Showing 1 - 20 results of 69 for search '"ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ"', query time: 0.68s Refine Results
  1. 1
    Academic Journal

    Source: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: The study was supported by the budget project No. 0259-2019-0005. This work was done within the framework of State Assignment Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences (075-15-2019-1662).

    Source: Vavilov Journal of Genetics and Breeding; Том 25, № 1 (2021); 125-134 ; Вавиловский журнал генетики и селекции; Том 25, № 1 (2021); 125-134 ; 2500-3259 ; 10.18699/VJ20.677

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2925/1488; Abidi F., Limam F., Nejib M.M. Production of alkaline proteases by Botrytis cinerea using economic raw materials: Assay as biodetergent. Process Biochem. 2008;43(11):1202-1208. DOI 10.1016/j.procbio.2008.06.018.; Abusham R.A., Rahman R.N.Z.R.A., Salleh A., Basri M. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb. Cell Fact. 2009;8(1):20. DOI 10.1186/1475-2859-8-20.; Anandharaj M., Sivasankari B., Siddharthan N., Rani R.P., Sivakumar S. Production, purification, and biochemical characterization of thermostable metallo-protease from novel Bacillus alkalitelluris TWI3 isolated from tannery waste. Appl. Biochem. Biotechnol. 2016;178(8):1666-1686. DOI 10.1007/s12010-015-1974-7.; Ashraf N.M., Krishnagopal A., Hussain A., Kastner D., Sayed A.M.M., Mok Y.-K., Swaminathan K., Zeeshan N. Engineering of serine protease for improved thermostability and catalytic activity using rational design. Int. J. Biol. Macromol. 2019;126:229-237. DOI 10.1016/j.ijbiomac.2018.12.218.; Asokan S., Jayanthi C. Alkaline protease production by Bacillus licheniformis and Bacillus coagulans. J. Cell Tissue Res. 2010;10(1): 2119-2123.; Barrett A.J., McDonald J.K. Nomenclature: protease, proteinase and peptidase. Biochem. J. 1986;237(3):935. DOI 10.1042/bj2370935.; Betzel C., Klupsch S., Papendorf G., Hastrup S., Branner S., Wilson K.S. Crystal structure of the alkaline proteinase Savinase ™ from Bacillus lentus at 1.4 Å resolution. J. Mol. Biol. 1992;223(2):427-445. DOI 10.1016/0022-2836(92)90662-4.; Bhaskar N., Sudeepa E.S., Rashmi H.N., Tamil Selvi A. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 2007;98(14):2758-2764. DOI 10.1016/j.biortech.2006.09.033.; Bode W., Papamokos E., Musil D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur. J. Biochem. 1987;166(3):673-692. DOI 10.1111/j.1432-1033.1987.tb13566.x.; Cheng S.-W., Hu H.-M., Shen S.-W., Takagi H., Asano M., Tsai Y.-C. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci. Biotechnol. Biochem. 1995; 59(12):2239-2243. DOI 10.1271/bbb.59.2239.; Cho S.J. Primary structure and characterization of a protease from Bacillus amyloliquefaciens isolated from meju, a traditional Korean soybean fermentation starter. Process Biochem. 2019;80:52-57. DOI 10.1016/j.procbio.2019.02.011.; Chu W.H. Optimization of extracellular alkaline protease production from species of Bacillus. J. Ind. Microbiol. Biotechnol. 2007; 34(3):241-245. DOI 10.1007/s10295-006-0192-2.; Dodia M.S., Joshi R.H., Patel R.K., Singh S.P. Characterization and stability of extracellular alkaline proteases from halophilic and alkaliphilic bacteria isolated from saline habitat of coastal Gujarat, India. Braz. J. Microbiol. 2006;37(3):276-282. DOI 10.1590/S1517-83822006000300015.; Garcia-Carreno F.L., Navarrete Del Toro M.A. Classification of proteases without tears. Biochem. Educ. 1997;25(3):161-167. DOI 10.1016/S0307-4412(97)00005-8.; Genov N., Filippi B., Dolashka P., Wilson K.S., Betzel C. Stability of subtilisins and related proteinases (subtilases). Int. J. Pept. Protein Res. 1995;45(4):391-400. DOI 10.1111/j.1399-3011.1995.tb01054.x.; Gessesse A., Hatti-Kaul R., Gashe B.A., Mattiasson B. Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb. Technol. 2003;32(5):519-524. DOI 10.1016/S0141-0229(02)00324-1.; Gong B.L., Mao R.Q., Xiao Y., Jia M.L., Zhong X.L., Liu Y., Xu P.-L., Li G. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb. Technol. 2017;106:97-105. DOI 10.1016/j.enzmictec.2017.06.015.; Gouda M.K. Optimization and purification of alkaline proteases produced by marine Bacillus sp. MIG newly isolated from eastern harbour of Alexandria. Pol. J. Microbiol. 2006;55(2):119-126.; Gulmez C., Atakisi O., Dalginli K.Y., Atakisi E. A novel detergent additive: Organic solvent- and thermo-alkaline-stable recombinant subtilisin. Int. J. Biol. Macromol. 2019;108:436-443. 2018; 108: 436-443. https://doi.org/10.1016/j.ijbiomac.2017.11.133.; Gupta A., Joseph B., Mani A., Thomas G. Biosynthesis and properties of an extracellular thermostable serine alkaline protease from Virgibacillus pantothenticus. World J. Microbiol. Biotechnol. 2008; 24(2):237-243. https://doi.org/10.1007/s11274-007-9462-z.; Gupta A., Khare S.K. Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme Microb. Technol. 2007;42(1):11-16. DOI 10.1016/j.enzmictec.2007.07.019.; Hadjidj R., Badis A., Mechri S., Eddouaouda K., Khelouia L., Annane R., Hattab M.E., Jaouadi B. Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int. J. Biol. Macromol. 2018;114:1033-1048. DOI 10.1016/j.ijbiomac.2018.03.167.; Harwood C.R., Cranenburgh R. Bacillus protein secretion: an unfolding story. Trends Microbiol. 2008;16(2):73-79. DOI 10.1016/j.tim.2007.12.001.; Hu H., Gao J., He J., Yu B., Zheng P., Huang Z., Mau X., Yu J., Han G., Chen D. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS One. 2013; 8(3):e58393. https://doi.org/10.1371/journal.pone.0058393.; Huang R., Yang Q., Feng H. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: Thermodynamics and temperature dependence. Acta Biochim. Biophys. Sin. 2015;47(2):98-105. DOI 10.1093/abbs/gmu120.; Ikemura H., Takagi H., Inouye M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 1987;262(16):7859-7864.; Ikram-Ul-haq H.M., Umber H. Production of protease by Penicillium chrysogenum through optimization of environmental conditions. J. Agric. Soc. Sci. 2006;2(1):23-25.; Jaouadi B., Aghajari N., Haser R., Bejar S. Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis. Biochimie. 2010;92(4):360-369. DOI 10.1016/j.biochi.2010.01.008.; Jaouadi N.Z., Jaouadi B., Hlima H.B., Rekik H., Belhoul M., Hmidi M., Bejar S. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One. 2014;9(9). DOI 10.1371/journal.pone.0108367.; Jaswal R.K., Kocher G.S., Virk M.S. Production of alkaline protease by Bacillus circulans using agricultural residues: A statistical approach. Ind. J. Biotechnol. (IJBT). 2008;7(3):356-360.; Jeong Y.J., Baek S.C., Kim H. Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents. Int. J. Biol. Macromol. 2018;108: 808-816. DOI 10.1016/j.ijbiomac.2017.10.173.; Kalwasińska A., Jankiewicz U., Felföldi T., Burkowska-But A., Brzezinska M.S. Alkaline and halophilic protease production by Bacillus luteus H11 and its potential industrial applications. Food Technol. Biotechnol. 2018;56(4):553-561. DOI 10.17113/ftb.56.04.18.5553.; Ke Y., Yuan X.M., Li J.S., Zhou W., Huang X.H., Wang T. High-level expression, purification, and enzymatic characterization of a recombinant Aspergillus sojae alkaline protease in Pichia pastoris. Protein Expr. Purif. 2018;148:24-29. DOI 10.1016/j.pep.2018.03.009.; Kebabcı Ö., Cihangir N. Isolation of protease producing novel Bacillus cereus and detection of optimal conditions. Afr. J. Biotechnol. 2010; 10(7):1160-1164. DOI 10.5897/AJB10.164.; Khosravi-Darani K., Falahatpishe H.R., Jalali M. Alkaline protease production on date waste by an alkalophilic Bacillus sp. 2-5 isolated from soil. Afr. J. Biotechnol. 2008;7(10):1536-1542.; Kobayashi T., Hakamada Y., Adachi S., Hitomi J., Yoshimatsu T., Koike K., Ito S. Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl. Microbiol. Biotechnol. 1995;43(3):473-481. DOI 10.1007/BF00218452.; Kobayashi T., Lu J., Li Z., Hung V.S., Kurata A., Hatada Y., Takai K., Ito S., Horikoshi K. Extremely high alkaline protease from a deepsubsurface bacterium, Alkaliphilus transvaalensis. Appl. Microbiol. Biotechnol. 2007;75(1):71-80. DOI 10.1007/s00253-006-0800-0.; Kumar C.G., Joo H.S., Koo Y.M., Paik S.R., Chang C.S. Thermostable alkaline protease from a novel marine haloalkalophilic Bacillus clausii isolate. World J. Microbiol. Biotechnol. 2004;20(4):351-357. DOI 10.1023/B:WIBI.0000033057.28828.a7.; Latiffi A.A., Salleh A.B., Rahman R.N.Z.R.A., Oslan S.N., Basri M. Secretory expression of thermostable alkaline protease from Bacillus stearothermophilus FI by using native signal peptide and α-factor secretion signal in Pichia pastoris. Genes Genet. Syst. 2013; 88(2):85-91. DOI 10.1266/ggs.88.85.; Lin H.H., Yin L.J., Jiang S.T. Functional expression and characterization of keratinase from Pseudomonas aeruginosa in Pichia pastoris. J. Agric. Food Chem. 2009;57(12):5321-5325. DOI 10.1021/jf900417t.; Liu B., Zhang J., Gu L., Du G., Chen J., Liao X. Comparative analysis of bacterial expression systems for keratinase production. Appl. Biochem. Biotechnol. 2014;173(5):1222-1235. DOI 10.1007/s12010-014-0925-z.; Liu Y., Zhang T., Zhang Z., Sun T., Wang J., Lu F. Improvement of cold adaptation of Bacillus alcalophilus alkaline protease by directed evolution. J. Mol. Catalys. B: Enzymatic. 2014;106:117-123. DOI 10.1016/j.molcatb.2014.05.005.; Mathew C.D., Gunathilaka R.M.S. Production, purification and characterization of a thermostable alkaline serine protease from Bacillus lichniformis NMS-1. Int. J. Biotechnol. Mol. Biol. Res. 2015;6(3): 19-27. DOI 10.5897/IJBMBR2014.0199.; Mehta V.J., Thumar J.T., Singh S.P. Production of alkaline protease from an alkaliphilic actinomycete. Bioresour. Technol. 2006;97(14): 1650-1654. DOI 10.1016/j.biortech.2005.07.023.; Mothe T., Sultanpuram V.R. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech. 2016;6(1):1-10. DOI 10.1007/s13205-016-0377-y.; Nejad Z., Yaghmaei S., Hosseini R. Production of extracellular protease and determination of optimal condition by Bacillus licheniformis BBRC 100053. Chem. Eng. Trans. 2010;1(3):1447-1452. DOI 10.3303/CET1021242.; Okuda M., Sumitomo N., Takimura Y., Ogawa A., Saeki K., Kawai S., Kobayashi T., Ito S. A new subtilisin family: Nucleotide and deduced amino acid sequences of new high-molecular-mass alkaline proteases from Bacillus spp. Extremophiles. 2004;8(3):229-235. DOI 10.1007/s00792-004-0381-8.; Olajuyigbe F.M., Ajele J.O., Ajele J.O. Production dynamics of extracellular protease from Bacillus species. Afr. J. Biotechnol. 2005; 4(8):776-779.; Ottesen M., Svendsen I. The Subtilisins. In: Methods in Enzymology. Academic Press, 1970;19:199-215. DOI 10.1016/0076-6879(70)19014-8.; Porres J.M., Benito M.J., Lei X.G. Functional expression of keratinase (kerA) gene from Bacillus licheniformis in Pichia pastoris. Biotechnol. Lett. 2002;24(8):631-636. DOI 10.1023/A:1015083007746.; Prakasham R.S., Rao C.S., Sarma P.N. Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 2006;97(13):1449-1454. DOI 10.1016/j.biortech.2005.07.015.; Radha S., Gunasekaran P. Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr. Purif. 2009;64(1):24-31. DOI 10.1016/j.pep.2008.10.008.; Rawlings N.D., Waller M., Barrett A.J., Bateman A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42(D1):D503-D509. DOI 10.1093/nar/gkt953.; Rehman R., Ahmed M., Siddique A., Hasan F., Hameed A., Jamal A. Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Appl. Biochem. Biotechnol. 2017;181(1):434-450. DOI 10.1007/s12010-016-2222-5.; Shafee N., Aris S., Rahman R., Basri M., Salleh A. Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. J. Appl. Sci. Res. 2005;1(1):1-8.; Shaheen M., Shah A., Hameed A., Hasan F. Influence of culture conditions on production and activity of protease from Bacillus subtilis BS1. Pak. J. Bot. 2008;40(5):2161-2169.; Sharma A., Sharma V., Saxena J., Yadav B., Alam A., Prakash A. Optimization of protease production from bacteria isolated from soil. Appl. Res. J. 2015;1(7):388-394.; Sharma K., Kumar R., Vats S., Gupta A. Production, partial purification and characterization of alkaline protease from Bacillus aryabhattai K3. Int. J. Adv. Pharm. Biol. Chem. 2014;3(2):290-298.; Sharma K.M., Kumar R., Panwar S., Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. J. Genet. Eng. Biotechnol. 2017;15:115-126. DOI 10.1016/j.jgeb.2017.02.001.; Sharmin S., Hossain T., Anwar M. Isolation and characterization of a protease producing bacteria Bacillus amovivorus and optimization of some factors of culture conditions for protease production. J. Biol. Sci. 2005;5(3):358-362. DOI 10.3923/jbs.2005.358.362.; Shih J. Construction of bacillus licheniformis t1 strain and fermentation production of crude enzyme extract therefrom. Patent No. US20050032188A1, 2005.; Shikha, Sharan A., Darmwal N.S. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresour. Technol. 2007;98(4):881-885. DOI 10.1016/j.biortech.2006.03.023.; Shivanand P., Jayaraman G. Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris strain VITP4 isolated from Kumta coast. Process Biochem. 2009;44(10):1088-1094. DOI 10.1016/j.procbio.2009.05.010.; Shivasharana C.T., Naik G.R. Ecofriendly applications of thermostable alkaline protease produced from a Bacillus sp. JB-99 under solid state fermentation. Int. J. Environ. Sci. 2012;3(3):956-964. DOI 10.6088/ijes.2012030133003.; Shu M., Shen W., Yang S., Wang X., Wang F., Wang Y., Ma L. High-level expression and characterization of a novel serine protease in Pichia pastoris by multi-copy integration. Enzyme Microb. Technol. 2016;92:56-66. DOI.10.1016/j.enzmictec.2016.06.007.; Singh S.K., Tripathi V.R., Jain R.K., Vikram S., Garg S.K. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease. Microb. Cell Fact. 2010;9(1):59. DOI 10.1186/1475-2859-9-59.; Smith E.L., Markland F.S., Kasper C.B., DeLange R.J., Landon M., Evans W.H. The complete amino acid sequence of two types of subtilisin, BPN’ and Carlsberg. J. Biol. Chem. 1966;241(24):5974-5976.; Srinivasan T., Das S., Balakrishnan V., Philip R., Kannan N. Isolation and characterization of thermostable protease producing bacteria from tannery industry effluent. Recent Res. Sci. Technol. 2009;1(2): 63-66.; Srinubabu G., Lokeswari N., Jayaraju K. Screening of nutritional parameters for the production of protease from Aspergillus oryzae. Electr. J. Chem. 2007;4(2):208-215. DOI 10.1155/2007/915432.; Strausberg S.L., Ruan B., Fisher K.E., Alexander P.A., Bryan P.N. Directed coevolution of stability and catalytic activity in calciumfree subtilisin. Biochemistry. 2005;44(9):3272-3279. DOI 10.1021/bi047806m.; Takenaka S., Yoshinami J., Kuntiya A., Techapun C., Leksawasdi N., Seesuriyachan P., Chaiyaso I., Watanabe M., Tanaka K., Yoshida K. Characterization and mutation analysis of a halotolerant serine protease from a new isolate of Bacillus subtilis. Biotechnol. Lett. 2018; 40(1):189-196. DOI 10.1007/s10529-017-2459-2.; Thys R.C.S., Guzzon S.O., Cladera-Olivera F., Brandelli A. Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochem. 2006; 41(1):67-73. DOI 10.1016/j.procbio.2005.03.070.; Tufvesson P., Lima-Ramos J., Nordblad M., Woodley J.M. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Process Res. Dev. 2010;15(1):266-274. DOI 10.1021/op1002165.; Usharani B., Muthuraj M. Production and characterization of protease enzyme from Bacillus laterosporus. Afr. J. Microbiol. Res. 2010; 4(11):1057-1063.; Vaithanomsat P., Malapant T., Apiwattanapiwat W. Silk degumming solution as substrate for microbial protease production. Nat. Sci. 2008;42:543-551.; Voordouw G., Milo C., Roche R.S. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976;15(17):3716-3724. DOI 10.1021/bi00662a012.; Zambare V., Nilegaonkar S., Kanekar P. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnol. 2011;28(2): 173-181. DOI 10.1016/j.nbt.2010.10.002.; Zhao H.Y., Feng H. Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnol. 2018;18(1):34. DOI 10.1186/s12896-018-0451-0.; Zhao H.Y., Wu L.Y., Liu G., Feng H. Single-site substitutions improve cold activity and increase thermostability of the dehairing alkaline protease (DHAP). Biosci. Biotechnol. Biochem. 2016;80(12):2480-2485. DOI 10.1080/09168451.2016.1230005.; Zhou K., Dong Y., Zheng H., Chen B., Mao R., Zhou L., Wang Y. Expression, fermentation, purification and lyophilisation of recombinant Subtilisin QK in Pichia pastoris. Process Biochem. 2017; 54:1-8. DOI 10.1016/j.procbio.2016.12.028.; https://vavilov.elpub.ru/jour/article/view/2925

  6. 6
  7. 7
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 21, № 8 (2017); 969-978 ; Вавиловский журнал генетики и селекции; Том 21, № 8 (2017); 969-978 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1276/1019; Bao Z., Xiao H., Liang J., Zhang L., Xiong X., Sun N., Si T., Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for onestep multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 2015;4:585-594. DOI 10.1021/sb500255k.; Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819): 1709-1712. DOI 10.1126/science.1138140.; Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA. 1998;95:10570-10575. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC27935/.; Bohmert K., Camus I., Bellini C., Bouchez D., Caboche M., Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998;17(1):170-180. DOI 10.1093/emboj/17.1.170.; Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551-2561. DOI 10.1099/mic.0.28048-0.; Botstein D., Chervitz S.A., Cherry M.J. Yeast as a model organism. Sci ence. 1997;277(5330):1259-1260. https://www.ncbi.nlm.nih. gov/ pmc/articles/PMC3039837/.; Burgess S., Cheng L., Gu F., Huang J., Huang Z., Lin S., Li J., Li W., Qin W., Sun Y., Songyang Z., Wei W., Wu Q., Wang H., Wang X., Xiong J.W., Xi J., Yang H., Zhou B., Zhang B. Questions about NgAgo. Protein Cell. 2016;7(12):913-915. DOI 10.1007/s13238016-0343-9.; Cen Y., Timmermans B., Souffriau B., Thevelein J.M., Van Dijck P. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild type and lig4 strains. Fungal Genet. Biol. 2017;107:44-50. DOI 10.1016/j.fgb.2017.08.004.; Cerutti L., Mian N., Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 2000;25:481-482. DOI 10.1016/ S0968-0004(00)01641-8.; Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819823. DOI 10.1126/science.1231143.; DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41(7):4336-4343. DOI 10.1093/nar/gkt135.; Durai S., Mani M., Kandavelou K., Wu J., Porteus M.H., Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 2005;33:5978-5990. DOI 10.1093/nar/gki912.; Farzadfard F., Perli S.D., Lu T.K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2013;2:604-613. DOI 10.1021/sb400081r.; Fernandez R., Berro J. Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9. Yeast. 2016;33:549-557. DOI 10.1002/yea.3178.; Gao F., Shen X.Z., Jiang F., Wu Y., Han Ch. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat. Biotechnol. 2016;34(7):768-773. DOI 10.1038/nbt.3547.; Gao Y., Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J. Integr. Plant Biol. 2014;56:343-349. DOI 10.1111/jipb.12152.; Gasiunas G., Barrangou R., Horvath P., Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA. 2012;109:E2579E2586. DOI 10.1073/pnas.1208507109.; Generoso W.C., Gottardi M., Oreb M., Boles E. Simplified CRISPRCas genome editing for Saccharomyces cerevisiae. J. Microbiol. Methods. 2016;127:203-205. doi.org/10.1016/j.mimet.2016.06.020.; Godde J.S., Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 2006;62(6):718-729. DOI 10.1007/ s00239-005-0223-z.; Guo J., Gaj T., Barbas C.F. Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J. Mol. Biol. 2010;400(1):96-107. DOI 10.1016/j.jmb.2010.04.060.; Haft D.H., Selengut J., Mongodin E.F., Nelson K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005;1(6):E60. DOI 10.1371/journal.pcbi.0010060.; Horvath P., Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-170. DOI 10.1126/science. 1179555.; Horwitz A.A., Walter J.M., Schubert M.G., Kung S.H., Hawkins K., Platt D.M., Hernday A.D., Mahatdejkul-Meadows T., Szeto W., Chandran S.S., Newman J.D. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems. 2015;1(1):88-96. doi.org/10.1016/j.cels.2015.02.001.; Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987;169(12):5429-5433. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC213968/.; Jacobs J.Z., Ciccaglione K.M., Tournier V., Zaratiegui M. Implementation of the CRISPR-Cas9 system in fission yeast. Nat. Commun. 2014;5:5344. DOI 10.1038/ncomms6344.; Jakočiūnas T., Bonde I., Herrgård M., Harrison S.J., Kristensen M., Pedersen L.E., Jensen M.K., Keasling J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015;28:213-222. DOI 10.1016/j.ymben.2015.01.008.; Jansen R., Embden J.D., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002;43(6):1565-1575. https://www.ncbi.nlm.nih.gov/pubmed/11952905.; Javidi-Parsijani P., Niu G., Davis M., Lu P., Atala A., Lu B. No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cell. PLoS ONE. 2017;12(5):e0177444. DOI 10.1371/journal.pone.0177444.; Jensen E.D., Ferreira R., Jakočiūnas T., Arsovska D., Zhang J., Ding L., Smith J.D., David F., Nielsen J., Jensen M.K., Keasling J.D. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microb. Cell Fact. 2017;16(1):46. DOI 10.1186/s12934-017-0664-2.; Jensen M.K., Keasling J.D. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 2015;15(1): 1-10. DOI 10.1111/1567-1364.12185.; Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI 10.1126/science.1225829.; Joung J.K., Sander J.D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 2013;14(1):4955. DOI 10.1038/nrm3486.; Khin N.C., Lowe J.L., Jensen L.M., Burgio G. No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS ONE. 2017;12(6):e0178768. DOI 10.1371/journal.pone.0178768.; Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA. 1996;93:1156-1160. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC40048/.; Kuijpers N.G., Solis-Escalante D., Bosman L., van den Broek M., Pronk J.T., Daran J.-M., Daran-Lapujade P. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb. Cell Fact. 2013;12(1):47. DOI 10.1186/1475-2859-12-47.; Laughery M.F., Hunter T., Brown A., Hoopes J., Ostbye T., Shumaker T., Wyrick J.J. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast. 2015;32:711-720. DOI 10.1002/yea.3098.; Lechner A., Brunk E., Keasling J.D. The need for integrated approaches in metabolic engineering. Cold Spring Harb. Perspect. Biol. 2016; 8(11):a023903. DOI 10.1101/cshperspect.a023903.; Lee M.E., DeLoache W.C., Cervantes B., Dueber J.E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 2015;4:975-986. DOI 10.1021/sb500366v.; Li T., Huang Sh., Zhao X., Wright D.A., Carpenter S., Spalding M.H., Weeks D.P., Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315-6325. DOI 10.1093/nar/gkr188.; Liu Z., Liang Y., Ang E.L., Zhao H. A new era of genome integration – simply cut and paste! ACS Synth. Biol. 2017;6(4):601-609. DOI 10.1021/acssynbio. 6b00331.; Makarova K.S., Wolf Y.I., Van der Oost J., Koonin E.V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct. 2009;4:29. DOI 10.1186/1745-6150-4-29.; Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013;339:823-826. DOI 10.1126/science.1232033.; Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J., Daran J.M. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 2015;15(2):Fov004. DOI 10.1093/femsyr/fov004.; Mojica F.J., Díez-Villaseñor C., García-Martínez J., Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155(3):733-740. DOI 10.1099/mic.0.023960-0.; Nambu-Nishida Y., Nishida K., Hasunuma T., Kondo A. Development of a comprehensive set of tools for genome engineering in a coldand thermo-tolerant Kluyveromyces marxianus yeast strain. Sci. Rep. 2017;7(1):8993. DOI 10.1038/s41598-017-08356-5.; Ng H., Dean N. Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression. mSphere. 2017;2(2):e00385-16. DOI 10.1128/mSphere.00385-16.; Nielsen J., Larsson C., van Maris A., Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 2013;24(3):398-404. DOI 10.1016/j.copbio.2013.03.023.; Norton E.L., Sherwood R.K., Bennett R.J. Development of a CRISPRCas9 system for efficient genome editing of Candida lusitaniae. mSphere. 2017;2(3):e00217-17. DOI 10.1128/mSphere.00217-17.; Numamoto M., Maekawa H., Kaneko Y. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J. Biosci. Bioeng. 2017;124(5):487-492. DOI 10.1016/j.jbiosc.2017.06.001.; Ostrov N., Landon M., Guell M., Kuznetsov G., Teramoto J., Cervantes N., Zhou M., Singh K., Napolitano M.G., Moosburner M., Shrock E., Pruitt B.W., Conway N., Goodman D.B., Gardner C.L., Tyree G., Gonzales A., Wanner B.L., Norville J.E., Lajoie M.J., Church G.M. Design, synthesis, and testing toward a 57-codon genome. Science. 2016;353(6301):819-822. DOI 10.1126/science.aaf3639.; Ozaki A., Konishi R., Otomo C., Kishida M., Takayama S., Matsumoto T., Tanaka T., Kondo A. Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose. Metab. Eng. Commun. 2017;5:60-67. DOI 10.1016/j.meteno.2017.08.002.; Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., Leavell M.D., Tai A., Main A., Eng D., Polichuk D.R., Teoh K.H., Reed D.W., Treynor T., Lenihan J., Jiang H., Fleck M., Bajad S., Dang G., Dengrove D., Diola D., Dorin G., Ellens K.W., Fickes S., Galazzo J., Gaucher S.P., Geistlinger T., Henry R., Hepp M., Horning T., Iqbal T., Kizer L., Lieu B., Melis D., Moss N., Regentin R., Secrest S., Tsuruta H., Vazquez R., Westblade L.F., Xu L., Yu M., Zhang Y., Zhao L., Lievense J., Covello P.S., Keasling J.D., Reiling K.K., Renninger N.S., Newman J.D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528-532. DOI 10.1038/nature12051.; Reider Apel A., d’Espaux L., Wehrs M., Sachs D., Li R.A., Tong G.J., Garber M., Nnadi O., Zhuang W., Hillson N.J., Keasling J.D., Mukhopadhyay A. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 2017;45(1):496-508. DOI 10.1093/nar/gkw1023.; Richard G.-F., Viterbo D., Khanna V., Mosbach V., Castelain L., Dujon B. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS ONE. 2014;9(4):e95611. DOI 10.1371/journal.pone.0095611.; Ryan O.W., Cate J.H. Multiplex engineering of industrial yeast genomes using CRISPRm. Methods Enzymol. 2014;546:473-489. DOI 10.1016/B978-0-12-801185-0.00023-4.; Ryan O.W., Skerker J.M., Maurer M.J., Li X., Tsai J.C., Poddar S., Lee M.E., DeLoache W., Dueber J.E., Arkin A.P., Cate J.H.D. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife. 2014;3:e03703. DOI 10.7554/eLife.03703.; Sanjana N.E., Cong L., Zhou Y., Cunniff M.M., Feng G., Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat. Protocols. 2012;7(1):171-192. DOI 10.1038/nprot.2011.431.; Schwartz C.M., Hussain M.S., Blenner M., Wheeldon I. Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9mediated genome editing in Yarrowia lipolytica. ACS Synth. Biol. 2016;5(4):356-359. DOI 10.1021/acssynbio.5b00162.; Shabalina S.A., Koonin E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008;23:578-587. DOI 10.1016/j.tree.2008.06.005.; Sheng J., Flick H., Feng X. Systematic optimization of protein secretory pathways in Saccharomyces cerevisiae to increase expression of Hepatitis B Small Antigen. Front. Microbiol. 2017;8:875. DOI 10.3389/fmicb.2017.00875.; Shi S., Liang Y., Zhang M.M., Ang E.L., Zhao H. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab. Eng. 2016;33:19-27. DOI 10.1016/j.ymben.2015.10.011.; Stovicek V., Borodina I., Forster J. CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun. 2015;2:13-22. doi.org/10.1016/j.meteno.2015.03.001.; Swarts D.C., Hegge J.W., Hinojo I., Shiimori M., Ellis M.A., Dumrongkulraksa J., Terns R.M., Terns M.P., van der Oost J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. 2015a;43(10):5120-5129. DOI 10.1093/nar/gkv415.; Swarts D.C., Koehorst J.J., Westra E.R., Schaap P.J., van der Oost J. Effects of Argonaute on gene expression in Thermus thermophiles. PLoS ONE. 2015b;10(4):e0124880. DOI 10.1371/journal.pone.0124880.; Swarts D.C., Makarova K., Wang Y., Nakanishi K., Ketting R.F., Koonin E.V., Patel D.J., van der Oost J. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 2014;21(9):743-753. DOI 10.1038/nsmb.2879.; Vanegas K.G., Lehka B.J., Mortensen U.H. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microb. Cell Fact. 2017;16(1):25. DOI 10.1186/s12934-017-0632-x.; Vogel J. A bacterial seek-and-destroy system for foreign DNA. Science. 2014;344:972-973. DOI 10.1126/science.1252962.; Vyas V.K., Barrasa M.I., Fink G.R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv. 2015;1(3):e1500248. DOI 10.1126/sciadv.1500248.; Walter J.M., Chandran S.S., Horwitz A.A. CRISPR-cas-assisted multiplexing (CAM): simple same-day multi-locus engineering in yeast. J. Cell Physiol. 2016;231:2563-2569. DOI 10.1002/jcp.25375.; Wang L., Lin J., Zhang T., Xu K., Ren Ch., Zhang Zh. Simultaneous screening and validation of effective zinc finger nucleases in yeast. PLoS ONE. 2013;8(5):e64687. DOI 10.1371/journal.pone.0064687.; Wang Y., Wei D., Zhu X., Pan J., Zhang P., Huo L., Zhu X. A ʻsuicideʼ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 2016;6: 31145. DOI 10.1038/srep31145.; Weninger A., Hatzl A.-M., Schmid C., Vogl T., Glieder A. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J. Biotechnol. 2016;235:139-149. DOI 10.1016/j.jbiotec.2016.03.027.; Wriessnegger T., Pichler H. Yeast metabolic engineering–targeting sterol metabolism and terpenoid formation. Progr. Lipid Res. 2013; 52(3):277-293. DOI 10.1016/j.plipres.2013.03.001.; Zhang G.C., Kong I.I., Kim H., Liu J.J., Cate J.H., Jin Y.S. Construction of a quadruple auxotrophic mutant of an industrial polyploidy Saccharomyces cerevisiae using RNA-guided Cas9 nuclease. Appl. Environ. Microb. 2014;80:7694-7701. DOI 10.1128/ AEM.02310-14.; https://vavilov.elpub.ru/jour/article/view/1276

  8. 8
    Academic Journal

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 2 (2018); 85-92 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 2 (2018); 85-92 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/580/426; Sheen J., Hwang S., Niwa Y., Kobayashi H., Galbraith D.W. Green-fluorescent protein as a new vital marker in plant cells // Plant J. 1995. Vol. 8. N 5. P. 777–784.; Cubitt A.B., Heim R., Adams S.R., Boyd A.E., Gross L.A., Tsien R.Y. Understanding, improving and using green fluorescent proteins // Trends Biochem. Sci. 1995. Vol. 20. N 11. P. 448–455.; Patterson G.H., Knobel S.M., Sharif W.D., Kain S.R., Piston D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescent microscopy // Biophys. J. 1997. Vol. 73. N 5. P. 2782–2790.; Shaw S.L., Ehrhardt D.W. Smaller, faster, brighter: advances in optical imaging of living plant cells // Annu. Rev. Plant Biol. 2013. Vol. 64. P. 351–375.; Richards H.A., Halfhill M.D., Millwood R.J., Stewart Jr C.N. Quantitative GFP fluorescence as an indicator of recombinant protein synthesis in transgenic plants // Plant Cell Rep. 2003. Vol. 22. P. 117–121.; Mazur B.J., Chui C.F. Sequence of a genomic DNA clone for the small subunit of ribulose bis-phosphate carboxylase-oxygenase from tobacco // Nucleic Acids Res. 1985. Vol. 13. N 7. P. 2373–2386.; Zolotukhin S., Potter M., Hauswirth W.W., Guy J., Muzyczka N. A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells // J. Virol. 1996. Vol. 70. N 7. P. 4646–4654.; Юрьева Н.О., Егоров Ц.А., Беляев Д.В., Соболькова Г.И., Деревягина М.К., Рогожин Е.А., Терешонок Д.В., Мелешин А.А., Шелухин П.Г. Способ получения форм картофеля in vitro, устойчивых к возбудителям фитофтороза и альтернариоза. Патент РФ № 2524424 от 14.06.2014. Опубликовано: 27.07.2014. Бюл. № 21.; Murasige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture // Physiol. Plant. 1962. Vol. 15. N 3. P. 473–497.; Moller E.M., Bahnweg G., Sandermann H., Geiger H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues // Nucleic Acids Res. 1992. Vol. 20. N 22. P. 6115–6116.; Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning. A laboratory manual N.Y.: Cold Spring Harbor Laboratory, 1982. 545 pp.; Herrera-Estrella L., Van den Broeck G., Maenhaut R., Van Montagu M., Schell J., Timko M., Cashmore A. Light-inducible and chloroplast-associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector // Nature. 1984. Vol. 310. N 5973. P. 115–120.; Chiu W., Niwa Y., Zeng W., Hirano T., Kobayashi H., Sheen J. Engineered GFP as a vital reporter in plants // J. Curr Biol. 1996. Vol. 6. N 3. P. 325–330.; Finer J.J., Beck S.L., Buenrostro-Nava M.T., Chi Y., Ling P.P. Monitoring gene expression in plant tissues. Using green fluorescent protein with automated image collection and analysis // Plan tissue culture engineering. Focus on biotechnology, vol 6 / Eds. S.D. Gupta and Y. Ibaraki. Dordrecht: Springer, 2006. P. 31–46.; Haikonen T., Rajamaki M.L., Valkonen J.P. Improved silencing suppression and enhanced heterologous protein expression are achieved using an engineered viral helper component proteinase // J. Virol. Methods. 2013. Vol. 193. N 2. P. 687–692.; Naylor L.H. Reporter gene technology: the future looks bright // Biochem. Pharmocol. 1999. Vol. 58. N. 5. P. 749–757.

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Научное сообщество студентов; 20-22

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-9907548-4-3; https://interactive-plus.ru/e-articles/182/Action182-15654.pdf; 1. Егоров Н.С. Биотехнология проблемы и перспективы. – М., 1994.; 2. Калашникова Е.А., Шевелуха В.С., Воронин Е.С. Биотехнология. – М.; 3. Биотехнология [Электронный ресурс]. – Режим доступа: http://www.biotechnolog.ru; 4. Википедия [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/

  15. 15
  16. 16
    Academic Journal

    Contributors: грант № 14.512.11.0057 Министерства образования и науки Российской Федерации

    Source: Vavilov Journal of Genetics and Breeding; Том 17, № 4/1 (2013); 675-685 ; Вавиловский журнал генетики и селекции; Том 17, № 4/1 (2013); 675-685 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/192/194; Abdel-Fattah Y.R., Gaballa A.A. Identification and overexpression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli // Microbiol. Res. 2008. V. 163. P. 13–20.; Afzal M., Oommen S., Al-Awadi S. Transformation of chenodeoxycholic acid by thermophilic Geobacillus stearothermophilus // Biotechnol. Appl. Biochem. 2011. V. 58. P. 250–255.; Alterthum F., Ingram L.O. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli // Appl. Envir. Microbiol. 1989. V. 55. P. 1943–1948.; Ash C., Farrow J.A.E., Wallbanks S., Collins M.D. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences // Lett. Appl. Microbiol. 1991. V. 13. P. 202–206.; Assareh R., Shahbani Zahiri H., Akbari Noghabi K. et al. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws // Biores. Technol. 2012. V. 120. P. 99–105.; Balan A., Ibrahim D., Abdul Rahim R., Ahmad Rashid F.A. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra // Enzyme Res. 2012. V. 2012. P. 987523.; Banat I.M., Marchant R., Rahman T.J. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 2197–2201.; Bartosiak-Jentys J., Eley K., Leak D.J. Application of pheB as a reporter gene for Geobacillus sрp., enabling qualitative colony screening and quantitative analysis of promoter strength // Appl. Envir. Microbiol. 2012. V. 78. P. 5945–5947.; Bartosiak-Jentys J., Hussein A.H., Lewis C.J., Leak D.J. Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius // Microbiology. 2013. V. 159. P. 1267–1275.; Ben-David A., Bravman T., Balazs Y.S. et al. Glycosynthase activity of Geobacillus stearothermophilus GH52 betaxylosidase: efficient synthesis of xylooligosaccharides from alpha-D-xylopyranosyl fluoride through a conjugated reaction // Eur. J. Chem. Biol. 2007. V. 8. P. 2145–2151.; Canakci S., Inan K., Kacagan M., Belduz A.O. Evaluation of arabinofuranosidase and xylanase activities of Geobacillus sрp. isolated from some hot springs in Turkey // J. Microbiol. Biotechnol. 2007. V. 17. P. 1262–1270.; Canakci S., Cevher Z., Inan K. et al. Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71 // World J. Microbiol. Biotechnol. 2012. V. 28. P. 1981–1988.; Chang S., Cohen S.N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA // Mol. Gen. Genet. 1979. V. 168. P. 111–115.; Cheong K.W., Leow T.C., Rahman R.N.Z.R.A. et al. Reductive alkylation causes the formation of a molten globule-like intermediate structure in Geobacillus zalihae strain T1 thermostable lipase // Appl. Biochem. Biotechnol. 2011. V. 164. P. 362–375.; Coorevits A., Logan N.A., Dinsdale A.E. et al. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 1954–1961.; Cripps R.E., Eley K., Leak D.J. et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production // Metab. Eng. 2009. V. 11. P. 398–408.; De Benedetti E.C., Rivero C.W., Britos C.N. et al. Biotransformation of 2,6-diaminopurine nucleosides by immobilized Geobacillus stearothermophilus // Biotechnol. Progr. 2012. V. 28. P. 1251–1256.; De Rossi E., Brigidi P., Rossi M. et al. Characterization of grampositive broad host-range plasmids carrying a thermophilic replicon // Res. Microbiol. 1991. V. 142. P. 389–396.; Dinsdale A.E., Halket G., Coorevits A. et al. Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 1802–1810.; Donk P.J. A highly resistant thermophilic organism // J. Bacteriol. 1920. V. 5. P. 373–374.; Ebrahimpour A., Rahman R.N., Basri M., Salleh A.B. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM // Biores. Technol. 2011. V. 102. P. 6972–6981.; Fong J.C.N., Svenson C.J., Nakasugi K. et al. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost // Extremophiles. 2006. V. 10. P. 363–372.; Fortina M.G., Mora D., Schumann P. et al. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. // Int. J. Syst. Evol. Microbiol. 2001. V. 51. P. 2063–2071.; Gerasimova J., Kuisiene N. Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK1 // Mikrobiologiia. 2012. V. 81. P. 457–463.; Goh K.M., Kahar U.M., Chai Y.Y. et al. Recent discoveries and applications of Anoxybacillus // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 1475–1488.; Gordon R.E., Smith N.R. Aerobic sporeforming bacteria capable of growth at high temperatures // J. Bacteriol. 1949. V. 58. P. 327–341.; Hartley B.S., Shama G. Novel ethanol fermentations from sugar cane and straw // Phil. Trans. Royal Soc. A. 1987. V. 321. P. 555–568.; Imanaka T., Fujii M., Aramori I., Aiba S. Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis // J. Bacteriol. 1982. V. 149. P. 824–830.; Ingram L.O., Conway T., Clark D.P. et al. Genetic engineering of ethanol production in Escherichia coli // Appl. Envir. Microbiol. 1987. V. 53. P. 2420–2425.; Kuisiene N., Raugalas J., Chitavichius D. Geobacillus lituanicus sp. nov. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 1991–1995.; Liao H., McKenzie T., Hageman R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile // Proc. Natl Acad. Sci. USA. 1986. V. 83. P. 576–580.; Liu B., Zhang N., Zhao C. et al. Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7 // J. Microbiol. Biotechnol. 2012. V. 22. P. 1388–1394.; Miñana-Galbis D., Pinzón D.L., Lorén J.G. et al. Reclassification of Geobacillus pallidus (Scholz et al., 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 1600–1604.; Narumi I., Sawakami K., Nakamoto S. et al. A newly isolated Bacillus stearotheromophilus K1041 and its transformation by electroporation // Biotechnol. Techn. 1992. V. 6. P. 83–86.; Nazina T.N., Tourova T.P., Poltaraus A.B. et al. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus; thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans // Int. J. Syst. Evol. Microbiol. 2001. V. 51. P. 433–446.; Nazina T.N., Lebedeva E.V., Poltaraus A.B. et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 2019–2024.; Ng I.-S., Li C.-W., Yeh Y.-F. et al. A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures // Extremophiles. 2009. V. 13. P. 425–435.; Payton M.A., Hartley B.S. Mutants of Bacillus stearothermophilus lacking NAD-linked l-lactate dehydrogenase // FEMS Microbiol. Lett. 1985. V. 26. P. 333–336.; Quintana-Castro R., Díaz P., Valerio-Alfaro G. et al. Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase // Mol. Biotechnol. 2009. V. 42. P. 75–83.; Ratnadewi A.A.I., Fanani M., Kurniasih S.D. et al. β-DXylosidase from Geobacillus thermoleovorans IT-08: biochemical characterization and bioinformatics of the enzyme // Appl. Biochem. Biotechnol. 2013. V. 170. No. 8. P. 1950–1964.; Riyanti E.I., Rogers P.L. Kinetic evaluation of ethanol-tolerant thermophile Geobacillus thermoglucosidasius M10exg for ethanol production // Indones. J. Agric. Sci. 2009. V. 10. No. 1. P. 34–41.; Shallom D., Leon M., Bravman T. et al. Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6 // Biochemistry. 2005. V. 44. P. 387–397.; Sung M.H., Kim H., Bae J.W. et al. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 2251–2255.; Suzuki H., Yoshida K.-I. Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids // J. Microbiol. Biotechnol. 2012. V. 22. P. 1279–1287.; Suzuki H., Murakami A., Yoshida K.-I. Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR // Appl. Envir. Microbiol. 2012. V. 78. P. 7376–7383.; Suzuki H., Yoshida K.-I., Ohshima T. Polysaccharide-degrading thermophiles generated by heterologous gene expres sion in Geobacillus kaustophilus HTA426 // Appl. Envir. Microbiol. 2013. V. 79. P. 5151–5158.; Takami H., Nishi S., Lu J. et al. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench // Extremophiles. 2004a. V. 8. P. 351–356.; Takami H., Takaki Y., Chee G.-J. et al. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus // Nucl. Acids Res. 2004b. V. 32. P. 6292–6303.; Talarico L.A., Gil M.A., Yomano L.P. et al. Construction and expression of an ethanol production operon in Gram-positive bacteria // Microbiol. 2005. V. 151. P. 4023–4031.; Tang Y.J., Sapra R., Joyner D. et al. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain // Biotechnol. Bioeng. 2009. V. 102. P. 1377–1386.; Taylor M.P., Esteban C.D., Leak D.J. Development of a versatile shuttle vector for gene expression in Geobacillus sрp. // Plasmid. 2008. V. 60. P. 45–52.; Taylor M.P., Eley K.L., Martin S. et al. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production // Trends Biotechnol. 2009. V. 27. P. 398–405.; Thompson A.H., Studholme D.J., Green E.M., Leak D.J. Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius // Biotechnol. Lett. 2008. V. 30. P. 1359–1365.; Verhaart M.R.A., Bielen A.A.M., van der Oost J. et al. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal // Env. Technol. 2010. V. 31. P. 993–1003.; Verma D., Anand A., Satyanarayana T. Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars // Appl. Biochem. Biotechnol. 2013. V. 170. P. 119–130.; Wagschal K., Heng C., Lee C.C. et al. Purification and characterization of a glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08 // Appl. Biochem. Biotechnol. 2009. V. 155. P. 304–313.; White D., Sharp R.J., Priest F.G. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area // Antonie van Leeuwenhoek. 1993. V. 64. P. 357–386.; Woese C.R., Fox G.E., Zablen L. et al. Conservation of primary structure in 16S ribosomal RNA // Nature. 1975. V. 254. P. 83–86.; Wu L.J., Welker N.E. Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA // J. General Microbiol. 1989. V. 135. P. 1315–1324.; Wu S., Liu B., Zhang X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific // Appl. Microbiol. Biotechnol. 2006. V. 72. P. 1210–1216.; Xiao Z., Wang X., Huang Y. et al. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain // Biotechnol. Biofuels. 2012. V. 5. P. 88.; https://vavilov.elpub.ru/jour/article/view/192

  17. 17
  18. 18
    Academic Journal

    Contributors: грант Министерства образования и науки РФ в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007–2013 гг.»

    Source: Vavilov Journal of Genetics and Breeding; Том 16, № 4/1 (2012); 766-773 ; Вавиловский журнал генетики и селекции; Том 16, № 4/1 (2012); 766-773 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/73/74; Кочетов А.В., Смирнова О., Ибрагимова С. и др. Информационный портал «Биотехнология растений» – Интернет-ресурс для поддержки экспериментов в области генной инженерии растений, генетики и селекции пшеницы // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 4/1. С. 838–848.; Смирнова О.Г., Рассказов Д.А., Афонников Д.А., Кочетов А.В. TGP – база данных промоторов для трансгенеза растений // Матем. биология и биоинформатика. 2012. Т. 7. № 2. С. 444–460.; Gallie D.R. The 5’-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F // Nucl. Acids Res. 2002. V. 30. Nо. 15. P. 3401–3411.; Grillo G., Turi A., Licciulli F. et al. UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs // Nucl. Acids Res. 2010. V. 38. Database issue. P. D75–D80.; Jacobs G.H., Chen A., Stevens S.G. et al. Transterm: a database to aid the analysis of regulatory sequences in mRNAs // Nucl. Acids Res. 2009. V. 37. Database issue. P. D72–D76.; Liu Y., Wimmer E., Paul A.V. Cis-acting RNA elements in human and animal plus-strand RNA viruses // Biochim. Biophys. Acta. 2009. V. 1789. Nо. 9/10. P. 495–517.; Zdobnov E.M., Lopez R., Apweiler R., Etzold T. The EBI SRS server – recent developments // Bioinformatics. 2002. V. 18. P. 368–373.; https://vavilov.elpub.ru/jour/article/view/73

  19. 19
    Academic Journal
  20. 20