-
1Academic Journal
Συγγραφείς: I. A. Mazerkina, И. А. Мазеркина
Συνεισφορές: The study reported in this publication was carried out as part of publicly funded research project No. 056-00052-23-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022400082-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00052-23-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022400082-4).
Πηγή: Safety and Risk of Pharmacotherapy; Том 11, № 2 (2023); 204-214 ; Безопасность и риск фармакотерапии; Том 11, № 2 (2023); 204-214 ; 2619-1164 ; 2312-7821
Θεματικοί όροι: человеческий лейкоцитарный антиген, drug-induced hepatotoxicity, iDILI, pathogenesis of idiosyncratic drug-induced hepatotoxicity, immune tolerance, T-cells, signalling pathway activation, genetic risk factors, human leukocyte antigen, HLA, лекарственное повреждение печени, патогенез лекарственной гепатотоксичности, иммунотолерантность, Т-клетки, сигнальные пути активации, генетические факторы риска
Περιγραφή αρχείου: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/365/776; https://www.risksafety.ru/jour/article/view/365/787; https://www.risksafety.ru/jour/article/downloadSuppFile/365/375; Kwon J, Kim S, Yoo H, Lee E. Nimesulide-induced hepatotoxicity: a systematic review and meta-analysis. PLoS One. 2019;14(1):e0209264. https://doi.org/10.1371/journal.pone.0209264; McNaughton R, Huet G, Shakir S. An investigation into drug products withdrawn from the EU market between 2002 and 2011 for safety reasons and the evidence used to support the decision-making. BMJ Open. 2014; 4(1):e004221. https://doi.org/10.1136/bmjopen-2013-004221; Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 2016;14:10. https://doi.org/10.1186/s12916-016-0553-2; Chen M, Will Y. Drug-induced liver toxicity. New York: Humana New York; 2018. https://doi.org/10.1007/978-1-4939-7677-5; de Abajo FJ, Montero D, Madurga M, García Rodríguez LA. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol. 2004;58(1):71–80. https://doi.org/10.1111/j.1365-2125.2004.02133.x; Robles-Diaz M, Lucena MI, Kaplowitz N, Stephens C, Medina-Cáliz I, González-Jimenez A, et al. Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology. 2014;147(1):109–18.e5. https://doi.org/10.1053/j.gastro.2014.03.050; Hoofnagle JH, Björnsson ES. Drug-induced liver injury — types and phenotypes. N Engl J Med. 2019;381(3):264–73. https://doi.org/.1056/NEJMra1816149; Fontana RJ. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology. 2014;146(4):914–28. https://doi.org/10.1053/j.gastro.2013.12.032; Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic drug-induced liver injury: mechanistic and clinical challenges. Int J Mol Sci. 2021;22(6):2954. https://doi.org/10.3390/ijms22062954; Lammert C, Einarsson S, Saha C, Niklasson A, Bjornsson E, Chalasani N. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology. 2008;47(6):2003–9. https://doi.org/10.1002/hep.22272; Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. https://doi.org/10.1056/NEJMc1302338; Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Drug Metab Rev. 2012;44(1):116–26. https://doi.org/10.3109/03602532.2011.605790; Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62. https://doi.org/10.1002/hep.21060; Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun. 2016;66:60–75. https://doi.org/10.1016/j.jaut.2015.08.020; Zheng M, Tian Z. Liver-mediated adaptive immune tolerance. Front Immunol. 2019;10:2525. https://doi.org/10.3389/fimmu.2019.02525; Foureau DM, Walling TL, Maddukuri V, Anderson W, Culbreath K, Kleiner DE, et al. Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clin Exp Immunol. 2015;180(1):40–51. https://doi.org/10.1111/cei.12558; Pirmohamed M, Naisbitt DJ, Gordon F, Park BK. The danger hypothesis — potential role in idiosyncratic drug reactions. Toxicology. 2002;181–182:55–63. https://doi.org/10.1016/s0300-483x(02)00255-x; Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518. https://doi.org/10.1146/annurev-pathmechdis-012419-032847; Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol. 2017;38(10):768–76. https://doi.org/10.1016/j.it.2017.08.002; Pichler WJ. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr Opin Allergy Clin Immunol. 2002;2(4):301–5. https://doi.org/10.1097/00130832-200208000-00003; Keisu M, Andersson TB. Drug-induced liver injury in humans: the case of ximelagatran. Handb Exp Pharmacol. 2010;(196):407–18. https://doi.org/10.1007/978-3-642-00663-0_13; Ko TM, Chung WH, Wei CY, Shih HY, Chen JK, Lin CH, Chen YT, Hung SI. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol. 2011;128(6):1266–76.e11. https://doi.org/10.1016/j.jaci.2011.08.013; Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, et al. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 2021;11(12):3685–726. https://doi.org/10.1016/j.apsb.2021.11.013; Ogese MO, Jenkins RE, Adair K, Tailor A, Meng X, Faulkner L, et al. Exosomal transport of hepatocyte-derived drug-modified proteins to the immune system. Hepatology. 2019;70(5):1732–49. https://doi.org/10.1002/hep.30701; Cosgrove BD, King BM, Hasan MA, Alexopoulos LG, Farazi PA, Hendriks BS, et al. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol. 2009;237(3):317–30. https://doi.org/10.1016/j.taap.2009.04.002; Oda S, Matsuo K, Nakajima A, Yokoi T. A novel cell-based assay for the evaluation of immune- and inflammatory-related gene expression as biomarkers for the risk assessment of drug-induced liver injury. Toxicol Lett. 2016;241:60–70. https://doi.org/10.1016/j.toxlet.2015.10.029; Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):1005457. https://doi.org/10.1371/journal.pcbi.1005457; De Abrew KN, Overmann GJ, Adams RL, Tiesman JP, Dunavent J, Shan YK, et al. A novel transcriptomics based in vitro method to compare and predict hepatotoxicity based on mode of action. Toxicology. 2015;328:29–39. https://doi.org/10.1016/j.tox.2014.11.008; Ölander M, Wiśniewski JR, Artursson P. Cell-type-resolved proteomic analysis of the human liver. Liver Int. 2020;40(7):1770–80. https://doi.org/10.1111/liv.14452; Cuykx M, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol. 2018;92(10):3007–29. https://doi.org/10.1007/s00204-018-2286-9; Sakai C, Iwano S, Yamazaki Y, Ando A, Nakane F, Kouno M, et al. Species differences in the pharmacokinetic parameters of cytochrome P450 probe substrates between experimental animals, such as mice, rats, dogs, monkeys, and microminipigs, and humans. J Drug Metab Toxicol. 2014;5:6. https://doi.org/10.4172/2157-7609.1000173; Metushi IG, Hayes MA, Uetrecht J. Treatment of PD-1(-/-) mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology. 2015;61(4):1332–42. https://doi.org/10.1002/hep.27549; Chakraborty M, Fullerton AM, Semple K, Chea LS, Proctor WR, Bourdi M, et al. Drug-induced allergic hepatitis develops in mice when myeloid-derived suppressor cells are depleted prior to halothane treatment. Hepatology. 2015;62(2):546–57. https://doi.org/10.1002/hep.27764; Kakuni M, Morita M, Matsuo K, Katoh Y, Nakajima M, Tateno C, Yokoi T. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury. Toxicol Lett. 2012;214(1):9–18. https://doi.org/10.1016/j.toxlet.2012.08.001; Ekdahl A, Weidolf L, Baginski M, Morikawa Y, Thompson RA, Wilson ID. The metabolic fate of fenclozic acid in chimeric mice with a humanized liver. Arch Toxicol. 2018;92(9):2819–28. https://doi.org/10.1007/s00204-018-2274-0; Song B, Aoki S, Liu C, Susukida T, Ito K. An animal model of abacavir-induced HLA-mediated liver injury. Toxicol Sci. 2018;162(2):713–23. https://doi.org/10.1093/toxsci/kfy001; McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis. 2019;1865(5):1031–9. https://doi.org/10.1016/j.bbadis.2018.08.037; Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol. 2021;17(2):153–69. https://doi.org/10.1080/17425255.2021.1854726; Pachkoria K, Lucena MI, Ruiz-Cabello F, Crespo E, Cabello MR, Andrade RJ. Genetic polymorphisms of CYP2C9 and CYP2C19 are not related to drug-induced idiosyncratic liver injury (DILI). Br J Pharmacol. 2007;150(6):808–15. https://doi.org/10.1038/sj.bjp.0707122; Zhao M, Zhang T, Li G, Qiu F, Sun Y, Zhao L. Associations of CYP2C9 and CYP2A6 polymorphisms with the concentrations of valproate and its hepatotoxin metabolites and valproate-induced hepatotoxicity. Basic Clin Pharmacol Toxicol. 2017;121(2):138–43. https://doi.org/10.1111/bcpt.12776; Yimer G, Amogne W, Habtewold A, Makonnen E, Ueda N, Suda A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naïve HIV patients from Ethiopia: a prospective cohort study. Pharmacogenomics J. 2012;12(6):499–506. https://doi.org/10.1038/tpj.2011.34; Hu X, Zhang M, Bai H, Wu L, Chen Y, Ding L, et al. Antituberculosis drug-induced adverse events in the liver, kidneys, and blood: clinical profiles and pharmacogenetic predictors. Clin Pharmacol Ther. 2018;104(2):326–34. https://doi.org/10.1002/cpt.924; Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007;132(1):272–81. https://doi.org/10.1053/j.gastro.2006.11.023; Wattanapokayakit S, Mushiroda T, Yanai H, Wichukchinda N, Chuchottawon C, Nedsuwan S, et al. NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis. 2016;20(10):1364–9. https://doi.org/10.5588/ijtld.15.0310; Sharma SK, Jha BK, Sharma A, Sreenivas V, Upadhyay V, Jaisinghani C, et al. Genetic polymorphisms of N-acetyltransferase 2 & susceptibility to antituberculosis drug-induced hepatotoxicity. Indian J Med Res. 2016;144(6):924–8. https://doi.org/10.4103/ijmr.IJMR_684_14; Du H, Chen X, Fang Y, Yan O, Xu H, Li L, et al. Slow N-acetyltransferase 2 genotype contributes to anti-tuberculosis drug-induced hepatotoxicity: a meta-analysis. Mol Biol Rep. 2013;40(5):3591–6. https://doi.org/10.1007/s11033-012-2433-y; Suvichapanich S, Fukunaga K, Zahroh H, Mushiroda T, Mahasirimongkol S, Toyo-Oka L, et al. NAT2 ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury: a genotype-based meta-analysis. Pharmacogenet Genomics. 2018;28(7):167–76. https://doi.org/10.1097/FPC.0000000000000339; Zhang M, Wang S, Wilffert B, Tong R, van Soolingen D, van den Hof S, Alffenaar JW. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br J Clin Pharmacol. 2018;84(12):2747–60. https://doi.org/10.1111/bcp.13722; Li YJ, Phillips EJ, Dellinger A, Nicoletti P, Schutte R, Li D, et al. Human leukocyte antigen B*14:01 and B*35:01 are associated with trimethoprim-sulfamethoxazole induced liver injury. Hepatology. 2021;73(1):268–81. https://doi.org/10.1002/hep.31258; Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, et al. Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 2008;8(1):29–33. https://doi.org/10.1038/sj.tpj.6500442; Li C, Rao T, Chen X, Zou Z, Wei A, Tang J, et al. HLA-B*35:01 allele is a potential biomarker for predicting Polygonum multiflorum-induced liver injury in humans. Hepatology. 2019;70(1):346–57. https://doi.org/10.1002/hep.30660; Yang WN, Pang LL, Zhou JY, Qiu YW, Miao L, Wang SY, et al. Single-nucleotide polymorphisms of HLA and Polygonum multiflorum-induced liver injury in the Han Chinese population. World J Gastroenterol. 2020;26(12):1329–39. https://doi.org/10.3748/wjg.v26.i12.1329; O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN, Mills PR. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut. 2000;47(5):717–20. https://doi.org/10.1136/gut.47.5.717; Aithal GP, Ramsay L, Daly AK, Sonchit N, Lea thart JB, Alexander G, et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology. 2004;39(5):1430–40. https://doi.org/10.1002/hep.20205; Uffelmann E, Huang QQ, Munung NS, Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Primers. 2021;(1):59. https://doi.org/10.1038/s43586-021-00056-9; Suvichapanich S, Wattanapokayakit S, Mushiroda T, Yanai H, Chuchottawon C, Kantima T, et al. Genomewide association study confirming the association of NAT2 with susceptibility to antituberculosis drug-induced liver injury in Thai patients. Antimicrob Agents Chemother. 2019;63(8):e02692–18. https://doi.org/10.1128/AAC.02692-18; Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011;141(1):338–47. https://doi.org/10.1053/j.gastro.2011.04.001; Nicoletti P, Barrett S, McEvoy L, Daly AK, Aithal G, Lucena MI, et al. Shared genetic risk factors across carbamazepine-induced hypersensitivity reactions. Clin Pharmacol Ther. 2019;106(5):1028–36. https://doi.org/10.1002/cpt.1493; Nicoletti P, Aithal GP, Bjornsson ES, Andrade RJ, Sawle A, Arrese M, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology. 2017;152(5):1078–89. https://doi.org/10.1053/j.gastro.2016.12.016; Urban TJ, Nicoletti P, Chalasani N, Serrano J, Stolz A, Daly AK, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B*35:02 as a risk factor. J Hepatol. 2017;67(1):137–44. https://doi.org/10.1016/j.jhep.2017.03.010; Bruno CD, Fremd B, Church RJ, Daly AK, Aithal GP, Björnsson ES, et al. HLA associations with infliximab-induced liver injury. Pharmacogenomics J. 2020;20(5):681–6. https://doi.org/10.1038/s41397-020-0159-0; Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9. https://doi.org/10.1038/ng.379; Nicoletti P, Aithal GP, Chamberlain TC, Coulthard S, Alshabeeb M, Grove JI, et al. Drug-induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther. 2019;106(1):245–53. https://doi.org/10.1002/cpt.1375; Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 2008;8(3):186–95. https://doi.org/10.1038/sj.tpj.6500458; Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS, et al. HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol. 2011;29(6):667–73. https://doi.org/10.1200/JCO.2010.31.3197; Parham LR, Briley LP, Li L, Shen J, Newcombe PJ, King KS, et al. Comprehensive genome-wide evaluation of lapatinib-induced liver injury yields a single genetic signal centered on known risk allele HLA-DRB1*07:01. Pharmacogenomics J. 2016;16(2):180–5. https://doi.org/10.1038/tpj.2015.40; Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet. 2010;42(8):711–4. https://doi.org/10.1038/ng.632; Nicoletti P, Werk AN, Sawle A, Shen Y, Urban TJ, Coulthard SA, et al. HLA-DRB1*16: 01-DQB1*05: 02 is a novel genetic risk factor for flupirtine-induced liver injury. Pharmacogenet Genomics. 2016;26(5):218–24. https://doi.org/10.1097/FPC.0000000000000209; Cirulli ET, Nicoletti P, Abramson K, Andrade RJ, Bjornsson ES, Chalasani N, et al. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology. 2019;156(6):1707–1716.e2. https://doi.org/10.1053/j.gastro.2019.01.034; Zhang X, Yu Y, Bai B, Wang T, Zhao J, Zhang N, et al. PTPN22 interacts with EB1 to regulate T-cell receptor signaling. FASEB J. 2020;34(7):8959–74. https://doi.org/10.1096/fj.201902811RR; Alfirevic A, Pirmohamed M. Predictive genetic testing for drug-induced liver injury: considerations of clinical utility. Clin Pharmacol Ther. 2012;92(3):376–80. https://doi.org/10.1038/clpt.2012.107; Kaliyaperumal K, Grove JI, Delahay RM, Griffiths WJH, Duckworth A, Aithal GP. Pharmacogenomics of drug-induced liver injury (DILI): molecular biology to clinical applications. J Hepatol. 2018;69(4):948–57. https://doi.org/10.1016/j.jhep.2018.05.013; https://www.risksafety.ru/jour/article/view/365
-
2Academic Journal
Συγγραφείς: Olga S. Vasilieva, Lyudmila P. Kuzmina, Alexandr V. Chernyak, Natalia Yu. Kravchenko, Marina M. Koljaskina, О. С. Васильева, Л. П. Кузьмина, А. В. Черняк, Н. Ю. Кравченко, М. М. Коляскина
Πηγή: PULMONOLOGIYA; Том 31, № 4 (2021); 463-468 ; Пульмонология; Том 31, № 4 (2021); 463-468 ; 2541-9617 ; 0869-0189
Θεματικοί όροι: динамические наблюдения, occupational asthma, chronic obstructive pulmonary disease, genetic risk factors, individual sensitivity, long-term observations, профессиональная бронхиальная астма, хроническая обструктивная болезнь легких, генетические факторы риска, индивидуальная чувствительность
Περιγραφή αρχείου: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/2407/1858; De Matteis S., Heederik D., Burdorf A. et al. Current and new challenges in occupational lung diseases. Eur. Respir. Rev. 2017; 26 (146): 170080. DOI:10.1183/16000617.0080-2017.; Baur X., Sigsgaard T., Aasen T.B. et al. Guidelines for the management of work-related asthma. Eur. Respir. J. 2012; 39 (3): 529–545. DOI:10.1183/09031936.00096111.; Suganuma N., Natori Y., Kurosawa H. et al. Update of occupational lung disease. J. Occup. Health. 2019; 61 (1): 10–18. DOI:10.1002/1348-9585.12031.; Thirteenth Session of the Joint ILO/WHO Committee on Occupational Health. Report of the Committee, JCOH/XIII/D.4. Geneva, 9–12 December, 2003. Available at: http://www.icohweb.org/site/multimedia/asbestos/Enclosure_5.pdf [Accessed: July 1, 2021].; Kobayashi S., Hanagama M., Yamanda S. et al.Impact of a large-scale natural disaster on patients with chronic obstructive pulmonary disease: the aftermath of the 2011 Great East Japan Earthquake. Respir. Investig. 2013; 51 (1): 17–23. DOI:10.1016/j.resinv.2012.10.004.; Tarlo S.M. Occupational lung diseases. Can. J. Respir. Crit. Care Sleep Med. 2020; 4 (Suppl. 1): S6–8. DOI:10.1080/24745332.2020.1726231.; Cullinan P., Muñoz X., Suojalehto H. et al. Occupational lung diseases: from old and novel exposures to effective preventive strategies. Lancet Respir. Med. 2017; 5 (5): 445–455. DOI:10.1016/S2213-2600(16)30424-6.; European Lung White Book. Occupational risk factors. Available at: https://www.erswhitebook.org/chapters/occupational-risk-factors/ [Accessed: July 1, 2021].; Burge P.S. Recent developments in occupational asthma. Swiss. Med. Wkly. 2010; 140 (9–10): 128–132.; Schulte P., Howard J. Genetic susceptibility and the setting of occupational health standards. Annu. Rev. Public. Health. 2011; 32: 149–159. DOI:10.1146/annurev-publhealth-031210-101144.; Васильева О.С., Кузьмина Л.П., Кулемина Е.А., Коляскина М.М. Клинические и молекулярно-генетические аспекты формирования бронхиальной астмы мясоупаковщиков. Пульмонология. 2012; (3): 39–44. DOI:10.18093/0869-0189-2012-0-3-39-44.; Кузьмина Л.П., Хотулева А.Г. Молекулярные механизмы нозологической синтропии профессиональной бронхиальной астмы. В кн.: Измеров Н.Ф., ред. Профессиональные заболевания органов дыхания: национальное руководство. М.: ГЭОТАРМедиа; 2015: 180–187.; Park D., Moore V.C., Burge C.B.S. et al. Serial PEF measurement is superior to cross-shift change in diagnosing occupational asthma. Eur. Respir. J. 2009; 34 (3): 574–578. DOI:10.1183/09031936.00150108.; Васильева О.С., Соркина Н.С. Профессиональная бронхиальная астма. В кн.: Измеров Н.Ф., Чучалин А.Г., ред. Профессиональные заболевания органов дыхания. М.: ГЭОТАР-Медиа; 2015: 338–363.; Васильева О.С., Черняк А.В., Неклюдова Г.В. и др. Клиникофункциональные методы обследования в диагностике профессиональных бронхолегочных заболеваний. В кн.: Измеров Н.Ф., ред. Профессиональные заболевания органов дыхания: национальное руководство. М.: ГЭОТАР-Медиа; 2015: 607–634.; Burge S. Management of an individual worker with occupational asthma. In: Sigsgaard T., Heederik D., eds. Occupational Asthma. Progress in Inflammation Research. Birkhäuser Basel. 2010: 249–270. DOI:10.1007/978-3-7643-8556-9_14.; Trivedi V., Apala D.R., Iyer V.N. Occupational asthma: diagnostic challenges and management dilemmas. Curr. Opin. Pulm. Med. 2017; 23 (2): 177–183. DOI:10.1097/MCP.0000000000000352.; Lemiere C., Bernstein D. Occupational asthma: Management, prognosis and prevention. UpToDate. November 07, 2019. Available at: https://www.uptodate.com/contents/occupational-asthma-management-prognosis-and-prevention [Accessed: July 1, 2021].; British Thoracic Society. British Guidelines on the Management of Asthma. Revised 2017. Available at: https://www.brit-thoracic.org.uk [Accessed: July 6, 2018].; Mehta A.J., Miedinger D., Keidel D. et al. Occupational exposure to dusts, gases and fumes and incidence of chronic obstructive pulmonary disease in the swiss cohort study on air pollution and lung and heart diseases in adults. Am. J. Respir. Crit. Care Med. 2012; 185 (12): 1292–1300. DOI:10.1164/rccm.201110-1917OC.; Kurth L., Doney B., Weinmann S. Occupational exposures and chronic obstructive pulmonary disease (COPD): comparison of a COPD-specific job exposure matrix and expert-evaluated occupational exposures. Occup. Environ. Med. 2017; 74 (4): 290–293. DOI:10.1136/oemed-2016-103753.; https://journal.pulmonology.ru/pulm/article/view/2407
-
3Academic Journal
Συγγραφείς: Асия Дамировна Падюкова, Арсений Евгеньевич Южалин, Антон Геннадьевич Кутихин, Алексей Николаевич Волков, Юлия Александровна Попова, Алексей Станиславович Животовский, Юрий Абрамович Магарилл, Евгений Анатольевич Цитко, Елена Борисовна Брусина
Πηγή: Медицина в Кузбассе, Vol 16, Iss 1, Pp 50-56 (2017)
Θεματικοί όροι: колоректальный рак, рак желудка, гены, полиморфизмы, генетические факторы риска, Medicine
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/0cb0fc33ed8a4bf796a8445efaacc0b0
-
4Academic Journal
Συγγραφείς: Shamsiev, A. M., Yusupov, Sh. A., Muhammadieva, L. A., Yuldashev, B. A.
Πηγή: Bulletin of Scientific Research; No 1 (2017) ; Вестник научных исследований; № 1 (2017) ; Вісник наукових досліджень; № 1 (2017) ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2017.1
Θεματικοί όροι: chronic bronchitis, children, genetic risk factors, matrix metalloproteinases, хронический бронхит, дети, генетические факторы риска, матричные металлопротеиназы, хронічний бронхіт, діти, генетичні фактори ризику, матричні металопротеїнази
Περιγραφή αρχείου: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/visnyk-nauk-dos/article/view/7468/7122; https://repository.tdmu.edu.ua//handle/123456789/12410
-
5Academic Journal
Πηγή: Тромбоз, гемостаз и реология.
Θεματικοί όροι: генетические факторы риска, полиморфизм, genetic risk factors, экстракорпоральное оплодотворение, in vitro fertilization, 3. Good health, polymorphism
Σύνδεσμος πρόσβασης: https://thrj.ru/index.php/thrj/article/view/196
-
6Academic Journal
Συγγραφείς: Падюкова, Асия Дамировна, Южалин, Арсений Евгеньевич, Кутихин, Антон Геннадьевич, Волков, Алексей Николаевич, Попова, Юлия Александровна, Животовский, Алексей Станиславович, Магарилл, Юрий Абрамович, Цитко, Евгений Анатольевич, Брусина, Елена Борисовна
Πηγή: Medicine in Kuzbass; Том 16, № 1 (2017): март; 50-56 ; Медицина в Кузбассе; Том 16, № 1 (2017): март; 50-56 ; 2588-0411 ; 1819-0901
Θεματικοί όροι: colorectalcancer, gastriccancer, genes, polymorphisms, genetic risk factors, колоректальный рак, рак желудка, гены, полиморфизмы, генетические факторы риска
Περιγραφή αρχείου: text/html; application/pdf
Relation: http://mednauki.ru/index.php/MK/article/view/64/131; http://mednauki.ru/index.php/MK/article/view/64/143; http://mednauki.ru/index.php/MK/article/view/64
Διαθεσιμότητα: http://mednauki.ru/index.php/MK/article/view/64
-
7Academic Journal
Πηγή: Тромбоз, гемостаз и реология.
Θεματικοί όροι: ishemic heart disease, myocardial infarction, генетические факторы риска, полиморфизм, ишемическая болезнь сердца, genetic risk factors, инфаркт миокарда, 3. Good health, polymorphism
-
8Academic Journal
Πηγή: Медицина в Кузбассе, Vol 16, Iss 1, Pp 50-56 (2017)
Θεματικοί όροι: гены, полиморфизмы, колоректальный рак, генетические факторы риска, Medicine, рак желудка, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/0cb0fc33ed8a4bf796a8445efaacc0b0
-
9Academic Journal
Συγγραφείς: Панов, П., Ахмадеева, Э., Панова, Л., Байков, Д.
Θεματικοί όροι: БРОНХОЛЕГОЧНАЯ ДИСПЛАЗИЯ, НЕДОНОШЕННЫЕ МЛАДЕНЦЫ, ПЕРИНАТАЛЬНЫЕ И ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА
Περιγραφή αρχείου: text/html
-
10Academic Journal
Συγγραφείς: E. А. Kornienko, A. A. Yagupova, Е. А. Корниенко, А. А. Ягупова
Πηγή: Current Pediatrics; Том 11, № 4 (2012); 134-138 ; Вопросы современной педиатрии; Том 11, № 4 (2012); 134-138 ; 1682-5535 ; 1682-5527
Θεματικοί όροι: ферментотерапия, hereditary pancreatitis, genetic risk factors, enzyme therapy, наследственный панкреатит, генетические факторы риска
Περιγραφή αρχείου: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/467/372; Banks P. A. Classification and diagnosis of chronic pancreatitis. J. Gastroenterol. 2007; 42 (S XVII): 148–151.; Ma M. H., Bai H. X., Park A. J. et al. Risk factors associated with biliary pancreatitis in children. J. Pediatr. Gasreornterol. Nutr. 2012; 54 (5): 651–656.; Okazaki K., Chiba T. Autoimmune related pancreatitis. Gut. 2002; 51: 1–4.; Корниенко Е. А., Ягупова А. А., Лобода Т. Б., Фадина С. А. Аутоиммунный панкреатит в педиатрической практике. Фарматека. 2011; 1 (214): 47–54.; Sultan M., Werlin S., Venkatasubramani N. Genetic prevalence and characteristics in children with recurrent pancreatitis. J. Pediatr. Gastroenterol. Nutr. 2012; 54 (5): 645–650.; Witt H., Becker M. Genetics of chronic pancreatitis. J. Pediatr. Gastroenterol. Nutr. 2002; 34 (2): 125–136.; Scheele G. A., Bartelt D., Bieger W. Characterization of human exocrine pancreatic proteins by two-dimentional sequeces. Biochemistry. 1978; 17: 1669–1675.; Keiles S., Kammesheidt A. Identification of CFTR, PRSS1 and SPINK1 mutations in 381 patients with pancreatitis. Pancreas. 2006; 33: 221–227.; Matthew P., Wyllie R., Caulfield M. et al. Chronic pancreatitis in late childhood and adolescence. Clin. Pediatr. 1994; 33: 88–94.; Witt H., Luck W., Hennies H. C. et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat. Genet. 2000; 25: 213–216.; Chen J. M., Mercier B., Audrezet M. P. et al. Mutations of the pancreatic secretory trypsin inhibitor gene in idiopathic chronic pancreatitis. Gastroenterology. 2001; 120: 1061–1064.; Del Rosario J. F., Putnam P. E., Orenstein D. M. Chronic pancreatitis in a patient with cystic fibrosis and clinical pancreatic insufficiency. J. Pediatr. 1995; 126: 951–952.; Freedman S. D., Blanco P., Shea J. C. et al. Mechanisms to explain pancreatic dysfunction in cystic fibrosis. Gastroenterol. Clin. North. Am. 2000; 84: 657–664.; Bishop M. D., Freedman S. D., Zielenski J. et al. The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum. Genet. 2005; 118: 372–381.; Whitcomb D. C., Gorry M. C., Preston R. A. et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat. Genet. 1996; 14: 141–145.
-
11Academic Journal
Συγγραφείς: Корниенко, Елена, Ягупова, А.
Θεματικοί όροι: ХРОНИЧЕСКИЙ ПАНКРЕАТИТ, НАСЛЕДСТВЕННЫЙ ПАНКРЕАТИТ, ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА, ФЕРМЕНТОТЕРАПИЯ
Περιγραφή αρχείου: text/html
-
12Academic Journal
Συγγραφείς: Туаршева, С., Клочева, Е., Голдобин, В.
Θεματικοί όροι: ПАТОЛОГИЧЕСКАЯ ИЗВИТОСТЬ МАГИСТРАЛЬНЫХ АРТЕРИЙ ГОЛОВЫ,ТРОМБОЦИТАРНЫЙ ГЕМОСТАЗ,ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА ТРОМБОЗА
Περιγραφή αρχείου: text/html
-
13Academic Journal
Συγγραφείς: Горбунова, Виктория
Θεματικοί όροι: МУЛЬТИФАКТОРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ,ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА,ПОЛНОГЕНОМНОЕ СКАНИРОВАНИЕ АССОЦИАЦИЙ (GWAS-GENOME-WIDE ASSOCIATION SCANS)
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Шульженко, В., Васильев, Ю., Курбатова, О., Холод, О., Победоносцева, Е., Учаева, В., Верапатвелян, А., Удина, И.
Θεματικοί όροι: ВРОЖДЕННЫЕ ПОРОКИ РАЗВИТИЯ ЧЕЛЮСТНО-ЛИЦЕВОЙ ОБЛАСТИ, ВПР, НЕСРАЩЕНИЕ ГУБЫ, НЕБА, ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА, ВОЗРАСТ МАТЕРИ, MOTHER' AGE
Περιγραφή αρχείου: text/html
-
15Academic Journal
Πηγή: Практическая медицина.
Θεματικοί όροι: БРОНХОЛЕГОЧНАЯ ДИСПЛАЗИЯ, НЕДОНОШЕННЫЕ МЛАДЕНЦЫ, ПЕРИНАТАЛЬНЫЕ И ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА, 3. Good health
Περιγραφή αρχείου: text/html
-
16Academic Journal
Πηγή: Вопросы современной педиатрии.
Θεματικοί όροι: 2. Zero hunger, 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, ХРОНИЧЕСКИЙ ПАНКРЕАТИТ, НАСЛЕДСТВЕННЫЙ ПАНКРЕАТИТ, ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА, ФЕРМЕНТОТЕРАПИЯ, 3. Good health
Περιγραφή αρχείου: text/html
-
17Academic Journal
Πηγή: Научные ведомости Белгородского государственного университета. Серия: Медицина. Фармация.
Θεματικοί όροι: ПАТОЛОГИЧЕСКАЯ ИЗВИТОСТЬ МАГИСТРАЛЬНЫХ АРТЕРИЙ ГОЛОВЫ,ТРОМБОЦИТАРНЫЙ ГЕМОСТАЗ,ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА ТРОМБОЗА
Περιγραφή αρχείου: text/html
-
18Academic Journal
Πηγή: Кубанский научный медицинский вестник.
Θεματικοί όροι: ВРОЖДЕННЫЕ ПОРОКИ РАЗВИТИЯ ЧЕЛЮСТНО-ЛИЦЕВОЙ ОБЛАСТИ, ВПР, НЕСРАЩЕНИЕ ГУБЫ, НЕБА, ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА, ВОЗРАСТ МАТЕРИ, MOTHER' AGE, 3. Good health
Περιγραφή αρχείου: text/html
-
19Academic Journal
Πηγή: Ecological genetics.
Θεματικοί όροι: МУЛЬТИФАКТОРИАЛЬНЫЕ ЗАБОЛЕВАНИЯ,ГЕНЕТИЧЕСКИЕ ФАКТОРЫ РИСКА,ПОЛНОГЕНОМНОЕ СКАНИРОВАНИЕ АССОЦИАЦИЙ (GWAS-GENOME-WIDE ASSOCIATION SCANS)
Περιγραφή αρχείου: text/html
-
20Academic Journal
Συγγραφείς: Литвинова М.М., Хафизов К.Ф., Сперанская А.С., Мацвай А.Д., Асанов А.Ю., Никольская К.А., Винокурова Л.В., Дубцова Е.А., Ипатова М.Г., Мухина Т.Ф., Карнаушкина М.А., Бордин Д.С.
Πηγή: Sovremennye Tehnologii v Medicine
Θεματικοί όροι: chronic pancreatitis, mutations, gene variants, PRSS1, SPINK1, CTRC, Cftr, CPA1, genetic risk factors, hereditary pancreatitis, Idiopathic pancreatitis, russian population, хронический панкреатит, мутации, варианты генов, генетические факторы риска, наследственный панкреатит, Идиопатический панкреатит, российская популяция
Διαθεσιμότητα: https://repository.rudn.ru/records/article/record/102013/