Εμφανίζονται 1 - 20 Αποτελέσματα από 27 για την αναζήτηση '"ГЕНЕТИЧЕСКАЯ ВАРИАБЕЛЬНОСТЬ"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета (ПСАЛ-2030).

    Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 57-65
    Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 57-65

    Περιγραφή αρχείου: text/html

  2. 2
  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета и при финансовой поддержке РФФИ в рамках научного проекта 19-34-60012.

    Πηγή: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 72-78 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 72-78

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907561-33-5; https://phsreda.com/e-articles/10364/Action10364-102292.pdf; Иванис В.А. Геморрагическая лихорадка с почечным синдромом – проблема здравоохранения настоящего времени / В.А. Иванис, А.Ф. Попов, Г.С. Томилка, В.А. Фигурнов // Тихоокеанский медицинский журнал. – 2015. – №1. – С. 21–25.; Савицкая Т.А. Обзор хантавирусных инфекций в мире, эпидемиологической ситуации по геморрагической лихорадке с почечным синдромом в Российской Федерации в 2020 г. и прогноз на 2021 г. / Т.А. Савицкая, А.В. Иванова, Г.Ш. Исаева, И.Д. Решетников , Э. Кабве, В.А. Трифонов, В.Б. Зиатдинов, Д.В. Транквилевский, И.В. Серова, Н.В. Попов, О.Н. Скударева, И.В. Попова // Проблемы особо опасных инфекций. – 2021. – №2. – С. 62–70.; Castel G., Chevenet F., Razzauti M., Murri S., Marianneau P., Cosson J.-F., Tordo N., Plyusnin A. Phylogeography of Puumala orthohantavirus in Europe // Viruses. – 2019. – 11. – Art. 679.; Davidyuk Y., Shamsutdinov A., Kabwe E., Ismagilova R., Martynova E, Belyaev A., Shuralev E., Trifonov V., Savitskaya T., Isaeva G., Khaiboullina S., Rizvanov A., Morzunov S. Prevalence of the Puumala orthohantavirus Strains in the Pre-Kama Area of the Republic of Tatarstan, Russia // Pathogens. – 2020. – Vol. 9. – Art. 540.; Davidyuk Y.N., Kabwe E., Shamsutdinov A.F., Knyazeva A.V., Martynova E.V., Ismagilova R.K., Trifonov V.A., Savitskaya T.A., Isaeva G.S., Urbanowicz R.A., Khaiboullina S.F., Rizvanov A.A., Morzunov S.P. The Distribution of Puumala orthohantavirus Genome Variants Correlates with the Regional Landscapes in the Trans-Kama Area of the Republic of Tatarstan // Pathogens. – 2021. – 10. – Art. 1169.; Dekonenko A., Yakimenko V., Ivanov A., Morozov V., Nikitin P., Khasanova S., Dzagurova T., Tkachenko E., Schmaljohn C. Genetic similarity of Puumala viruses found in Finland and western Siberia and of the mitochondrial DNA of their rodent hosts suggests a common evolutionary origin // Inf. Gen. Evol. – 2003. – 3. – P. 245–257.; Kabwe E., Al Sheikh W., Shamsutdinov A.F., Ismagilova R.K., Martynova E.V., Ohlopkova O.V., Yurchenko Y.A., Savitskaya T.A., Isaeva G.S., Khaiboullina S.F., Rizvanov A.A., MorzunovS.P., Davidyuk Y.N. Analysis of Puumala orthohantavirus Genome Variants Identified in the Territories of Volga Federal District // Trop. Med. Infect. Dis. – 2022. – 7. – Art. 46.; Kariwa H., Tkachenko E.A., Morozov V.G., Seto T., Tanikawa Y., Kolominov S.I., Belov S.N., Nakamura I., Hashimoto N., Balakiev A.E. et al. Epidemiological Study of Hantavirus Infection in the Samara Region of European Russia // J. Vet. Med. Sci. – 2009. – 71 (12). – P. 1569–1578.; Kruger D.H., Figueiredo L.T.M., Song J.-W., Klempa B. Hantaviruses-Globally emerging pathogens. – J. Clin. Virol. – 2015. – 64. – P. 128–136.; Milholland M.T., Castro-Arellano I., Suzán G., Garcia-Peña G.E., Lee T.E., Rohde R.E., Aguirre A.A., Mills J.N. Global Diversity and Distribution of Hantaviruses and Their Hosts // EcoHealth. – 2018. – 15. – P. 163–208.; Mustonen J., Mäkelä S., Outinen T., Laine O., Jylhävä J., Arstila P.T., Hurme M., Vaheri A. The pathogenesis of nephropathia epidemica: New knowledge and unanswered questions // Antiviral Research. – 2013. – 100. – P. 589–604.; Plyusnin A., Vapalahti O., Vaheri A. Hantaviruses: genome structure, expression and evolution // J. of Gen. Virol. – 1996. – 77. – P. 2677–2687.; Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0 // Mol. Biol. Evol. – 2013. – 30. – P. 2725–2729.; https://phsreda.com/files/Books/62b19487cf261.jpg?req=102292; https://phsreda.com/article/102292/discussion_platform

  5. 5
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 37, № 3 (2022); 56-64 ; Сибирский журнал клинической и экспериментальной медицины; Том 37, № 3 (2022); 56-64 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1503/728; Гончарова И.А., Печерина Т.Б., Марков А.В., Кашталап В.В., Тарасенко Н.В., Пузырев В.П. и др. Роль генов фиброгенеза в формировании подверженности к коронарному атеросклерозу. Кардиология. 2018;58(8):33–44. DOI:10.18087/cardio.2018.8.10160.; Ping K., Panagiota C., Frangogiannis N.G. The pathogenesis of сardiac fi brosis. Cell Mol. Life Sci. 2014;71(4): 549–574. DOI:10.1007/s00018-013-1349-6.; Asbun J., Villarreal F.J. The pathogenesis of myocardial fi brosis in the setting of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2006;47(4):693–700. DOI:10.1016/j.jacc.2005.09.050.; Bharati S., Lev M. Cardiac conduction system involvement in sudden death of obese young people. Am. Heart J. 1995;129(2):273–281. DOI:10.1016/0002-8703(95)90008-x.; Печерина Т.Б., Кутихин А.Г. Биомаркеры фиброза миокарда и их генетическое регулирование у пациентов с сердечной недостаточностью. Российский кардиологический журнал. 2020;25(10):3933. DOI:10.15829/1560- 4071-2020-3933.; Chan J.J., Tay Y. Noncoding RNA: RNA regulatory networks in cancer. Int. J. Mol. Sci. 2018;19(5):1310. DOI:10.3390/ijms19051310.; Mattick J.S., Makunin I.V. Non-coding RNA. Hum. Mol. Genet. 2006;(1):R17–29. DOI:10.1093/hmg/ddl046.; Panni S., Lovering R.C., Porras P., Orchard S. Non-coding RNA regulatory networks. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194417. DOI:10.1016/j.bbagrm.2019.194417.; Ramirez-Bello J., Jimenez-Morales M. Functional implications of single nucleotide polymorphisms (SNPs) in protein-coding and non-coding RNA genes in multifactorial diseases. Gac. Med. Mex. 2017;153(2):238–250.; Kwok Z.H., Tay Y. Long noncoding RNAs: Lincs between human health and disease. Biochem. Soc. Trans. 2017;45(3):805–812. DOI:10.1042/BST20160376.; Anastasiadou E., Jacob L.S., Slack F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer. 2018;18(1):5–18. DOI:10.1038/nrc.2017.99.; Micheletti R., Plaisance I., Abraham B.J., Sarre A., Ching-Chia Ting, Alexanian M. et al. The long noncoding RNA Wisper controls cardiac fi brosis and remodeling. Sci. Transl. Med. 2017;9(395):eaai9118. DOI:10.1126/scitranslmed.aai9118.; Boon R.A., Dimmeler S. MicroRNAs in myocardial infarction. Nat. Rev. Cardiol. 2015;12(3):135–142. DOI:10.1038/nrcardio.2014.207.; Lu P., Ding F., Xiang Y.K., Hao L., Zhao M. Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells. 2022;11(5):777. DOI:10.3390/cells11050777.; Rooij E., Sutherland L.B., Liu N., Williams A.H., McAnally J., Gerard R.D. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U S A. 2006;103(48):18255–18260. DOI:10.1073/pnas.0608791103.; Ilieva M., Miller H.E., Agarwal A., Paulus G.K., Madsen J.H., Bishop A.J.R. et al. FibroDB: Expression Analysis of Protein-Coding and Long Non-Coding RNA Genes in Fibrosis. Noncoding RNA. 2022;28;8(1):13. DOI:10.3390/ncrna8010013.; Trinh K., Julovi S.M., Rogers N.M. The role of matrix proteins in cardiac pathology. Int. J. Mol. Sci. 2022;23(3):1338. DOI:10.3390/ijms23031338.; Mohammadhosayni M., Khosrojerdi A., Lorian K., Aslani S., Imani D., Razi B. et al. Matrix metalloproteinases (MMPs) family gene polymorphisms and the risk of multiple sclerosis: Systematic review and meta- analysis. BMC Neurol. 2020;20(1):218. DOI:10.1186/s12883-020-01804-2.; Li T., Lv Z., Jing J.J., Yang J., Yuan Y. Matrix metalloproteinase family polymorphisms and the risk of aortic aneurysmal diseases: A systematic review and meta-analysis. Clin. Genet. 2018;93(1):15–32. DOI:10.1111/cge.13050.; Opstad T.B., Arnesen H., Pettersen A.Å., Seljefl ot I. The MMP-9 -1562 C/T polymorphism in the presence of metabolic syndrome increases the risk of clinical events in patients with coronary artery disease. 2014;9(9):e106816 DOI:10.1371/journal.pone.0106816.; Luizon M.R., Belo V.A., Fernandes K.S., Andrade V.L., Tanus-Santos J.E., Sandrim V.C. Plasma matrix metalloproteinase-9 levels, MMP-9 gene haplotypes, and cardiovascular risk in obese subjects. Mol. Biol. Rep. 2016;43(6):463–471. DOI:10.1007/s11033-016-3993-z.; DeLeon-Pennell K.Y., Meschiari C.A., Jung M., Lindsey M.L. Matrix metalloproteinases in myocardial infarction and heart failure. Prog. Mol. Biol. Transl. Sci. 2017;147:75–100. DOI:10.1016/bs.pmbts.2017.02.001.; Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 2003;92(8):827–839. DOI:10.1161/01.RES.0000070112.80711.3D.; Velho F.M., Cohen C.R., Santos K.G., Silvello D., Martinelli N., Biolo A. et al. Polymorphisms of matrix metalloproteinases in systolic heart failure: Role on disease susceptibility, phenotypic characteristics, and prognosis. J. Card. Fail. 2011;17(2):115–121. DOI:10.1016/j.cardfail.2010.09.017.; Martin T.N., Penney D.E., Smith J.A., Groenning B.A., Dargie H.J., Hillis G.S. Matrix metalloproteinase-1 promoter polymorphisms and changes in left ventricular volume following acute myocardial infarction. Am. J. Cardiol. 2004;94(8):1044–1046. DOI:10.1016/j.amjcard.2004.06.064.; Lindner D., Zietsch C., Becher P.M., Schulze K., Schultheiss H.P., Tschope C. et al. Diff erential expression of matrix metalloproteases in human fi broblasts with diff erent origins. Biochem. Res. Int. 2012;2012:875742. DOI:10.1155/2012/875742.; Sage E.H., Reed M., Funk S.E., Truong T., Steadele M., Puolakkainen P. et al. Cleavage of the matricellular protein sparc by matrix metalloproteinase 3 produces polypeptides that infl uence angiogenesis. J. Biol. Chem. 2003;278(39):37849–37857. DOI:10.1074/jbc.M302946200.; Mashhadiabbas F., Neamatzadeh H., Foroughi E., Dastgheib S.A., Farahnak S., Nasiri R. et al. Association of MMP-2-753C>T and MMP-9-1562C>T Polymorphisms with Chronic/Aggressive Periodontitis Risk: A Systematic Review and Meta-Analysis. Iran. J. Public. Health. 2019;48(7):1227–1238.; Yabluchanskiy A., Ma Y., Iyer R.P., Hall M.E., Lindsey M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology. 2013;28(6):391–403. DOI:10.1152/physiol.00029.2013.; Blankenberg S., Rupprecht H.J., Poirier O., Bickel C., Smieja M., Hafner G. et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascu-lar disease. Circulation. 2003;107(12):1579–1585. DOI:10.1161/01.CIR.0000058700.41738.12.; Dai H., Chen L., Gao D., Fei A. Phosphocreatine attenuates isoproterenol-induced cardiac fibrosis and cardiomyocyte apoptosis. Biomed. Res. Int. 2019;2019:5408289. DOI:10.1155/2019/5408289.; Squire I.B., Evans J., Ng L.L., Loftus I.M., Thompson M.M. Plasma mmp-9 and mmp-2 following acute myocardial infarction in man: Correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. Journal of Cardiac Failure. 2004;10(4):328–333. DOI:10.1016/j.cardfail.2003.11.003.; Wang X., Shi L.Z. Association of matrix metalloproteinase-9 c1562t polymorphism and coronary artery disease: A meta-analysis. J. Zhejiang Univ. Sci. B. 2014;15(3):256–263. DOI:10.1631/jzus.B1300088.; Lacchini R., Metzger I.F., Luizon M., Ishizawa M., Tanus-Santos J.E. Interethnic differences in the distribution of matrix metalloproteinases genetic polymorphisms are consistent with interethnic differences in disease prevalence. DNA Cell Biol. 2010;29(11):649–655. DOI:10.1089/dna.2010.1056.; Horwich T.B., Fonarow G.C. Glucose, obesity, metabolic syndrome, and diabetes relevance to Incidence of heart failure. J. Am. Coll. Cardiol. 2010;55(4):283–293. DOI:10.1016/j.jacc.2009.07.029.; Kremastiotis G., Handa I., Jackson C., George S., Johnson J. Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis. Sci. Rep. 2021;11(1):23081. DOI:10.1038/s41598-021-02508-4.; Mazuchová J., Halašová E., Mazuch J., Šarlinová M., Valentová V., Franeková M. et al. Investigation of Association between Genetic Polymorphisms of MMP2, MMP8, MMP9 and TIMP2 and Development of Varicose Veins in the Slovak Population – Pilot Study. Physiol. Res. 2020;69(3):S443–S454. DOI:10.33549/physiolres.934597.; Kandalam V., Basu R., Moore L., Fan D., Wang X., Jaworski D.M. et al. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation. 2011;124(19):2094–2105. DOI:10.1161/CIRCULATIONAHA.111.030338.; Moore L., Fan D., Basu R., Kandalam V., Kassiri Z. Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail. Rev. 2012;17(4–5):693–706. DOI:10.1007/s10741-011-9266-y.; Schanz M., Shi J., Wasser C., Alscher M.D., Kimmel M. Urinary [TIMP-2] × [IGFBP7] for risk prediction of acute kidney injury in decompensated heart failure. Clin. Cardiol. 2017;40:485–491. DOI:10.1002/clc.22683.; Fan D., Takawale A., Basu R., Patel V., Lee J., Kandalam V. et al. Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc. Res. 2014;103(2):268–280. DOI:10.1093/cvr/cvu072.; Polina E.R., Araújo R.R.C.V., Sbruzzi R.C., Biolo A., Rohde L.E., Clausell N. et al. Relationship of polymorphisms in the tissue inhibitor of metalloproteinase (TIMP)-1 and -2 genes with chronic heart failure. Sci. Rep. 2018;8(1):9446. DOI:10.1038/s41598-018-27857-5.; Alp E., Yilmaz A., Tulmac M., Dikmen A.U., Cengel A., Yalcin R. et al. Analysis of MMP-7 and TIMP-2 gene polymorphisms in coronary artery disease and myocardial infarction: A Turkish case-control study. Kaohsiung J. Med. Sci. 2017;33(2):78–85. DOI:10.1016/j.kjms.2016.12.002.; Lin T.H., Chiu H.C., Lee Y.T., Su H.M., Juo S.H., Voon W.C. et al. The C-allele of tissue inhibitor of metalloproteinases 2 is associated with increased magnitude of QT dispersion prolongation in elderly Chinese – 4-year follow-up study. Clin. Chim. Acta. 2007;386(1–2):87–93. DOI:10.1016/j.cca.2007.08.004.; Jia M., Li Z.B., Li L., Chu H.T., Li Z.Z. Role of matrix metalloproteinase‑7 and apoptosis‑associated gene expression levels in the pathogenesis of atrial fibrosis in a Beagle dog model. Mol. Med. Rep. 2017;16(5):6967–6973. DOI:10.3892/mmr.2017.7415.; Dong H., Dong S., Zhang L., Gao X., Lv G., Chen W. et al. MicroRNA-214 exerts a Cardio-protective effect by inhibition of fibrosis. Anat. Rec. (Hoboken). 2016;299(10):1348–1357. DOI:10.1002/ar.23396.; Lu Y., Boer J.M.A., Barsova R.M., Favorova O., Goel A., Müller M. et al. TGFB1 genetic polymorphisms and coronary heart disease risk: A meta-analysis. BMC Med. Genet. 2012;13:39. DOI:10.1186/1471-2350-13-39.; Gichkun O.E., Shevchenko O.P., Kurabekova R.M., Mozheiko N.P., Shevchenko A.O. The rs1800470 polymorphism of the TGFB1 gene is associated with myocardial fibrosis in heart transplant recipients. Acta Naturae. 2021;13(4):42–46. DOI:10.32607/actanaturae.11469.; Shah R., Hurley C.K., Posch P.E. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP -509C-T (c. -1347C>T). Hum. Genet. 2006;120(4):461–469. DOI:10.1007/s00439-006-0194-1.; Barsova R.M., Titov B.V., Matveeva N.A., Favorov A.V., Sukhinina T.S., Shahnovich R.M. et al. Contribution of the TGFB1 gene to myocardial infarction susceptibility. Acta Naturae. 2012;4(2):74–79.; Брусенцов Д.А., Никулина С.Ю., Шестерня П.А., Чернова А.А. Ассоциация полиморфных вариантов RS1800470 гена трансформирующего ростового фактора β1 (TGF-β1) с тяжестью коронарного атеросклероза. Российский кардиологический журнал. 2018;(10):43–47. DOI:10.15829/1560-4071-2018-10-43-47. Brusentsov D.A., Nikulina S.Yu., Shesternya P.A., Chernova A.A. Association of RS1800470 polymorphic variants of the transforming growth factor β1 (TGF-β1) gene with the severity of coronary atherosclerosis. Russian Journal of Cardiology. 2018;(10):43–47. (In Russ.). DOI: org/10.15829/1560-4071-2018-10-43-47.; Crobu F., Palumbo L., Franco E., Bergerone S., Carturan S., Guarrera S. et al. Role of TGF-β1 haplotypes in the occurrence of myocardial infarction in young Italian patients. BMC Med. Genet. 2008;9:13. DOI:10.1186/1471-2350-9-13.; Liu S., Ke W., Liu Y., Zhao Z., An L., You X. et al. Function analysis of differentially expressed microRNAs in TGF-β1-induced cardiac fibroblasts differentiation. Biosci. Rep. 2019;39(10):BSR20182048. DOI:10.1042/BSR20182048.; Cocciolone A.J., Hawes J.Z., Staiculescu M.C., Johnson E.O., Murshed M., Wagenseil J.E. Elastin, arterial mechanics, and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2018;315(2):H189–H205. DOI:10.1152/ajpheart.00087.2018.; Tassabehji M., Metcalfe K., Donnai D., Hurst J., Reardon W., Burch M. et al. Elastin: Genomic structure and point mutations in patients with supravalvular aortic stenosis. Hum. Mol. Genet. 1997;6:1029–1036. DOI:10.1093/hmg/6.7.1029.; Li S.H., Sun Z., Guo L., Han M., Wood M.F., Ghosh N. et al. Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation. J. Cell Mol. Med. 2012;16(10):2429–2439. DOI:10.1111/j.1582-4934.2012.01560.x.; https://www.sibjcem.ru/jour/article/view/1503

  6. 6
    Academic Journal

    Πηγή: Zaporozhye мedical journal; Vol. 24 No. 1 (2022); 109-114
    Запорожский медицинский журнал; Том 24 № 1 (2022); 109-114
    Запорізький медичний журнал; Том 24 № 1 (2022); 109-114

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://zmj.zsmu.edu.ua/article/view/241658

  7. 7
  8. 8
    Academic Journal

    Συνεισφορές: The research was carried out with the financial support of Belarusian Republican Foundation for Fundamental Research (grants no. Б17МС-025, Б17-081), Исследования выполнены при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (договоры № Б17МС-025, Б17-081).

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 62, № 2 (2018); 210-216 ; Доклады Национальной академии наук Беларуси; Том 62, № 2 (2018); 210-216 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/510/513; Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes / R. G. Foottit [et al.] // Molecular Ecology Resources. – 2008. – Vol. 8, N 6. – P. 1189–1201. DOI:10.1111/j.1755-0998.2008.02297.x; Буга, С. В. Дендрофильные тли Беларуси / С. В. Буга. – Минск: БГУ, 2001. – 98 c.; Ortiz-Rivas, B. Combination of molecular data support the existence of three main lineages in the phylogeny of aphids (Hemiptera: Aphididae) and the basal position of the subfamily Lachninae / B. Ortiz-Rivas, D. Martinez-Torres // Molecular Phylogenetics and Evolution. – 2010. – Vol. 55, N 1. – P. 305−317. DOI:10.1016/j.ympev.2009.12.005; Evolutionary and genetic aspects of aphid biology: A review / D. F. Hales [et al.] // Eur. J. Entomol. – 1997. – Vol. 94, N 1. – P. 474–487.; Vilcinskas, A. Biology and ecology of aphids / A. Vilcinskas. – Germany: CRC Press Taylor & Francis Group, 2016. – 282 p.; DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates / O. Folmer [et al.] // Molecular Marine Biology and Biotechnology. – 1994. – Vol. 3, N 5. – P. 294–299.; Fauna Europaea [Electronic resource]. – 2013. – Mode of access: http://www.fauna-eu.org. – Date of access: 25.11.2017.; Aphids on the World’s Plants: An online identification and information guide [Electronic resource]. – 2012. – Mode of access: http://www.aphid.speciesfile.org/Common/basic/Taxa.aspx?TaxonNameID=1159459. – Date of access: 15.11.2017.; Holman, J. Host plant catalog of aphids. Palaearctic region / J. Holman. – Berlin: Springer Science, 2009. – 1216 p.; https://doklady.belnauka.by/jour/article/view/510

  9. 9
  10. 10
    Academic Journal

    Πηγή: Acta Biomedica Scientifica; № 2(2) (2013); 130-133 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/1461/1408; Васильева И.С. Новые болезни, передаваемые клещами рода Ixodes (Ixodidae). Бабезиозы человека // Пест-Менеджмент = Pest-Management. - 2006. -№ 1. - С. 11-13.; Рар В.А., Епихина Т.И., Боляхина С.А. Распространенность и генетическое разнообразие бабезий на территоии Северного Урала, Западной Сибири и Дальнего Востока // В кн: Инфекции, передаваемые клещами в Сибирском регионе. - Вып. 30, Гл. 9. - Новосибирск: Изд-во СО РАН, 2011. - С. 296-308.; Bonnet S., Jouglin M., L'Hostis M., Chauvin A. Babesia sp. EU1 from roe deer and transmission within Ixodes ricinus // Emerg. Infect. Dis. - 2007. - № 13. -Р. 1208-1210.; Entomologic and serologic evidence of zoonotic transmission of Babesia microti, eastern Switzerland / I.M. Foppa [et al.] // Emerg. Infect. Dis. - 2002. - Vol. 8. -P. 722-726.; Gorenflot A., Moubri K., Precigout E. et al. Human babesiosis // Ann. Trop. Med. Parasitol. 1998. - Vol. 92. -P. 489-501.; Herwaldt B.L., Caccio S., Gherlinzoni F. et al. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe // Emerg. Infect. Dis. - 2003. - Vol. 9. - Р. 942-948.; Hunfeld K.P., Brade V. Zoonotic Babesia: possibly emerging pathogens to be considered for tick-infested humans in Central Europe // Int. J. Med Microbiol. -2004. - Vol. 293. - Suppl. 37. - P. 93-103.; Hunfeld K.P., Hildebrandt A., Gray J.S. Babesiosis: recent insights into an ancient disease // Int. J. Parasitol. -2008. - Vol. 38. - P. 1219-1237.; Hildebrandt A., Hunfeld K.P., Baier M. et al. First confirmed autochthonous case of human Babesia microti infection in Europe // Eur. J. Clin. Microbiol. Infect. Dis. - 2007. - Vol. 26. - P. 595-601.; Nakajima R., Tsuji M., Oda K. et al. Babesia microti-group parasites compared phylogenetically by complete sequencing of the CCTeta gene in 36 isolates // J. Vet. Med. Sci. - 2009. - N 71 (1). - P. 55-68.; Rar V.A., Fomenko N.V., Dobrotvorsky A.K. et al. Tick-borne pathogen detection, Western Siberia, Russia // Emerg. Infect. Dis. - 2005. - Vol. 11, N 11. - P. 17081715.; https://www.actabiomedica.ru/jour/article/view/1461

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Воробьева, М.М. Генетическая вариабельность аборигенных и инвазивных видов тлей родов Macrosiphum Pass. и Brachycaudus Van der Goot / М.М. Воробьева, П.К. Супранович, Н.В. Воронова // Труды Белорусского государственного университета. Физиологические, биохимические и молекулярные основы функционирования биосистем : научный журнал. – 2014. – Т. 9, Ч. 2. − С. 135–142.; https://rep.polessu.by/handle/123456789/21789

    Διαθεσιμότητα: https://rep.polessu.by/handle/123456789/21789