Showing 1 - 20 results of 544 for search '"ГИПЕРТЕРМИЯ"', query time: 0.90s Refine Results
  1. 1
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 1 (2025); 214-220 ; Медицинский Совет; № 1 (2025); 214-220 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8984/7813; Roush MK, Nelson KM. Understanding drug-induced febrile reactions. Am Pharm. 1993;NS33(10):39–42. https://doi.org/10.1016/S0160-3450(15)30635-8.; Patel RA, Gallagher JC. Drug fever. Pharmacotherapy. 2010;30(1):57–69. https://doi.org/10.1592/phco.30.1.57.; Someko H, Kataoka Y, Obara T. Drug fever: a narrative review. Ann Clin Epidemiol. 2023;5(4):95–106. https://doi.org/10.37737/ace.23013.; Eidenbenz D, Hirschel T, Schürmann G, Genné D. Drug fever among Swiss’ most sold drugs in primary care. Rev Med Suisse. 2019;15(660):1516–1520. Available at: https://pubmed.ncbi.nlm.nih.gov/31496177.; Постников СС, Костылева МН, Грацианская АН. Лекарственная лихорадка. Педиатрия. Журнал имени Г. Н. Сперанского. 2011;(6):125–127. Режим доступа: https://pediatriajournal.ru/archive?show=318&section=3247.; Vodovar D, LeBeller C, Mégarbane B, Lillo-Le-Louet A, Hanslik T. Drug Fever: a descriptive cohort study from the French national pharmacovigilance database. Drug Saf. 2012;35(9):759–767. https://doi.org/10.2165/11630640000000000-00000.; Mori F, Fili L, Barni S, Sarti L, Pucci N, Parronchi P. Drug fever after a single dose of amoxicillin-clavulanic acid. J Allergy Clin Immunol Pract. 2016;4(3):533–534.e1. https://doi.org/10.1016/j.jaip.2015.11.030.; Hama N, Abe R, Gibson A, Phillips EJ. Drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS): clinical features and pathogenesis. J Allergy Clin Immunol Pract. 2022;10(5):1155–1167.E5. https://doi.org/10.1016/j.jaip.2022.02.004.; Haidar G, Singh N. Fever of Unknown Origin. N Engl J Med. 2022;386(5):463–477. https://doi.org/10.1056/NEJMra2111003.; Ogar CK, Abiola A, Yuah D, Ibrahim A, Oreagba IA, Amadi EC et al. A Retrospective Review of Serious Adverse Drug Reaction Reports in the Nigerian VigiFlow Database from September 2004 to December 2016. Pharmaceut Med. 2019;33(2):145–157. https://doi.org/10.1007/s40290-019-00267-2.; Uwai Y, Nabekura T. Analysis of adverse drug events in patients with bipolar disorders using the Japanese Adverse Drug Event Report database. Pharmazie. 2022;77:255–261. https://doi.org/10.1691/ph.2022.2386.; Bigi C, Tuccori M, Bocci G. Healthcare professionals and pharmacovigilance of pediatric adverse drug reactions: a 5-year analysis of Adverse Events Reporting System Database of the Food and Drug Administration. Minerva Pediatr. 2022;74(3):272–280. https://doi.org/10.23736/S2724-5276.17.04733-8.; Labbus K, Junkmann JK, Perka C, Trampuz A, Renz N. Antibiotic-induced fever in orthopaedic patients-a diagnostic challenge. Int Orthop. 2018;42(8):1775–1781. https://doi.org/10.1007/s00264-018-3909-8.; Peng W-X, Lin Y, Shi X-J. Retrospective analysis about 20 cases of drug fever induced by antibiotics. Clin Medicat J. 2017;15:16–18. https://doi.org/10.2169/internalmedicine.55.5740.; Yaita K, Sakai Y, Masunaga K, Watanabe H. A Retrospective Analysis of Drug Fever Diagnosed during Infectious Disease Consultation. Intern Med. 2016;55:605–608. https://doi.org/10.2169/internalmedicine.55.5740.; Hu Y, Han J, Gao L, Liu S, Wang H. Drug fever induced by antibiotics of β-lactams in a patient after posterior cervical spine surgery A case report and literature review. Front Surg. 2023;9:1065106. https://doi.org/10.3389/fsurg.2022.1065106.; Эль-Радхи Сахиб А (ред.). Лихорадка у детей. М.: ГЭОТАР-Медиа; 2022. 400 с.; Buck ML. Drug Fever: Recent Cases from the Medical Literature. Pediatric Pharmacotherapy. 2018;24(1). Available at: https://med.virginia.edu/pediatrics/wp-content/uploads/sites/237/2018/01/Jan18_Drug-Fever_PedPharmaco.pdf.; Jennings ELM, Murphy KD, Gallagher P, O’Mahony D. In-hospital adverse drug reactions in older adults; prevalence, presentation and associated drugs-a systematic review and meta-analysis. Age Ageing. 2020;49(6):948–958. https://doi.org/10.1093/ageing/afaa188.; Postnikov S, Teplova N, Ermilin A, Kostyleva M, Gratzyanskaya A, Eremina Yu, Chervyakova G. Fever as an Adverse Drug Reaction of Different Therapeutic Groups. Amer J Pediatr. 2020;6(4):495–503. https://doi.org/10.11648/j.ajp.20200604.28.; Gans MD, Tejera DS, Jerschow E. Evaluating drug fever to beta-lactam antibiotics. Ann Allergy Asthma Immunol. 2020;124(4):401–403. https://doi.org/10.1016/j.anai.2020.01.026.; Yuan HL, Lu NW, Xie H, Zheng YY, Wang QH. Doxycycline-induced drug fever: a case report. Infect Dis. 2016;48:844–846. https://doi.org/10.1080/23744235.2016.1195915.; Shen L. Fever and reversible laboratory abnormalities associated with prolonged use of piperacillin/tazobactam: A case report. SAGE Open Med Case Rep. 2024;12:2050313X241285675. https://doi.org/10.1177/2050313X241285675.; Yusef D, Gonzalez BE, Foster CB, Goldfarb J, Saracusa C, Worley S, Sabella C. Piperacillin-Tazobactam-induced Adverse Drug Events in Pediatric Patients on Outpatient Parenteral Antimicrobial Therapy. Pediatr Infect Dis J. 2017;36(1):50–52. https://doi.org/10.1097/INF.0000000000001351.; Yang J, Wang Q, Wang S, Zhang Y, Wang Z. Unusual Drug Fever Caused by Imipenem / Cilastatin and a Review of Literature. Heart Surg Forum. 2019;22(2):E119–E123. https://doi.org/10.1532/hsf.2141.; Lefebvre N, Forestier E, Farhi D, Mahsa MZ, Remy V, Lesens O et al. Minocyline-induced hypersensivity syndrome presenting with meningitis and brain edema: a case report. J Med Case Rep. 2007;1:22. https://doi.org/10.1186/1752-1947-1-22.; Scardina T, Fawcett AJ, Patel SJ. Amphotericin-Associated Infusion-Related Reactions: A Narrative Review of Pre-Medications. Clin Ther. 2021;43(10):1689–1704. https://doi.org/10.1016/j.clinthera.2021.09.011.; Cavassin FB, Baú-Carneiro JL, Vilas-Boas RR, Queiroz-Telles F. Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect Dis Ther. 2021;10(1):115–147. https://doi.org/10.1007/s40121-020-00382-7.; Grazziotin LR, Moreira LB, Ferreira MAP. Comparative effectiveness and safety between amphotericin B lipid-formulations: a systematic review. Int J Technol Assess Health Care. 2018;34(3):343–351. https://doi.org/10.1017/S026646231800034X.; Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–227. https://doi.org/10.1016/j.riam.2009.06.003.; Andrew EC, Curtis N, Coghlan B, Cranswick N, Gwee A. Adverse effects of amphotericin B in children; a retrospective comparison of conventional and liposomal formulations. Br J Clin Pharmacol. 2018;84(5):1006–1012. https://doi.org/10.1111/bcp.13521.; Alharbi HH, Al-Qurainees GI, Al-Hebshi A. Vancomycin-Induced Fever and Neutropenia in an Immunocompetent Patient With Complicated Community-Acquired Pneumonia. Cureus. 2022;14(7):e26630. https://doi.org/10.7759/cureus.26630.; Овчинникова ЕА, Овчинникова ЛК. Спектр безопасности ванкомицина. Качественная клиническая практика. 2004;(2):36–48. Режим доступа: https://www.clinvest.ru/jour/article/view/311.; Zhang J, Rong C, Yan C, Chen J, Yang W, Yu L, Dai H. Risk factors of furazolidone-associated fever. PLoS ONE. 2022;17(4):e0266763. https://doi.org/10.1371/journal.pone.0266763.; Shin H-J, Chang J-S, Kim M-S, Koh B-G, Park H-Y, Kim T-O et al. Hypersensitivity reactions to multiple anti-tuberculosis drugs. PLoS ONE. 2021;16(2):e0246291 https://doi.org/10.1371/journal.pone.0246291.; Yilmaz M, Yasar C, Aydin S, Derin O, Ceylan B, Mert A. Rifampicin-Induced Fever in a Patient with Brucellosis: A Case Report. Drug Saf Case Rep. 2018;5(1):9. https://doi.org/10.1007/s40800-018-0074-3.; Maddock K, Connor K. Drug Fever: A Patient Case Scenario and Review of the Evidence. AACN Adv Crit Care. 2020;31(3):233–238. https://doi.org/10.4037/aacnacc2020311.; Ghannam M, Mansour S, Nabulsi A, Abdoh Q. Anticonvulsant hypersensitivity syndrome after phenytoin administration in an adolescent patient: a case report and review of literature. Clin Mol Allergy. 2017;15:14. https://doi.org/10.1186/s12948-017-0069-0.; Manship D, Swinger M, Crow A, Alexopulos J. Anticonvulsant Hypersensitivity Syndrome (AHS). Poster session presented at Oklahoma State University Center for Health Sciences Research Day 2020, Tulsa, Oklahoma, United States. Available at: https://hdl.handle.net/20.500.14446/324223.; Zhang X, Zhao M, Zheng C. Drug fever induced by carboplatin-based regimens: Higher incidence in a women’s hospital. Taiwan J Obstet Gynecol. 2021;60(5):882–887. https://doi.org/10.1016/j.tjog.2021.07.018.; Kidon MI, Haj Yahia S, Abebe-Campino G, Agmon-Levin N and Yelon M. Drug fever – an immune-mediated delayed type hypersensitivity reaction to Vinca alkaloids in pediatric oncology patients, possibly mediated by cysteinyl leukotrienes. Front Allergy. 2024;5:1361403. https://doi.org/10.3389/falgy.2024.1361403.; Eidenbenz D, Hirschel T, Schürmann G, Genné D. Fièvre médicamenteuse en médecine de premier recours liée aux médicaments les plus vendus en Suisse [Drug fever among Swiss’ most sold drugs in primary care]. Rev Med Suisse. 2019;15(660):1516–1520. Available at: https://pubmed.ncbi.nlm.nih.gov/31496177.; Melo N, Policarpo S, Dias M, Almeida J. Pantoprazole: An Unusual Suspect in a Patient with Fever. Eur J Case Rep Intern Med. 2021;8(5):002571. https://doi.org/10.12890/2021_002571.; Xiao J, Jia SJ, Wu CF. Celecoxib-induced drug fever: a rare case report and literature review. J Clin Pharm Ther. 2022;47(3):402–406. https://doi.org/10.1111/jcpt.13490.; Bhagat M, Suman S, Besra KC, Kumar T, Priye S, Bhattacharya PK, Lakra L. Morphine-Induced Fever: A Case Series. Cureus. 2022;14(4):e24402. https://doi.org/10.7759/cureus.24402.; Graczyk M, Krajnik M, Woroń J, Wordliczek J, Malec-Milewska M. Use of opioids as one of the causes of fever in patients with advanced cancer. Int J Immunopathol Pharmacol. 2017;30(1):98–104. https://doi.org/10.1177/0394632016686088.; Zhu L, Zhang Z, Ju H, Wang C, Jiang W. Morphine-induced fever: a case report and review of the literature. J Med Case Rep. 2024;18(1):449. https://doi.org/10.1186/s13256-024-04770-2.; Murai Y, Kawasuji H, Takegoshi Y, Kaneda M, Kimoto K, Ueno A et al. A case of COVID-19 diagnosed with favipiravir-induced drug fever based on a positive drug-induced lymphocyte stimulation test. Int J Infect Dis. 2021;106:33–35. https://doi.org/10.1016/j.ijid.2021.03.048.; Tawara J, Uehara T, Sakao S, Igari H, Taniguchi T, Kasai H et al. Drug Fever Due to Favipiravir Administration for the Treatment of a COVID-19 Patient. Intern Med. 2021;60(7):1115–1117. https://doi.org/10.2169/internalmedicine.5813-20.; Chen DH, Zhou HR, Zhang YG, Shen GY, Xu C, Guan CL. Drug hypersensitivity syndrome induced by sulfasalazine: A case report. Medicine. 2022;101(33):e30060. https://doi.org/10.1097/MD.0000000000030060.; Winward J, Lyckholm L, Brown SM, Mokadem M. Case of relapsing sulfasalazine-induced hypersensitivity syndrome upon re-exposure. BMJ Case Rep. 2020;13(9):e235803. https://doi.org/10.1136/dtb.2021.235803rep.; James J, Sammour YM, Virata AR, Nordin TA, Dumic I. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) Syndrome Secondary to Furosemide: Case Report and Review of Literature. Am J Case Rep. 2018;19:163–170. https://doi.org/10.12659/ajcr.907464.; Чашкова ЕЮ, Пак ЕВ, Шедоева ЛР, Герасименко АН. Затяжная лихорадка после индукционной терапии инфликсимабом у пациента с язвенным колитом (клинический случай). Acta Biomedica Scientifica. 2022;7(6):45–50. https://doi.org/10.29413/ABS.2022-7.6.5.; Laun J, Laun K, Farooqi A, Smith DJ. Heparin-Induced Fever: A Case Report and Literature Review. J Burn Care Res. 2019;40(5):723–724. https://doi.org/10.1093/jbcr/irz064.; Gosnell H, Stein A, Vanegas Acosta DE. Postoperative fever secondary to enoxaparin usage with pork allergy. BMJ Case Rep. 2022;15(1):e246904. https://doi.org/10.1136/bcr-2021-246904.; Ng QX, Seng C, Ho CYX, Yeo WS. Enoxaparin: A cause of postoperative fever? Med Hypotheses. 2018;121:47–48. https://doi.org/10.1016/j.mehy.2018.09.027.; Ghaferi A, Shojaei M, Chouhdari A. Evaluation of Association between FluLike Syndrome Induced by Beta Interferon Drug and Required Drug Response in Patients with Multiple Sclerosis. Novelty in Biomedicine. 2019;7(4):237–245. https://doi.org/10.22037/nbm.v7i3.23085.; Заплатников АЛ, Гирина АА, Леписева ИВ, Свинцицкая ВИ, Лешик МВ, Фурсова АВ. Поствакцинальная гипертермия у детей: современный взгляд на старую проблему. РМЖ. Мать и дитя. 2023;6(2):192–198. https://doi.org/10.32364/2618-8430-2023-6-2-192-198.; Mort M, Baleta A, Destefano F, Nsubuga J, Vellozzi C, Mehta U et al. Vaccine safety basics. Learning manual. Switzerland: WHO Press, World Health Organization; 2013. Available at: https://vaccine-safety-training.org/vaccine-reactions.; Wei BM, Fox LP, Kaffenberger BH, Korman AM, Micheletti RG, Mostaghimi A et al. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Part I. Epidemiology, pathogenesis, clinicopathological features, and prognosis. J Am Acad Dermatol. 2024;90(5):885–908. https://doi.org/10.1016/j.jaad.2023.02.072; Stirton H, Shear NH, Dodiuk-Gad RP. Drug Reaction with Eosinophilia and Systemic Symptoms (DReSS)/Drug-Induced Hypersensitivity Syndrome (DiHS)-Readdressing the DReSS. Biomedicines. 2022;10(5):999. https://doi.org/10.3390/biomedicines10050999.; Bhatt KP, Alsoud F, Prashad A, Ortega-Tola J, Singh VR, Patel P, Michel G. Drug reaction with eosinophilia and systemic symptoms (DRESS): an unusual manifestation of multi-visceral abnormalities and long-term outcome. Discoveries. 2023;11(1):e170. https://doi.org/10.15190/d.2023.9.; Chen CB, Hung WK, Wang CW, Lee CC, Hung SI, Chung WH. Advances in understanding of the pathogenesis and therapeutic implications of drug reaction with eosinophilia and systemic symptoms: an updated review. Front Med. 2023;10:1187937. https://doi.org/10.3389/fmed.2023.1187937.; Шамгунова БА, Демидов АА, Заклякова ЛВ, Горбунова ОЕ, Касымова ЕБ, Завьялова ИН. Лекарственно-индуцированная реакция гиперчувствительности (DRESS-синдром), ассоциированная с реактивацией герпесвирусной инфекции (клиническое наблюдение). Современные проблемы науки и образования. 2020;(4). Режим доступа: https://science-education.ru/ru/article/view?id=30054.; Del Pozzo-Magaña BR, Abuzgaia A, Murray B, Rieder MJ, Lazo-Langner A. Paediatric serum sickness-like reaction: A 10-year retrospective cohort study. Paediatr Child Health. 2021;26(7):428–435. https://doi.org/10.1093/pch/pxab003.; Bakshi D, Tang X, Waserman S. A case of pediatric serum sickness like reaction (SSLR) after a 2-month re-exposure to amoxicillin. Allergy Asthma Clin Immunol. 2024;20(1):29. https://doi.org/10.1186/s13223-024-00887-7.; Подчерняева НС, Байрамкулов АМ, Голованова НЮ, Осминина МК, Шпитонкова ОВ. Лекарственно-индуцированная красная волчанка. Педиатрия имени Г.Н. Сперанского. 2023;102(5):145–155. https://doi.org/10.24110/0031-403X-2023-102-5-145-155N.S.; Kaya Akca U, Sener S, Batu ED, Balik Z, Basaran O, Bilginer Y, Ozen S. Druginduced lupus erythematosus in childhood: Case-based review. Lupus. 2024;33(7):737–748. https://doi.org/10.1177/09612033241245078.; Chang C, Gershwin ME. Drug-induced lupus erythematosus: incidence, management and prevention. Drug Saf. 2011;34(5):357–374. https://doi.org/10.2165/11588500-000000000-00000.; Таточенко ВК, Бакрадзе МД, Агаронян АГ. Реакция Яриша – Герксгеймера у ребенка с внебольничной пневмонией: клинический случай. Педиатрическая фармакология. 2018;15(3):255–259. https://doi.org/10.15690/pf.v15i3.1906.; Жибурт ЕБ, Шестаков ЕА, Кузнецов СИ. Гемолитические трансфузионные реакции. Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2019;14(4):105–111. https://doi.org/10.25881/BPNMSC.2020.17.22.020.; Tidswell EC. A Nontrivial Analysis of Patient Safety Risk from Parenteral Drugand Medical Device-Borne Endotoxin. Drugs R D. 2023;(1):65–76. https://doi.org/10.1007/s40268-023-00412-y.; Коренев СА, Рыков СВ. Судебно-медицинская оценка пирогенных реакций. Проблемы экспертизы в медицине. 2003;3(4):15–17. Режим доступа: https://cyberleninka.ru/article/n/sudebno-meditsinskaya-otsenkapirogennyh-reaktsiy.; Jamshidi N, Dawson A. The hot patient: acute drug-induced hyperthermia Aust Prescr. 2019;42(1):24–28. https://doi.org/10.18773/austprescr.2019.006.; Bongers KS, Salahudeen MS, Peterson GM. Drug-associated non-pyrogenic hyperthermia: a narrative review. Eur J Clin Pharmacol. 2020;76(1):9–16. https://doi.org/10.1007/s00228-019-02763-5.; Hölle T, Purrucker JC, Morath B, Weigand MA, Schmitt FCF. Central anticholinergic, neuroleptic malignant and serotonin syndromes: Important differential diagnoses in postoperative impairment of consciousness. Anaesthesiologie. 2023;72(3):157–165. https://doi.org/10.1007/s00101-023-01256-6.; Horseman M, Panahi L, Udeani G, Tenpas AS, Verduzco R Jr, Patel PH et al. Drug-Induced Hyperthermia Review. Cureus. 2022;14(7):e27278. https://doi.org/10.7759/cureus.27278.; León-Amenero D, Huarcaya-Victoria J. Neuroleptic malignant syndrome in children and adolescents: Systematic review of case reports. Rev Colomb Psiquiatr. 2021;50(4):290–300. https://doi.org/10.1016/j.rcpeng.2019.10.006.; Tariq M, Wentzel DN, Beggs JB. Hold off That Olanzapine! The Development of Neuroleptic Malignant Syndrome in a Dehydrated Pediatric Patient. Kans J Med. 2023;16:328–329. https://doi.org/10.17161/kjm.vol16.21303.; Tekin FC, Sezer C. Persistent highfever after metchloropramide treatment; neurolepticmalignant syndrome. J Emerg Med. 2022;13(4):101–103. https://doi.org/10.33706/jemcr.1068447.; Hopkins PM, Girard T, Dalay S, Jenkins B, Thacker A, Patteril M, McGrady E. Malignant hyperthermia 2020: Guideline from the Association of Anaesthetists. Anaesthesia. 2021;76(5):655–664. https://doi.org/10.1111/anae.15317.; Klincová M, Štěpánková D, Schröderová I, Klabusayová E, Štourač P. Malignant Hyperthermia in PICU-From Diagnosis to Treatment in the Light of Up-to-Date Knowledge. Children. 2022;9(11):1692. https://doi.org/10.3390/children9111692.; Accamma K, Shamarao S, Ram A, Devananda NS, Krishna M, Bandagi LS et al. Severe Diabetic Ketoacidosis with Malignant Hyperthermia Like Syndrome and Rhabdomyolysis Treated with ECMO: Unusual Severity and a Rare Occurrence. Indian J Crit Care Med. 2023;27(11):859–860. https://doi.org/10.5005/jp-journals-10071-24569.; Xuev S, Ickowicz A. Serotonin Syndrome in Children and Adolescents Exposed to Selective Serotonin Reuptake Inhibitors – A Review of Literature. J Can Acad Child Adolesc Psychiatry. 2021;30(3):156–164. Available at: https://pubmed.ncbi.nlm.nih.gov/34381508.; Chiew AL, Buckley NA. The serotonin toxidrome: shortfalls of current diagnostic criteria for related syndromes. Clin Toxicol. 2022;60(2):143–158. https://doi.org/10.1080/15563650.2021.1993242.; Марков ЮИ. Антихолинергический синдром (лекция). Медицина неотложных состояний. 2017;(1):17–20. Режим доступа: https://cyberleninka.ru/article/n/antiholinergicheskiy-sindrom-lektsiya.; Krajčová A, Waldauf P, Anděl M, Duška F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care. 2015;19:398. https://doi.org/10.1186/s13054-015-1112-5.; Peterson J, Thomas W, Michaud C, Parker J. Incidence of Fever Associated With Dexmedetomidine in the Adult Intensive Care Unit. J Pharm Pract. 2022;35(5):716–721. https://doi.org/10.1177/08971900211004828.; Schurr JW, Ambrosi L, Lastra JL, McLaughlin KC, Hacobian G, Szumita PM. Fever Associated With Dexmedetomidine in Adult Acute Care Patients: A Systematic Review of the Literature. J Clin Pharmacol. 2021;61(7):848–856. https://doi.org/10.1002/jcph.1826.

  2. 2
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 1 (2025); 75-82 ; Медицинский Совет; № 1 (2025); 75-82 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8968/7797; Локшина ЭЭ, Зайцева ОВ, Зайцева СВ. Лихорадка у детей: обзор национальных и международных исследований и клинических рекомендаций. Российский вестник перинатологии и педиатрии. 2020;65(3):153–159. https://doi.org/10.21508/1027-4065-2020-65-3-153-159.; Брыксина ЕЮ, Летифов ГМ. Гипертермический синдром у детей: от этиологии к методам патогенетической терапии. Педиатрия. Consilium Medicum. 2023;(3):114–120. https://doi.org/10.26442/26586630.2023.3.202352.; Дворецкий ЛИ. Лихорадящий больной. Место и польза антипиретиков. РМЖ. 2011;(19):1166. Режим доступа: https://www.rmj.ru/archive/548.; Рык ПВ, Царькова СА, Ваисов ФД. Лихорадка у детей (клинические и патофизиологические аспекты). Екатеринбург; 2010. 53 с.; Çelik T, Ötiken Arıkan K, Arısoy ES, Bursal B, Erdeniz EH, Hacımustafaoğlu M et al. Evaluation of childhood fever management. J Pediatr Inf. 2024;18(1):e1–е31. https://doi.org/10.5578/ced.20240102.; Таранушенко ТЕ, Панфилова ВН. Лихорадка у детей с респираторными вирусными инфекциями: эффективная и безопасная помощь. Вопросы современной педиатрии. 2013;12(5):54–59. https://doi.org/10.15690/vsp.v12i5.798.; Захарова ИН, Бережная ИВ, Сугян НГ, Творогова ТМ, Колушкин ДС, Пупыкина ВВ, Родионов ИА. Лечение лихорадки при острых респираторных инфекциях верхних дыхательных путей у детей. Медицинский совет. 2022;(1):88–95. https://doi.org/10.21518/2079-701X-2022-16-1-88-95.; Геппе НА, Горелов АВ, Лобзин ЮВ, Карнеева ОВ, Чеботарева ТА, Захарова ИН и др. Резолюция консенсуса по применению жаропонижающей терапии при ОРВИ у детей от 3 лет. Педиатрия. Сonsilium Medicum. 2024;(4):342–348. https://doi.org/10.26442.226586630.2024.4.203098.; Ключников СО, Зайцева ОВ, Османов ИМ, Крапивкин АИ, Кешишян ЕС, Блинова ОВ, Быстрова ОВ. Острые респираторные заболевания у детей (Пособие для врачей). Российский вестник перинатологии и педиатрии. 2008;(S3):1–34. Режим доступа: https://cyberleninka.ru/article/n/ostryerespiratornye-zabolevaniya-u-detey-posobie-dlya-vrachey.; Ward MA, Hannemann NL. Fever: Pathogenesis and Treatment. In: Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ (eds.). Feigin and Cherry‘s Textbook of Pediatric Infectious Diseases. Philadelphia, Elsevier; 2019.; Schulert GS, Grom AA. Fever and the Inflammatory Response. In: Long SS, Prober CG, Fischer M (eds.). Principles and Practice of Pediatric Infectious Diseases. 5th ed. Philadelphia: Elsevier; 2018., pp. 93–97.e1. https://doi.org/10.1016/B978-0-323-40181-4.00010-4; Young P, Saxena M, Bellomo R, Freebairn R, Hammond N, van Haren F et al. Acetaminophen for fever in critically ill patientswith suspected infection. N Engl J Med. 2015;373(23):2215–2224. https://doi.org/10.1056/NEJMoa1508375.; Зайцева ОВ. Применение анальгетиков-антипиретиков в педиатрии. Педиатрическая фармакология. 2008;5(2):76–81. Режим доступа: https://www.pedpharma.ru/jour/article/view/883.; Крамарев СА. Лечение лихорадки у детей. Здоровье ребенка. 2012;8(43):123–127. Режим доступа: http://mif-ua.com/archive/article/35004.; Симонова АЮ, Поцхверия ММ, Белова МВ, Ильяшенко КК, Кулабухов ВВ, Асанова ЛР. Сравнительная оценка эффективности и безопасности 12-часового и 21-часового протоколов введения ацетилцистеина при отравлении парацетамолом. Вестник анестезиологии и реаниматологии. 2023;20(4):46–53. https://doi.org/10.24884/2078-5658-2022-20-4-46-53.; Edwards MS, Torchia MM (eds.). Fever in infants and children: Pathophysiology and management. 2022.; Shamsaee E, Huws A, Gill A, McWilliam SJ, Hawcutt DB. Ibuprofen efficacy, tolerability and safety in obese children: a systematic review. Arch Dis Child. 2023;108(1):67–71. https://doi.org/10.1136/archdischild-2022-324652.; Абрамов ВВ, Максимов МЛ, Романов БК, Шикалева АА. Сравнение эффективности парацетамола и ибупрофена при лихорадке у детей младше 5 лет. Российский медицинский журнал. 2024;30(3):285–294. https://doi.org/10.17816/medjrf627622.; Martino M, Chiarugi A, Boner A, Montini G, De’ Angelis GL. Working Towards an Appropriate Use of Ibuprofen in Children: An Evidence-Based Appraisal. Drugs. 2017;77(12):1295–1311. https://doi.org/10.1007/s40265-017-0751-z.; Wright AD, Liebelt EL. Alternating antipyretics for fever reduction in children: an unfounded practice passed down to parents from pediatricians. Clin Pediatr. 2007;46(2):146–150. https://doi.org/10.1177/0009922806293922.; De la Cruz-Mena JE, Veroniki AA, Acosta-Reyes J, Estupiñán-Bohorquez A, Ibarra JA, Pana MC et al. Short-term Dual Therapy or Mono Therapy With Acetaminophen and Ibuprofen for Fever: A Network Meta-Analysis. Pediatrics. 2024;154(4):e2023065390. https://doi.org/10.1542/peds.2023-065390.; Дронов ИА. Комбинированная жаропонижающая терапия в педиатрической практике. Фарматека. 2012;(S2):23–26. Режим доступа: https://pharmateca.ru/ru/archive/article/8550.; Milani GP, Alberti I, Bonetti A, Garattini S, Corsello A, Marchisio P, Chiappini E. Definition and assessment of fever-related discomfort in pediatric literature: a systematic review. Eur J Pediatr. 2024;183(11):4969–4979. https://doi.org/10.1007/s00431-024-05753-7.; Tanner T, Aspley S, Munn A, Thomas T. The pharma-cokinetic profile of a novel fixed-dose combination tablet of ibuprofen and paracetamol. BMC Clin Pharmacol. 2010;10:10. https://doi.org/10.1186/1472-6904-10-10.; Nabulsi MM, Tamim H, Mahfoud Z. Alternating ibuprofen and acetaminophen in the treatment of febrile children: a pilot study [ISRCTN30487061]. BMC Med. 2006;4:4. https://doi.org/10.1186/1741-7015-4-4.; Paul IM, Sturgis SA, Yang C, Engle L, Watts H, Berlin CMJr. Efficacy of standard doses of Ibuprofen alone, alternating, and combined with acetaminophen for the treatment of febrile children. Clin Ther. 2010;32(14):2433–2440. https://doi.org/10.1016/j.clinthera.2011.01.006.; Hay AD, Costelloe C, Redmond NM, Montgomery AA, Fletcher M, Hollinghurst S, Peters TJ. Paracetamol plus ibuprofen for the treatment of fever in children (PITCH): randomised controlled trial. BMJ. 2008;337:a1302. https://doi.org/10.1136/bmj.a1302.; Hollinghurst S, Redmond N, Costelloe C, Montgomery A, Fletcher M, Peters TJ, Hay AD. Paracetamol plus ibuprofen for the treatment of fever in children (PITCH): economic evaluation of a randomised controlled trial. BMJ. 2008;337:a1490. https://doi.org/10.1136/bmj.a1490.

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: Исследование поддержано бюджетным проектом Научно-исследовательского института клинической и экспериментальной лимфологии – филиала ФГБНУ «Федеральный исследовательский центр Институт цитологии и генетики СО РАН» (FWNR-2022-0009).

    Source: Acta Biomedica Scientifica; Том 9, № 1 (2024); 203-213 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4614/2747; Бочкарева А.Л., Мичурина С.В., Коненков В.И., Бочкарев И.Г. Влияние мелатонина на фолликулярный аппарат и сосуды яичников крыс в условиях гипертермии. Морфология. 2015; 148(5): 71-76.; Duan L, Dong S, Huang K, Cong Y, Luo S, Zhang JZH. Computational analysis of binding free energies, hotspots and the binding mechanism of Bcl-xL/Bcl-2 binding to Bad/Bax. Phys Chem Chem Phys. 2021; 23(3): 2025-2037. doi:10.1039/d0cp04693k; Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25(3): 486-541. doi:10.1038/s41418-017-0012-4; Reiter RJ, Sharma R, Pires de Campos Zuccari DA, de Almeida Chuffa LG, Manucha W, Rodriguez C. Melatonin synthesis in and uptake by mitochondria: Implications for diseased cells with dysfunctional mitochondria. Future Med Chem. 2021; 13(4): 335-339. doi:10.4155/fmc-2020-0326; Michurina SV, Kolesnikov SI, Ishchenko IY, Bochkareva AL, Arkhipov SA. Effect of melatonin on expression of apoptosis regulator proteins Bcl-2 and Bad in ovarian follicular apparatus after high temperature exposure. Bull Exp Biol Med. 2021; 170(5): 598-603. doi:10.1007/s10517-021-05114-6; Michurina SV, Ishchenko IY, Arkhipov SA, Letyagin AY, Korolev MA, Zavjalov EL. The expression of apoptosis-regulating proteins Bcl-2 and Bad in liver cells of C57Bl/6 mice under lightinduced functional pinealectomy and after correction with melatonin. Vavilovskii Zhurnal Genet Selektsii. 2021; 25(3): 310-317. doi:10.18699/VJ21.034; Yang C, Liu Q, Chen Y, Wang X, Ran Z, Fang F, et al. Melatonin delays ovarian aging in mice by slowing down the exhaustion of ovarian reserve. Commun Biol. 2021; 4(1): 534. doi:10.1038/s42003-021-02042-z; Russo M, Forte G, Montanino Oliva M, Laganà AS, Unfer V. Melatonin and myo-inositol: supporting reproduction from the oocyte to birth. Int J Mol Sci. 2021; 22(16): 8433. doi:10.3390/ijms22168433; Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, et al. Melatonin as the cornerstone of neuroimmunoendocrinology. Int J Mol Sci. 2022; 23(3): 1835. doi:10.3390/ijms23031835; Zhang W, Wang Z, Zhang L, Zhang Z, Chen J, Chen W, et al. Melatonin stimulates the secretion of progesterone along with the expression of cholesterol side-chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR) in corpus luteum of pregnant sows. Theriogenology. 2018; 108: 297-305. doi:10.1016/j.theriogenology.2017.12.026; Pedreros M, Ratto M, Guerra M. Expression of functional melatonin MT(1) receptors in equine luteal cells: In vitro effects of melatonin on progesterone secretion. Reprod Fertil Dev. 2011; 23(3): 417-423. doi:10.1071/RD10137; Zhang ZL, Peng J, Yang ST, Chen JX, Wang CX, Tong DW. Expression of arylalkylamine n-acetyltransferase (AANAT) and acetylserotonin o-methyltransferase (ASMT) in the corpus luteum of pregnant sows and synthesis of melatonin in luteal cells. Cell Tissue Res. 2022; 388(1): 167-179. doi:10.1007/s00441-021-03556-y; Fang L, Li Y, Wang S, Yu Y, Li Y, Guo Y, et al. Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging (Albany NY). 2019; 11(20): 9013-9024. doi:10.18632/aging.102367; Wang J, Zhu T, Ma X, Wang Y, Liu J, Li G, et al. Melatonergic systems of AANAT, melatonin, and its receptor MT2 in the corpus luteum are essential for reproductive success in mammals. Biol Reprod. 2021; 104(2): 430-444. doi:10.1093/biolre/ioaa190; Ajayi AF, Akhigbe RE. Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertil Res Pract. 2020; 6: 5. doi:10.1186/s40738-020-00074-3; Ефремов А.В., Пахомова Ю.В., Пахомов Е.А., Ибрагимов Р.Ш., Шорина Г.Н. Способ экспериментального моделирования общей гипертермии у мелких лабораторных животных: Патент № 2165105 С1 Рос. Федерация; МПК G09B 23/28 (2000.01). № 99126978/13; заявл. 22.12.1999; опубл. 10.04.2001. Бюл. № 10.; Yang L, Zhao Z, Cui M, Zhang L, Li Q. Melatonin restores the developmental competence of heat stressed porcine oocytes, and alters the expression of genes related to oocyte maturation. Animals (Basel). 2021; 11(4): 1086. doi:10.3390/ani11041086; Arend LS, Knox RV. Fertility responses of melatonintreated gilts before and during the follicular and early luteal phases when there are different temperatures and lighting conditions in the housing area. Anim Reprod Sci. 2021; 230: 106769. doi:10.1016/j.anireprosci.2021.106769; Bouroutzika E, Kouretas D, Papadopoulos S, Veskoukis AS, Theodosiadou E, Makri S, et al. Effects of melatonin administration to pregnant ewes under heat-stress conditions, in redox status and reproductive outcome. Antioxidants (Basel). 2020; 9(3): 266. doi:10.3390/antiox9030266; Chen Y, Shan X, Jiang H, Guo Z. Exogenous melatonin directly and indirectly influences sheep oocytes. Front Vet Sci. 2022; 9: 903195. doi:10.3389/fvets.2022.903195; Данилова М.В., Усольцева Е.Н. Значение гормона мелатонина эпифиза в поддержании здоровья женщин репродуктивного возраста (обзор). Акушерство, гинекология и репродукция. 2019; 13(4): 337-344. doi:10.17749/2313-7347.2019.13.4.337-344; Xing CH, Wang Y, Liu JC, Pan ZN, Zhang HL, Sun SC, et al. Melatonin reverses mitochondria dysfunction and oxidative stressinduced apoptosis of Sudan I-exposed mouse oocytes. Ecotoxicol Environ Saf. 2021; 225: 112783. doi:10.1016/j.ecoenv.2021.112783; Ma J, Wang J, Hu S, Li Y, Zhang Y, Yang Y, et al. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro. Theriogenology. 2023; 198: 172-182. doi:10.1016/j.theriogenology.2022.12.036; Feng J, Ma WW, Li HX, Pei XY, Deng SL, Jia H, et al. Melatonin prevents cyclophosphamide-induced primordial follicle loss by inhibiting ovarian granulosa cell apoptosis and maintaining AMH expression. Front Endocrinol (Lausanne). 2022; 13: 895095. doi:10.3389/fendo.2022.895095; Ma M, Chen XY, Li B, Li XT. Melatonin protects premature ovarian insufficiency induced by tripterygium glycosides: Role of SIRT1. Am J Transl Res. 2017; 9(4): 1580-1602.; Goktepe O, Balcioglu E, Baran M, Cengiz O, Ceyhan A, Suna PA, et al. Protective effects of melatonin on female rat ovary treated with nonylphenol. Biotech Histochem. 2023; 98(1): 13-19. doi:10.1080/10520295.2022.2075566; Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013; 60(1): 1-13. doi:10.1507/endocrj.ej12-0263; He C, Ma T, Shi J, Zhang Z, Wang J, Zhu K, et al. Melatonin and its receptor MT1 are involved in the downstream reaction to luteinizing hormone and participate in the regulation of luteinization in different species. J Pineal Res. 2016; 61(3): 279-290. doi:10.1111/jpi.12345; Wang X, Meng K, He Y, Wang H, Zhang Y, Quan F. Melatonin stimulates STAR expression and progesterone production via activation of the PI3K/AKT pathway in bovine theca cells. Int J Biol Sci. 2019; 15(2): 404-415. doi:10.7150/ijbs.27912; https://www.actabiomedica.ru/jour/article/view/4614

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей VIII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 19-20 апреля 2023 г.; http://elib.usma.ru/handle/usma/14292

  16. 16
  17. 17
    Academic Journal

    Source: Urology Herald; Том 10, № 2 (2022); 19-31 ; Вестник урологии; Том 10, № 2 (2022); 19-31 ; 2308-6424 ; 10.21886/2308-6424-2022-10-2

    File Description: application/pdf

    Relation: https://www.urovest.ru/jour/article/view/543/394; Esteves SC, Miyaoka R, Agarwal A. Surgical treatment of male infertility in the era of intracytoplasmic sperm injection – new insights. Clinics (Sao Paulo). 2011;66(8):1463-78. DOI:10.1590/s1807-59322011000800026.; Esteves SC, Lee W, Benjamin DJ, Seol B, Verza S Jr, Agarwal A. Reproductive potential of men with obstructive azoospermia undergoing percutaneous sperm retrieval and intracytoplasmic sperm injection according to the cause of obstruction. J Urol. 2013;189(1):232-7. DOI:10.1016/j.juro.2012.08.084.; Miyaoka R, Esteves SC. Predictive factors for sperm retrieval and sperm injection outcomes in obstructive azoospermia: do etiology, retrieval techniques and gamete source play a role? Clinics (Sao Paulo). 2013;68 Suppl 1(Suppl 1):111-9. DOI:10.6061/clinics/2013(sup01)12.; Miyaoka R, Orosz JE, Achermann AP, Esteves SC. Methods of surgical sperm extraction and implications for assisted reproductive technology success. Panminerva Med. 2019;61(2):164-177. DOI:10.23736/S0031-0808.18.03508-5.; Dohle GR, Elzanaty S, van Casteren NJ. Testicular biopsy: clinical practice and interpretation. Asian J Androl. 2012;14(1):88-93. DOI:10.1038/aja.2011.57.; Esteves SC, Prudencio C, Seol B, Verza S, Knoedler C, Agarwal A. Comparison of sperm retrieval and reproductive outcome in azoospermic men with testicular failure and obstructive azoospermia treated for infertility. Asian J Androl. 2014;16(4):602-6. DOI:10.4103/1008-682X.126015.; Esteves SC. Clinical management of infertile men with nonobstructive azoospermia. Asian J Androl. 2015;17(3):459-70. DOI:10.4103/1008-682X.148719.; Olesen IA, Andersson AM, Aksglaede L, Skakkebaek NE, Rajpert-de Meyts E, Joergensen N, Juul A. Clinical, genetic, biochemical, and testicular biopsy findings among 1,213 men evaluated for infertility. Fertil Steril. 2017;107(1):74-82. e7. DOI:10.1016/j.fertnstert.2016.09.015.; Шатылко Т.В., Гамидов С.И., Наумов Н.П., Альравашдех А., Попова А.Ю., Сафиуллин Р.И. Инструментальные методы визуализации при обструкции семенных путей. Андрология и генитальная хирургия. 2022;23(1):13-20. DOI:10.17650/1726-9784-2022-23-1-13-20.; Гамидов С.И., Шатылко Т.В., Тамбиев А.Х., Токарева А.О., Чаговец В.В., Бицоев Т.Б., Стародубцева Н.Л., Попова А.Ю., Франкевич В.Е. Липидомный профиль семенной плазмы при необструктивной азооспермии с остановкой созревания сперматозоидов. Вестник урологии. 2021;9(4):30-39. DOI:10.21886/2308-6424-2021-9-4-30-39.; Яманди Т.А., Акуленко Л.В., Сафина Н.Ю., Витязева И.И., Боголюбов С.В., Мельник Я.И., Касатонова Е.В., Поляков А.В., Андреева М.В., Черных В.Б. Анализ потенциала фертильности мужчин с азооспермией и олигозооспермией тяжелой степени различной этиологии. Андрология и генитальная хирургия. 2018;19(3):60-69. DOI:10.17650/2070-9781-2018-19-3-60-69.; Schoor RA, Elhanbly S, Niederberger CS, Ross LS. The role of testicular biopsy in the modern management of male infertility. J Urol. 2002;167(1):197-200. PMID: 11743304.; Cito G, Sforza S, Gemma L, Cocci A, Di Maida F, Dabizzi S, Natali A, Minervini A, Carini M, Masieri L. Infertility case presentation in Zinner syndrome: Can a long-lasting seminal tract obstruction cause secretory testicular injury? Andrologia. 2019;51(11):e13436. DOI:10.1111/and.13436.; Raleigh D, O'Donnell L, Southwick GJ, de Kretser DM, McLachlan RI. Stereological analysis of the human testis after vasectomy indicates impairment of spermatogenic efficiency with increasing obstructive interval. Fertil Steril. 2004;81(6):1595-603. DOI:10.1016/j.fertnstert.2003.10.046.; Weedin JW, Bennett RC, Fenig DM, Lamb DJ, Lipshultz LI. Early versus late maturation arrest: reproductive outcomes of testicular failure. J Urol. 2011;186(2):621-6. DOI:10.1016/j.juro.2011.03.156.; Bergmann M., Kliesch S. Hodenbiopsie. In: Krause W., Weidner W., eds. Andrologie. Stuttgart: Enke Verlag; 1998: 66-71.; Temple-Smith PD, Southwick GJ, yates CA, Trounson AO, de Kretser DM. Human pregnancy by in vitro fertilization (IVF) using sperm aspirated from the epididymis. J In Vitro Fert Embryo Transf. 1985;2(3):119-22. DOI:10.1007/BF01131497.; Hauser R, Botchan A, Amit A, Ben Yosef D, Gamzu R, Paz G, Lessing JB, Yogev L, Yavetz H. Multiple testicular sampling in non-obstructive azoospermia – is it necessary? Hum Reprod. 1998;13(11):3081-5. DOI:10.1093/humrep/13.11.3081.; Gil-Salom M, Romero J, Mínguez y, Molero MD, Remohí J, Pellicer A. Testicular sperm extraction and intracytoplasmic sperm injection: a chance of fertility in nonobstructive azoospermia. J Urol. 1998;160(6 Pt 1):2063-7. PMID: 9817324.; Silber SJ, Nagy Z, Devroey P, Tournaye H, Van Steirteghem AC. Distribution of spermatogenesis in the testicles of azoospermic men: the presence or absence of spermatids in the testes of men with germinal failure. Hum Reprod. 1997;12(11):2422-8. DOI:10.1093/humrep/12.11.2422.; Esteves SC, Miyaoka R, Agarwal A. Sperm retrieval techniques for assisted reproduction. Int Braz J Urol. 2011;37(5):570-83. DOI:10.1590/s1677-55382011000500002.; Farber NJ, Flannigan R, Srivastava A, Wang H, Goldstein M. Vasovasostomy: kinetics and predictors of patency. Fertil Steril. 2020;113(4):774-780.e3. DOI:10.1016/j.fertnstert.2019.11.032.; Shiraishi K, Takihara H, Naito K. Influence of interstitial fibrosis on spermatogenesis after vasectomy and vasovasostomy. Contraception. 2002;65(3):245-9. DOI:10.1016/ s0010-7824(01)00311-0.; Khaki A. Assessment on the adverse effects of Aminoglycosides and Flouroquinolone on sperm parameters and male reproductive tissue: A systematic review. Iran J Reprod Med. 2015;13(3):125-34. PMID: 26000002; PMCID: PMC4426151.; Ahmadi R, Ahmadifar M, Safarpour E, Vahidi-Eyrisofla N, Darab M, Eini AM, Alizadeh A. The Effects of Levofloxacin on Testis Tissue and Spermatogenesis in Rat. Cell J. 2016;18(1):112-6. DOI:10.22074/cellj.2016.3994.; Gundewar T, Kuchakulla M, Ramasamy R. A paradoxical decline in semen parameters in men treated with clomiphene citrate: A systematic review. Andrologia. 2021;53(1):e13848. DOI:10.1111/and.13848.; León MD, Chiauzzi VA, Calvo JC, Charreau EH, Chemes HE. Acute hCG administration induces seminiferous tubule damage in the adult rat. Acta Physiol Pharmacol Latinoam. 1987;37(2):277-88. PMID: 3122524.; Altoé PM, Tatsuo ES, Paulo DN, Jarske R, Milagres M, Loureiro ID. Effects of human chorionic gonadotropin on the normal testicular tissue of rats. Acta Cir Bras. 2014;29(5):292-8. DOI:10.1590/s0102-86502014000500002.; Dada R, Gupta NP, Kucheria K. Spermatogenic arrest in men with testicular hyperthermia. Teratog Carcinog Mutagen. 2003;Suppl 1:235-43. DOI:10.1002/tcm.10050.; https://www.urovest.ru/jour/article/view/543

  18. 18
    Academic Journal

    Contributors: Работа выполнена при финансовой поддержке РФФИ, грант 21–52–12030 ННИО_а.

    Source: Biomedical Photonics; Том 10, № 4 (2021); 44-58 ; 2413-9432 ; 10.24931/2413-9432-2021-10-4

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/518/361; https://www.pdt-journal.com/jour/article/view/518/376; Xu X., Ho W., Zhang X., Bertrand N. and Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy//Trends in Molecular Medicine. – 2015. –Vol. 21 (4). – P. 223–232.; Borlan R., Focsan M., Maniu D. and Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery//IJN 16.– 2021.– P. 2147–2171.; Dash B. S., Das S., Chen J.-P. Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics//IJMS. 2021. – 22 (13). – P. 6658.; Liu G., Yang L., Chen G. et al. A Review on Drug Delivery System for Tumor Therapy//Front. Pharmacol. – 2021.– Vol.12. – P. 735446; Wust P., Hildebrandt B., Sreenivasa G., Rau B. et al. Hyperthermia in combined treatment of cancer//The Lancet Oncology. – 2002. – Vol. 3 (8). – P. 487–497.; Kolosnjaj-Tabi J., Wilhelm C. Magnetic nanoparticles in cancer therapy: how can thermal approaches help?//Nanomedicine.– 2017. – Vol. 12 (6). – P. 573–575.; Сидоров Д.В., Гришин Н.А., Ложкин М.В., Троицкий А.А., Мошуров Р.И., Быкасов С.А., Урлова А.Н., Филоненко Е.В. Интраоперационная фотодинамическая терапия и гипертермическая внутрибрюшная химиотерапия при циторедуктивном хирургическом лечении больных диссеминированной муцинозной карциномой аппендикса//Biomedical Photonics. 20.– Т. 9, № 4. – P. 23–30. https://doi.org/10.24931/2413–9432–2020–9-4–23–30; Каприн А.Д., Мардынский Ю.С., Смирнов В.П., Иванов С.А., Костин А.А., Полихов С.А., Решетов И.В., Фатьянова А.С., Денисенко М.В., Эпатова Т.В., Коренев С.В., Терещенко А.В., Филоненко Е.В., Гафаров М.М., Романко Ю.С. К истории развития лучевой терапии (часть I)//Biomedical Photonics.– 2019.– Т. 8, № 1.– С. 52–62. doi:10.24931/2413–9432–2019–8–1–52–62.; Horsman M.R. Tissue physiology and the response to heat//International Journal of Hyperthermia. – 2006.– Vol. 22 (3). – P. 197–203.; Kolosnjaj-Tabi J., Di Corato R., Lartigue L. et al. HeatGenerating Iron Oxide Nanocubes: Subtle “Destructurators” of the Tumoral Microenvironment//ACS Nano. –2014.– Vol. 8 (5).– P. 4268–4283.; Mohamed F., Marchettini P., Stuart O.A. et al. Thermal Enhancement of New Chemotherapeutic Agents at Moderate Hyperthermia//Ann Surg Oncol. – 2003.– Vol. 10 (4). – P. 463–468.; Issels R. Hyperthermia Combined with Chemotherapy – Biological Rationale, Clinical Application, and Treatment Results//Oncol Res Treat. – 1999. – Vol. 22 (5).– P. 374–381.; Suit H.D. and Gerweck L. E., Potential for hyperthermia and radiation therapy//Cancer Res. – 1979.– Vol. 39 (6 Pt 2). – P. 2290–2298.; Spirou S., Basini M., Lascialfari A. et al. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice//Nanomaterials.– 2018. –Vol. 8 (6). – P. 401.; Dahl O. Status of Clinical Hyperthermia//Acta Oncologica. – 1999. – Vol. 38 (7). – P. 863–873.; Hynynen K., Shimm D., Anhalt D. et al. Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments//International Journal of Hyperthermia. – 1990. – Vol. 6 (5). – P. 891–908.; Горшкова А.С., Шилов И.П., Иванов А.В., Румянцева В.Д. Cинтез и исследование наночастиц для магнитно-люминесцентеной тераностики опухолей на основе Yb-комплекса ДМЭ протопорфирина IX и оксида железа//Материалы IX Международного конгресса «Фотодинамическая терапия и фотодиагностика» Москва 23–24 октября 2020 г. Biomedical Photonics. 20. – Т. 9, № 4s. – P. 5–6.; Mulens-Arias V., Rojas J.M. and Barber D. F. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment//Front. Immunol.– 2021.– Vol. 12.– Р. 693709.; Zanganeh S., Hutter G., Spitler R. et al. Iron oxide nanoparticles inhibit tumour growth by inducing proinflammatory macrophage polarization in tumour tissues//Nature Nanotech. – 2016.– Vol. 11 (11). – P. 986–994.; Gaharwar U.S. Meena R., and Rajamani P., Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes: Iron oxide nanoparticles toxicity in lymphocytes//J. Appl. Toxicol.– 2017.– Vol. 37 (10).– P. 1232–1244.; Malvindi M.A., Matteis V. De, A Galeone. et al. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering//PLoS ONE. – 2014.– Vol. 9 (1).– P. e85835.; Arias L., Pessan J., Vieira A. et al. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity//Antibiotics. – 2018.– Vol. 7 (2). – P. 46.; Sun R., Chen H., Sutrisno L., Kawazoe N., and Chen G., Nanomaterials and their composite scaffolds for photothermal therapy and tissue engineering applications//Science and Technology of Advanced Materials.– 2021.– Vol. 22 (1).– P. 404–428.; Liu Q., Liu L., Mo C., Zhou X. et al. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl Lewis X nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy//J Nanobiotechnol.– 2021. – Vol. 19 (1).– P. 171.; Ovejero J.G., Armenia I., Serantes D. et al. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for MultiHot-Spot Induction and Sequential Regulation//Nano Lett. – 2021.– Vol. 21 (17). – P. 7213–7220.; Shi D., Sadat M. E., Dunn A.W., and Mast D.B., Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications//Nanoscale. – 2015.– Vol. 7 (18).– P. 8209–8232.; Vallejo-Fernandez G., Whear O., Roca A.G. et al. Mechanisms of hyperthermia in magnetic nanoparticles//J. Phys. D: Appl. Phys.– 2013. – Vol. 46 (31). – P. 312001.; Espinosa A., Kolosnjaj-Tabi J., Abou-Hassan A. et al. Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo//Adv. Funct. Mater.– 2018.– Vol. 28 (37).– P. 1803660.; Johannsen M., Gneveckow U., Thiesen B. et al. Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution//European Urology. – 2007. – Vol. 52 (6).– P. 1653– 1662.; Guardia P., R. Corato Di, Lartigue L. et al., Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment//ACS Nano.– 2012.– Vol. 6 (4).– P. 3080–3091.; Martinez-Boubeta C., Simeonidis K., Makridis A. et al., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications//Sci Rep. – 2013. – Vol. 3 (1). – P. 1652.; Espinosa A., R. Corato Di, Kolosnjaj-Tabi J. et al., Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment//ACS Nano. –2016. – Vol. 10 (2). – P. 2436–2446.; Yan H., Shang W., X. Sun, L. Zhao et al., “All-in-One” Nanoparticles for Trimodality Imaging-Guided Intracellular Photo-magnetic Hyperthermia Therapy under Intravenous Administration//Adv. Funct. Mater.– 2018.– Vol. 28 (9).– P. 1705710.; Lin S.-Y., Huang R.-Y., Liao W.-C. et al. Multifunctional PEGylated Albumin/IR780/Iron Oxide Nanocomplexes for CancerPhotothermal Therapy and MR Imaging//Nanotheranostics. – 2018.– Vol. 2 (2). – P. 106–116.; Cabana S., Curcio A., Michel A., Wilhelm C., and AbouHassan A. Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers//Nanomaterials.– 2020.– Vol.10 (8). – P.1548.; Shi J., Yu X., Wang L., Liu Y. et al. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging//Biomaterials. – 2013.– Vol. 34 (37). – P. 9666–9677.; Penon O., Marín M.J., Amabilino D.B., Russell D.A. and PérezGarcía L. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy//Journal of Colloid and Interface Science. – 2016. – Vol. 462. – P. 154–165.; Климов В.В., Наноплазмоника//2nd ed. Физматлит. – 2010.; Bashevoy M.V., Fedotov V.A., and Zheludev N. I. Optical whirlpool on an absorbing metallic nanoparticle//Opt. Express.– 2005.– Vol. 13 (21). – P. 8372.; Sharma S.K., Shrivastava N., Rossi F. et al. Nanoparticlesbased magnetic and photo induced hyperthermia for cancer treatment//Nano Today.– 2019.– Vol. 29. – P. 100795.; Lozano-Pedraza C., Plaza-Mayoral E., Espinosa A., Sot B., et al. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation//Nanoscale Adv.– 2021. – Vol. 3 (22).– P. 6490–6502.; Jeong Y., Kook Y.-M., Lee K., and Koh W.-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments//Biosensors and Bioelectronics.– 2018.– Vol. 111. – P. 102–116.; M.M. Sigalas, D.A. Fattal, R. S. Williams, et al., Electric field enhancement between two Si microdisks//Opt. Express. – 2007.– Vol. 15 (22). – P. 14711.; S. Toroghi and P.G. Kik, Photothermal response enhancement in heterogeneous plasmon-resonant nanoparticle trimmers//Phys. Rev. B. – 2014. – Vol. 90 (20). – P. 205414.; N.G. Khlebtsov, T-matrix method in plasmonics: An overview//Journal of Quantitative Spectroscopy and Radiative Transfer. – 2013. – Vol. 123. – P. 184–217.; D.W. Mackowski and M. I. Mishchenko, A multiple sphere T-matrix Fortran code for use on parallel computer clusters//Journal of Quantitative Spectroscopy and Radiative Transfer. – 2011. – Vol. 112 (13). – P. 2182–2192.; A.D. Rakić, A.B. Djurišić, J.M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices//Appl. Opt. – 1998.– Vol. 37 (22). – P. 5271.; M.R. Querry, Optical Constants//MISSOURI UNIV-KANSAS CITY. – 1985.; S. Farooq and R. E. de Araujo, Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing//OJAppS.– 2018. – Vol. 08 (03). – P. 126–139.; Kholodtsova M.N., Grachev P.V., W. Blondel C. et al., Аpplication of devices for space-resolved spectroscopy on the example of twolayer phantoms containing metallic nanoparticles//Biomedical Photonics.– 2018. – Vol. 7 (2). – P. 4–12.; Baffou G., Quidant R., and García de Abajo F.J. Nanoscale Control of Optical Heating in Complex Plasmonic Systems//ACS Nano. – 2010.– Vol. 4 (2). – P. 709–716.; Cazares-Cortes E., Cabana S., Boitard C. et al., Recent insights in magnetic hyperthermia: From the “hot-spot” effect for local delivery to combined magneto-photo-thermia using magnetoplasmonic hybrids//Advanced Drug Delivery Reviews.– 2019.– Vol. 138. – P. 233–246.; Dong J. and Zink J. I. Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles//ACS Nano. – 2014.– Vol. 8 (5). – P. 5199–5207.; Gareau D., Desrosiers A., and Vallée-Bélisle A. Programmable Quantitative DNA Nanothermometers//Nano Lett. – 2016. – Vol. 16 (7).– P. 3976–3981.; Riedinger A., Guardia P., Curcio A. et al., Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles//Nano Lett.– 2013. – Vol. 13 (6).– P. 2399–2406.; Joyce C., Fothergill S.M., Xie F. Recent advances in goldbased metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared//Materials Today Advances. – 2020.– Vol. 7.– P. 100073.; Ángela I. López-Lorente, Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications//A review, Analytica Chimica Acta. – 2021.– Vol. 1168.– Р. 338474.; Sajid Farooq, Renato E. de Araujo, dentifying high performance gold nanoshells for singlet oxygen generation enhancement//Photodiagnosis and Photodynamic Therapy.– 2021.– Vol. 35.– Р. 102466.; Seyfollah Toroghi and Pieter G. Kik Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit Appl//Phys. Lett. – 2013.– Vol. 100.– Р. 183105.; Y.R. Davletshin, J.C. Kumaradas, J. Beilstein Nanotechnol.– 2016. – Vol. 7. – Р. 869–880. doi:10.3762/bjnano.7.79

  19. 19
    Academic Journal

    Source: Biomedical Photonics; Том 11, № 2 (2022); 12-22 ; 2413-9432 ; 10.24931/2413-9432-2022-11-2

    File Description: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/539/388; https://www.pdt-journal.com/jour/article/view/539/385; Mohammadi A., Bianchi L., Asadi S., Saccomandi P. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature // Sensors (Basel). – 2021. – Vol. 21(12). – P. 4236. doi:10.3390/s21124236; Ahmed M., Brace C.L., Fred T Lee Jr. F.T., Goldberg S.N. Principles of and advances in percutaneous ablation // Radiology. – 2011. – Vol. 258(2). – P. 351-69. doi:10.1148/radiol.10081634; Franzini A., Moosa S., Servello D., Small I., DiMeco F., Xu Z., Elias W.J., Franzini A., Prada F. Ablative brain surgery: an overview // Int. J. Hyperth. – 2019. – Vol. 36. – P. 64–80. doi:10.1080/02656736.2019.1616833; Geoghegan R., Ter Haar G., Nightingale K., Marks L., Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review // Med. Phys. – 2022. – Vol. 49(2). – P. 769-791. doi:10.1002/mp.15439; Chen C., Lee I., Tatsui C., Elder T., Sloan A.E. Laser interstitial thermotherapy (LITT) for the treatment of tumors of the brain and spine: a brief review // J. of Neuro-Oncology. – 2021. – Vol. 151. – P. 429–442. doi:10.1007/s11060-020-03652-z; Lagman C., Chung L.K., Pelargos P.E., Ung N., Bui T.T., Lee S.J., Voth B.L., Yang I. Laser neurosurgery: A systematic analysis of magnetic resonance-guided laser interstitial thermal therapies // J. Clin. Neurosci. – 2017. – Vol. 36. – P. 20-26. doi:10.1016/j.jocn.2016.10.019; Острейко О.В., Можаев С.В. Способ лечения глиальных опухолей головного мозга супратенториальной локализации // Патент РФ на изобретение №2533032 от 16.09.2014.; Eranki A., Mikhaila A.S., Negussiea A.H., Prateek S.K., Wooda B.J., Partanen A. Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications // International Journal of Hyperthermia. – 2019. – Vol. 36(1). – P. 518-529. doi:10.1080/02656736.2019.1605458; Negussie A.H., Partanen A., Mikhail A.S., Xu S., Abi-Jaoudeh N., Maruvada S., Wood B.J. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation // Int. J. Hyperthermia. – 2016. – Vol. 32(3). – P. 239-43. doi:10.3109/02656736.2016.1145745; Dabbagh A., Jeet Abdullah B.J., Abu Kasim N.H., Ramasindarum C. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application // Int. J. Hyperthermia. – 2014. – Vol. 30(1). – P. 66-74. doi:10.3109/02656736.2013.854930; Bazrafshan B., Hubner F., Farshid P., Larson M.C., Vogel V., Mantele W., Vogl T.J. A liver-mimicking MRI phantom for thermal ablation experiments // Med. Phys. – 2011. – Vol. 38. – P. 2674–84. doi:10.1118/1.3570577; Davidson S.R.H., Sherar M.D. Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material // Int. J. Hyperthermia. – 2003. – Vol. 19(5). – P. 551-62. doi:10.1080/02656730310001607995; Ningrum E.O., Purwanto A., Rosita G.C., Bagus A. The Properties of Thermosensitive Zwitterionic Sulfobetaine NIPAM-co-DMAAPS Polymer and the Hydrogels: The Effects of Monomer Concentration on the Transition Temperature and Its Correlation with the Adsorption Behavior // Indones. J. Chem. – 2020. – Vol. 20 (2). – P. 324-335. doi:10.22146/ijc.41499; Vogel A., Venugopoplan V. Mechanisms of Pulsed Laser Ablation of Biological Tissues // Chem. Rev. – 2003. – Vol. 103. – P. 577−644. doi:10.1021/cr030683b; Minton J.A., Iravani A., Yousefi A. Improving the homogeneity of tissue-mimicking cryogel phantoms for medical imaging // Med. Phys. – 2012. – Vol. 39(11). – P. 6796-807. doi:10.1118/1.4757617; Guntur S.R., Choi M.J. An improved tissue-mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions with high-intensity focused ultrasound // Ultrasound in med. and biol. – 2014. – Vol. 40(11). – P. 2680-2691. doi:10.1016/j.ultrasmedbio.2014.06.010; Welch A.J., Gemert M.J.C. Optical-thermal response of laser- irradiation tissue. // Springer. – 2011. – 947 p. doi:10.1007/978-90-481-8831-4; Kang U.K., Папаян Г.В., Березин И.Б., Jin Bae-Soo, Ким С.В., Петрищев Н.Н. Мультиспектральные флуоресцентные орга- носкопы для прижизненных исследований лабораторных животных и их органов // Оптический журнал. –2011. – Vol. 78(9). – P. 82-90.; Korganbayev S., Orrico A., Bianchi L., De Landro M., Wolf A., Dostovalov A., Saccomandi P. Closed-Loop Temperature Control Based on Fiber Bragg Grating Sensors for Laser Ablation of Hepatic Tissue // Sensors 2020. – Vol. 20(22). – P. 6496. doi.org/10.3390/s20226496; Manns F., Milne P.J, Gonzalez-Cirre X., Denham, D.B, Parel J., Robinson D.S. In situ temperature measurements with thermocouple probes during laser Interstitial thermotherapy (LITT): quantification and correction of a measurement artifact // Lasers Surg. Med. – 1998. – Vol. 23(2). – P. 94–103. doi:10.1002/(sici)1096-9101(1998)23:23.0.co;2-q

  20. 20
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 7, № 1 (2022); 232-239 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3321/2316; Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online. 2012; 25(6): 551-560. doi:10.1016/j.rbmo.2012.08.004; Makino A, Ozaki Y, Matsubara H, Sato T, Ikuta K, Nishizawa Y, et al. Role of apoptosis controlled by cytochrome c released from mitochondria for luteal function in human granulosa cells. Am J Reprod Immunol. 2005; 53(3): 144-152. doi:10.1111/j.1600-0897.2005.00258.x; Hussein MR. Apoptosis in the ovary: molecular mechanisms. Hum Reprod Update. 2005; 11(2): 162-177. doi:10.1093/humupd/dmi001; Зенкина В.Г., Каредина В.С., Солодкова О.А., Михайлов А.О. Регуляторы апоптоза и механизм их действия в женской гонаде. Международный журнал прикладных и фундаментальных исследований. 2010; 7: 7-14.; Hernandez F, Peluffo MC, Bas D, Stouffer RL, Tesone M. Local effects of the sphingosine 1-phosphate on prostaglandin F2alpha-induced luteolysis in the pregnant rat. Mol Reprod Dev. 2009; 76(12): 1153-1164. doi:10.1002/mrd.21083; Al-Zi’abi MO, Fraser HM, Watson ED. Cell death during natural and induced luteal regression in mares. Reproduction. 2002; 23(1): 67-77.; Amelkina O, Zschockelt L, Painer J, Serra R, Villaespesa F, Braun BC, et al. Apoptosis-related factors in the luteal phase of the domestic cat and their involvement in the persistence of corpora lutea in lynx. PLoS One. 2015; 10(11): e0143414. doi:10.1371/journal.pone.0143414; Meng L, Jan SZ, Hamer G, van Pelt AM, van der Stelt I, Keijer J, et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis. Biol Reprod. 2018; 99(4): 853-863. doi:10.1093/biolre/ioy116; Zheng Y, Ma L, Liu N, Tang X, Guo S, Zhang B, et al. Autophagy and apoptosis of porcine ovarian granulosa cells during follicular development. Animals (Basel). 2019; 9(12): 1111. doi:10.3390/ani912111; Мичурина С.В., Колесников С.И., Бочкарева А.Л., Архипов С.А., Ищенко И.Ю. Экспрессия белков семейства Bcl-2 в фолликулярном аппарате яичников в острый период после экспериментальной гипертермии. Бюллетень экспериментальной биологии и медицины. 2017; 164(12): 754-758.; Мичурина С.В., Колесников С.И., Бочкарева А.Л., Ищенко И.Ю., Архипов С.А. Экспрессия белков-регуляторов апоптоза Bcl-2 и Bad в фолликулярном аппарате яичников крыс в восстановительном периоде после экстремальной гипертермии. Бюллетень экспериментальной биологии и медицины. 2019; 168(8): 155-160.; Мичурина С.В., Колесников С.И., Ищенко И.Ю., Бочкарева А.Л., Архипов С.А. Влияние мелатонина на экспрессию белковрегуляторов апоптоза Bcl-2 и Bad в фолликулярном аппарате яичников после воздействия высокой температуры. Бюллетень экспериментальной биологии и медицины. 2020;170(11): 552-558.; Ajayi AF, Akhigbe RE. Staging of the estrous cycle and induction of estrus in experimental rodents: an Update. Fertil Res Pract. 2020; 6: 5. doi:10.1186/s40738-020-00074-3; Cora MC, Kooistra L, Travlos G. Vaginal cytology of the laboratory rat and mouse: Review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol. 2015; 43(6): 776-793. doi:10.1177/0192623315570339; Ефремов А.В., Пахомова Ю.В., Пахомов Е.А., Ибрагимов Р.Ш., Шорина Г.Н. Способ экспериментального моделирования общей гипертермии у мелких лабораторных животных: Патент № 2165105 Рос. Федерация; МПК G09B 23/28 (2000.01); заявитель и патентообладатель Новосибирская государственная медицинская академия. № 99126978/13; заявл. 22.12.1999; опубл. 10.04.2001. 2001; (10).; Улащик В.С. Локальная гипертермия в онкологии: использование магнитного поля, лазерного излучения, ультразвука. Вопросы курортологии, физиотерапии и лечебной физической культуры. 2014; 91(2): 48-57.; Lellahi SM, Rosenlund IA, Hedberg A, Kiær LT, Mikkola I, Knutsen E, et al. The long noncoding RNA NEAT1 and nuclear paraspeckles are up-regulated by the transcription factor HSF1 in the heat shock response. J Biol Chem. 2018; 293(49): 18965- 18976. doi:10.1074/jbc.RA118.004473; Gu ZT, Li L, Wu F, Zhao P, Yang H, Liu YS, et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca(2+) dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep. 2015; 5: 11497. doi:10.1038/srep11497; Wang Y, Yang C, Elsheikh NAH, Li C, Yang F, Wang G, et al. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging (Albany NY). 2019; 11(15): 5535-5547. doi:10.18632/aging.102136; Luo M, Li L, Xiao C, Sun Y, Wang GL. Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis. Mol Cell Biochem. 2016; 412(1-2): 81-90. doi:10.1007/s11010-015-2610-0; Bowolaksono A, Fauzi M, Sundari AM, Pustimbara A, Lestari R, Abinawanto, et al. The effects of luteinizing hormone as a suppression factor for apoptosis in bovine luteal cells in vitro. Reprod Domest Anim. 2021; 56(5): 744-753. doi:10.1111/rda.13913; https://www.actabiomedica.ru/jour/article/view/3321