Showing 1 - 20 results of 1,043 for search '"ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ"', query time: 0.92s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: 1

    Source: Almanac of Clinical Medicine; Vol 53, No 2 (2025); 83-94 ; Альманах клинической медицины; Vol 53, No 2 (2025); 83-94 ; 2587-9294 ; 2072-0505

    File Description: application/pdf

  5. 5
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 19, No 2 (2025); 158-167 ; Акушерство, Гинекология и Репродукция; Vol 19, No 2 (2025); 158-167 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2425/1317; Власова Т.И., Петрищев Н.Н., Власов Т.Д. Дисфункция эндотелия как типовое патологическое состояние. Регионарное кровообращение и микроциркуляция. 2022;21(2):4–15. https://doi.org/10.24884/1682-6655-2022-21-2-4-15.; Opichka M.A., Rappelt M.W., Gutterman D.D. et al. Vascular dysfunction in preeclampsia. Cells. 2021;10(11):3055. https://doi.org/10.3390/cells10113055.; Kornacki J., Gutaj P., Kalantarova A. et al. Endothelial dysfunction in pregnancy complications. Biomedicines. 2021;9(12):1756. https://doi.org/10.3390/biomedicines9121756.; Parks W.T., Catov J.M. The placenta as a window to maternal vascular health. Obstet Gynecol Clin North Am. 2020;47(1):17–28. https://doi.org/10.1016/j.ogc.2019.10.001.; Erez O., Romero R., Chaemsaithong P. et al. Preeclampsia and eclampsia: the conceptual evolution of a syndrome. Am J Obstet Gynecol. 2022;226(2S):S786–S803. https://doi.org/10.1016/j.ajog.2021.12.001.; Choi E.-S., Jung Y.M., Kim D. et al. Long-term cardiovascular outcome in women with preeclampsia in Korea: a large population-based cohort study and meta-analysis. Sci Rep. 2024;14(1):7480. https://doi.org/10.1038/s41598-024-57858-6.; Wieteska M., Maj D., Gorecka A. et al. Preeclampsia – long-term effects on mother and child. J Educ Health Sport. 2021;11(8):261–7. https://doi.org/10.12775/JEHS.2021.11.08.027.; Celewicz A., Celewicz M., Michalczyk M. et al. SARS CoV-2 infection as a risk factor of preeclampsia and pre-term birth. An interplay between viral infection, pregnancy-specific immune shift and endothelial dysfunction may lead to negative pregnancy outcomes. Ann Med. 2023;55(1):2197289. https://doi.org/10.1080/07853890.2023.2197289.; Пожилова Е.В., Новиков В.Е. Синтаза оксида азота и эндогенный оксид азота в физиологии и патологии клетки. Вестник Смоленской государственной медицинской академии. 2015;14(4):35–41.; Степанова Т.В., Иванов А.Н., Терешкина Н.Е. и др. Маркеры эндотелиальной дисфункции: патогенетическая роль и диагностическое значение (обзор литературы). Клиническая лабораторная диагностика. 2019;64(1):34–41. https://doi.org/10.18821/0869-2084-2019-64-1-34-41.; Burton G.J., Redman C.W., Roberts J.M., Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;15:1238. https://doi.org/10.1136/bmj.l2381.; Shi J., Liu S., Guo Y. et al. Association between eNOS rs1799983 polymorphism and hypertension: a meta-analysis involving 14,185 cases and 13,407 controls. BMC Cardiovasc Disord. 2021;21(1):385. https://doi.org/10.1186/s12872-021-02192-2.; Tualeka A.R., Jalaludin J., Gasana J. et al. Association between eNOS rs1799983 (894G>T) polymorphism with cancer and stroke risk: a meta-analysis. F1000 Research. 2024;12:1467. https://doi.org/10.12688/f1000research.134992.3.; Boronat M., Tugores A., Saavedra P. et al. NOS3 rs1799983 and rs2070744 polymorphisms and their association with advanced chronic kidney disease and coronary heart disease in Canarian population with type 2 diabetes. Acta Endocrinol (Buchar). 2021;17(4):440–8. https://doi.org/10.4183/aeb.2021.440.; Istikrar M.H., Al-Khafaji A.S., Fadhel M L. et al. Involvement of total antioxidant activity and eNOS gene rs1799983/rs2070744 polymorphisms in breast carcinogenesis. Iraqi Journal of Science. 2024;65(3):1297–309.; Qu H., Khalil R.A. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol. 2020;319(3):661–81. https://doi.org/10.1152/ajpheart.00202.2020.; Sandvik M.K., Leirgul E., Nygard O. et al. Preeclampsia in healthy women and endothelial dysfunction 10 years later. Am J Obstet Gynecol. 2013;209(6):569.e1–569.e10. https://doi.org/10.1016/j.ajog.2013.07.024.; Lui K.O., Ma Zh., Dimmeler S. SARS-CoV-2 induced vascular endothelial dysfunction: direct or indirect effects? Cardiovasc Res. 2024;120(1):34–43. https://doi.org/10.1093/cvr/cvad191.; Дунай В.А., Глинская Н.А., Жук О.Н. и др. Полиморфизм гена NOS3 эндотелиальной (еNOS) синтазы оксида азота как предиктор формирования сосудистых патологий. Вестник Полесского государственного университета. Серия природоведческих наук. 2024;(1):56–65.; Abbasi H., Dastgheib S.A., Hadadan A. et al. Association of endothelial nitric oxide synthase 894G>T polymorphism with preeclampsia risk: a systematic review and meta-analysis based on 35 studies. Fetal Pediatr Pathol. 2021;40(5):455–70. https://doi.org/10.1080/15513815.2019.1710880.; Tesfa E., Munshea A., Nibret E., Gizaw S.T. Association of endothelial nitric oxide synthase gene variants in pre-eclampsia: an updated systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2023;36(2):2290918. https://doi.org/10.1080/14767058.2023.2290918.; Рокотянская Е.А., Панова И.А., Малышкина А.И. и др. Технологии прогнозирования преэклампсии. Современные технологии медицины. 2021;12(5):78–84. https://doi.org/10.17691/stm2020.12.5.09.; Yang M.-L., Chang F.-M., Wu M.-H. et al. Association studies of vasoactive genes and preeclampsia in Taiwan. Placenta. 2025;161:14–22. https://doi.org/10.1016/j.placenta.2025.01.005.; Shaheen G., Jahan S., Bibi N. et al. Association of endothelial nitric oxide synthase gene variants with preeclampsia. Reprod Health. 2021;18(1):163. https://doi.org/10.1186/s12978-021-01213-9.; Karimian M., Yaqubi S., Karimian Z. The eNOS-G894T genetic polymorphism and risk of preeclampsia: a case-control study, an updated meta-analysis, and a bioinformatic assay. Cytokine. 2023;169:156283. https://doi.org/10.1016/j.cyto.2023.156283.; ?enkal N., Oyac? Y., Cebeci T. et al. Associating eNOS gene variants with COVID-19 susceptibility in the Turkish population. ?st T?p Fak Derg. 2023;86(1):1–6. https://doi:10.26650/IUITFD.1211888.; SeyedAlinaghi S., Mehrtak M., MohsseniPour M. et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Eur J Med Res. 2021;26(1):46. https://doi.org/10.1186/s40001-021-00516-8.; https://www.gynecology.su/jour/article/view/2425

  6. 6
    Academic Journal

    Source: CHILDREN INFECTIONS; Том 24, № 1 (2025); 51-55 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 24, № 1 (2025); 51-55 ; 2618-8139 ; 2072-8107

    File Description: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/1035/706; Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, Himmelfarb J, Collins AJ. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006 Apr; 17(4):1135—42. doi:10.1681/ASN.2005060668.; Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006 Jul; 2(7):364—77. doi:10.1038/ncpneph0218.; Zeng X, McMahon GM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014; 9(1):12—20. doi:10.2215/CJN.02730313.; Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter Suppl. 2012; 2(1):1—138. doi:10.1038/kisup.2012.1.; Rahman M, Shad F, Smith MC. Acute kidney injury: a guide to diagnosis and management. Am Fam Physician. 2012 Oct 1; 86(7):631—9.; Kaufman J, Dhakal M, Patel B, Hamburger R. Community-acquired acute renal failure. Am J Kidney Dis. 1991; 17(2):191—198. doi:10.1016/s0272-6386(12)81128-0.; Мазанкова Л.Н., Лузан П.Ю. Ранняя диагностика и прогнозирование острого повреждения почек на фоне вирусных диарей различной этиологии у детей (литературный обзор). Детские инфекции. 2023; 22(3):55—61. doi.org/10.22627/2072-8107-2023-22-3-55-61; Савенкова Н.Д., Панков Е.А. Нерешенные проблемы острого повреждения почек у детей. Нефрология. 2015;19(3):9—19.; Рей С.И., Бердников Г.А., Васина Н.В. Острое почечное повреждение 2020: эпидемиология, критерии диагностики, показания, сроки начала и модальность заместительной почечной терапии. Анестезиология и реаниматология. 2020; (5):63—69. DOI:10.17116/anaesthesiology202005163; Клинические рекомендации. Острое повреждение почек (ОПП). Год утверждения: 2020.; Lu JC, Coca SG, Patel UD, Cantley L, Parikh CR; Translational Research Investigating Biomarkers and Endpoints for Acute Kidney Injury (TRIBE-AKI) Consortium. Searching for genes that matter in acute kidney injury: a systematic review. Clin J Am Soc Nephrol. 2009 Jun; 4(6):1020—31. doi:10.2215/CJN.05411008.; Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, Body SC, Fox AA, Waikar SS, Collard CD, Thiessen-Philbrook H, Ikizler TA, Ware LB, Edelstein CL, Garg AX, Choi M, Schaub JA, Zhao H, Lifton RP, Parikh CR; TRIBE-AKI Consortium. A Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms for Acute Kidney Injury. Am J Respir Crit Care Med. 2017 Feb 15; 195(4):482—490. doi:10.1164/rccm.201603-0518OC.; Нартикоева М.И. Роль полиморфизма генов в лечении заболеваний сердечно-сосудистой системы. Современные проблемы науки и образования. 2020; (6). doi:10.17513/spno.30436; Калесник М.В. Генетические предикторы развития острого почечного повреждения. Журнал Гродненского государственного медицинского университета. 2022; 20(5):479—484. doi:10.25298/2221-8785-2022-20-5-479-484.; Zuk A, Bonventre JV. Acute Kidney Injury. Annu Rev Med. 2016; 67:293— 307. doi:10.1146/annurev-med-050214-013407; Андрианова Н.В., Зоров Д.Б., Плотников Е.Ю. Воспаление и окислительный стресс как мишени для терапии ишемического повреждения почек. Биохимия. 2020; 85(12):1873—1886. DOI 10.31857/S0320972520120118.; Lameire N, Van Biesen W, Vanholder R. Acute renal failure. Lancet. 2005 Jan 29—Feb 4; 365(9457):417—30. doi:10.1016/S0140-6736(05)17831-3.; Larach DB, Engoren MC, Schmidt EM, Heung M. Genetic variants and acute kidney injury: A review of the literature. J Crit Care. 2018 Apr; 44:203—211. doi:10.1016/j.jcrc.2017.11.019.; Stafford-Smith M, Podgoreanu M, Swaminathan M, Phillips-Bute B, Mathew JP, Hauser EH, et al. Association of genetic polymorphisms with risk of renal injury after coronary bypass graft surgery. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2005; 45(3):519—30. doi:10.1053/j.ajkd.2004.11.021.; Чугунова О.Л. [и др.]. Острое повреждение почек у новорожденных различного гестационного возраста: этиология, патогенез, особенности клинико-лабораторной диагностики. Практика педиатра. 2024; (2):42—49.; Dalboni MA, Quinto BM, Grabulosa CC, Narciso R, Monte JC, Durao M, Jr., et al. Tumour necrosis factor-alpha plus interleukin-10 low producer phenotype predicts acute kidney injury and death in intensive care unit patients. Clinical and Еxperimental Immunology. 2013; 173(2):242—9. doi:10.1111/cei.12100.; Susantitaphong P, Perianayagam MC, Tighiouart H, Liangos O, Bonventre JV, Jaber BL. Tumor necrosis factor alpha promoter polymorphism and severity of acute kidney injury. Nephron. 2013; 123(1—2):67—73. doi:10.1159/000351684; Vilander LM, Kaunisto MA, Pettilä V. Genetic predisposition to acute kidney injury--a systematic review. BMC Nephrol. 2015 Dec 2; 16:197. doi:10.1186/s12882-015-0190-6.; Cardinal-Fernandez P, Ferruelo A, El-Assar M, Santiago C, Gomez-Gallego F, Martin-Pellicer A, et al. Genetic predisposition to acute kidney injury induced by severe sepsis. Journal of Сritical Сare. 2013; 28(4):365—70. doi:10.1016/j.jcrc.2012.11.010.; Treszl A, Toth-Heyn P, Kocsis I, Nobilis A, Schuler A, Tulassay T, et al. Interleukin genetic variants and the risk of renal failure in infants with infection. Pediatric Nephrology (Berlin, Germany). 2002; 17(9):713—7. doi:10.1007/s00467-002-0935-x.; Jaber BL, Rao M, Guo D, Balakrishnan VS, Perianayagam MC, Freeman RB, et al. Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine. 2004; 25(5):212—9. doi:10.1016/j.cyto.2003.11.004.; Boehm J, Eichhorn S, Kornek M, Hauner K, Prinzing A, Grammer J, et al. Apolipoprotein E genotype, TNF-alpha 308G/A and risk for cardiac surgery associated-acute kidney injury in Caucasians. Renal Failure. 2014; 36(2):237—43. doi:10.3109/0886022X.2013.835267.; Gaudino M, Di Castelnuovo A, Zamparelli R, Andreotti F, Burzotta F, Iacoviello L, et al. Genetic control of postoperative systemic inflammatory reaction and pulmonary and renal complications after coronary artery surgery. The Journal of Тhoracic and Сardiovascular Surgery. 2003; 126(4):1107—12. doi:10.1016/s0022-5223(03)00396-9.; Rivera-Chavez FA, Peters-Hybki DL, Barber RC, O'Keefe GE. Interleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock. 2003; 20(3):218—23. doi:10.1097/01.shk.0000079425.52617.db.; McBride WT, Prasad PS, Armstrong M, Patterson C, Gilliland H, Drain A, et al. Cytokine phenotype, genotype, and renal outcomes at cardiac surgery. Cytokine. 2013; 61(1):275—84. doi:10.1016/j.cyto.2012.10.008.; Grabulosa CC, Batista MC, Cendoroglo M, Quinto BM, Narciso R, Monte JC, et al. Frequency of TGF- beta and IFN- gamma genotype as risk factors for acute kidney injury and death in intensive care unit patients. BioMed Research International. 2014; 2014:904730. doi:10.1155/2014/904730.; Veldman BA, Spiering W, Doevendans PA, Vervoort G, Kroon AA, de Leeuw PW, et al. The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. Journal of Нypertension. 2002; 20(10):2023—7. doi:10.1097/00004872-200210000-00022.; Popov AF, Hinz J, Schulz EG, Schmitto JD, Wiese CH, Quintel M, Seipelt R, Schoendube FA. The eNOS 786C/T polymorphism in cardiac surgical patients with cardiopulmonary bypass is associated with renal dysfunction. Eur J Cardiothorac Surg. 2009 Oct; 36(4):651—6. doi:10.1016/j.ejcts.2009.04.049.; Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990; 86(4):1343—6. doi:10.1172/JCI114844.; Nobilis A, Kocsis I, Toth-Heyn P, Treszl A, Schuler A, Tulassay T, et al. Variance of ACE and AT1 receptor gene does not influence the risk of neonatal acute renal failure. Pediatric Nephrology (Berlin, Germany). 2001; 16(12):1063—6. doi:10.1007/s004670100028.; Pedroso JA, Paskulin Dd, Dias FS, de França E, Alho CS. Temporal trends in acute renal dysfunction among critically ill patients according to I/D and — 262A > T ACE polymorphisms. J Bras Nefrol. 2010 Apr-Jun; 32(2):182—94. Doi:10.1590/S0101-28002010000200007; du Cheyron D, Fradin S, Ramakers M, Terzi N, Guillotin D, Bouchet B, et al. Angiotensin converting enzyme insertion/deletion genetic polymorphism: its impact on renal function in critically ill patients. Critical care Мedicine. 2008; 36(12):3178—83. doi:10.1097/CCM.0b013e318186a299; Isbir SC, Tekeli A, Ergen A, Yilmaz H, Ak K, Civelek A, et al. Genetic polymorphisms contribute to acute kidney injury after coronary artery bypass grafting. The Нeart Surgery Forum. 2007; 10(6):E439—44. doi:10.1532/HSF98.20071117.; Frank AJ, Sheu CC, Zhao Y, Chen F, Su L, Gong MN, Bajwa E, Thompson BT, Christiani DC. BCL2 genetic variants are associated with acute kidney injury in septic shock. Crit Care Med. 2012 Jul; 40(7):2116—23. doi:10.1097/CCM.0b013e3182514bca.; Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of Тoxicology 2015; 89(3):289—317. doi:10.1007/s00204-014-1448-7.; Zhou S, Sun Y, Zhuang Y, Zhao W, Chen Y, Jiang B, et al. Effects of kallistatin on oxidative stress and inflammation on renal ischemia-reperfusion injury in mice. Curr Vasc Pharmacol. 2015; 13(2):265—73. doi:10.2174/1570161113666150204142716.; El-Hefnawy SM, Kasemy ZA, Eid HA, Elmadbouh I, Mostafa RG, Omar TA, Kasem HE, Ghonaim EM, Ghonaim MM, Saleh AA. Potential impact of serpin peptidase inhibitor clade (A) member 4 SERPINA4 (rs2093266) and SERPINA5 (rs1955656) genetic variants on COVID-19 induced acute kidney injury. Human Gene (Amsterdam, Netherlands). 2022 May; 32:101023. doi:10.1016/j.mgene.2022.101023.; Vilander LM, Kaunisto MA, Vaara ST, Pettilä V; FINNAKI study group. Genetic variants in SERPINA4 and SERPINA5, but not BCL2 and SIK3 are associated with acute kidney injury in critically ill patients with septic shock. Crit Care. 2017 Mar 8; 21(1):47. doi:10.1186/s13054-017-1631-3.; Safdar M, Khan MS, Karim AY, Omar SA, Smail SW, Saeed M, Zaheer S, Ali M, Ahmad B, Tasleem M, Junejo Y. SNPs at 3'UTR of APOL1 and miR-6741-3p target sites associated with kidney diseases more susceptible to SARSCOV-2 infection: in silco and in vitro studies. Mamm Genome. 2021 Oct; 32(5):389—400. doi:10.1007/s00335-021-09880-6.; https://detinf.elpub.ru/jour/article/view/1035

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: The study was conducted in the framework of the Order of the Government of the Russian Federation dated 02 April 2022 No. 735‐р., Исследование проведено в рамках реализации распоряжения Правительства Российской Федерации от 02.04.2022 № 735‐р.

    Source: South of Russia: ecology, development; Том 19, № 1 (2024); 47-59 ; Юг России: экология, развитие; Том 19, № 1 (2024); 47-59 ; 2413-0958 ; 1992-1098

    File Description: application/pdf

    Relation: https://ecodag.elpub.ru/ugro/article/view/3063/1400; Bertino G., et al. Chronic hepatitis C: This and the new era of treatment // World journal of hepatology. 2016. V. 8. N 2. P. 92. DOI:10.4254/wjh.v8.i2.92; Dubuisson J. Hepatitis C virus proteins // World journal of gastroenterology: WJG. 2007. V. 13. N 17. P. 2406. DOI:10.3748/wjg.v13.i17.2406; Schulze zur Wiesch J., et al. The proteins of the Hepatitis C virus: Their features and interactions with intracellular protein phosphorylation // Archives of virology. 2003. V. 148. P. 1247–1267. DOI:10.1007/s00705‐003‐0115‐8; Simmonds P. Genetic diversity and evolution of hepatitis C virus–15 years on // Journal of General Virology. 2004. V. 85. N 11. P. 3173–3188. DOI:10.1099/vir.0.80401‐0; Correction Naghavi M., et al. Global, regional, and national age‐sex specific all‐cause and cause‐specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 // The Lancet. 2015. V. 38. N 9963. P. 117–171. DOI:10.1016/S0140‐6736(14)61682‐2; Thursz M., Fontanet A. HCV transmission in industrialized countries and resource‐constrained areas // Nature reviews Gastroenterology & hepatology. 2014. V. 11. N 1. P. 28–35. DOI:10.1038/nrgastro.2013.179; Pawlotsky J.M., Chevaliez S., McHutchison J.G. The hepatitis C virus life cycle as a target for new antiviral therapies // Gastroenterology. 2007. V. 132. N 5. P. 1979– 1998. DOI:10.1053/j.gastro.2007.03.116; Hassany M., Elsharkawy A. HCV treatment failure in the Era of DAAs // INTECH open science. 2017. P. 117–129. DOI:10.5772/67149; Svarovskaia E.S., et al. Infrequent development of resistance in genotype 1–6 hepatitis C virus–infected subjects treated with sofosbuvir in phase 2 and 3 clinical trials // Clinical Infectious Diseases. 2014. V. 59. N 12 P. 1666–1674. DOI:10.1093/cid/ciu697; Wyles D., et al. Post‐treatment resistance analysis of hepatitis C virus from phase II and III clinical trials of ledipasvir/sofosbuvir // Journal of hepatology. 2017. V. 66. N 4. P. 703–710. DOI:10.1016/j.jhep.2016.11.022; Wyles D.L., Luetkemeyer A.F. Understanding hepatitis C virus drug resistance: clinical implications for current and future regimens // Topics in antiviral medicine. 2017. V. 25. N 3. P. 103. PMID: 28820725; Pawlotsky J.M. NS5A inhibitors in the treatment of hepatitis C // Journal of hepatology. 2013. V. 59. N 2. P. 375–382. DOI:10.1016/j.jhep.2013.03.030; Jimmerson L.C. The clinical pharmacology of ribavirin: intracellular effects on endogenous nucleotides and hemolytic anemia: diss. University of Colorado Denver, Anschutz Medical Campus. 2016.; Hernandez D., et al. Natural prevalence of NS5A polymorphisms in subjects infected with hepatitis C virus genotype 3 and their effects on the antiviral activity of NS5A inhibitors // Journal of Clinical Virology. 2013. V. 57. N 1. P. 13–18. DOI:10.1016/j.jcv.2012.12.020; Krishnan P., et al. Analysis of hepatitis C virus genotype 1b resistance variants in Japanese patients treated with paritaprevir‐ritonavir and ombitasvir // Antimicrobial agents and chemotherapy. 2016. V. 60. N 2. P. 1106–1113. DOI:10.1128/aac.02606‐15; Trickey A., et al. Guidelines for the care and treatment of persons diagnosed with chronic hepatitis C virus infection: web annex 4: modelling analyses // World Health Organization. 2018. N. WHO/CDS/HIV/18.38.; Tamura K., Stecher G., Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 // Molecular biology and evolution. 2021. V. 38. N 7. P. 3022–3027. DOI:10.1093/molbev/msab120; Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets // Bioinformatics. 2014. V. 30. N 22. P. 3276–3278. DOI:10.1093/bioinformatics/btu531; Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization // Briefings in bioinformatics. 2019. V. 20. N 4. P. 1160–1166. DOI:10.1093/bib/bbx108; von Haeseler A., et al. IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies // Molecular Biology and Evolution. 2014. V. 32. Iss. 1. P. 268–274. DOI:10.1093/molbev/msu300; Singer J.B., et al. GLUE: a flexible software system for virus sequence data // BMC bioinformatics. 2018. V. 19. P. 1–18. DOI:10.1186/s12859‐018‐2459‐9; Singer J.B., et al. Interpreting viral deep sequencing data with GLUE // Viruses. 2019. V. 11. N 4. P. 323. DOI:10.3390/v11040323; Кашникова А.Д. и др. Молекулярно‐генетический мониторинг как компонент эпидемиологического надзора за гепатитом С // Здоровье населения и среда обитания. 2022. Т. 30. N 11. С. 76–81. DOI:10.35627/2219‐5238/2022‐30‐11‐76‐81; Кочнева Г.В. и др. О возможности искоренения гепатита C в России // Молекулярная генетика, микробиология и вирусология. 2021. Т. 39. N 1. С. 31–41. DOI:10.17116/molgen20213901131; Базыкина Е.А. и др. Оценка эпидемиологических особенностей ВИЧ‐инфекции и генотипического разнообразия вируса гепатита С у ВИЧ‐инфицированных граждан в субъектах Дальневосточного федерального округа // Эпидемиология и вакцинопрофилактика. 2021. Т. 20. N 5. С. 79–88. DOI:10.31631/2073‐3046‐2021‐20‐579‐88; Котова В.О. и др. Генетическое разнообразие вируса гепатита С среди населения Нанайского района Хабаровского края // Инфекция и иммунитет. 2021. Т. 11. N 1. С. 148–156. DOI:10.15789/2220‐7619‐GDO‐1265; Pawlotsky J.M., et al. EASL recommendations on treatment of hepatitis C 2018 // Journal of hepatology. 2018. V. 69. N 2. P. 461–511. DOI:10.1016/j.jhep.2018.03.026; Lahser F., et al. Interim analysis of a 3‐year follow‐up study of NS5A and NS3 resistance‐associated substitutions after treatment with grazoprevir‐containing regimens in participants with chronic HCV infection // Antiviral therapy. 2018. V. 23. N 7. P. 593–603. DOI:10.3851/IMP3253; Krishnan P., et al. O057: Long‐term follow‐up of treatment‐emergent resistance‐associated variants in NS3, NS5A and NS5B with paritaprevir/r‐, ombitasvir‐and dasabuvir‐based regimens // Journal of hepatology. 2015. V. 62. P. S220. DOI:10.1016/S0168‐8278(15)30071‐4; Wyles D., et al. Long‐term persistence of HCV NS5A resistance‐associated substitutions after treatment with the HCV NS5A inhibitor, ledipasvir, without sofosbuvir // Antiviral therapy. 2018. V. 23. N 3. P. 229–238. DOI:10.3851/IMP3181; Mawatari S., et al. New resistance‐associated substitutions and failure of dual oral therapy with daclatasvir and asunaprevir // Journal of gastroenterology. 2017. V. 52. P. 855–867. DOI:10.1007/s00535‐016‐1303‐0; Lopez Luis B.A., et al. Baseline hepatitis C virus NS5A resistance‐associated polymorphisms in patients with and without human immunodeficiency virus coinfection in Mexico // Microbial Drug Resistance. 2021. V. 27. N 9. P. 1195–1202. DOI:10.1089/mdr.2020.0436; Seronello S., et al. Ethanol and reactive species increase basal sequence heterogeneity of hepatitis C virus and produce variants with reduced susceptibility to antivirals // PLoS One. 2011. V. 6. N 11. Article id: e27436. DOI:10.1371/journal.pone.0027436; Wyles D.L., et al. Daclatasvir plus sofosbuvir for HCV in patients coinfected with HIV‐1 // New England Journal of Medicine. 2015. V. 373. N 8. P. 714–725. DOI:10.1056/NEJMoa1503153; Nelson D.R., et al. All‐oral 12‐week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY‐3 phase III study // Hepatology. 2015. V. 61. N 4. P. 1127–1135. DOI:10.1002/hep.27726; Liu R., et al. Susceptibilities of genotype 1a, 1b, and 3 hepatitis C virus variants to the NS5A inhibitor elbasvir // Antimicrobial agents and chemotherapy. 2015. V. 59. N 11. P. 6922–6929. DOI:10.1128/aac.01390‐15; Poordad F., et al. High antiviral activity of NS 5A inhibitor ABT‐530 with paritaprevir/ritonavir and ribavirin against hepatitis C virus genotype 3 infection // Liver International. 2016. V. 36. N 8. P. 1125–1132. DOI:10.1111/liv.13067; Hezode C., et al. Resistance analysis in patients with genotype 1–6 HCV infection treated with sofosbuvir/velpatasvir in the phase III studies // Journal of hepatology. 2018. V. 68. N 5. P. 895–903. DOI:10.1016/j.jhep.2017.11.032; Cabral B.C.A., et al. Frequency distribution of HCV resistance‐associated variants in infected patients treated with direct‐acting antivirals // International Journal of Infectious Diseases. 2022. V. 115. P. 171–177. DOI:10.1016/j.ijid.2021.12.320; Zeuzem S., et al. Daclatasvir plus simeprevir with or without ribavirin for the treatment of chronic hepatitis C virus genotype 1 infection // Journal of hepatology. 2016. V. 64. N 2. P. 292–300. DOI:10.1016/j.jhep.2015.09.024; Curry M.P., et al. Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis // New England Journal of Medicine. 2015. V. 373. N 27. P. 2618–2628. DOI:10.1056/NEJMoa1512614; Gottwein J.M., et al. Efficacy of NS5A inhibitors against hepatitis C virus genotypes 1–7 and escape variants // Gastroenterology. 2018. V. 154. N 5. P. 1435–1448. DOI:10.1053/j.gastro.2017.12.015; Krishnan P., et al. In vitro and in vivo antiviral activity and resistance profile of ombitasvir, an inhibitor of hepatitis C virus NS5A // Antimicrobial agents and chemotherapy. 2015. V. 59. N 2. P. 979–987. DOI:10.1128/aac.04226‐14; Nakamoto S., et al. Hepatitis C virus NS5A inhibitors and drug resistance mutations // World journal of gastroenterology: WJG. 2014. V. 20. N 11. P. 2902. DOI:10.3748/wjg.v20.i11.2902; Uchida Y., et al. Development of rare resistance‐associated variants that are extremely tolerant against NS5A inhibitors during daclatasvir/asunaprevir therapy by a two‐hit mechanism // Hepatology Research. 2016. V. 46. N 12. P. 1234–1246. DOI:10.1111/hepr.12673; Uchida Y., et al. “Reversi‐type virologic failure” involved in the development of non‐structural protein 5A resistance‐associated variants (RAVs) in patients with genotype 1b hepatitis C carrying no signature RAVs at baseline // Hepatology Research. 2017. V. 47. N 13. P. 1397–1407. DOI:10.1111/hepr.12882; Kwo P., et al. Effectiveness of elbasvir and grazoprevir combination, with or without ribavirin, for treatmentexperienced patients with chronic hepatitis C infection // Gastroenterology. 2017. V. 152. N 1. P. 164–175. DOI:10.1053/j.gastro.2016.09.045; Fourati S., et al. Viral kinetics analysis and virological characterization of treatment failures in patients with chronic hepatitis C treated with sofosbuvir and an NS 5A inhibitor // Alimentary pharmacology & therapeutics. 2018. V. 47. N 5. P. 665–673. DOI:10.1111/apt.14478; Pelosi L.A., et al. Effect on hepatitis C virus replication of combinations of direct‐acting antivirals, including NS5A inhibitor daclatasvir // Antimicrobial agents and chemotherapy. 2012. V. 56. N 10. P. 5230–5239. DOI:10.1128/aac.01209‐12; Kumada H., et al. The combination of elbasvir and grazoprevir for the treatment of chronic HCV infection in Japanese patients: a randomized phase II/III study // Journal of gastroenterology. 2017. V. 52. P. 520–533. DOI:10.1007/s00535‐016‐1285‐y; Kozuka R., et al. The presence of multiple NS 5A RAS s is associated with the outcome of sofosbuvir and ledipasvir therapy in NS 5A inhibitor‐naïve patients with chronic HCV genotype 1b infection in a real‐world cohort // Journal of Viral Hepatitis. 2018. V. 25. N 5. P. 535–542. DOI:10.1111/jvh.12850; Kao J.H., et al. All‐oral daclatasvir plus asunaprevir for chronic hepatitis C virus (HCV) genotype 1b infection: a sub‐analysis in Asian patients from the HALLMARK DUAL study // Liver International. 2016. V. 36. N 10. P. 1433– 1441. DOI:10.1111/liv.13128; Dietz J., et al. Consideration of viral resistance for optimization of direct antiviral therapy of hepatitis C virus genotype 1‐infected patients // PloS one. 2015. V. 10. N 8. Article id: e0134395. DOI:10.1371/journal.pone.0134395; Kwo P.Y., et al. Glecaprevir and pibrentasvir yield high response rates in patients with HCV genotype 1–6 without cirrhosis // Journal of hepatology. 2017. V. 67. N 2. P. 263– 271. DOI:10.1016/j.jhep.2017.03.039; Zeuzem S., et al. NS5A resistance‐associated substitutions in patients with genotype 1 hepatitis C virus: prevalence and effect on treatment outcome // Journal of hepatology. 2017. V. 66. N 5. P. 910–918. DOI:10.1016/j.jhep.2017.01.007; Рейнгардт Д.Э. и др. Распространенность мутаций лекарственной устойчивости вируса гепатита С среди пациентов с рецидивом заболевания на терапии препаратами прямого противовирусного действия // ВИЧ‐инфекция и иммуносупрессии. 2024. Т. 15. N 4. С. 86–93. DOI:10.22328/2077‐9828‐2023‐15‐4‐86‐93; Кичатова В.С. и др. Лекарственно‐резистентные варианты ВГС субтипа 1b, циркулирующие на территории Российской Федерации: анализ аминокислотных мутаций в белках NS5a и core // Журнал инфектологии. 2018. Т. 10. N 4. С. 30–36. DOI:10.22625/2072‐6732‐2018‐10‐4‐30‐36; Bartels D.J., et al. Hepatitis C virus variants with decreased sensitivity to direct‐acting antivirals (DAAs) were rarely observed in DAA‐naive patients prior to treatment // Journal of virology. 2013. V. 87. N 3. P. 1544–1553. DOI:10.1128/jvi.02294‐12; Chen Z., et al. Global prevalence of pre‐existing HCV variants resistant to direct‐acting antiviral agents (DAAs): mining the GenBank HCV genome data // Scientific reports. 2016. V. 6. N 1. Article id: 20310. DOI:10.1038/srep20310; https://ecodag.elpub.ru/ugro/article/view/3063

  15. 15
    Academic Journal

    Contributors: The authors of this article confirmed the lack of conflict of interest and financial support, which should be reported, Авторы данной статьи подтвердили отсутствие конфликта интересов и финансовой поддержки, о которых необходимо сообщить

    Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 69, № 4 (2024); 37-44 ; Российский вестник перинатологии и педиатрии; Том 69, № 4 (2024); 37-44 ; 2500-2228 ; 1027-4065

    File Description: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/2026/1510; Saugstad O.D. The oxygen radical disease in neonatology. Indian J Pediatr 1989; 56(5): 585–593. DOI:10.1007/BF02722373; Perrone S., Santacroce A., Longini M., Proietti F., Bazzini F., Buonocore G. The Free Radical Diseases of Prematurity: From Cellular Mechanisms to Bedside. Oxid Med Cell Longev 2018; 2018: 7483062. DOI:10.1155/2018/7483062; Perez M., Robbins M.E., Revhaug C., Saugstad O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142: 61–72. DOI:10.1016/j.freeradbiomed.2019.03.035; Miao L., St Clair D.K. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47(4): 344–356. DOI:10.1016/j.freeradbiomed.2009.05.018; Bastaki M., Huen K., Manzanillo P., Chande N., Chen C., Balmes J.R. et al. Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 2006;16(4): 279–286. DOI:10.1097/01.fpc.0000199498.08725.9c; Koide S., Kugiyama K., Sugiyama S., Nakamura S., Fukushima H., Honda O. et al. Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol 2003; 41(4): 539–545. DOI:10.1016/s0735–1097(02)02866–8; Frank L., Sosenko I.R. Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr 1987; 110(1): 9–14. DOI:10.1016/s0022–3476(87)80279–2; McCord J.M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312(3): 159–163. DOI:10.1056/NEJM198501173120305; Ng S.Y., Lee A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13: 528. DOI:10.3389/fncel.2019.00528; Davis J.M., Auten R.L. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 2010; 15(4): 191–195. DOI:10.1016/j.siny.2010.04.001; Volpe J.J. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 2009; 24(9): 1085–1104. DOI:10.1177/0883073809338067; Giusti B., Vestrini A., Poggi C., Magi A., Pasquini E., Abbate R. et al. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associated complications in preterm infants. Free Radic Res 2012; 46(9): 1130–1139. DOI:10.3109/10715762.2012.692787; Bresciani G., Cruz I.B., de Paz J.A., Cuevas M.J., González-Gallego J. The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Free Radic Res 2013; 47(10): 781–792. DOI:10.3109/10715762.2013.836275; Савченко О.А., Павлинова Е.Б., Мингаирова А.Г., Власенко Н.Ю., Полянская Н.А., Киршина И.А. Оценка эффективности комплексной терапии перинатальных заболеваний у новорожденных с экстремально низкой массой тела. Антибиотики и химиотерапия 2019; 64(1): 3–8. DOI:10.24411/0235–2990–2019–10004; Рогаткин С.О., Володин Н.Н., Дегтярева М.Г., Гребенникова О.В., Маргания М.Ш., Серова Н.Д. Современные подходы к церебропротекторной терапии недоношенных новорожденных в условиях отделения реанимации и интенсивной терапии. Журнал неврологии и психиатрии им. С.С. Корсакова 2011; 111(1): 27–32.; Jerez-Calero A., Salvatierra-Cuenca M.T., Benitez-Feliponi Á., Fernández-Marín C.E., Narbona-López E., Uberos-Fernández J. et al. Hypothermia Plus Melatonin in Asphyctic Newborns: A Randomized-Controlled Pilot Study. Pediatr Crit Care Med 2020; 21(7): 647–655. DOI:10.1097/PCC.0000000000002346

  16. 16
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 4 (2024); 492-503 ; Акушерство, Гинекология и Репродукция; Vol 18, No 4 (2024); 492-503 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2091/1241; Peng C.C., Chang J.H., Lin H.Y. et al. Intrauterine inflammation, infection, or both (Triple I): a new concept for chorioamnionitis. Pediatr Neonatol. 2018;59(3):231-7. https://doi.org/10.1016/j.pedneo.2017.09.001.; Щеголев А.И., Туманова У.Н., Серов В.Н. Хориоамнионит: диагностика и роль в развитии осложнений беременности и плода. Акушерство и гинекология. 2024;(2):5-14. https://doi.org/10.18565/aig.2024.10.; Beck C., Gallagher K., Taylor L.A. et al. Chorioamnionitis and risk for maternal and neonatal sepsis: a systematic review and meta-analysis. Obstet Gynecol. 2021;137(6):1007-22. https://doi.org/10.1097/AOG.0000000000004377.; Jain V.G., Willis K.A., Jobe A., Ambalavanan N. Chorioamnionitis and neonatal outcomes. Pediatr Res. 2022;91(2):289-96. https://doi.org/10.1038/s41390-021-01633-0.; Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Врожденная пневмония как причина перинатальной смертности в Российской Федерации. Неонатология: новости, мнения, обучение. 2016;2(12):61-6.; Higgins R.D., Saade G., Polin R.A. et al. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: summary of a workshop. Obstet Gynecol. 2016;127(3):426-36. https://doi.org/10.1097/AOG.0000000000001246.; Bastek J.A., Weber A.L., McShea M.A. et al. Prenatal inflammation is associated with adverse neonatal outcomes. Am J Obstet Gynecol. 2014;210(5):450.e1-10. https://doi.org/10.1016/j.ajog.2013.12.024.; Кравченко Е.Н., Куклина Л.В., Баранов И.И. Хориоамнионит. Современный взгляд на проблему. Доктор.Ру. 2022;21(5):38-42. https://doi.org/10.31550/1727-2378-2022-21-5-38-42.; Gomez R., Romero R., Ghezzi F. et al. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998l;179(1):194-202. https://doi.org/10.1016/s0002-9378(98)70272-8.; Gibson B., Goodfriend E., Zhong Y., Melhem N.M. Fetal inflammatory response and risk for psychiatric disorders. Transl Psychiatry. 2023;13(1):224. https://doi.org/10.1038/s41398-023-02505-3.; Jung E., Romero R., Yeo L. et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020;25(4):101146. https://doi.org/10.1016/j.siny.2020.101146.; Giovannini E., Bonasoni M.P., Pascali J.P. et al. Infection induced fetal inflammatory response syndrome (FIRS): state-of-the-art and medico-legal implications - a narrative review. Microorganisms. 2023;11(4):1010. https://doi.org/10.3390/microorganisms11041010.; Parry S., Strauss J.F. Premature rupture of the fetal membranes. N Engl J Med. 19985;338(10):663-70. https://doi.org/10.1056/NEJM199803053381006.; Edwards M.S. Postnatal bacterial infections. In: Fanaroff and Martin's neonatal-perinatal medicine: disease of the fetus and infant. 8th ed. Philadelphia, Mosby Elsevier, 2006. Vol. 2. 791-804.; Dammann O., Allred E.N., Leviton A. et al. Fetal vasculitis in preterm newborns: interrelationships, modifiers, and antecedents. Placenta. 2004;25(10):788-96. https://doi.org/10.1016/j.placenta.2004.03.004.; Salas A.A., Faye-Petersen O.M., Sims B. et al. Histological characteristics of the fetal inflammatory response associated with neurodevelopmental impairment and death in extremely preterm infants. J Pediatr. 2013;163(3):652-7.e1-2. https://doi.org/10.1016/j.jpeds.2013.03.081.; Ge Y., Zhang C., Cai Y., Huang H. Adverse maternal and neonatal outcomes in women with elevated intrapartum temperature complicated by histological chorioamnionitis at term: a propensity-score matched study. Front Pediatr. 2021;9:654596. https://doi.org/10.3389/fped.2021.654596.; López-Martínez R., Albaiceta G.M., Amado-Rodríguez L. et al. The FCGR2A rs1801274 polymorphism was associated with the risk of death among COVID-19 patients. Clin Immunol. 2022;236:108954. https://doi.org/10.1016/j.clim.2022.108954.; Silva L.V.C.D., Javorski N., Brandão L.A.C. et al. Influence of MBL2 and NOS3 polymorphisms on spontaneous preterm birth in North East Brazil: genetics and preterm birth. J Matern Fetal Neonatal Med. 2020;33(1):127- 35. https://doi.org/10.1080/14767058.2018.1487938.; Puopolo K.M., Benitz W.E., Zaoutis T.E; Committee on Fetus and Newborn; Committee on Infectious Diseases. Management of neonates born at ≥34 6/7 weeks' gestation with suspected or proven early-onset bacterial sepsis. Pediatrics. 2018;142(6):e20182894. https://doi.org/10.1542/peds.2018-2894.; Villamor-Martinez E., Lubach G.A., Rahim O.M. et al. Association of histological and clinical chorioamnionitis with neonatal sepsis among preterm infants: a systematic review, meta-analysis, and meta-regression. Front Immunol. 2020;11:972. https://doi.org/10.3389/fimmu.2020.00972.; Santiago J.L., Pérez-Flores I., Sánchez-Pérez L. et al. The interferon-gamma +874 A/T polymorphism is not associated with CMV infection after kidney transplantation. Front Immunol. 2020;10:2994. https://doi.org/10.3389/fimmu.2019.02994.; AbdAllah N.B., Toraih E.A., Al Ageeli E. et al. MYD88, NFKB1, and IL6 transcripts overexpression are associated with poor outcomes and short survival in neonatal sepsis. Sci Rep. 2021;11(1):13374. https://doi.org/10.1038/s41598-021-92912-7.; Bouwman L.H. Roep B.O., Roos A. Mannose-binding lectin: clinical implications for infection, transplantation, and autoimmunity. Hum Immunol. 2006;67(4-5):247-56. https://doi.org/10.1016/j.humimm.2006.02.030.; https://www.gynecology.su/jour/article/view/2091

  17. 17
    Academic Journal

    Contributors: The authors express their gratitude to the staff of the Laboratory of Non-chromosomal heredity and the Laboratory of Molecular Basis of Genome Stability of the Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, who participated in the study. The work was performed under contract No. 2018-28-006 dated 03.23.2018 for the performance of researches outside the state programs, state (sectoral) scientific and technical programs at the expense of the republican centralized innovation fund., Авторы выражают благодарность сотрудникам лабораторий нехромосомной наследственности и молекулярных основ стабильности генома Института генетики и цитологии НАН Беларуси, принявшим участие в исследовании. Работа выполнена по договору № 2018-28-006 от 23.03.2018 на выполнение НИОК(Т)Р вне рамок государственных программ, государственных (отраслевых) научно-технических программ за счет средств республиканского централизованного инновационного фонда.

    Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 5 (2024); 395-403 ; Доклады Национальной академии наук Беларуси; Том 68, № 5 (2024); 395-403 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-5

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1215/1216; Type 1 diabetes in diverse ancestries and the use of genetic risk scores / M. J. Redondo [et al.] // Lancet Diabetes Endocrinol. – 2022. – Vol. 10, N 8. – Р. 597–608. https://doi.org/10.1016/s2213-8587(22)00159-0; Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut / M. A. Berryman [et al.] // Front. Immunol. – 2023. – Vol. 14. – Art. 1270488. https://doi.org/10.3389/fimmu.2023.1270488; Biondi, B. Thyroid dysfunction and diabetes mellitus: two closely associated disorders / B. Biondi, G. J. Kahaly, R. P. Robertson // Endocr. Rev. – 2019. – Vol. 40, N 3. – P. 789–824. https://doi.org/10.1210/er.2018-00163; Frommer, L. Type 1 diabetes and autoimmune thyroid disease-the genetic link / L. Frommer, G. J. Kahaly // Front. Endocrinol. – 2021. – Vol. 12. – Art. 618213. https://doi.org/10.3389/fendo.2021.618213; Cepharanthine blocks presentation of thyroid and islet peptides in a novel humanized autoimmune diabetes and thyroiditis mouse model / C. W. Li [et al.] // Front. Immunol. – 2021. – Vol. 12. – Art. 796552. https://doi.org/10.3389/fimmu.2021.796552; Характерные особенности спектров HLA-аллелей классов I и II у пациентов с различными клиническими формами ювенильного идиопатического артрита в Республике Беларусь / А. А. Яцкив [и др.] // Докл. Нац. акад. наук Беларуси. – 2020. – Т. 64, № 2. – С. 209–216. https://doi.org/10.29235/1561-8323-2020-64-2-209-216; The KAG motif of HLA-DRB1 (β71, β74, β86) predicts seroconversion and development of type 1 diabetes / L. P. Zhao [et al.] // eBioMedicine. – 2021. – Vol. 69. – Art. 103431. https://doi.org/10.1016/j.ebiom.2021.103431; Major histocompatibility complex class II (DRB1*, DQA1*, and DQB1*) and DRB1*04 subtypes’ associations of Hashimoto’s thyroiditis in a Greek population / G. Kokaraki [et al.] // Tissue Antigens. – 2009. – Vol. 73, N 3. – P. 199–205. https://doi.org/10.1111/j.1399-0039.2008.01182.x; Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA / H. Miyadera [et al.] // J. Clin. Invest. – 2015. – Vol. 125, N 1. – P. 275–291. https://doi.org/10.1172/jci74961; Shirizadeh A., Borzouei S., Razavi Z., Taherkhani A., Faradmal J., Solgi G. Determination of HLA class II risk alleles and prediction of self/non-self-epitopes contributing Hashimoto’s thyroiditis in a group of Iranian patients / A. Shirizadeh [et al.] // Immunogenetics. – 2024. – Vol. 76. – P. 175–187. https://doi.org/10.1007/s00251-024-01339-7; Human Leukocyte Antigen class II polymorphisms among Croatian patients with type 1 diabetes and autoimmune polyglandular syndrome type 3 variant / Z. Grubic [et al.] // Gene. – 2018. – Vol. 674. – P. 93–97. https://doi.org/10.1016/j.gene.2018.06.083; Redondo, M. J. Genetics of type 1 diabetes. Pediatr Diabetes / M. J. Redondo, A. K. Steck, A. Pugtiese // Pediatric Diabetes. – 2018. – Vol. 19. – P. 346–353. https://doi.org/10.1111/pedi.12597; Actual associations between HLA haplotype and graves’ disease development / K. Zawadzka-Starczewska [et al.] // J. Clin. Med. – 2022. – Vol. 11, N 9. – Art. 2492. https://doi.org/10.3390/jcm11092492; Nine residues in HLA-DQ molecules determine with susceptibility and resistance to type 1 diabetes among young children in Sweden / L. P. Zhao [et al.] // Sci. Rep. – 2021. – Vol. 11. – Art. 8821. https://doi.org/10.1038/s41598-021-86229-8; The clinical course of patients with preschool manifestation of type 1 diabetes is independent of the HLA DR-DQ genotype / C. Reinauer [et al.] // Genes. – 2017. – Vol. 8, N 5. – Art. 146. https://doi.org/10.3390/genes8050146; Failed genetic protection: type 1 diabetes in the presence of HLA-DQB1*06:02 / K. M. Simmons [et al.] // Diabetes. – 2020. – Vol. 69, N 8. – P. 1763–1769. https://doi.org/10.2337/db20-0038; https://doklady.belnauka.by/jour/article/view/1215

  18. 18
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 3 (2024); 220-228 ; Доклады Национальной академии наук Беларуси; Том 68, № 3 (2024); 220-228 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-3

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1194/1195; Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries / H. Sung [et al.] // CA Cancer J. Clin. – 2021. – Vol. 71, N 3. – P. 209–249. https://doi.org/10.3322/caac.21660; Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries / C. Allemani [et al.] // Lancet. – 2018. – Vol. 391, N 10125. – P. 1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3; Folkman, J. Angiogenesis: an organizing principle for drug discovery? / J. Folkman // Nature Reviews Drug Discovery. – 2007. – Vol. 6. – P. 273–286. https://doi.org/10.1038/nrd2115; Carmeliet, P. Molecular mechanisms and clinical applications of angiogenesis / Р. Carmeliet, R. K. Jain // Nature. – 2011. – Vol. 473. – P. 298–307. https://doi.org/10.1038/nature10144; VEGF receptor signalling – in control of vascular function / A. K. Olsson [et al.] // Nat. Rev. Mol. Cell. Biol. – 2006. – Vol. 7. – P. 359–371. https://doi.org/10.1038/nrm1911; Mathew, C. C. The isolation of high molecular weight eucaryotic DNA / C. C. Mathew // Methods in Molecular Biology: Nucleic Acids / ed. J. M. N. J. Walker. – Clifton, 1984. – Vol. 2, N 4. – P. 31–34. https://doi.org/10.1385/0-89603-064-4:31; Clinical and morphological characteristics of NSCLC and VEGF gene polymorphism / M. N. Shapetska [et al.] // Int. J. Adv. Res. – 2016. – Vol. 4. – P. 1802–1813. https://doi.org/10.21474/ijar01/1657; Association of vascular endothelial growth factor – a gene polymorphisms and haplotypes with breast cancer metastases / U. Langsenlehner [et al.] // Acta Oncol. – 2015. – Vol. 54, N 3. – P. 368–376. https://doi.org/10.3109/0284186x.2014.948056; VEGF gene polymorphisms and susceptibility to rheumatoid arthritis / S. W. Han [et al.] // Rheumatology. – 2004. – Vol. 43, N 9. – P. 1173–1177. https://doi.org/10.1093/rheumatology/keh281; Vascular endothelial growth factor gene polymorphisms are associated with acute renal allograft rejection / M. Shahbazi [et al.] // J. Am. Soc. Nephrol. – 2002. – Vol. 13, N 1. – P. 260–264. https://doi.org/10.1681/asn.v131260; A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels / W. Renner [et al.] // J. Vasc. Res. – 2000. – Vol. 37, N 6. – P. 443–448. https://doi.org/10.1159/000054076; Functional interaction between p/CAF and human papillomavirus E2 protein / D. Lee [et al.] // J. Biol. Chem. – 2002. – Vol. 277, N 8. – P. 6483–6489. https://doi.org/10.1074/jbc.m105085200; Маркеры ангиогенеза при опухолевом росте / Н. А. Нефедова [и др.] // Архив патологии. – 2016. – Т. 78, № 2. – С. 55–62. https://doi.org/10.17116/patol201678255-62; Treatment Strategies of Gastric Cancer-Molecular Targets for Anti-angiogenic Therapy: a State-of-the-art Review / M. Tyczyńska [et al.] // J. Gastrointest Cancer. – 2021. – Vol. 52. – P. 476–488. https://doi.org/10.1007/s12029-021-00629-7; Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08 / C. J. Allegra [et al.] // J. Clin. Oncol. – 2011. – Vol. 29, N 1. – P. 11–16. https://doi.org/10.1200/jco.2010.30.0855; Bergers, G. Modes of resistance to anti-angiogenic therapy / G. Bergers, D. Hanahan // Nat. Rev. Cancer. – 2008. – Vol. 8. – P. 592–603. https://doi.org/10.1038/nrc2442; https://doklady.belnauka.by/jour/article/view/1194

  19. 19
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 39, № 3 (2024); 115-123 ; Сибирский журнал клинической и экспериментальной медицины; Том 39, № 3 (2024); 115-123 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2432/1000; Mallamaci F., Tripepi G. Risk factors of chronic kidney disease progression: Between old and new concepts. J. Clin. Med. 2024;13(3):678. DOI:10.3390/jcm13030678.; Chen T.K., Knicely D.H., Grams M.E. Chronic kidney disease diagnosis and management: A review. JAMA. 2019;322(13):1294–1304. DOI:10.1001/jama.2019.14745.; Yerkes E., Nishimura H., Miyazaki Y. Role of angiotensin in the congenital anomalies of the kidney and urinary tract in the mouse and the human. Kidney Int. Suppl. 1998;67:75–77. DOI:10.1046/j.1523-1755.1998.06715.x.; Кутырло И.Э., Савенкова Н.Д. CAKUT–синдром у детей. Нефрология. 2017;21(3):18–24. DOI:10.24884/1561-6274-2017-3-18–24.; Игнатова М.С., Маковецкая Г.А., Мазур Л.И. Болезни органов мочевой системы у детей. Самара: Асгард; 2017:224.; Иванова И.И., Коваль Н.Ю. Хронический пиелонефрит у детей с разными диспластическими фенотипами. Российский вестник перинатологии и педиатрии. 2022;67(5):68–71. DOI:10.21508/1027-4065-2022-67-5-68-71.; Вафоева Н.А. Влияние заболеваний почек на показатели центральной гемодинамики. Scientific progress. 2021;2(2):121–127.; Lameire N.H., Levin A., Kellum J.A., Cheung M., Jadoul M., Winkelmayer W. C. et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021;100(3):516– 526. DOI:10.1016/j.kint.2021.06.028.; Fox N., Hunn A., Mathers N. Sampling and sample size calculation. – Yorkshire & the Humber: The NIHR RDS for the East Midlands. 2007:41.; Черкасов Н.С., Давыдова О.В., Дербенева Л.И., Луценко Ю.А. Ренокардиальный синдром у ребенка с ненаследственной дисплазией соединительной ткани. РМЖ. Мать и дитя. 2021;4(2):184–188. DOI:10.32364/2618-8430-2021-4-2-184-188.; Казаков В.М., Скоромец А.А., Руденко Д.И., Стучевская Т.Р., Колынин В.О. Митохондриальные болезни: миопатии, энцефаломиопатии и энцефаломиелополиневропатии. Неврологический журнал. 2018;23(6):272–281. DOI:10.18821/1560-9545-2018-23-6-272-281.; Walawender L., Becknell B., Matsell D.G. Congenital anomalies of the kidney and urinary tract: defining risk factors of disease progression and determinants of outcomes. Pediatr. Nephrol. 2023;38(12):3963–3973. DOI:10.1007/s00467-023-05899-w.; Von Hertzen LC. Puzzling associations between childhood infections and the later occurrence of asthma and atopy. Ann. Acad. Med. 2000;32(6):397–400. DOI:10.3109/07853890008995946.; Вялкова А.А., Зорин И.В., Чеснокова С.А., Плотникова С.В. Хроническая болезнь почек у детей. Нефрология. 2019;23(5):29–46. DOI:10.24884/1561-6274-2019-23-5-29-46.; Седашкина О.А., Порецкова Г.Ю., Маковецкая Г.А. Полиморфизмы генов ренин-ангиотензиновой системы: значение в прогрессировании хронической болезни почек у детей. Российский педиатрический журнал. 2023;23(2):89–94. DOI:10.46563/1560-9561-2023-26-2-89-94.; Седашкина О.А., Порецкова Г.Ю., Маковецкая Г.А. Генетические факторы прогрессирования заболеваний почек у детей: основа персонализированного подхода к фармаконефропротекции (обзор литературы). Педиатрия Восточная Европа. 2024;12(1):86–95. DOI:10.34883/PI.2024.12.1.008.; Hegele R.A., Brunt J.H., Connely P.W. A polymorphism of the angiotensinogen gene associated with variation in blood pressure in genetic isolate. Circulation. 1994;90(5):2207–2212. DOI:10.1161/01.cir.90.5.2207.; Поздняков Н.О., Мирошников А.Е., Поздняков С.О. К вопросу о клиническом значении полиморфизмов генов ЕNOS И AGTR2 у пациентов с инфарктом миокарда, стабильной и нестабильной формами стенокардии. Universum: медицина и фармакология : электрон. научн. журн. 2016;(1–2(24)). URL: https://7universum.com/ru/med/archive/item/2953 (26.08.2024).; Бородулина Е.А., Грибова В.В., Окунь Д.Б., Еременко Е.П., Бородулин Б.Е., Ковалев Р.И. и др. Генерация базы знаний для создания системы поддержки принятия врачебных решений по управлению процессом лечения. Сибирский журнал клинической и экспериментальной медицины. 2024;39(2):209–217. DOI:10.29001/2073-8552-2024-39-2-209-217.; Васильев Ю.А., Арзамасов К.М., Колсанов А.В., Владзимирский А.В., Омелянская О.В., Пестренин Л.Д. и др. Опыт применения программного обеспечения на основе технологий искусственного интеллекта на данных 800 тысяч флюорографических исследований. Врач и информационные технологии. 2023;4:54–65. DOI:10.25881/18110193-2023-4-54.; https://www.sibjcem.ru/jour/article/view/2432

  20. 20