Εμφανίζονται 1 - 20 Αποτελέσματα από 33 για την αναζήτηση '"ГОМОЗИГОТНОСТЬ"', χρόνος αναζήτησης: 0,67δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: The research was carried out on the subject of the state task 0445-2021-0012 “Study of biological mechanisms of formation of productive and adaptive traits of domestic chickens (Gallus gallus domesticus) using physiological, biochemical, cytological, genetic and virological research methods in order to create new breeding forms., Работа выполнена по теме государственного задания НИР «Изучение биологических механизмов формирования продуктивных и адаптационных признаков домашних кур (Gallus gallus domesticus) с использованием физиолого-биохимических, цитологических, генетических и вирусоло- гических методов исследований с целью создания новых селекционных форм» (0445-2021-0012).

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Agrarian Series; Том 59, № 4 (2021); 477–487 ; Известия Национальной академии наук Беларуси. Серия аграрных наук; Том 59, № 4 (2021); 477–487 ; 1817-7239 ; 1817-7204 ; 10.29235/1817-7204-2021-59-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestiagr.belnauka.by/jour/article/view/596/551; Chicken resource population as the source of study genetic improvement of indigenous breeds / N. Dementeva [et al.] // J. of Animal Science. – 2018. – Vol. 96, suppl. 3. – P. 513. https://doi.org/10.1093/jas/sky404.1122; Harper, G.C. Consumer perception of organic food production and farm animal welfare / G.C. Harper, A. Makatouni // Brit. Food J. – 2002. – Vol. 104, N 3/4/5. – P. 287–299. https://doi.org/10.1108/00070700210425723; Lund, V. Research on animal health and welfare in organic farming – a literature review / V. Lund, B. Algers // Livestock Production Science. – 2003. – Vol. 80, N 1–2. – P. 55–68. https://doi.org/10.1016/S0301-6226(02)00321-4; Fanatico, A. Organic poultry production in the United States [Electronic resource] / A. Fanatico; ATTRA. – US, 2008. – Mode of access: www.attra.ncat.org/attra-pub/pPDF/organicpoultry.pdf. – Date of access: 20.04.2021.; Kijlstra, A. Animal health in organic livestock production systems: a review / A. Kijlstra, I.A. J. M. Eijck // NJAS - Wageningen J. of Life Sciences. – 2006. – Vol. 54, N 1. – Р. 77–94. https://doi.org/10.1016/S1573-5214(06)80005-9; Lund, V. Natural living – a precondition for animal welfare in organic farming / V. Lund // Livestock Science. – 2006. – Vol. 100, N 2–3. – Р. 71–83. https://doi.org/10.1016/j.livprodsci.2005.08.005; Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: an overview / M.E. Jacob [et al.] // Foodborne Pathogens a. Disease. – 2008. – Vol. 5, N 6. – Р. 721–730. https://doi.org/10.1089/fpd.2008.0095; Fanatico, A.C. Organic poultry production in the United States: broilers / A.C. Fanatico, C.M. Owens, J.L. Emmert // J. of Appl. Poultry Research. – 2009. – Vol. 18, N 2. – P. 355–366. https://doi.org/10.3382/japr.2008-00123; Reducing foodborne pathogens in organic poultry: challenges and opportunities / K. Arsi [et al.] // Food safety in poultry meat production / ed.: K. Venkitanarayanan, S. Thakur, S.C. Ricke. – Cham, 2019. – P. 25–46. https://doi.org/10.1007/978-3-030-05011-5_2; Оценка генетического разнообразия в породах и экспериментальных популяциях кур с помощью ДНК-фингерпринтинга / В.И. Тыщенко [и др.] // С.-х. биология. – 2007. – Т. 42, №4. – С. 29–33.; Chromosomal mapping and candidate gene discovery of chicken developmental mutants and genome-wide variation analysis of MHC congenics / E. Robb [et al.] // J. of Heredity. – 2011. – Vol. 102, N 2. – P. 141–156. https://doi.org/10.1093/jhered/esq122; Does inbreeding and loss of genetic diversity decrease disease resistance? / D. Spielman [et al.] // Conservation Genetics. – 2004. – Vol. 5, N 4. – P. 439–448. https://doi.org/10.1023/B:COGE.0000041030.76598.cd; Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation / A. Bonin [et al.] // Conservation Biology. – 2007. – Vol. 21, N 3. – P. 697–708. https://doi.org/10.1111/j.1523-1739.2007.00685.x; Radwan, J. Does reduced MHC diversity decrease viability of vertebrate populations? / J. Radwan, A. Biedrzycka, W. Babik // Biol. Conservation. – 2010. – Vol. 143, N 3. – P. 537–544. https://doi.org/10.1016/j.biocon.2009.07.026; Berg, C. Health and welfare in organic poultry production / C. Berg // Acta Veterinaria Scandinavia. Supplementum. – 2001. – N 95. – P. 37–45. https://doi.org/10.1186/1751-0147-43-S1-S37; Gawron, M.F. The use of blue-splashed white down in color sexing crosses / M.F. Gawron, J.R. Smyth // Poultry Science. – 1980. – Vol. 59, N 11. – P. 2369–2372. https://doi.org/10.3382/ps.0592369; Association of the slow feathering (K) and an endogenous viral (ev21) gene on the Z chromosome of chickens / L.D. Bacon [et al.] // Poultry Science. – 1988. – Vol. 67, N 2. – P. 191–197. https://doi.org/10.3382/ps.0670191; Endogenous viral gene ev21 is not responsible for the expression of late feathering in chickens / A. Takenouchi [et al.] // Poultry Science. – 2018. – Vol. 97, N 2. – P. 403–411. https://doi.org/10.3382/ps/pex345; Poultry breeding and genetics / ed. R.D. Crawford. – Amsterdam : Elsevier, 1990. – 1123 р.; Jerome, F.N. Auto-sex linkage in Barred Plymouth Rock / F.N. Jerome // Poultry Science. – 1939. – Vol. 18, N 6. – P. 437–440. https://doi.org/10.3382/ps.0180437; Sex-linked barring in chickens is controlled by the CDKN2A /B tumour suppressor locus / A.R. Hellström [et al.] // Pigment Cell a. Melanoma Research. – 2010. – Vol. 23, N 4. – P. 521–530. https://doi.org/10.1111/j.1755-148X.2010.00700.x; Fowl model for vitiligo: genetic regulation on the fate of the melanocytes / R.R. Bowers [et al.] // Pigment Cell Research. – 1992. – Suppl. 2. – P. 242–248. https://doi.org/10.1111/j.1600-0749.1990.tb00379.x; Gluckman, T.-L. The dual function of barred plumage in birds: camouflage and communication / T.-L. Gluckman, G.C. Cardoso // J. of Evolutionary Biology. – 2010. – Vol. 23, N 11. – P. 2501–2506. https://doi.org/10.1111/j.1420-9101.2010.02109.x; Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge / S.J. Lin [et al.] // Science. – 2013. – Vol. 340, N 6139. – P. 1442–1445. https://doi.org/10.1126/science.1230374; Fisher, R. The design of experiments / R. Fisher. – Edinburgh : Oliver a. Boyd, 1935. – 252 p.; Campo, J.L. Use of the sex-linked barring (B) gene for chick sexing on an eumelanotic columbian background / J.L. Campo // Poultry Science. – 1991. – Vol. 70, N 7. – P. 1469–1473. https://doi.org/10.3382/ps.0701469; Dorshorst, B. Genetic mapping of the sex-linked barring gene in the chicken / B. Dorshorst, C. Ashwell // Poultry Science. – 2009. – Vol. 88, N 9. – Р. 1811–1817. https://doi.org/10.3382/ps.2009-00134; The evolution of Sex-linked barring alleles in chickens involves both regulatory and coding changes in CDKN2A / D. Schwochow Thalmann [et al.] // PLoS Genetics. – 2017. – Vol. 13, N 4. – P. e1006665. https://doi.org/10.1371/journal.pgen.1006665; Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage / L. Yang [et al.] // Animal Genetics. – 2017. – Vol. 48, N 5. – Р. 611–614. https://doi.org/10.1111/age.12573; Молекулярно-генетические основы формирования окраски оперения кур / А.В. Макарова [и др.] // Вавилов. журн. генетики и селекции. – 2019. – Т. 23, №3. – С. 343–354. https://doi.org/10.18699/VJ19.499; Effect of caponization on performance and quality characteristics of long bones in Polbar chickens / S. Muszyński [et al.] // Poultry Science. – 2017. – Vol. 96, N 2. – P. 491–500. https://doi.org/10.3382/ps/pew301; Schmidt, H. Taschenatlas Hühner und Zwerghühner: 182 Rassen für Garten, Haus, Hof und Ausstellung / H. Schmidt, R. Proll. – Stuttgart : Ulmer, 2005. – 191 S.; Straight-run vs. sex separate rearing for two broiler genetic lines Part 2: Economic analysis and processing advantages / M.J. Da Costa [et al.] // Poultry Science. – 2017. – Vol. 96, N 7. – P. 2127–2136. https://doi.org/10.3382/ps/pew498; Interactive effects of dietary vitamin K3 and Bacillus subtilis PB6 on the growth performance and tibia quality of broiler chickens with sex separate rearing / S. Guo [et al.] // Animal. – 2020. – Vol. 14, N 8. – P. 1610–1618. https://doi.org/10.1017/S1751731120000178; PLINK: a tool set for whole-genome association and population-based linkage analyses / S. Purcell [et al.] // The Amer. J. of Human Genetics. – 2007. – Vol. 81, N 3. – P. 559–575. https://doi.org/10.1086/519795; Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek’s disease / L. Xu [et al.] // J. of Animal Science a. Biotechnology. – 2018. – Vol. 9, N 1. – Art. 65. https://doi.org/10.1186/s40104-018-0281-x; Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds / L. Chen [et al.] // Animal Genetics. – 2019. – Vol. 50, N 1. – P. 82–86. https://doi.org/10.1111/age.12732; Identification of selection signatures involved in performance traits in a paternal broiler line / O.A. C. Almeida [et al.] // BMC Genomics. – 2019. – Vol. 20, N 1. – Art. 449. https://doi.org/10.1186/s12864-019-5811-1; https://vestiagr.belnauka.by/jour/article/view/596

  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: The work was carried out in the context of the scientific event 5 “To develop the homozygosity biotechnology of genome in the triticale on the basis of androgenesis in vitro and DNA marking and to make a highproductive grade” subprogramme 1 “Innovation biotechnologies–2020” GP “High technologies and technique” in 2016–2020., Работа выполнена в рамках мероприятия 5 «Разработать биотехнологию гомозиготизации генома тритикале на основе андрогенеза in vitro и ДНК-маркирования и создать высокопродуктивный сорт» подпрограммы 1 «Инновационные биотехнологии–2020» ГП «Наукоемкие технологии и техника» на 2016–2020 годы.

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 64, № 2 (2020); 199-208 ; Доклады Национальной академии наук Беларуси; Том 64, № 2 (2020); 199-208 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2020-64-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/871/868; Гриб, С. И. Генофонд, методы и результаты селекции тритикале в Беларуси / С. И. Гриб // Вес. Нац. акад. навук Беларусі. Сер. аграр. навук. – 2014. – № 3. – С. 40–45.; Eudes, F. An Overview of Triticale Doubled Haploids / F. Eudes, A. Chugh // Advances in Haploid Production in Higher Plants / eds. A. Touraev [et al.]. – Springer, 2008. – Ch. 6. – P. 87–96. https://doi.org/10.1007/978-1-4020-8854-4_6; Doubled Haploids in Triticale / M. Wędzony [et al.] // Triticale / eds. F. Eudes. – Springer International Publishing, 2015. – Ch. 6. – P. 111–128. https://doi.org/10.1007/978-3-319-22551-7_6; Орлов, П. А. Функциональная геномика морфогенеза / П. А. Орлов. – Минск, 2005. – 518 с.; Гостимский С. А. Изучение организации и изменчивости генома растений с помощью молекулярных маркеров / С. А. Гостимский, З. Г. Кокаева, Ф. А. Коновалов // Генетика. – 2005. – Т. 41, № 4. – С. 480–492.; Genetic map of triticale compiling DArT, SSR, and AFLP markers / M. Tyrka [et al.] // Genome. – 2011. – Vol. 54, N 5. – P. 391–401. https://doi.org/10.1139/g11-009; Tuvesson, S. Wheat anther culture / S. Tuvesson, R. von Post, A. Ljungberg // Doubled haploid production in crop plants: a manual / eds. M. Maluszynski [et al.]. – Dordrecht, 2003. – Ch. 2.11. – P. 71–76. https://doi.org/10.1007/978-94-017-1293-4_12; Jacquard, C. Anther culture in barley / C. Jacquard, G. Wojnarowiez, C. Clément // Doubled haploid production in crop plants: a manual / eds. M. Maluszynski [et al.]. – Dordrecht, 2003. – Ch. 2.3. – P. 21–27. https://doi.org/10.1007/978-94-017-1293-4_4; Дорохов, Д. Б. Быстрая и экономичная технология RAPD анализа растительных геномов / Д. Б. Дорохов, Э. Клоке // Генетика. – 1997. – Т. 33, № 4. – С. 443–450.; GrainGenes [Electronic resource]. – Mode of access: https://wheat.pw.usda.gov/cgi-bin/GG3/browse.cgi. – Date of access: 10.01.2019.; Peakall, R. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update / R. Peakall, P. E. Smouse // Bioinformatics. – 2012. – Vol. 28, N 19. – P. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460; Nei, M. Analysis of gene diversity in subdivided populations / M. Nei // Proc. Natl. Acad. Sci. USA. – 1973. – Vol. 70, N 12. – P. 3321–3323. https://doi.org/10.1073/pnas.70.12.3321; DARwin – Dissimilarity Analysis and Representation for Windows [Electronic resource]. – Mode of access: http://darwin.cirad.fr/. – Date of access: 12.12.2018.; Progress in doubled haploid technology in higher plants / M. Wędzony [et al.] // Advances in haploid production in higher plants. – Dordrecht, 2009. – P. 1–33. https://doi.org/10.1007/978-1-4020-8854-4_1; https://doklady.belnauka.by/jour/article/view/871

  6. 6
    Academic Journal

    Συνεισφορές: Работа поддержана бюджетным финансированием по государственному заданию (проект No. АААА-А17–117071240065–4).

    Πηγή: Bulletin of NSAU (Novosibirsk State Agrarian University); № 3 (2020); 137-147 ; Вестник НГАУ (Новосибирский государственный аграрный университет); № 3 (2020); 137-147 ; 2072-6724 ; 10.31677/77/2072-6724-2020-56-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestngau.elpub.ru/jour/article/view/1392/690; Rozkot M., Václavková Е., Bělková J. Minipigs as laboratory animals – review // Res. Pig Breeding. – 2015. – Vol. 9, N 2. – P. 10–14.; Nikitin S.V., Knyazev S.P., Shatokhin K. S. Miniature pigs of ICG as a model object for morphogenetic research // Russ. J.Genet.: Appl.Res. – 2014. – Vol. 4, N 6. – P. 511–522. – DOI:10.1134/S207905971406015X; Станкова Н.В., Савина М.А., Капанадзе Г.Д. Формирование новых линий светлогорских минисвиней // Биомедицина. – 2017. – № 3. – С. 95–101.; Разведение и селекция мини-свиней ИЦиГ СО РАН / С.В. Никитин, С.П. Князев, К.С. Шатохин, В.И. Запорожец, В.И. Ермолаев // Вавиловский журнал генетики и селекции. – 2018. – Т. 22, № 8. – С. 922–930.; A genome-wide single nucleotide polymorphism and copy number variation analysis for number of piglets born alive / N.B. Stafuzza, R.M. de Oliveira Silva, B. de Oliveira Fragomeni, Y. Masuda, Y. Huang, K. Gray, D.A. Lino Lourenco // BMC Genomics. – 2019. – Vol. 20. – P. 321. – DOI:10.1186/s12864–019–5687–0.; Genetic determinants of pig birth weight variability / X. Wang, X. Liu, D. Deng, M. Yu, X. Li // BMC Genet. – 2016. – Vol. 17, N 1. – P. 15. – DOI:10.1186/s12863–015–0309–6.; Никитин С.В., Князев С.П., Ермолаев В.И. Роль условий среды пренатального роста плодов в формировании массы новорожденной особи у домашних свиней // Вавиловский журнал генетики и селекции. – 2017. – Т. 21, № 5. – С. 569–575. – DOI:10.18699/VJ17.273.; Sow and piglet factors determining variation of colostrum intake between and within litters / I. Declerck, S. Sarrazin, J. Dewulf, D. Maes // Animal. – 2017. – Vol. 11, N 8. – P. 1336–1343. – DOI:10.1017/S1751731117000131.; Knauer M. Identifying strategies to enhance piglet birth weight. National hog farmer [Электронный ресурс]. – 2018. – Режим доступа: https://www.nationalhogfarmer.com/nutrition/identifying-strategiesenhance-piglet-birth-weight.; Piglet birth weight and litter uniformity: effects of weaning-to-pregnancy interval and body condition changes in sows of different parities and crossbred lines / J.G. Wientjes, N.M. Soede, E.F. Knol, H. van den Brand, B. Kemp // J Anim Sci. – 2013. – Vol. 91, N 5. – P. 2099–2107. – DOI:10.2527/jas.2012–5659.; Pond W., Haupt K. The biology of the pig. – Ithaca: Comstock Publishing Associates, 1978. – 334 p.; Никитин С.В., Князев С.П. Отбор и адаптация в популяциях домашних свиней. – Lambert Academy Publishing, 2015. – 228 с.; Кабанов В.Д. Повышение продуктивности свиней. – М.: Колос, 1983. – 256 с.; PigLeg: prediction of swine phenotype using machine learning / S. Bakoev, L. Getmantseva, M. Kolosova, O. Kostyunina, D.R. Chartier, T.V. Tatarinova // PeerJ. – 2020. – Vol. 8. – e8764. – DOI:10.7717/peerj.8764.; Estimation of direct and maternal genetic parameters for individual birth weight, weaning weight, and probe weight in Yorkshire and Landrace pigs / K. Alves, F.S. Schenkel, L.F. Brito, A. Robinson // J Anim Sci. – 2018. – Vol. 96, N 7. – P. 2567–2578. – DOI:10.1093/jas/sky172.; Discrimination learning and judgment bias in low birth weight pigs / S. Roelofs, F.A.C. Alferink, A.F. Ipema, T. van de Pas, F.J. van der Staay, R.E. Nordquist // Animal Cognition. – 2019. – Vol. 22. – P. 657–671. – DOI:10.1007/s10071–019–01262–5.; Бекенёв В.А. Технология разведения и содержания свиней. – СПб.: Лань, 2012. – 416 с.; Князев С.П., Никитин С.В. Стандартизирующий отбор и его последствия для генетической структуры популяции // Генетика. – 2011. – Т. 47, № 1. – С. 103–114.; Князев С.П., Никитин, С.В. Ермолаев В.И. Генетика крупноплодности свиней: половой диморфизм и генетический контроль массы новорожденных поросят // Вестник НГАУ. – 2013. – № 1. – С. 46–57.; Hierarchical phenotypic and epigenetic variation in cloned swine. / G. Archer, S. Dinlot, T.H. Friend, S. Walker, G. Zaunbrecher, B. Lawhorn, J.A. Piedrahita // Biology of Reproduction. – 2003. – Vol. 69, N 2. – P. 430–436. – DOI:10.1095/ biolreprod.103. 016147.; Shatokhin K., Nikitin S., Knyazev S. Using digital technologies for classification of domestic pigs by the type of live weight growth // Proceedings of the International Scientific and Practical Conference “Digital agriculture – development strategy” (ISPC 2019). – P. 27–30. – DOI:10.2991/ispc-19.2019.7.; Лакин Г.Ф. Биометрия. – 4-е изд., перераб. и доп. – М.: Высшая школа, 1990. – 352 с.; Айвазян С.А., Мхитарян В.С. Прикладная статистика. Основы эконометрики: в 2 т. Т. 1: Теория вероятностей и прикладная статистика. – 2-е изд., испр. – М.: ЮНИТИ-ДАНА, 2001. – 656 с.; Марков А., Наймарк Е. Эволюция. Классические идеи в свете новых открытий. – М.: ACT: CORPUS, 2015. – 656 с.; Дубинин Н.П., Глембоцкий Я.Л. Генетика популяций и селекция. – М.: Наука, 1967. – 592 с.; Россоха В.И. Влияние различных степеней инбридинга на формирование генотипа свиней и их хозяйственно-биологических качеств: дис. … канд. с.-х. наук. – Харьков, 1984. – 166 с.; Loss of function mutations in essential genes cause embryonic lethality in pigs / M.F.L. Derks, A.B. Gjuvsland, M. Bosse, M.S. Lopes, M. van Son, B. Harlizius, B.F. Tan, H. Hamland, E. Grindflek, M.A.M. Groenen, H. – J. Megens // PLoS Genet. – 2019. – Vol. 15, N 3. – e1008055. – DOI:10.1371/journal.pgen.1008055.; Latter B.D. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster // Genetics. – 1998. – Vol. 148, N 3. – P. 1143–1158.; Microsatellite and major histocompatibility complex variation in an endangered rattlesnake, the Eastern Massasauga (Sistrurus catenatus) / C.P. Jaeger, M.R. Duvall, B.J. Swanson, C.A. Phillips, M.J. Dreslik, S.J. Baker, R.B. King // Ecol Evol. – 2016. – Vol. 6, N 12. – P. 3991–4003. – DOI:10.1002/ece3.2159.; Тихонов В.Н. Лабораторные мини-свиньи: генетика и медико-биологическое использование / Ин-т цитологии и генетики СО РАН. – Новосибирск, 2010. – 304 с.; Аксенович Т.И., Бородин П.М. Как наследуется плодовитость // Природа. – 2008.– № 4. – С. 7–8.; Dawkins R. The Selfish Gene. – Oxford University Press, 1978. – 224 р.; https://vestngau.elpub.ru/jour/article/view/1392

  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 23, № 1 (2019); 86-94 ; Вавиловский журнал генетики и селекции; Том 23, № 1 (2019); 86-94 ; 2500-3259

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1873/1184; Дьячук Т.И., Хомякова О.В., Дугина Т.В. Цитология спорофитно развивающихся микроспор в культуре пыльников тритикале без холодового воздействия. С.-х. биология. 2010;5:61-65.; Игнатова С.А. Клеточные технологии в растениеводстве, генетике и селекции возделываемых растений: задачи, возможности, разработки систем in vitro. Одесса: Астропринт, 2011.; Круглова Н.Н., Батыгина Т.Б., Горбунова В.Ю., Титова Г.Е., Сельдимирова О.А. Эмбриологические основы андроклинии пшеницы. Отв. ред. И.И. Шамров. М.: Наука, 2005.; Круглова Н.Н., Сельдимирова О.А., Зинатуллина А.Е. Морфогенная микроспора как инициальная клетка андрогенеза in vitro: обзор проблемы. Научный результат. Физиология. 2017;3(1): 3-7. DOI 10.18413/2409-0298-2017-3-1-3-7.; Шмыкова Н.А., Шумилина Д.В., Супрунова Т.П. Получение удвоенных гаплоидов у видов рода Brassica L. Вавиловский журнал генетики и селекции. 2015;19(1):111-120. DOI 10.18699/ VJ15.014.; Aionesei T., Touraev A., Heberle-Bors E. Pathways to Microspore Embryogenesis. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;56:11-34.; Arzany A., Darvey N.L. The effect of colchicine on triticale antherderived plants: microspore pretreatment and haploid plant treatment using a hydroponic recovery system. Euphytica. 2001;122:235-241.; Babbar S.B., Kumari N., Mishra J.K. In vitro Androgenesis: Events Preceding its Cytological Manifestation. In: Shrivastava P.S., Narula A., Shrivastava Sh. (Eds.). Plant Biotechnology and Molecular Markers. New Dehli, India: Anamya Publishers, 2004;1-17.; Barceló P., Cabrera A., Hagel C., Lörz H. Production of doubled haploid plants from tritordeum anther culture. Theor. Appl. Genet. 1994; 87:741-745.; Barnabás B., Pfhahler P.L., Kovács G. Direct effect of colchicine on microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1991;81:675-678.; Batygina T.B. Stem cells and morphogenetic developmental programs in plants. Stem Cell. Res. J. 2011;3(1-2):45-120.; Belogradova K., Lewicka I., Heberle-Bors E., Touraev A. An Overview on Tobacco Doubled Haploids. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Buisness Media, 2009;75-85.; Bonet F.J., Azhaid L., Olmedilla A. Pollen embryogenesis: atavism or totipotency? Protoplasma. 1998;202:115-121.; Broughton S. The application of n-butanol improves embryo and green plant production in anther culture of Australian wheat (Triticum aestivum L.) genotypes. Crop Pasture Sci. 2011;62:813-822.; Castillo A.M., Nielsen N.H., Jensen A., Vallés M.P. Effect of n-butanol on barley microspore embryogenesis. Plant Cell Tissue Organ Cult. 2014;117:411-418.; Chiancone B., Germana M.A. Microspore Embryogenesis through Anther Culture in Citrus clementina Hort. ex Tan. In: Germana M.A., Lambardi M. (Eds.). In Vitro Embryogenesis in Higher Plants (Methods in Molecular Biology). Springer Science + Business Media New York, 2016;1359:475-487.; Cistué L., Kasha K.J. Gametic Embryogenesis in Triticum: a Study of Some Critical Factors in Haploid (Microspore) Embryogenesis. In: Mujib A., Samaj J. (Eds.). Somatic Embryogenesis. Published online: 6 October 2005. Berlin; Heidelberg: Springer Verlag, 2005;321342. DOI 10.1007/7089-031.; Clement C., Sangwan R.S., Sangwan-Norell B. Microspore Embryo Induction and Development in Higher Plants: Cytological and Ultrastructural Aspects. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;51-72.; Corbesier L., Lejeune P., Bernier G. The role of carbohydrate in the induction of flowering in Arabidopsis thaliana: comparison between wild type and starch-less mutant. Planta. 1998;206:131-137.; Cordewener J., Busink R., Traas J.A., Custers J.B.M., van Campagne M.M. Induction of microspore embryogenesis in Brassica napus L. is accompanied by specific changes in protein synthesis. Planta. 1994;195:50-56.; Custers J.B.M., Cordewener J.H.G., Nolen Y., Dons H.J.M., van Campagne M.M. Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep. 1994;13:267-271.; de Buyser J., Henry Y. Wheat Production of Haploids, Performance of Doubled Haploids and Yield Trials. In: Bajaj Y.P.S. (Ed.). Biotechnology in Agriculture and Forestry. Vol. 2. Crops I. New York; Heidelberg: Springer Verlag, 1986;73-78.; Devaux P., Pickering R. Haploids in the improvement of Poaceae. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;56:215-242.; Dubas E., Wedzony M., Petrovska B., Salaj J., Zur I. Cell structural reorganization during induction of androgenesis in isolated microspore cultures of Triticale (×Triticosecale Wittm.). Acta Biologica Cracoviensia. Ser. Botanica. 2010;52:73-86.; Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotech. J. 2010;8:377-424.; Eady C., Lindsey K., Twell D. The significance of microspore division and division symmetry of vegetative cell-specific transcription and generative cell differentiation. Plant Cell. 1995;7:65-74.; Fábián A., Földesiné Füredi P.K., Ambrus H., Jäger K., Szabó L., Barnabás B. Effect of n-butanol and cold pretreatment on the cytoskeleton and ultrastructure of maize microspores when cultured in vitro. Plant Cell Tissue Organ Cult. 2015;123:257-271.; Földesiné Füredi P.K., Ambrus H., Barnabás B. The effect of n-butanol and 2-aminoethanol on the in vitro androgenesis of maize. Acta Biol. Szeged. 2011;55:77-78.; Garrido D., Vicente O., Heberle-Borse E., Rodriquez-Garcia M. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma. 1995;186: 220-230.; Germana M.A. Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult. 2011;104:283-300.; Gu H.H., Hagberg P., Zhou W.J. Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Reg. 2004;42:137-143.; Guha S.S., Maheshwari S.C. In vitro production of embryos from anthers of Datura. Nature. 1964;204:497-498.; Heberle-Bors E. Isolated pollen in tobacco: plant reproductive development in a nutshell. Sex Plant Reprod. 1989;2:1-10.; Heberle-Bors E., Reinert J. Environmental control and evidence for predetermination of pollen embryogenesis in Nicotiana tabacum L. Protoplasma. 1981;109:249-255.; Indrianto A., Barinova I., Touraev A., Heberle-Bors E. Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in embryo. Planta. 2001;212: 163-174.; Indrianto A., Heberle-Bors E., Touraev A. Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci. 1999;143:17-23.; John P.C., Sek F.J., Carmichael J.P., McCurdy D.W. p34cdc2 homologue level, cell division, phytohormone responsiveness and cell differentiation in wheat leaves. J. Cell Sci. 1990;97:627-630.; Krogaard H., Andersen A.S. Free amino acids of Nicotiana alata anthers during development in vivo. Plant Physiol. 1983;57:527-531.; Krzewska M., Gołębiowska-Pikania G., Dubas E., Gawin M., Żur I. Identification of proteins related to microspore embryogenesis responsiveness in anther culture of winter triticale (×Triticosecale Wittm.). Euphytica. 2017;213:192. DOI 10.1007/s10681017-1978-1.; Maluszynski M.K., Kasha K.J., Szarejko I. Published Doubled Haploid Production in Plant Species. In: Maluszynski M.K., Kasha K.J., Forster B.P., Szarejko I. (Eds.). Doubled Haploid Production in Crop Plants. A Manual. Dordrecht: Springer, 2003;309-335.; Mohammadi P.P., Moieni A., Ebrahimi A., Javidfar F. Doubled haploid plants following treatment on microspore derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tissue Organ Cult. 2012; 108:251-256. DOI 10.1007/s11240-011-0036-2.; Obert B., Barnabás B. Colchicine induced embryogenesis in maize. Plant Cell Tissue Organ Cult. 2004;77:283-285.; Ohnoutková L., Novotný J., Müllerova E., Vagera J., Kućera L. Is a cold pretreatment really needed for induction of in vitro androgenesis in barley and wheat? In: Bohanec B. (Ed.). Biotechnological Approaches for Utilization of Gametic Cells. Final Meeting. Bled, Slovenia, 1–5 July 2000. Luxembourg, 2000;33-37.; Oleszczuk S., Sowa S., Zimmy J. Androgenetic response to preculture stress in microspore cultures of barley. Protoplasma. 2006;228: 95-100.; Pauk J., Jancsó M., Simon-Kiss I. Rice doubled haploids and breeding. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009;189-197.; Pauls K.P., Chan J., Woronuk G., Schulze D., Brazolot J. When microspores decide to become embryos – cellular and molecular changes. Can. J. Bot. 2006;84:668-678.; Prasad T.K., Anderson M.D., Martin B.A., Steward R.C. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell. 1994;6:65-74.; Raghavan V. Role of the generative cell in androgenesis in henbane. Science. 1976;191:388-389.; Raina S.K., Irfan S.T. High frequency embryogenesis and plantlet regeneration from isolared microspore of indica rice. Plant Cell Rep. 1998;17:957-962.; Redha A., Talaat A. Improvement of green plant regeneration by manipulation of anther culture induction medium of hexaploid wheat. Plant Cell Tissue Organ Cult. 2008;92:141-146. DOI 10.1007/s11240-007-9315-3.; Reynold T.L. Pollen embryogenesis. Plant Mol. Biol. 1997;33:1-10. Saisington S., Schmid J.E., Stamp P., Bűter B. Colchicine-mediated chromosome doubling during anther culture of maize (Zea mays L.). Theor. Appl. Genet. 1996;92:1017-1023.; Scott R., Dagless E., Hodge R., Wyatt P., Soutlemi I., Draper J. Patterns of gene expression in developing anthers of Brassica napus. Plant Mol. Biol. 1991;17:195-207.; Segui-Simarro J.M. Androgenesis revisited. Bot. Rev. 2010;76:377404. DOI 10.1007/s12229-010-9056-6.; Shariatpanahi M.E., Bal U., Heberle-Bors E., Touraev A. Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol. Plant. 2006a;127:519-534.; Shariatpanahi M.E., Belogradova K., Hessamvaziri L., HeberleBors E., Touraev A. Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Rep. 2006b;25:12941299. DOI 10.1007/s00299-006-0205-7.; Smykal P. Pollen embryogenesis: the stress mediated switch from gametophytic to sporophytic development, current status and future prospects. Biol. Plant. 2000;43:481-489.; Smykal P., Pechan P.M. Stress as assessed by the appearance of smHSPs transcripts, is required but not sufficient to initiate androgenesis. Physiol. Plant. 2000;110:135-143.; Soriano M., Cistue L., Castillo A.M. Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep. 2008;27:805-811.; Soriano M., Li H., Boutilier K. Microspore embryogenesis establishment of embryo identity and pattern in culture. Plant Reprod. 2013; 26:181-196. DOI 10.1007/s00497-013-0226-7.; Sunderland N., Hu Z.H. Shed pollen culture in Hordeum vulgare. J. Exp. Bot. 1982;136:1086-1095.; Telmer C.A., Newcomb W., Simmonds D.H. Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma. 1993;172:154-165.; Tian Q.Q., Lu C.M., Li X., Fang X.W. Low temperature treatments of rice (Oryza sativa L.) anthers changes polysaccharide and protein composition of the anther walls and increases pollen fertility and callus induction. Plant Cell Tissue Organ Cult. 2015;120:89-98. DOI 10.1007/s11240-014-0582-5.; Touraev A., Indrianto A., Wratschko I., Vicente O., Heberle-Bors E. Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Rep. 1996b; 9:209-215.; Touraev A., Pfosser M., Vicente O., Heberle-Bors E. Stress a major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta. 1996a;200:144-152.; Touraev A., Vicente O., Heberle-Bors E. Initiation of microspore embryogenesis by stress. Trends Plant Sci. 1999;2(8):297-302.; Varnier A.L., Jacquard C., Clement C. Programmed Cell Death and Microspore Embryogenesis. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009;147-153.; Wang M., Hoeekstra S., Bergen S., Lamers G.E.M., Oppedijk B.J., de Preister W., Schilperoori R.A. Apoptosis in developing anthers and role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol. Biol. 1999;39:489-501.; Wang M., Van Bergen S., Van Duijn B. Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol. 2000;124:523-530.; Wędzony M. Protocol for Anther Culture in Hexaploid Triticale (×Triticosecale Wittm.). In: Maluszynski M.K., Kasha K.J., Forster B.P., Szarejko I. (Eds.). Doubled Haploid Production in Crop Plants. A Manual. Dordrecht: Springer, 2003;123-128.; Wędzony M., Forster B.P., Żur I., Golemiec E., Szechyńska-Hebda M., Dubas E., Gotębiowska G. Progress in Doubled Haploid Technology in Higher Plants. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009;1-33.; Weingartner M., Binarova P., Drykova D., Schweighofer A., David A., Heberle-Bors E., Dooman J. Dynamic recruitment of cdc2 to specific microtubule structures during mitosis. Plant Cell. 2001;13: 1929-1943.; Weyen J. Barley and Wheat Doubled Haploids in Breeding. In: Touraev А., Forster B.P., Jain S.M. (Eds.). Advances in Haploid Production in Higher Plants. Springer Science + Business Media, 2009; 179-187.; Xie J.H., Gao M.W., Liang Z.O., Shu O.Y., Cheng X.Y. The effect of cool pretreatment on the isolated microspore culture and free amino acid change of anthers in Japonica rice (Orisa sativa L.). J. Plant Physiol. 1997;151:79-82. DOI 10.1016/S0176-1617(97)80040-5.; Xynias I.M., Zamani I.A., Goul-Vavidinoudi E. Effect of cold pretreatment and incubation temperature on bread wheat (Triticum aestivum L.) anther culture. Cereal Res. Commun. 2001;29(3):331338.; Zhao J.-P., Simmonds D.H., Newscomb W. Induction of embryogenesis with colchicines instead of heat in microspores of Brassica napus L. cv. Topas. Planta. 1996;198:433-439.; Zoriniants Sv., Tashpulatov A., Heberle-Bors E., Touraev A. The Role of Stress in the Induction of Haploid Microspore Embryogenesis. In: Palmer C.E., Keller W.A., Kasha K. (Eds.). Haploids in Crop Improvement II (Ser. Biotechnology in Agricultural and Forestry). Berlin; Heidelberg: Springer-Verlag, 2005;56:35-51.; Żur I., Dubas E., Golemiec E., Szechyńska-Hebda M., Janowiak F., Wędzony M. Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Tissue Organ Cult. 2008;94:319-328. DOI 10.1007/s11240-008-9360-6.; https://vavilov.elpub.ru/jour/article/view/1873

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20