Εμφανίζονται 1 - 20 Αποτελέσματα από 153 για την αναζήτηση '"ГИПЕРКОАГУЛЯЦИЯ"', χρόνος αναζήτησης: 0,83δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 5 (2024); 58-68 ; Медицинский Совет; № 5 (2024); 58-68 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8222/7245; Wagner C, Griesel M, Mikolajewska A, Metzendorf M, Fischer A, Stegemann M et al. Systemic corticosteroids for the treatment of COVID-19: Equityrelated analyses and update on evidence. Cochrane Database Syst Rev. 2022;11(11):CD014963. https://doi.org/10.1002/14651858.CD014963.pub2.; Чугунов АА, Салухов ВВ, Данцева ОВ, Харитонов МА, Рудаков ЮВ, Болехан АВ, Аржавкина ЛГ. Некоторые аспекты применения глюкокортикоидных препаратов в комплексном лечении новой коронавирусной инфекции. Медицинский альянс. 2021;9(1):43–51. https://doi.org/10.36422/23076348-2021-9-1-43-51.; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L et al. Dexamethasone in Hospitalized Patients with COVID-19. N Engl J Med. 2020;384(8):693–704. https://doi.org/10.1056/NEJMoa2021436.; Салухов ВВ, Крюков ЕВ, Чугунов АА, Харитонов МА, Рудаков ЮВ, Лахин РЕ и др. Роль и место глюкокортикостероидов в терапии пневмоний, вызванных COVID-19, без гипоксемии. Медицинский совет. 2021;(12):162–172. https://doi.org/10.21518/2079-701X-2021-12-162-172.; Харитонов МА, Салухов ВВ, Крюков ЕВ, Паценко МБ, Рудаков ЮВ, Богомолов АБ и др. Вирусные пневмонии: новый взгляд на старую проблему (обзор литературы). Медицинский совет. 2021;(16):60–77. https://doi.org/10.21518/2079-701X-2021-16-60-77.; Минаков АА, Вахлевский ВВ, Волошин НИ, Харитонов МА, Салухов ВВ, Тыренко ВВ и др. Новый взгляд на этиологию и иммунологические аспекты пневмонии. Медицинский совет. 2023;17(4):141–153. https://doi.org/10.21518/ms2023-056.; Тришкин ДВ, Крюков ЕВ, Салухов ВВ, Котив БН, Садовников ПС, Андрейчук ЮВ, Чугунов АА. Особенности формирования и продолжительность сохранения нейтрализующих антител к S-белку SARS-CoV-2 у лиц, перенесши новую коронавирусную инфекцию (COVID-19) легкого или бессимптомного течения. Вестник Российской академии медицинских наук. 2021;76(4):361–367. https://doi.org/10.15690/vramn1582.; Жукова ОВ, Каграманян ИН, Хохлов АЛ. Сравнительный анализ эффективности лекарственных препаратов в терапии тяжелых форм COVID-19 на основании методик атрибутивной статистики и анализа межлекарственных взаимодействий. Фармация и фармакология. 2020;8(5):316–324. https://doi.org/10.19163/2307-9266-2020-8-5-316-324.; Munch MW, Myatra SN, Vijayaraghavan BKT, Saseedharan S, Benfield T, Wahlin RR et al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. JAMA. 2021;326(18):1807–1817. https://doi.org/10.1001/jama.2021.18295.; Tomazini BM, Maia IS, Bueno FR, Silva MVAO, Baldassare FP, Costa ELV et al. COVID-19-associated ARDS treated with DEXamethasone (CoDEX): study design and rationale for a randomized trial. Rev Bras Ter Intensiva. 2020;32(3):354–362. https://doi.org/10.5935/0103-507X.20200063.; Jamaati H, Hashemian SM, Farzanegan B, Malekmohammad M, Tabarsi P, Marjani M et al. No clinical benefit of high dose corticosteroid administration in patients with COVID-19: a preliminary report of a randomised clinical trial. Eur J Pharmacol. 2021;897:173947. https://doi.org/10.1016/j.ejphar.2021.173947.; Зайцев АА, Голухова ЕЗ, Мамалыга МЛ, Чернов СА, Рыбка ММ, Крюков ЕВ и др. Эффективность пульс-терапии метилпреднизолоном у пациентов с COVID-19. Клиническая микробиология и антимикробная химиотерапия. 2020;22(2):88–91. https://doi.org/10.36488/cmac.2020.2.88-91.; Мареев ВЮ, Орлова ЯА, Павликова ЕП, Мацкеплишвили СТ, Краснова ТН, Малахов ПС и др. Пульс-Терапия стероидными гормонами больных с Коронавирусной пневмонией (COVID-19), системным воспалением и риском венозных тромбозов и тромбоэмболий (исследование ПУТНИК). Кардиология. 2020;60(6):15–29. https://doi.org/10.18087/cardio.2020.6.n1226.; Meduri GU, Annane D, Confalonieri M, Chrousos GP, Rochwerg B, Busby A et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med. 2020;46(12):2284–2296. https://doi.org/10.1007/s00134-020-06289-8.; Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020;56(6):2002808. https://doi.org/10.1183/13993003.02808-2020.; Monreal E, Sainz de la Maza S, Natera-Villalba E, Beltrán-Corbellini Á, Rodríguez-Jorge F, Fernández-Velasco JI et al. High versus standard doses of corticosteroids in severe COVID-19: a retrospective cohort study. Eur J Clin Microbiol Infect Dis. 2021;40(4):761–769. https://doi.org/10.1007/s10096-020-04078-1.; Ssentongo P, Yu N, Voleti N, Reddy S, Ingram D, Chinchilli VM, Paules CI. Optimal Duration of Systemic Corticosteroids in Coronavirus Disease 2019 Treatment: A Systematic Review and Meta-analysis. Open Forum Infect Dis. 2021;10(3):ofad105. https://doi.org/10.1093/ofid/ofad105.; Авдеев СН, Адамян ЛВ, Алексеева ЕИ, Багненко СВ, Баранов АА, Баранова НН и др. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). 2023. 249 c. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/064/610/original/%D0%92%D0%9C%D0%A0_COVID-19_V18.pdf.; Elena C, Chiara M, Angelica B, Chiara M, Laura N, Chiara C et al. Hyperglycemia and Diabetes Induced by Glucocorticoids in Nondiabetic and Diabetic Patients: Revision of Literature and Personal Considerations. Curr Pharm Biotechnol. 2019;19(15):1210–1220. https://doi.org/10.2174/1389201020666190102145305.; Adcock IM, Mumby S. Glucocorticoids. In: Page C, Barnes P (eds.). Pharmacology and Therapeutics of Asthma and COPD. Springer, Cham.; 2016. Vol. 237, pp. 171–196. https://doi.org/10.1007/164_2016_98.; Elnoby AS. Clinical Consideration of Glucocorticoids in COVID-19. J Pharm Pract. 2021;34(2):181–182. https://doi.org/10.1177/0897190020987124.; Салухов ВВ, Гуляев НИ, Дорохина ЕВ. Оценка системных воспалительных реакций и коагулопатии на фоне гормональной терапии при ковидассоциированном поражении легких. Медицинский совет. 2020;(21):230–237. https://doi.org/10.21518/2079-701X-2020-21-230-237.; McBane RD 2nd, Torres Roldan VD, Niven AS, Pruthi RK, Franco PM, Linderbaum JA et al. Anticoagulation in COVID-19: A Systematic Review, Meta-analysis, and Rapid Guidance From Mayo Clinic. Mayo Clin Proc. 2020;95(11):2467–2486. https://doi.org/10.1016/j.mayocp.2020.08.030.; Johns M, George S, Taburyanskaya M, Poon YK. A Review of the Evidence for Corticosteroids in COVID-19. J Pharm Pract. 2022;35(4):626–637. https://doi.org/10.1177/0897190021998502.; Engel JJ, van der Made CI, Keur N, Setiabudiawan T, Röring RJ, Damoraki G et al. Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients. Front Immunol. 2023;14:1233318. https://doi.org/10.3389/fimmu.2023.1233318.; Авдеев СН, Адамян ЛВ, Алексеева ЕИ, Багненко СВ, Баранов АА, Баранова НН и др. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). 2020. 236 c. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf.; Tan RSJ, Ng KT, Xin CE, Atan R, Yunos NM, Hasan MS. High-Dose versus Low-Dose Corticosteroids in COVID-19 Patients: a Systematic Review and Meta-analysis. J Cardiothorac Vasc Anesth. 2022;36(9):3576–3586. https://doi.org/10.1053/j.jvca.2022.05.011.; Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201–211. https://doi.org/10.1038/s41591-021-01576-3.; Villar J, Confalonieri M, Pastores SM, Meduri GU. Rationale for prolonged corticosteroid treatment in the acute respiratory distress syndrome caused by coronavirus disease 2019. Crit Care Explor. 2020;2(4):e0111. https://doi.org/10.1097/cce.0000000000000111.; Mishra GP, Mulani J. Corticosteroids for COVID 19: the search for an optimum duration of therapy. Lancet Respir Med. 2021;9(1):e8. https://doi.org/10.1016/s2213-2600(20)30530-0.; Fadel R, Morrison AR, Vahia A, Smith ZR, Chaudhry Z, Bhargava P et al. Henry Ford COVID-19 Management Task Force. Early short course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis. 2020;71(16):2114–2120. https://doi.org/10.1093/cid/ciaa601.

  3. 3
    Academic Journal

    Πηγή: General Reanimatology; Том 20, № 5 (2024); 24-30 ; Общая реаниматология; Том 20, № 5 (2024); 24-30 ; 2411-7110 ; 1813-9779

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2416/1869; https://www.reanimatology.com/rmt/article/view/2416/1881; https://www.reanimatology.com/rmt/article/downloadSuppFile/2416/966; https://www.reanimatology.com/rmt/article/downloadSuppFile/2416/1121; Keiran N., Ceperuelo-Mallafré V., Calvo E., Hernández-Alvarez M. I., Ejarque M., Núñez-Roa C., Horrillo D., et al. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol. 2019; 20 (5): 581–592. DOI:10.1038/s41590-019-0372-7. PMID: 30962591; Hamel D., Sanchez M., Duhamel F., Roy O., Honoré J. C., Noueihed B., Zhou T., et al. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol. 2014; 34 (2): 285–93. DOI:10.1161/ATVBAHA.113.302131. PMID: 24285580.; De Castro-Fonseca M., Aguiar C. J., da Rocha Franco J. A., Gingold R. N., Leite M. F. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal. 2016; 14: 3. DOI:10.1186/s12964-0160126-1. PMID: 26759054.; Li T., Hu J., Du S., Chen Y., Wang S., Wu Q. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes. Mol Vis. 2014; 20: 1109–1121. PMID: 25324681.; Palta S., Saroa R., Palta A. Overview of the coagulation system. Indian J Anaesth. 2014; 58 (5): 515–523. DOI:10.4103/00195049.144643. PMID: 25535411.; Golebiewska E. M., Poole A. W. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015; 29 (3): 153–162. DOI:10.1016/j.blre.2014.10.003. PMID: 25468720.; Chapin J. C., Hajjar K. A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015; 29 (1): 17–24. DOI:10.1016/j.blre.2014.09.003. PMID: 25294122.; Delvaeye M., Conway E. M. Coagulation and innate immune responses: can we view them separately? Blood. 2009; 114 (12): 2367–2374. DOI:10.1182/blood-2009-05-199208. PMID: 19584396.; Dahlbäck B., Villoutreix B. O. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol. 2005; 25 (7): 1311–1320. DOI:10.1161/01.ATV.0000168421.13467.82. PMID: 15860736.; Popescu N. I., Lupu C., Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood. 2022; 139 (13): 1973–1986. DOI:10.1182/blood.2020007208. PMID: 34428280.; Tsantes A. G., Parastatidou S., Tsantes E.A, Bonova E., Tsante K. A., Mantzios P. G., Vaiopoulos A. G., et al. Sepsis-induced coagulopathy: an update on pathophysiology, biomarkers, and current guidelines. Life (Basel). 2023; 13 (2): 350. DOI:10.3390/life13020350. PMID: 36836706.; Hanby H. A., Bao J., Noh J. Y., Jarocha D., Poncz M., Weiss M. J., Marks M. S. Platelet dense granules begin to selectively accumulate mepacrine during proplatelet formation. Blood Adv. 2017; 1 (19): 1478–1490. DOI:10.1182/bloodadvances.2017006726. PMID: 28936487.; Sharda A., Flaumenhaft R. The life cycle of platelet granules. F1000Res. 2018; 7: 236. DOI:10.12688/f1000research.13283.1. PMID: 29560259.; Kim D. A., Ashworth K. J., Di Paola J., Ku D. N. Platelet α-granules are required for occlusive high-shear-rate thrombosis. Blood Adv. 2020; 4 (14): 3258–3267. DOI:10.1182/bloodadvances.2020002117. PMID: 32697818.; Scridon A. Platelets and their role in hemostasis and thrombosis- from physiology to pathophysiology and therapeutic implications. Int J Mol Sci. 2022; 23 (21): 12772. DOI:10.3390/ijms232112772. PMID: 36361561.; Shahneh F., Probst H. C., Wiesmann S. C., A-Gonzalez N., Ruf W., Steinbrink K., Raker V. K., et al. Inflammatory monocyte counts determine venous blood clot formation and resolution. Arterioscler Thromb Vasc Biol. 2022; 42 (2): 145–155. DOI:10.1161/ATVBAHA.121.317176. PMID: 34911360.; Hirayama D., Iida T., Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int J Mol Sci. 2017; 19 (1): 92. DOI:10.3390/ijms19010092. PMID: 29286292.; Shirakawa K., Sano M. Neutrophils and neutrophil extracellular traps in cardiovascular disease: an overview and potential therapeutic approaches. Biomedicines. 2022; 10 (8): 1850. DOI:10.3390/biomedicines10081850. PMID: 36009397.; Tobon G. J., Izquierdo J. H., Canas C. A. B lymphocytes: development, tolerance, and their role in autoimmunity-focus on systemic lupus erythematosus. Autoimmune Dis. 2013; 2013: 827254. DOI:10.1155/2013/827254. PMID: 24187614.; Keragala C. B., Draxler D. F., McQuilten Z. K., Medcalf R. L. Haemostasis and innate immunity — a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018; 180 (6): 782–798. DOI:10.1111/bjh.15062. PMID: 29265338.; Hohlstein P., Gussen H., Bartneck M., Warzecha K. T., Roderburg C., Buendgens L., Trautwein C., et al. Prognostic relevance of altered lymphocyte subpopulations in critical illness and sepsis. J Clin Med. 2019; 8 (3): 353. DOI:10.3390/jcm8030353. PMID: 30871101.; Global Health Observatory. Proportions of child death by cause. (http: //www.who.int/gho/child_health/en/index.html), WHO, Geneva Accessed on 24 July 2014.; Violi F., Cangemi R., Calvieri C. Pneumonia, thrombosis and vascular disease. J Thromb Haemost. 2014; 12 (9): 1391–1400. DOI:10.1111/jth.12646. PMID: 24954194.; Lin J., Yan H., Chen H., He C., Lin C., He H., Zhang S., et al. COVID-19 and coagulation dysfunction in adults: a systematic review and meta-analysis. J Med Virol. 2021; 93 (2): 934–44. DOI:10.1002/jmv.26346. PMID: 32706426.; Frazer J. S., Tyrynis Everden A. J. Emerging patterns of hyperco-agulability associated with critical COVID-19: A review. Trends Anaesth Crit Care. 2020; 34 (6): 4–13. DOI:10.1016/j.tacc.2020.07.004. PMID: 38620391.; Palazon A., Goldrath A. W., Nizet V., Johnson R. S. HIF transcription factors, inflammation, and immunity. Immunity. 2014; 41 (4): 518–528. DOI:10.1016/j.immuni.2014.09.008. PMID: 25367569.; Vilar R., Fish R. J., Casini A., Neerman-Arbez M. Fibrin (ogen) in human disease: both friend and foe. Haematologica. 2020; 105 (2): 284–296. DOI:10.3324/haematol.2019.236901. PMID: 31949010.; Jin M., Fuller G. G., Han T., Yao Y., Alessi A. F., Freeberg M. A., Roach N. P., et al. Glycolytic enzymes coalesce in G bodies under hypoxic stress. Cell Rep. 2017; 20 (4): 895–908. DOI:10.1016/j.celrep.2017.06.082. PMID: 28746874.; Лукьянова Л. Д. Сигнальные механизмы гипоксии. М.: РАН; 2019; Симутис И. С., Бояринов Г. А., Юрьев М. Ю., Петровский Д. С., Коваленко А. Л., Парфенов С. А. Возможности коррекции гипервоспаления при Covid-19. Антибиотики и химиотерапия. 2021; 66 (3–4): 40–48. DOI:10.37489/0235-2990-2021-66-3-4-40-48.; Михайлова Е. В., Чудакова Т. К. Грипп у детей. Гематологические показатели интоксикации, детоксикационная терапия. Экспериментальная и клиническая фармакология. 2015; 78 (5): 33–36.; Стоева Т. В., Титкова Е. В., Сытник В. В., Карташова В. А., Синенко В. В., Радюк Л. П. Коррекция метаболических нарушений при вторичном ацетонемическом синдроме в условиях острой респираторной вирусной инфекции у детей. Здоровье ребенка. 2018; 13 (8): 736–742.; https://www.reanimatology.com/rmt/article/view/2416

  4. 4
  5. 5
    Academic Journal
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Πηγή: Лабораторная диагностика. Восточная Европа. :324-335

  11. 11
  12. 12
    Academic Journal

    Συνεισφορές: The reported study was funded by the Government contract of the Institute of Immunology and Physiology (122020900136-4).

    Πηγή: Medical Immunology (Russia); Том 25, № 5 (2023); 1059-1064 ; Медицинская иммунология; Том 25, № 5 (2023); 1059-1064 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2817/1737; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11860; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11861; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11862; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11863; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11864; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11865; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11866; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/11867; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/12248; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/12249; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2817/12275; Bonaventura A., Vecchie A., Dagna L., Martinod K., Dixon D.L., van Tassell B.W, Dentali E, Montecucco F., Massberg S., Levi M., Abbate A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol., 2021, Vol. 21, no. 5, pp. 319-329.; Dhillon P.K., Khalafallah A.A., Adams M.J. Changes to fibrinolysis in patients with systemic lupus erythematosus are associated with endothelial cell damage and inflammation, but not antiphospholipid antibodies. Blood Coagul. Fibrinolysis, 2016, Vol. 27, no. 8, pp. 870-875.; Henry B.M., Vikse J., Benoit S., Favaloro E.J., Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta, 2020, Vol. 507, pp. 167-173.; Jackson S.P., Darbousset R., Schoenwaelder S.M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood, 2019, Vol. 133, no. 9, pp. 906-918.; Knight J.S., Kanthi Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin. Immunopathol., 2022, Vol. 44, no. 3, pp. 347-362.; Liang Y., Xu W.D., Peng H., Pan H.F., Ye D.Q. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur. J. Immunol., 2014, Vol. 4, no. 5, pp. 1265-1275.; Morrow G.B., Whyte C.S., Mutch N.J. A serpin with a finger in many PAIs: PAI-1's central function in thromboinflammation and cardiovascular disease. Front. Cardiovasc. Med., 2021, Vol. 8, 653655. doi:10.3389/fcvm.2021.653655.; Nasonov E.L., Beketova T.V., Reshetnyak T.M., Lila A.M., Ananieva L.P., Lisitsyna T.A., Soloviev S.K. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. Rheumatology Science and Practice, 2020, Vol. 58, no. 4, pp. 353-367. (In Russ.); Palankar R., Greinacher A. Challenging the concept of immuno-thrombosis. Blood, 2019, Vol. 133, no. 6, pp. 508-509.; Setiawan B., Budianto W., Sukarnowati T.W., Rizky D., Pangarsa E.A., Santosa D., Setiabudy R.D., Suharti C. Correlation of inflammation and coagulation markers with the incidence of deep vein thrombosis in cancer patients with high risk of thrombosis. Int. J. Gen. Med., 2022, Vol. 15, pp. 6215-6226.; Stark K., Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol., 2021, Vol. 18, no. 9, pp. 666-682.; Zhang P., Liu J., Tan B., Zhu F., Fang L. Hypercoagulable state is associated with NF-kappa B activation and increased inflammatory factors in patients with rheumatoid arthritis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2016, Vol. 32, no. 3, pp. 364-368. (In Chinese); Zheng C.Z., Yan W.W., Luo Y.L., Wang T.L., Shu Y.B. Value of sTNF-R1 and linc0597 as indicators for disease activity and diagnosis of lupus nephritis. Eur. Rev. Med. Pharmacol. Sci., 2020, Vol. 24, no. 10, pp. 5582-5591.; Zotova N., Zhuravleva Yu., Chereshnev V., Gusev E. Acute and chronic systemic inflammation: features and differences in the pathogenesis, and integral criteria for verification and differentiation. Int. J. Mol. Sci., 2023, Vol. 24, no. 2, 1144. doi:10.3390/ijms24021144.; https://www.mimmun.ru/mimmun/article/view/2817

  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: The study was performed with the support of the Mechnikov's North-Western State Medical University., Работа выполнена в рамках Научно-исследовательской работы «Кардиоваскулярные осложнения при COVID-19» (номер государственного учета НИОКТР ААА-А20-120120290057-3) при поддержке ФГБОУ ВО СЗГМУ им. И.И. Мечникова.

    Πηγή: Rational Pharmacotherapy in Cardiology; Vol 18, No 4 (2022); 376-384 ; Рациональная Фармакотерапия в Кардиологии; Vol 18, No 4 (2022); 376-384 ; 2225-3653 ; 1819-6446

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2786/2334; https://www.rpcardio.com/jour/article/view/2786/2351; Malas M, Naazie I, Elsayed N, et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. E clinical medicine. 2020;29:100639. DOI:10.1016/j.eclinm.2020.100639.; Jimenez D, Garda-Sanchez A, Rali Pet al. Incidence of VTE and Bleeding Among Hospitalized Patients With Coronavirus Disease 2019. Chest. 2021;159(3):1182-96. DOI:10.1016/j.chest.2020.11.005.; Suh Y, Hong H, Ohana M, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology. 2021;298(2):E70-E80. DOI:10.1148/radiol.2020203557.; Moores L. Don't Do Anything! Just Stand There! Chest. 2021;159(3):908-9. DOI:10.1016/j.chest.2020.12.022.; Berger J, Kunichoff D, Adhikari S, et al. Prevalence and Outcomes of D-Dimer Elevation in Hospitalized Patients With COVID-19. Arteriosclerosis, Thrombosis, And Vascular Biology. 2020;40(10):2539-47. DOI:10.1161/atvbaha.120.314872.; Tsaplin S, Schastlivtsev I, Zhuravlev S, et al. The original and modified Caprini score equally predicts venous thromboembolism in COVID-19 patients. J Vasc Surg Venous Lymphat Disord. 2021;9(6):1371-81.e4. DOI:10.1016/j.jvsv.2021.02.018.; Lobastov K, Schastlivtsev I, Tsaplin S, et al. Prediction of Symptomatic Venous Thromboembolism in Covid-19 Patients: A Retrospective Comparison of Caprini, Padua, and IMPROVE-DD Scores. J Vasc Surg Venous Lymphat Disord. 2022;10(2):572-3. DOI:10.1016/j.jvsv.2021.12.062.; Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;1 8(5):1 023-6. DOI:10.1111/jth.14810.; Barnes G, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020;50(1):72-81. DOI:10.1007/s11239-020-02138-z.; Лобастов К.В., Степанов Е.А., Цаплин С.Н., и др. Эффективность и безопасность повышенных доз антикоагулянтов у пациентов с COVID-19: результаты систематического обзора литературы и метаанализа. Хирург. 2022;(1-2):50-65.; Lopes RD, de Barros e Silva PGM, Furtado RHM, et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397(10291):2253-63. DOI:10.1016/S0140-6736(21)01203-4.; Sadeghipour P, Talasaz A, Rashidi F, et al. Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality Among Patients With COVID-19 Admitted to the Intensive Care Unit. JAMA. 2021;325(16):1620-30. DOI:10.1001/jama.2021.4152.; Lawler PR, Goligher EC, Berger JS, et al. The ATTACC, ACTIV-4a, and REMAP-CAP Investigators. Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19. N Engl J Med. 2021;385(9):790-802. DOI:10.1056/nejmoa2105911.; Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: The findings from seven autopsies. Thromb Upd. 2020;(1):100017. DOI:10.1016/j.tru.2020.100017.; Lax S, Skok K, Zechner P, et al. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome. Ann Intern Med. 2020;173(5):350-61. DOI:10.7326/m20-2566.; Levi M, Toh C, Thachil J, Watson H. Guidelines for the diagnosis and management of disseminated intravascular coagulation. Br J Haematol. 2009;145(1):24-33. DOI:10.1111/j.1365-2141.2009.07600.x.; Lendrum A, Fraser D, Slidders W, Henderson R. Studies on the character and staining of fibrin. J Clin Pathol. 1962;15(5):401-13. DOI:10.1136/jcp.15.5.401.; Singhal S, Henderson R, Horsfield K, et al. Morphometry of the Human Pulmonary Arterial Tree. Circ Res. 1973;33(2):190-7. DOI:10.1161/01.res.33.2.190.; Lee D. Alternatives to P value: confidence interval and effect size. Korean J Anesthesiol. 2016;69(6):555-62. DOI:10.4097/kjae.2016.69.6.555.; Schulman S, Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692-4. DOI:10.1111/j.1538-7836.2005.01204.x.; Elieh Ali Komi D, Rahimi Y, Asghari R, et al. Investigation of the Molecular Mechanism of Coagulopathy in Severe and Critical Patients With COVID-19. Fron Immunol. 2021;12:762782. DOI:10.3389/fim-mu.2021.762782.; Varikasuvu S, Varshney S, Dutt N, et al. D-dimer, disease severity, and deaths (3D-study) in patients with COVID-19: a systematic review and meta-analysis of 100 studies. Sci Rep. 2021;11(1):21888. DOI:10.1038/s41598-021-01462-5.; Blasi A, Meijenfeldt F, Adelmeijer J, et al. In vitro hypercoagulability and ongoing in vivo activation of coagulation and fibrinolysis in COVID-19 patients on anticoagulation. J Thromb Haemost. 2020;18(10):2646-53. DOI:10.1111/jth.15043.; Martm-Rojas R, Perez-Rus G, Delgado-Pinos V, et al. COVID-19 coagulopathy: An in-depth analysis of the coagulation system. Eur J Haematol. 2020;105(6):741-50. DOI:10.1111/ejh.13501.; Milross L, Majo J, Cooper N et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95-106. DOI:10.1016/s2213-2600(21)00408-2.; Fang X, Wang Y, Xu J, et al. Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Front Immunol. 2021;12:651545. DOI:10.3389/fimmu.2021.651545.; Nicolai L, Leunig A, Brambs S, et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation. 2020;142(12):1176-89. DOI:10.1161/circulationaha.120.048488.; Middleton E, He X, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169-1179. DOI:10.1182/blood.2020007008.; Menezes R, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med. 2022;54:102001. DOI:10.1016/j.legalmed.2021.102001.; Copin M, Parmentier E, Duburcq T, et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 2020;46(6):1124-6. DOI:10.1007/s00134-020-06057-8.; Radermecker C, Detrembleur N, Guiot J, et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J Exp Med. 2020;217(12):e20201012. DOI:10.1084/jem.20201012.; Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116-20. DOI:10.1515/cclm-2020-0188.; Borczuk A, Salvatore S, Seshan S, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol. 2020;33(11):2156-2168. DOI:10.1038/s41379-020-00661-1.; Romanova E, Vasilyev V, Startseva G, et al. Cause of death based on systematic post-mortem studies in patients with positive SARS-CoV-2 tissue PCR during the COVID-19 pandemic. J Intern Med. 2021;290(3):655-65. DOI:10.1111/joim.13300.; Desborough M, Doyle A, Griffiths A, et al. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb Res. 2020;193:1-4. DOI:10.1016/j.thromres.2020.05.049.; Yurdaisik I, Demiroz A, Oz A, et al. Postmortem Biopsies of the Lung, Heart, Liver, and Spleen of COVID-19 Patients. Cureus. 2021;13(12):e20734. DOI:10.7759/cureus.20734.; Robertson H. Dead space: the physiology of wasted ventilation. Eur Respir J. 2014:45(6):1704-16. DOI:10.1183/09031936.00137614.; Porembskaya O, Toropova Y, Tomson V, et al. Pulmonary Artery Thrombosis: A Diagnosis That Strives for Its Independence. Int J Mol Sci. 2020;21(14):5086. DOI:10.3390/ijms21145086.; Millar F, Summers C, Griffiths M, et al. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax. 2016;71(5):462-73. DOI:10.1136/tho-raxjnl-2015-207461.; https://www.rpcardio.com/jour/article/view/2786

  17. 17
    Academic Journal

    Συνεισφορές: Исследование выполнено при финансовой поддержке РФФИ (проект № 19-34-90050).

    Πηγή: Bulletin of Siberian Medicine; Том 20, № 4 (2021); 25-31 ; Бюллетень сибирской медицины; Том 20, № 4 (2021); 25-31 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4576/3098; Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004; 303 (5663): 1532–1535. DOI:10.1126/science.1092385.; Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D. Jr., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA traps promote thrombosis. PNAS. 2010; 107 (36): 15880–15888. DOI:10.1073/pnas.1005743107.; Martinod K., Demers M., Fuchs T.A., Wong S.L., Brill A., Gallant M., Hu J., Wang Y., Wagner D.D. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. PNAS. 2013; 110 (21): 8674– 8679. DOI:10.1073/pnas.1301059110.; Czaikoski P.G., Mota J. M.S.C., Nascimento D.C., Sônego F., Castanheira F.V.e S., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O., Pazin-Filho A., Figueiredo F., Alves-Filho J.C., Cunha F.Q. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One. 2016; 11 (2): e148142. DOI:10.1371/journal.pone.0148142.; Budnik I., Brill A. Immune factors in deep vein thrombosis initiation. Trends in Immunology. 2018; 39 (8): 610–623. DOI:10.1016/j.it.2018.04.010.; Grover S.P., Mackman N. Neutrophils, NETs, and immunothrombosis. Blood. 2018; 132 (13): 1360–1361. DOI:10.1182/blood-2018-08-868067.; Iba T., Hashiguchi N., Nagaoka I., Tabe Y., Murai M. Neutrophil cell death in response to infection and its relation to coagulation. Journal of Intensive Care. 2013; 1 (1): 13. DOI:10.1186/2052-0492-1-13. 8. Федоткина Ю.А., Панченко Е.П. Тромбозы в онкологии. Часть 1. Атеротромбоз. 2017; 1: 11–15. DOI:10.21518/2307-1109-2017-1-11-15.; Falanga A., Schieppati F., Russo L. Pathophysiology 1. Mechanisms of thrombosis in cancer patients. In: Soff G. (eds) Thrombosis and hemostasis in cancer. Cancer Treatment and Research. 2019; 179: 11–36. DOI:10.1007/978-3-030-20315-3_2.; Chennakrishnaiah S., Meehan B., D’Ast E., Montermini L., Lee T.H., Karatzas N., Buchanan M., Tawil N., Choi D., Divangahi M., Basik M., Rak J. Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumor‐ derived extracellular vesicles. J. Thromb. Haemost. 2018; 16 (9): 1800–1813. DOI:10.1111/jth.14222.; Таширева Л.А., Перельмутер В.М., Манских В.Н., Денисов Е.В. Савельева О.Е., Кайгородова Е.В., Завьялова М.В. Типы иммуновоспалительных реакций как алгоритмы взаимодействия клеток в условиях репаративной регенерации и опухолевого роста. Биохимия. 2017; 82 (5): 732–748.; Demers M., Wong S.L., Martinod K., Gallant M., Cabral E., Wang Y., Wagner D.D. Priming of neutrophils toward netosis promotes tumor growth. Oncoimmunology. 2016; 5 (5): e1134073. DOI:10.1080/2162402X.2015.1134073.; Shaul M.E., Fridlender Z.G. Cancer-related circulating and tumor-associated neutrophils –subtypes, sources and function. FEBS J. 2018; 285 (23): 4316–4342. DOI:10.1111/ febs.14524.; Leal A.C., Mizurini D.M., Gomes T., Rochael N.C., Saraiva E.M., Dias M.S., Werneck C.C., Sielski M.S., Vicente C.P., Monteiro R.Q. Tumor-derived exosomes induce the formation of neutrophil traps: Implications for the establishment of cancer-associated thrombosis. Sci. Rep. 2017; 7 (1): 6438. DOI:10.1038/s41598-017-06893-7.; Thiam H.R., Wong S.L., Wagner D.D., Waterman C.M. Cellular Mechanisms of NETosis Annu. Rev. Cell Dev. Biol. 2020; 36: 191–218. DOI:10.1146/annurev-cellbio-020520-111016.; Паршина А.А., Цыбиков Н.Н. Влияние нейтрофильных внеклеточных ловушек на коагуляционный гемостаз и фибринолиз у пациентов со злокачественными новообразованиями толстого кишечника. Забайкальский медицинский вестник. 2019; 4: 90–96.; Damiana T., Damgaard D., Sidelmann J.J., Nielsen C.H., de Maat M.P., Münster A.M.B., Palarasah Y. Citrullination of fibrinogen by peptidylarginine deiminase 2 impairs fibrin clot structure. Clinica Chimica Acta. 2020; 501: 6–11. DOI:10.1016/j.cca.2019.10.033.; Zhou Y., Chen B., Mittereder N., Chaerkady R., Strain M., An. L.-L., Rahman S., Ma W., Low C.P., Chan D., Neal F., Bingham III C.O., Sampson K., Darrah E., Siegel M.R., Hasni S., Andrade F., Vousden K.A., Mustelin T., Sims G.P. Spontaneous secretion of the citrullination enzyme PAD2 and cell surface exposure of PAD4 by neutrophils. Frontiers in Immunology. 2017; 8: 1200. DOI:10.3389/fimmu.2017.01200.; https://bulletin.tomsk.ru/jour/article/view/4576

  18. 18
    Academic Journal

    Πηγή: Eurasian Journal of Academic Research; Vol. 2 No. 2 (2022): Eurasian Journal of Academic Research; 759-762 ; Евразийский журнал академических исследований; Том 2 № 2 (2022): Eurasian Journal of Academic Research; 759-762 ; Yevrosiyo ilmiy tadqiqotlar jurnali; Jild 2 Nomeri 2 (2022): Eurasian Journal of Academic Research; 759-762 ; 2181-2020

    Περιγραφή αρχείου: application/pdf

  19. 19
  20. 20