infant Mortality from 1875 to 1925 and Implications for Today: A Review. J Food Prot. 2018;81(10):1713–1722. https://doi.org/10.4315/0362-028X.JFP-18-186.; Gashaw A, Kebede D, Regasa T, Bekele H. Colostrum avoidance and associated factors among mothers of less than 6-month-old children in Dilla town, Southern Ethiopia. Front Pediatr. 2024;12:1399004. https://doi.org/10.3389/fped.2024.1399004.; Radbill SX. Infant feeding through the ages. Clin Pediatr. 1981;20(10):613–621. https://doi.org/10.1177/000992288102001001.; Thoreau HD. Walden. United States: Ticknor and Fields; 1854. Available at: https://courses.lumenlearning.com/suny-introliterature/chapter/waldenby-henry-david-thoreau.; Obladen M. Pap, gruel, and panada: early approaches to artificial infant feeding. Neonatology. 2014;105(4):267–274. https://doi.org/10.1159/000357935.; Griffiths M (ed.). Improving the safety and quality of milk: Milk production and processing. Elsevier; 2010.; Брейтман МЯ. Питание и вскармливание детей с современной точки зрения. СПб.: Современная медицина и гигиена; 1907. 404 с.; Фатеева ЕМ. К истории организации вскармливания детей первого года жизни. Вопросы детской диетологии. 2012;10(1):21–26. Режим доступа: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-detskoy-dietologii/2012/tom-10-nomer-1/9333.; Fomon S. Infant feeding in the 20th century: formula and beikost. J Nutr. 2001;131(2):409S–420S. https://doi.org/10.1093/jn/131.2.409S.; Phosanam A, Chandrapala J, Huppertz T, Adhikari B, Zisu B. In vitro digestion of infant formula model systems: Influence of casein to whey protein ratio. J Dairy Sci. 2021;117:105008. https://doi.org/10.1016/j.idairyj.2021.105008.; Lindner C, Looijesteijn E, Dijck HV, Bovee-Oudenhoven I, Heerikhuisen M, Broek TJVD et al. Infant Fecal Fermentations with Galacto-Oligosaccharides and 2’-Fucosyllactose Show Differential Bifidobacterium longum Stimulation at Subspecies Level. Children. 2023;10(3):430. https://doi.org/10.3390/children10030430.; Huang X, Wang Z. Strategies in Oligosaccharide Synthesis. In: Kamerling H (ed.). Comprehensive Glycoscience. 2007, pp. 379–413. https://doi.org/10.1016/B978-044451967-2/00011-8.; Zivkovic AM, Lewis ZT, German JB, Mills DA. Establishment of a milkoriented microbiota (MOM) in early life: how babies meet their MOMs. Food Rev. 2013;5(1):3–12. https://doi.org/10.2310/6180.2009.00035.; Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, van Sinderen D. Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Crit Rev Food Sci Nutr. 2023;63(6):753–766. https://doi.org/10.1080/10408398.2021.1953437.; Reverri EJ, Devitt AA, Kajzer JA, Baggs GE, Borschel MW. Review of the Clinical Experiences of Feeding Infants Formula Containing the Human Milk Oligosaccharide 2’-Fucosyllactose. Nutrients. 2018;10(10):1346. https://doi.org/10.3390/nu10101346.

  6. 6
    Academic Journal

    Συγγραφείς: Nabieva, Diyora

    Πηγή: Medical science of Uzbekistan; No. 2 (2025): March-April; 177-181 ; Медицинская наука Узбекистана; № 2 (2025): Март-Апрель; 177-181 ; O`zbekiston tibbiyot ilmi; No. 2 (2025): Mart-Aprel; 177-181 ; 2181-3612

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Πηγή: Current Pediatrics; Том 22, № 6 (2023); 506-512 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 506-512 ; 1682-5535 ; 1682-5527

    Περιγραφή αρχείου: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3353/1347; Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi: https://doi.org/10.1128/MMBR.00036-17; Sommer F, Backhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013;11(4): 227-238. doi: https://doi.org/10.1038/nrmicro2974; Turroni F, Milani C, Duranti S, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020; 46(1):16. doi: https://doi.org/10.1186/s13052-020-0781-0; DeGruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137-1150. doi: https://doi.org/10.1097/MIB.0000000000000750; Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-1340. doi: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315; Battson ML, Lee DM, Jarrell DK, et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468-E477. doi: https://doi.org/10.1152/ajpendo.00187.2017; Simon AK, Hollander GA, McMichael A. Evolution of the Immune System in Humans from Infancy to Old Age. Proc Biol Sci. 2015;282(1821):20143085. doi: https://doi.org/10.1098/rspb.2014.3085; Ratsika A, Codagnone MC, O'Mahony S, et al. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021;13(2):423. doi: https://doi.org/10.3390/nu13020423; Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. doi: https://doi.org/10.1186/s13073-016-0330-z; Garci'a-Mantrana I, Selma-Royo M, Gonzalez S, et al. Distinct maternal microbiota clusters are associated with diet during pregnancy: Impact on neonatal microbiota and infant growth during the first 18 months of life. Gut Microbes. 2020;11(4):962-978. doi: https://doi.org/10.1080/19490976.2020.1730294; Collado M, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023-1030. doi: https://doi.org/10.3945/ajcn.2010.29877; Romero R, Hassan SS, Gajer P, et al. The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women. Microbiome. 2014;2(1):4. doi: https://doi.org/10.1186/2049-2618-2-4; Romero R, Hassan SS, Gajer P, et al. The Vaginal Microbiota of Pregnant Women Who Subsequently Have Spontaneous Preterm Labor and Delivery and Those with a Normal Delivery at Term. Microbiome. 2014;2:18. doi: https://doi.org/10.1186/2049-2618-2-18; Dierikx TH, Visser DH, Benninga MA, et al. The Influence of Prenatal and Intrapartum Antibiotics on Intestinal Microbiota Colonisation in Infants: A Systematic Review. J Infect. 2020;81(2):190-204. doi: https://doi.org/10.1016/j.jinf.2020.05.002; Mazzola G, Murphy K, Ross RP, et al. Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease. PLoS ONE. 2016;11(6):e0157527. doi: https://doi.org/10.1371/journal.pone.0157527; Seedat F, Stinton C, Patterson J, et al. Adverse Events in Women and Children Who Have Received Intrapartum Antibiotic Prophylaxis Treatment: A Systematic Review. BMC Pregnancy Childbirth. 2017;17(1):247. doi: https://doi.org/10.1186/s12884-017-1432-3; Stencel-Gabriel K, Gabriel I, Wiczkowski A, et al. Prenatal priming of cord blood T lymphocytes by microbiota in the maternal vagina. Am J Reprod Immunol. 2009;61(3):246-252. https://doi.org/10.1111/j.1600-0897.2009.00687.x; De Aguero MG, Ganal-Vonarburg SC, Fuhrer T, et al. The Maternal Microbiota Drives Early Postnatal Innate Immune Development. Science. 2016;351(6279):1296-1302. doi: https://doi.org/10.1126/science.aad2571; Bailey MT, Lubach GR, Coe CL. Prenatal Stress Alters Bacterial Colonization of the Gut in Infant Monkeys. J Pediatr Gastroenterol Nutr. 2004;38(4):414-421. doi: https://doi.org/10.1097/00005176-200404000-00009; Mold JE, Michaëlsson J, Burt TD, et al. Maternal Alloantigens Promote the Development of Tolerogenic Fetal Regulatory T Cells in Utero. Science. 2008;322(5907):1562-1565. doi: https://doi.org/10.1126/science.1164511; Marchant A, Appay V, Van Der Sande M, et al. Mature CD8(+) T Lymphocyte Response to Viral Infection during Fetal Life. J Clin Investig. 2003;111(11):1747-1755. doi: https://doi.org/10.1172/JCI200317470; Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. doi: https://doi.org/10.1186/s40168-017-0268-4; Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29. doi: https://doi.org/10.1186/s40168-016-0172-3; Palmer C, Bik EM, DiGiulio DB, et al. Development of the Human Infant Intestinal. Microbiota. PLoS Biol. 2007;5(7):e177. doi: https://doi.org/10.1371/journal.pbio.0050177; Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial Restoration of the Microbiota of Cesarean-Born Infants via Vaginal Microbial Transfer. Nat Med. 2016;22(3):250-253. doi: https://doi.org/10.1038/nm.4039; Fettweis JM, Serrano MG, Brooks JP, et al. The Vaginal Microbiome and Preterm Birth. Nat Med. 2019;25(6):1012-1021. doi: https://doi.org/10.1038/s41591-019-0450-2; Calder PC, Krauss-Etschmann S, de Jong EC, et al. Early Nutrition and Immunity — Progress and Perspectives. Br J Nutr. 2006;96(4):774-790. doi: https://doi.org/10.1079/BJN20061917; McDavid A, Laniewski N, Grier A, et al. Aberrant Newborn T Cell and Microbiota Developmental Trajectories Predict Respiratory Compromise during Infancy. iScience. 202;25(4):104007. doi: https://doi.org/10.1016/j.isci.2022.104007; Miyoshi J, Bobe AM, Miyoshi S, et al. Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring. Cell Rep. 2017;20(2):491-504. doi: https://doi.org/10.1016/j.celrep.2017.06.060; Sidener HM, Park B, Gao L. Effect of Antibiotic Administration during Infancy on Growth Curves through Young Adulthood in Rhesus Macaques (Macaca Mulatta). Comp Med. 2017;67(3):270-276.; Al Nabhani Z, Eberl G. Imprinting of the Immune System by the Microbiota Early in Life. Mucosal Immunol. 2020;13(2):183-189. doi: https://doi.org/10.1038/s41385-020-0257-y; Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Sci Transl Med. 2015;7(307):307ra152. doi: https://doi.org/10.1126/scitranslmed.aab2271; Tamburini S, Shen N, Wu HC, Clemente JC. The Microbiome in Early Life: Implications for Health Outcomes. Nat Med. 2016;22(7):713-722. doi: https://doi.org/10.1038/nm.4142; Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol. 2022;13:849012. doi: https://doi.org/10.3389/fimmu.2022.849012; Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. doi: https://doi.org/10.3390/nu12030823; Molès JP Tuaillon E, Kankasa C, et al. Breastmilk Cell Trafficking Induces Microchimerism-Mediated Immune System Maturation in the Infant. Pediatr Allergy Immunol. 2018;29(2):133-143. doi: https://doi.org/10.1111/pai.12841; Murphy K, Curley D, O'Callaghan TF, et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Sci Rep. 2017;7:40597. doi: https://doi.org/10.1038/srep40597; Pärnänen K, Karkman A, Hultman J, et al. Maternal Gut and Breast Milk Microbiota Affect Infant Gut Antibiotic Resistome and Mobile Genetic Elements. Nat Commun. 2018;9(1):3891. doi: https://doi.org/10.1038/s41467-018-06393-w; Laouar A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020;41(3):225-239. doi: https://doi.org/10.1016/j.it.2020.01.005; Koch S, Hufnagel M, Theilacker C, Huebner J. Enterococcal Infections: Host Response, Therapeutic, and Prophylactic Possibilities. Vaccine. 2004;22(7):822-830. doi: https://doi.org/10.1016/j.vaccine.2003.11.027; Torow N, Dittrich-Breiholz O, Hornef MW. Transcriptional Profiling of Intestinal CD4+ T Cells in the Neonatal and Adult Mice. Genom Data. 2015;5:371-374. doi: https://doi.org/10.1016/j.gdata.2015.07.009; Dettmer AM, Allen JM, Jaggers RM, Bailey MT. A Descriptive Analysis of Gut Microbiota Composition in Differentially-Reared Infant Rhesus Monkeys (Macaca Mulatta) across the First Six Months of Life. Am J Primatol. 2019;81(10-11):e22969. doi: https://doi.org/10.1002/ajp.22969; Ardeshir A, Narayan NR, Méndez-Lagares G, et al. Breast-Fed and Bottle-Fed Infant Rhesus Macaques Develop Distinct Gut Microbiotas and Immune Systems. Sci Transl Med. 2014;6(252): 252ra120. doi: https://doi.org/10.1126/scitranslmed.3008791; Narayan NR, Méndez-Lagares G, Ardeshir A, et al. Persistent Effects of Early Infant Diet and Associated Microbiota on the Juvenile Immune System. Gut Microbes. 2015;6(4):284-289. doi: https://doi.org/10.1080/19490976.2015.1067743; Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and Gut Microbes. Front Microbiol. 2017;8:356. doi: https://doi.org/10.3389/fmicb.2017.00356; Magne F, Hachelaf W, Suau A, et al. A Longitudinal Study of Infant Faecal Microbiota during Weaning. FEMS Microbiol Ecol. 2006;58(3):563-571. doi: https://doi.org/10.1111/j.1574-6941.2006.00182.x; Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации. — М.: НМИЦ здоровья детей; 2019. — 112 с.; Koenig JE, Spor A, Scalfone N, et al. Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4578-4585. doi: https://doi.org/10.1073/pnas.1000081107; Laursen MF, Andersen LBB, Michaelsen KF, et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. 2016;1(1):e00069-15. doi: https://doi.org/10.1128/mSphere.00069-15; Knoop KA, Gustafsson JK, McDonald KG, et al. Microbial Antigen Encounter during a Preweaning Interval Is Critical for Tolerance to Gut Bacteria. Sci Immunol. 2017;2(18):eaao1314. doi: https://doi.org/10.1126/sciimmunol.aao1314; Al Nabhani Z, Dulauroy S, Marques R, et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity. 2019;50(5):1276-1288.e5. doi: https://doi.org/10.1016/j.immuni.2019.02.014; Mao K, Baptista AP, Tamoutounour S, et al. Innate and Adaptive Lymphocytes Sequentially Shape the Gut Microbiota and Lipid Metabolism. Nature. 2018;554(7691):255-259. doi: https://doi.org/10.1038/nature25437; Vatanen T, Kostic AD, d'Hennezel E, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165(4):842-853. doi: https://doi.org/10.1016/j.cell.2016.04.007; Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016;7:455. doi: https://doi.org/10.3389/fmicb.2016.00455; Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-440. doi: https://doi.org/10.1016/j.jaci.2011.10.025; Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842-850. doi: https://doi.org/10.1111/cea.12253; Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. doi: https://doi.org/10.1016/j.chom.2015.01.001; Ivarsson A, Persson LA, Nystrom L, et al. Epidemic of Coeliac Disease in Swedish Children. Acta Paediatr. 2000;89(2):165-171. doi: https://doi.org/10.1111/j.1651-2227.2000.tb01210.x; Ivarsson A, Myleus A, Norstrom F, et al. Prevalence of Childhood Celiac Disease and Changes in Infant Feeding. Pediatrics. 2013;131(3):e687-e694. doi: https://doi.org/10.1542/peds.2012-1015; Chassin C, Kocur M, Pott J, et al. MiR-146a Mediates Protective Innate Immune Tolerance in the Neonate Intestine. Cell Host Microbe. 2010;8(4):358-368. doi: https://doi.org/10.1016/j.chom.2010.09.005; Сорвачева Т.Н. «Первый выбор» должен быть правильным! // Эффективная фармакотерапия. Педиатрия. — 2015. — № 4-5. — С. 38-41. [Sorvacheva T.N. “Pervyi vybor” dolzhen byt' pravil'nym! Effektivnaya farmakoterapiya. Pediatriya. 2015;(4-5):38-41. (In Russ).]; Codex Alimentarius. Standard for Processed Cereal-Based Foods for Infants and Young Children. CODEX STAN 74-1981. Available online: https://www.isdi.org/wp-content/uploads/2020/04/CXS-74-1981.pdf. Accessed on November 30, 2023.; Agostoni C, Decsi T, Fewtrell M, et al. Complementary feeding: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2008;46(1):99-110. doi: https://doi.org/10.1097/01.mpg.0000304464.60788.bd; Grimes CA, Szymlek-Gay EA, Campbell KJ, Nicklas TA. Food sources of total energy and nutrients among US infants and toddlers: National Health and Nutrition Examination Survey 2005-2012. Nutrients. 2015;7(8):6797-6836. doi: https://doi.org/10.3390/nu7085310; Finn K, Callen C, Bhatia J, et al. Importance of dietary sources of iron in infants and toddlers: Lessons from the FITS study. Nutrients. 2017;9(7):733. doi: https://doi.org/10.3390/nu9070733; Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fiber? Nutr Res Rev. 2010;23(1):65-134. doi: https://doi.org/10.1017/S0954422410000041; Fallani M, Amarri S, Uusijarvi A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011;157(Pt 5):1385-1392. doi: https://doi.org/10.1099/mic.0.042143-0; Gamage HK, Tetu SG, Chong RW, et al. Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Sci Rep. 2017;7(1):14312. doi: https://doi.org/10.1038/s41598-017-14707-z; Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371(14):1304-1315. doi: https://doi.org/10.1056/NEJMoa1404172; Dalmau Serra J, Moreno Villares J. Alimentacion complementaria: Puesta al día. Pediatr Integral. 2017;21(1):47.e1-47.e4.; Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119-132. doi: https://doi.org/10.1097/MPG.0000000000001454; Klerks M, Bernal MJ, Roman S, et al. Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients. 2019;11(2):473. doi: https://doi.org/10.3390/nu11020473; Plaza-Diaz J, Bernal MJ, Schutte S, et al. Effects of WholeGrain and Sugar Content in Infant Cereals on Gut Microbiota at Weaning: A Randomized Trial. Nutrients. 2021;13(5):1496. doi: https://doi.org/10.3390/nu13051496; Pham VT, Greppi A, Chassard C, et al. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr. 2022;9:948131. doi: https://doi.org/10.3389/fnut.2022.948131; Rachmühl C, Lacroix C, Giorgetti A, et al. Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants. BMC Microbiol. 2023;23(1):174. doi: https://doi.org/10.1186/s12866-023-02915-9

  9. 9
    Academic Journal

    Πηγή: Current Pediatrics; Том 22, № 6 (2023); 498-505 ; Вопросы современной педиатрии; Том 22, № 6 (2023); 498-505 ; 1682-5535 ; 1682-5527

    Περιγραφή αρχείου: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3351/1346; Шабалов Н.П., Софронова Л.Н. Неонатология: в 2 т.: учебное пособие. — 7-е изд., перераб. и доп. — М.: ГЭОТАР-Медиа; 2020. — 720 с.; Newman AJ, Gross S. Hyperbilirubinemia in Breast-Fed Infants. Pediatrics. 1963;32(6):995-1001. doi: https://doi.org/10.1542/peds.32.6.995; Schneider AP 2nd. Breast milk jaundice in the newborn. A real entity. JAMA. 1986;255(23):3270-3274. doi: https://doi.org/10.1001/jama.1986.03370230076034; Неонатология: клинические рекомендации / под ред. Н.Н. Володина, Д.Н. Дегтярева, Д.С. Крючко. — М.: ГЭОТАР-Медиа; 2019. — 320 с.; Kemper AR, Newman TB, Slaughter JL, et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics. 2022;150(3): e2022058859. doi: https://doi.org/10.1542/peds.2022-058859; Preer GL, Philipp BL. Understanding and managing breast milk jaundice. Arch Dis Child Fetal Neonatal Ed. 2011;96(6):F461- F466. doi: https://doi.org/10.1136/adc.2010.184416; Ullah S, Rahman K, Hedayati M. Hyperbilirubinemia in Neonates: Types, Causes, Clinical Examinations, Preventive Measures and Treatments: A Narrative Review Article. Iran J Public Health. 2016; 45(5):558-568.; Bratton S, Cantu RM, Stern M. Breast Milk Jaundice. 2023 Jan 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.; Ketsuwan S, Baiya N, Maelhacharoenporn K, Puapornpong P. The Association of Breastfeeding Practices with Neonatal Jaundice. J Med Assoc Thai. 2017;100(3):255-261.; Noel-Weiss J, Courant G, Woodend AK. Physiological weight loss in the breastfed neonate: a systematic review. Open Med. 2008;2(4):e99-e110.; Huang H, Huang J, Huang W, et al. Breast milk jaundice affects breastfeeding: From the perspective of intestinal flora and SCFAs-GPR41/43. Front Nutr. 2023;10:1121213. doi: https://doi.org/10.3389/fnut.2023.1121213; Prameela KK. Breastfeeding during breast milk jaundice — a pathophysiological perspective. Med J Malaysia. 2019;74(6):527-533.; Levitt DG, Levitt MD. Quantitative assessment of the multiple processes responsible for bilirubin homeostasis in health and disease. Clin Exp Gastroenterol. 2014;7:307-328. doi: https://doi.org/10.2147/CEG.S64283; Flaherman VJ, Maisels MJ. ABM Clinical Protocol #22: Guidelines for Management of Jaundice in the Breastfeeding Infant 35 Weeks or More of Gestation-Revised 2017. Breastfeed Med. 2017;12(5): 250-257. doi: https://doi.org/10.1089/bfm.2017.29042.vjf; Deshpande PG, Aslam M. Breast Milk Jaundice. In: Medscape. Updated: Nov 18, 2021. Available online: https://emedicine.medscape.com/article/973629-overview. Accessed on November 22, 2023.; Maisels MJ, Clune S, Coleman K, et al. The natural history of jaundice in predominantly breastfed infants. Pediatrics. 2014; 134(2):e340-e345. doi: https://doi.org/10.1542/peds.2013-4299; Bentz MG, Carmona N, Bhagwat MM, et al. Beyond “Asian”: Specific East and Southeast Asian Races or Ethnicities Associated With Jaundice Readmission. Hosp Pediatr. 2018;8(5):269-273. doi: https://doi.org/10.1542/hpeds.2017-0234; Gao C, Guo Y, Huang M, et al. Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review. Nutrients. 2023;15(10):2261. doi: https://doi.org/10.3390/nu15102261; Arias IM, Gartner LM, Seifter S, Furman M. Prolonged neonatal unconjugated hyperbilirubinemia associated with breast feeding and a steroid, pregnane-3(alpha), 20(beta)-diol, in maternal milk that inhibits glucuronide formation in vitro. J Clin Invest. 1964; 43(11):2037-2047. doi: https://doi.org/10.1172/jci105078; Guo Q, Cui M, Liu X, et al. Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing. Nutrients. 2022;14(21):4587. doi: https://doi.org/10.3390/nu14214587; Demirkol M, Bohles H. Breast milk taurine and its possible influence on the development of breast milk induced jaundice of the neonate — a hypothesis. Adv Exp Med Biol. 1994;359:405-410. doi: https://doi.org/10.1007/978-1-4899-1471-2_42; Amato M, Howald H, von Muralt G. Fat Content of Human Milk and Breast Milk Jaundice. Acta Paediatr Int J Paediatr. 1985;74(5):805-806. doi: https://doi.org/10.1111/j.1651-2227.1985.tb10039.x; Poland RL, Schultz GE, Garg G. High milk lipase activity associated with breast milk jaundice. Pediatr Res. 1980;14:1328-1331. doi: https://doi.org/10.1203/00006450-198012000-00011; Forsyth JS, Donnet L, Ross PE. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: Normal infants and those with breast milk jaundice. J Pediatr Gastroenterol Nutr. 1990;11(2):205-210. doi: https://doi.org/10.1097/00005176-199008000-00009; Shibuya A, Itoh T, Tukey RH, Fujiwara R. Impact of fatty acids on human UDP-glucuronosyltransferase 1A1 activity and its expression in neonatal hyperbilirubinemia. Sci Rep. 2013;3:2903. doi: https://doi.org/10.1038/srep02903; Foliot A, Ploussard JP, Housset E, Christoforov. Breast milk jaundice: In vitro inhibition of rat liver bilirubin-uridine diphosphate glucuronyltransferase activity and Z protein-bromosulfophthalein binding by human breast milk. Pediatr Res. 1976;10(6):594-598. doi: https://doi.org/10.1203/00006450-197606000-00007; Gao C, Miller J, Middleton PF, et al. Changes to breast milk fatty acid composition during storage, handling and processing: A systematic review. Prostaglandins Leukot Essent Fatty Acids. 2019;146:1-10. doi: https://doi.org/10.1016/j.plefa.2019.04.008; Manganaro R, Marseglia L, Mami C, et al. Serum alphafetoprotein (AFP) levels in breastfed infants with prolonged indirect hyperbilirubinemia. Early Hum Dev. 2008;84:487-490. doi: https://doi.org/10.1016/j.earlhumdev.2008.01.005; Apaydin K, Ermis B, Arasli M, et al. Cytokines in human milk and late-onset breast milk jaundice. Pediatr Int. 2012;54(6):801-805. doi: https://doi.org/10.1111/j.1442-200X.2012.03680.x; Kumral A, Ozkan H, Duman N, et al. Breast milk jaundice correlates with high levels of epidermal growth factor. Pediatr Res. 2009;66(2):218-221. doi: https://doi.org/10.1203/PDR.0b013e3181ac4a30; Li Y, Shen N, Li J, et al. Changes in intestinal Flora and Metabolites in neonates with breast Milk jaundice. Front Pediatr. 2020;8:177. doi: https://doi.org/10.3389/fped.2020.00177; McCarville JL, Chen GY, Cuevas VD, et al. Microbiota metabolites in health and disease. Annu Rev Immunol. 2020;38:147-170. doi: https://doi.org/10.1146/annurev-immunol-071219-125715; Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6): 1174-1182. doi: https://doi.org/10.1136/gutjnl-2020-323071; Gonçalves P, Araújo JR, Di Santo JP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(3):558-572. doi: https://doi.org/10.1093/ibd/izx029; Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol. 2020;38:23-48. doi: https://doi.org/10.1146/annurev-immunol-070119-115104; Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev. 2020;100(3):1291-346. doi: https://doi.org/10.1152/physrev.00004.2019; Chen K, Yuan T. The role of microbiota in neonatal hyperbilirubinemia. Am J Transl Res. 2020;12:7459-7474.; Novák P Jackson AO, Zhao GJ, Yin K. Bilirubin in metabolic syndrome and associated inflammatory diseases: new perspectives. Life Sci. 2020;257:118032. doi: https://doi.org/10.1016/j.lfs.2020.118032; Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10:15792. doi: https://doi.org/10.1038/s41598-020-72635-x; Guo Q, Liu X, Cui M, et al. Characteristics of intestinal microbiota in infants with late-onset breast milk jaundice. Front Nutr. 2023;10: 1119768. doi: https://doi.org/10.3389/fnut.2023.1119768; Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581-616. doi: https://doi.org/10.1146/annurev.pharmtox.40.1.581.; Maisels MJ, Kring E. Rebound in serum bilirubin level following intensive phototherapy. Arch Pediatr Adolesc Med. 2002;156(7): 669-672. doi: https://doi.org/10.1001/archpedi.156.7.669; Fujiwara R, Maruo Y, Chen S, Tukey RH. Role of extrahepatic UDP-glucuronosyltransferase 1A1: Advances in understanding breast milk-induced neonatal hyperbilirubinemia. Toxicol Appl Pharmacol. 2015;289(1):124-132. doi: https://doi.org/10.1016/j.taap.2015.08.018; Maruo Y, Nishizawa K, Sato H, et al. Prolonged unconjugated hyperbilirubinemia associated with breast milk and mutations of the bilirubin uridine diphosphate- glucuronosyltransferase gene. Pediatrics. 2000;106(5):E59. doi: https://doi.org/10.1542/peds.106.5.e59; Fujiwara R, Chen S, Karin M, Tukey RH. Reduced expression of UGT1A1 in intestines of humanized UGT1 mice via inactivation of NF-kB leads to hyperbilirubinemia. Gastroenterology. 2012;142(1): 109-118. doi: https://doi.org/10.1053/j.gastro.2011.09.045; Assenat E, Gerbal-Chaloin S, Larrey D, et al. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology. 2004;40(4):951-960. doi: https://doi.org/10.1002/hep.20387; Sumida K, Kawana M, Kouno E, et al. Importance of UDP-glucuronosyltransferase 1A1 expression in skin and its induction by UVB in neonatal hyperbilirubinemia. Mol Pharmacol. 2013;84(5): 679-686. doi: https://doi.org/10.1124/mol.113.088112; Ota Y Maruo Y Matsui K, et al. Inhibitory effect of 5e-pregnane-3a,20e-diol on transcriptional activity and enzyme activity of human bilirubin UDP-glucuronosyltransferase. Pediatr Res. 2011;70(5): 453-457. doi: https://doi.org/10.1203/PDR.0b013e31822f242e; Muchowski KE. Evaluation and treatment of neonatal hyperbilirubinemia. Am Fam Physician. 2014;89(11):873-878.; Xiao LL, Zhang XF, Wang XY. Changes in epidermal growth factor concentrations in neonates with late-onset breast milk jaundice after stopping breast feeding. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15(12):1079-1081.; Fawaz R, Baumann U, Ekong U, et al. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):154-168. doi: https://doi.org/10.1097/MPG.0000000000001334; Banakar MK, Subbarayan A. A study of prolonged jaundice screen in healthy term babies. Indian J Clin Biochem. 2008;23(3):286-289. doi: https://doi.org/10.1007/s12291-008-0064-9; Kaplan M, Kaplan E, Hammerman C, et al. Post-phototherapy neonatal bilirubin rebound: a potential cause of significant hyperbilirubinaemia. Arch Dis Child. 2006;91(1):31-34. https://doi.org/doi:10.1136/adc.2005.081224; Chang PW, Kuzniewicz MW, McCulloch CE, Newman TB. A Clinical Prediction Rule for Rebound Hyperbilirubinemia Following Inpatient Phototherapy. Pediatrics. 2017;139(3):e20162896. doi: https://doi.org/10.1542/peds.2016-2896; So V, Coo H, Khurshid F. Validation of published rebound hyperbilirubinemia risk prediction scores during birth hospitalization after initial phototherapy: a retrospective chart review. Pediatr Res. 2022; 91(4):888-895. doi: https://doi.org/10.1038/s41390-021-01478-7; Sachdeva M, Murki S, Oleti TP, Kandraju H. Intermittent versus continuous phototherapy for the treatment of neonatal non-hemolytic moderate hyperbilirubinemia in infants more than 34 weeks of gestational age: a randomized controlled trial. Eur J Pediatr. 2015; 174(2):177-181. doi: https://doi.org/10.1007/s00431-014-2373-8; Pettersson M, Eriksson M, Odlind A, Ohlin A. Home phototherapy of term neonates improves parental bonding and stress: findings from a randomized controlled trial. Acta Paediatr. 2022;111(4): 760-766. doi: https://doi.org/10.1111/apa.16231; Awad MH, Amer S, Hafez M, et al. Fenofibrate as an adjuvant to phototherapy in pathological unconjugated hyperbilirubinemia in neonates: a randomized control trial. J Perinatol. 2021;41(4): 865-872. doi: https://doi.org/10.1038/s41372-020-00861-2; Lazarus G, Francie J, Roeslani RD, et al. Role of ursodeoxycholic acid in neonatal indirect hyperbilirubinemia: a systematic review and meta-analysis of randomized controlled trials. Ital J Pediatr. 2022; 48(1):179. doi: https://doi.org/10.1186/s13052-022-01372-w; Mutlu M, Aslan Y, Kader Ş, Aktürk Acar F. Preventive Effects of Probiotic Supplementation on Neonatal Hyperbilirubinemia Caused by Isoimmunization. Am J Perinatol. 2020;37(11):1173-1176. doi: https://doi.org/10.1055/s-0039-1692690; Nuzzi G, Trambusti I, DI Cicco ME, Peroni DG. Breast milk: more than just nutrition! Minerva Pediatr (Torino). 2021;73(2):111-114. doi: https://doi.org/10.23736/S2724-5276.21.06223-X; Geddes DT, Gridneva Z, Perrella SL, et al. 25 Years of Research in Human Lactation: From Discovery to Translation. Nutrients. 2021;13(9):3071. doi: https://doi.org/10.3390/nu13093071; Rahkonen P, Heinonen K, Pesonen AK, et al. Mother-child interaction is associated with neurocognitive outcome in extremely low gestational age children. Scand J Psychol. 2014;55(4): 311-318. doi: https://doi.org/10.1111/sjop.12133; Liu J, Leung P, Yang A. Breastfeeding and active bonding protects against children's internalizing behavior problems. Nutrients. 2013;6(1):76-89. doi: https://doi.org/10.3390/nu6010076; Vidavalur R, Devapatla S. Trends in hospitalizations of newborns with hyperbilirubinemia and kernicterus in United States: an epidemiological study. J Matern Fetal Neonatal Med. 2022;35(25):7701-7706. doi: https://doi.org/10.1080/14767058.2021.1960970; Alkén J, Håkansson S, Ekéus C, et al. Rates of Extreme Neonatal Hyperbilirubinemia and Kernicterus in Children and Adherence to National Guidelines for Screening, Diagnosis, and Treatment in Sweden. JAMA Netw Open. 2019;2(3):e190858. doi: https://doi.org/10.1001/jamanetworkopen.2019.0858; McNamara RK, Vannest JJ, Valentine CJ. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology. World J Psychiatry. 2015;5(1):15-34. doi: https://doi.org/10.5498/wjp.v5.i1.15; Anderson JW, Johnstone BM, Remley DT. Breast feeding and cognitive development: a meta-analysis. Am J Clin Nutr. 1999; 70(4):525-535. doi: https://doi.org/10.1093/ajcn/70.4.525; Kramer MS, Aboud F, Mironova E, et al. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch Gen Psychiatry. 2008;65(5):578-584. doi: https://doi.org/10.1001/archpsyc.65.5.578; Horta BL, Loret de Mola C, Victora CG. Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatr. 2015;104(467):14-19. doi: https://doi.org/10.1111/apa.13139; Deoni SCL, Dean DC, Piryatinsky I, et al. Breastfeeding and early white matter development: A cross-sectional study. Neuroimage. 2013;82:77-86. doi: https://doi.org/10.1016/j.neuroimage.2013.05.090; Schött U, Solomon C, Fries D, Bentzer P The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016; 24:48. doi: https://doi.org/10.1186/s13049-016-0239-y; Kutuzov N, Flyvbjerg H, Lauritzen M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc Natl Acad Sci USA. 2018;115(40): E9429-E9438. doi: https://doi.org/10.1073/pnas.1802155115; Liu B, Newburg DS. Human milk glycoproteins protect infants against human pathogens. Breastfeed Med. 2013;8(4):354-362. doi: https://doi.org/10.1089/bfm.2013.0016; Hassiotou F, Beltran A, Chetwynd E, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30(10):2164-2174. doi: https://doi.org/10.1002/stem.1188; Velasco I, Santos C, Limon J, et al. Bioactive components in human milk along the first month of life: effects of iodine supplementation during pregnancy. Ann Nutr Metab. 2016;68(2):130-136. doi: https://doi.org/10.1159/000443800; Aydin MS, Yiğit EN, Vatandaşlar E, et al. Transfer and integration of breast milk stem cells to the brain of suckling pups. Sci Rep. 2018; 8(1):4289. doi: https://doi.org/10.1038/s41598-018-32715-5; Irmak MK, Oztas Y, Oztas E. Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase. Theor Biol Med Model. 2012;9:20. doi: https://doi.org/10.1186/1742-4682-9-20; Păduraru L, Dimitriu DC, Avasiloaiei AL, et al. Total antioxidant status in fresh and stored human milk from mothers of term and preterm neonates. Pediatr Neonatol. 2018;59(6):600-605. doi: https://doi.org/10.1016/j.pedneo.2018.02.004; DiNicolantonio JJ, McCarty MF, O'Keefe JH. Antioxidant bilirubin works in multiple ways to reduce risk for obesity and its health complications. Open Heart. 2018;5(2):e000914. doi: https://doi.org/10.1136/openhrt-2018-000914; Hansen R, Gibson S, De Paiva Alves E, et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin. Sci Rep. 2018;8(1):6470. doi: https://doi.org/10.1038/s41598-018-24811-3; Altuntaş N. Is There Any Effect of Hyperbilirubinemia on Breastfeeding? If Any, at Which Level? Breastfeed Med. 2020;15(1):29-34. doi: https://doi.org/10.1089/bfm.2019.0176; Huang Y, Chen L, Wang X, et al. Maternal knowledge, attitudes and practices related to neonatal jaundice and associated factors in Shenzhen, China: a facility-based cross-sectional study. BMJ Open. 2022;12(8):e057981. doi: https://doi.org/10.1136/bmjopen-2021-057981; Chu KH, Teng SW, Tai CJ, et al. Does Jaundice in Newborn Infants Affect Exclusivity and Duration of Breastfeeding in Taiwan? J Nurs Res. 2021;29(2):e145. doi: https://doi.org/10.1097/jnr.0000000000000420; Hokkanen L, Launes J, Michelsson K. Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates — A 30 year prospective follow-up study. PeerJ. 2014;2:e294. doi: https://doi.org/10.7717/peerj.294; Tsao PC, Yeh HL, Shiau YS, et al. Long-term neurodevelopmental outcomes of significant neonatal jaundice in Taiwan from 20002003: A nationwide, population-based cohort study. Sci Rep. 2020; 10(1):11374. doi: https://doi.org/10.1038/s41598-020-68186-w; Chiu YW, Cheng SW, Yang CY, Weng YH. Breastfeeding in Relation to Neonatal Jaundice in the First Week After Birth: Parents' Perceptions and Clinical Measurements. Breastfeed Med. 2021; 16(4):292-299. doi: https://doi.org/10.1089/bfm.2020.0293

  10. 10
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 5 (2024); 37-44 ; Российский вестник перинатологии и педиатрии; Том 69, № 5 (2024); 37-44 ; 2500-2228 ; 1027-4065

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2063/1529; Kuciel N., Mazurek J., Czosnykowska-Łukacka M., Królak-Olejnik B. Stem cells in breast milk. Pediatria Polska — Polish J Paediatr 2018; 93(3): 260–263. DOI:10.5114/polp.2018.77440; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Stem cells in human breast milk. Human Cell 2019; 32(3): 223–230. DOI:10.1007/s13577–019–00251–7; Molès J.P., Tuaillon E., Kankasa C., Bedin A.S., Nagot N., Marchant A. et al. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr Allergy Immunol 2018; 29(2): 133–143. DOI:10.1111/pai.12841; Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Human Cell 2019; 32(3): 223–230. DOI:10.1007/s13577–019–00251–7; Хаитов М.Р., Ильина Н.И., Лусс Л.В., Бабахин А.А. Мукозальный иммунитет респираторного тракта и его роль при профессиональных патологиях. Медицина экстремальных ситуаций 2017; 3: 8–24.; Несторова И.В., Чудилова Г.А., Ковалева С.В., Ломтатидзе М.В., Колесникова М.В., Евглевский А.А. Методы комплексной оценки функциональной активности нейтрофильных гранулоцитов в норме и патологии. Методические рекомендации для иммунологов-аллергологов, врачей и биологов клинической лабораторной диагностики Краснодар, 2017: 51.; Матвеева Л.А. Местная защита респираторного тракта у детей. Томск: Изд-во Томского университета 1993: 276.; Маланичева Т.Г., Мизерницкий Ю.Л., Агафонова Е.В., Можгина С.С. Особенности мукозального иммунитета у детей с внебольничной пневмоний на фоне сниженной резистентости организма. Педиатрия 2020; 99(6): 105–111.; Маланичева Т.Г., Агафонова Е.В., Зиатдинова Н.В., Скидан И.Н. Влияние характера вскармливания детей первого года жизни на формирование резистентности организма. Российский вестник перинатологии и педиатрии 2020; 65(6):145–154.; Виксман М.Е., Маянский А.Н. Способ оценки функциональной активности нейтрофилов человека по реакции восстановления нитросинего тетразолия. Методические рекомендации. Казань: Казанский НИИЭМ 1979: 11.; Герасимов И.Г., Калуцкая О.А. Кинетика реакции восстановления нитросинего тетразолия нейтрофилами крови человека. Цитология 2000; 42(2): 160–165.; Хаитов Р.М., Пинегин Б.В., Истамов Х.И. Экологическая иммунология. М: ВНИРО 1995; 219.; Козлов В.А. Некоторые аспекты проблемы цитокинов. Цитокины и воспаление 2002; 1 (1): 1–8.; Серебренникова С.Н., Семинский И.Ж. Роль цитокинов в воспалительном процессе (сообщение 2). Сибирский медицинский журнал 2008; 8: 5–8.; Кушнарева М.В., Виноградова Т.В., Кешишян Е.С., Парфенов В.В., Кольцов В.Д., Брагина Г.С. и др. Особенности иммунного статуса и системы интерферона у детей раннего возраста. Российский вестник перинатологии и педиатрии 2016; 61 (3): 12–21.; Андрюков Б.Г., Сомова Л.М., Дробот Е.И., Матосова Е.В. Антимикробные стратегии нейтрофилов при инфекционной патологии. Клиническая лабораторная диагностика 2016; 61(12): 825–833.; Casanova-Acebes M., Nicolas-Avila J.A., Li J.L., Garcia-Silva S., Balachander A., Rubio-Ponce A. et al. Neutrophils instruct homeostatic and pathological states in naive tiss. J Exper Med 2018; 215(11): 2778–2795. DOI:10.1084/jem.20181468

  11. 11
    Academic Journal

    Πηγή: CHILDREN INFECTIONS; Том 23, № 4 (2024); 63-69 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 23, № 4 (2024); 63-69 ; 2618-8139 ; 2072-8107

    Περιγραφή αρχείου: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/998/695; Неонатология: национальное руководство: в 2 т. Под ред. Н.Н. Володина, Д.Н. Дегтярева. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2023. Т. 1:752. DOI:10.33029/9704-7828-8-NNG-2023-1-752.; Bernal A, Zafra MA, Simón MJ, Mahía J. Sodium Homeostasis, a Balance Necessary for Life. Nutrients. 2023 Jan 12; 15(2):395. DOI:10.3390/nu15020395.; Клинические рекомендации по ведению и терапии новорожденных с нарушением обмена натрия. РАСПМ: проект. Д.О. Иванов, Т.К. Мавропуло. 2016.; Feld LG, Neuspiel DR, Foster BA, Leu MG, Garber MD, Austin K, et al.; SUBCOMMITTEE ON FLUID AND ELECTROLYTE THERAPY. Clinical Practice Guideline: Maintenance Intravenous Fluids in Children. Pediatrics. 2018 Dec; 142(6):e20183083. DOI:10.1542/peds.2018—3083.; Yun G, Baek SH, Kim S. Evaluation and management of hypernatremia in adults: clinical perspectives. Korean J InternMed. 2023 May; 38(3):290— 302. DOI:10.3904/kjim.2022.346.; Durrani NUR, Imam AA, Soni N. Hypernatremia in Newborns: A Practical Approach to Management. BiomedHub. 2022 May 19; 7(2):55—69. DOI:10.1159/000524637.; DelCastillo-Hegyi C, Achilles J, Segrave-Daly BJ, Hafken L. Fatal Hypernatremic Dehydration in a Term Exclusively Breastfed Newborn. Children (Basel). 2022 Sep 13; 9(9):1379. DOI:10.3390/children9091379; Mujawar NS, Jaiswal AN. Hypernatremia in the Neonate: Neonatal Hypernatremia and Hypernatremic Dehydration in Neonates Receiving Exclusive Breastfeeding. Indian J Crit Care Med. 2017 Jan; 21(1):30—33. DOI:10.4103/0972-5229.198323.; Zakerihamidi M, Rakhshanizadeh F, Boskabadi H. Prevalence, risk factors, and prognosis of neonatal hypernatremic dehydration among full-term newborns: a systematic review. J Pediatr Neonat Individual Med. 2023; 12(2):e120207. DOI:10.7363/120207.; Arora I, Juneja H, Bhandekar H, Chandankhede M. Neonatal hypernatremic dehydration in breastfed neonates: a prospective study unmasking the influences of breastfeeding practices and early weight monitoring. J Matern Fetal Neonatal Med. 2024 Dec; 37(1):2299568. DOI:10.1080/14767058.2023.2299568.; Sajad Ahmad Bhat, ZulEidain Hassan, Shafat Ahmad Tak. Clinical profile and outcome of neonates with hypernatremic dehydration — a tertiary care hospital based study. International Journal of Contemporary Medical Research. 2019; 6(2). DOI:10.21276/ijcmr.2019.6.2.4.; Butler B, Trotman H. Hypernatremic Dehydration in Breast Fed Infants: Lessons from a Baby-Friendly Hospital. J TropPediatr. 2021 Jan 29; 67(1): fmaa083. DOI:10.1093/tropej/fmaa083.; El Masri M, Samotiy-Hanna L, Ghabril R, Nassif Y, Al Hamod D. Too Much Salt to My Taste: An Entity to Think about in Neonatal Hypernatremia: A Case Report and Review of the Literature. CaseRepPediatr. 2024 Mar8; DOI:10.1155/2024/8838362.; DiTomasso D., Cloud M. Systematic review of expected weight changes after birth for full-term, breastfed newborns. Journal of Obstetric, Gynecologic, and Neonatal Nursing. 2019; 48(6):593—603. DOI 10.1016/j.jogn.2019.09.004.; Ashraf M, Qureshi UA, Bhat NA. Neonatal hypernatremic dehydration. Asian J Pediatr Nephrol. 2022; 5:64—8. DOI:10.4103/ajpn.ajpn_3_22.; Avery's Diseases of the Newborn. Ed. Taylor Sawyer, Christine A. Gleason. 11th Edition — March 20, 2023.; Bolat F, Oflaz MB, Güven AS, Özdemir G, Alaygut D, Doğan MT, et al. What is the safe approach for neonatal hypernatremic dehydration? A retrospective study from a neonatal intensive care unit. Pediatr Emerg Care. 2013 Jul; 29(7):808—13. DOI:10.1097/PEC.0b013e3182983bac.; Saxena A, Kalra S, Shaw SC, Venkatnarayan K, Sood A, Tewari VV, et al. Correction of hypernatremic dehydration in neonates with supervised breast-feeding: A cross-sectional observational study. Med J ArmedForcesIndia. 2020 Oct; 76(4):438—442. DOI:10.1016/j.mjafi.2019.05.002.; Yildiz N, Erguven M, Yildiz M, Ozdogan T, Turhan P. Acute peritoneal dialysis in neonates with acute kidney injury and hypernatremic dehydration. Perit Dial Int. 2013 May-Jun; 33(3):290—6. DOI:10.3747/pdi.2011.00211.; Somers MJG, Traum AZ. Electronic Alerts to Identify Acute Kidney Injury in Children: Promises and Pitfalls. J Pediatr. 2020 May; 220:9—11. DOI:10.1016/j.jpeds.2020.01.015.; Boskabadi H, Akhondian J, Afarideh M, Maamouri G, Bagheri S, Parizadeh SM, et al. Long-Term Neurodevelopmental Outcome of Neonates with Hypernatremic Dehydration. Breastfeed Med. 2017 Apr; 12:163—168. DOI:10.1089/bfm.2016.0054.; Boskabadi H, Zakerihamidi M, Moradi A. Predictability of prognosis of infantile hypernatremic dehydration: a prospective cohort study. J Matern Fetal Neonatal Med. 2022 Jan; 35(1):66—74. DOI:10.1080/14767058.2020.1712698.; https://detinf.elpub.ru/jour/article/view/998

  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Συγγραφείς: Solianik, A.V.

    Πηγή: Zdorovʹe Rebenka, Vol 13, Iss 0, Pp 30-34 (2018)
    CHILD`S HEALTH; Том 13 (2018): Supplement 1 Pediatric Gastroenterology and Nutritiology; 30-34
    Здоровье ребенка-Zdorovʹe rebenka; Том 13 (2018): Приложение 1 Детская гастроэнтерология и нутрициология; 30-34
    Здоров'я дитини-Zdorovʹe rebenka; Том 13 (2018): Додаток 1 Дитяча гастроентерологія і нутриціологія; 30-34

    Περιγραφή αρχείου: application/pdf

  16. 16
    Academic Journal

    Συγγραφείς: O.G. Ivanko, O.V. Solyanik

    Πηγή: CHILD`S HEALTH; Том 14 (2019): Supplement 1 Pediatric Gastroenterology and Nutritiology; 38-42
    Здоровье ребенка-Zdorovʹe rebenka; Том 14 (2019): Приложение 1 Детская гастроэнтерология и нутрициология; 38-42
    Здоров'я дитини-Zdorovʹe rebenka; Том 14 (2019): Додаток 1 Дитяча гастроентерологія і нутриціологія; 38-42

    Περιγραφή αρχείου: application/pdf

  17. 17
  18. 18
  19. 19
  20. 20