-
1Academic Journal
Συγγραφείς: A. V. Igoshin, N. S. Yudin, D. M. Larkin, А. В. Игошин, Н. С. Юдин, Д. М. Ларкин
Συνεισφορές: This work was supported by State Budget Project No. FWNR-2024-0012, Работа выполнена при поддержке бюджетного проекта № FWNR-2024-0012.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 122-127 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 122-127 ; 2500-3259 ; 10.18699/vjgb-25-01
Θεματικοί όροι: селекция, live weight, age, KAT6B gene, MSS51 gene, missense mutation, haplotype, selection, живая масса, возраст, ген KAT6B, ген MSS51, миссенс-мутация, гаплотип
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4483/1921; Abdelmanova A.S., Kharzinova V.R., Volkova V.V., Mishina A.I., Dotsev A.V., Sermyagin A.A., Boronetskaya O.I., Petrikeeva L.V., Chinarov R.Y., Brem G., Zinovieva N.A. Genetic diversity of historical and modern populations of Russian cattle breeds revealed by microsatellite analysis. Genes (Basel). 2020;11(8):940. doi:10.3390/genes11080940; Bergamasco M.I., Abeysekera W., Garnham A.L., Hu Y., Li-Wai-Suen C.S.N., Sheikh B.N., Smyth G.K., Thomas T., Voss A.K. KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain. Life Sci Alliance. 2024a;8(2): e202402969. doi:10.26508/lsa.202402969; Bergamasco M.I., Vanyai H.K., Garnham A.L., Geoghegan N.D., Vogel A.P., Eccles S., Rogers K.L., Smyth G.K., Blewitt M.E., Hannan A.J., Thomas T., Voss A.K. Increasing histone acetylation improves sociability and restores learning and memory in KAT6B-haploinsufficient mice. J Clin Invest. 2024b;134(7):e167672. doi:10.1172/JCI167672; Burmistrov V.A., Pogosyan G.A., Asianin V., Golubeva A.I. Cross-breeding to thorough-bred Galloway bulls improves beef-making qualities of cattle bred in the Yaroslavl region. Molochnoye i Myasnoye Skotovodstvo = Dairy and Meat Cattle Breed. 2013;7:17-19 (in Russian); Chen S., He T., Chen J., Wen D., Wang C., Huang W., Yang Z., Yang M., Li M., Huang S., Huang Z., Zhu H. Betaine delays age-related muscle loss by mitigating Mss51-induced impairment in mitochondrial respiration via Yin Yang1. J Cachexia Sarcopenia Muscle. 2024;15(5):2104-2117. doi:10.1002/jcsm.13558; Colombi D., Perini F., Bettini S., Mastrangelo S., Abeni F., Conte G., Marletta D., Cassandro M., Bernabucci U., Ciampolini R., Lasagna E. Genomic responses to climatic challenges in beef cattle : a review. Anim Genet. 2024;55(6):854-870. doi:10.1111/age.13474; Curone G., Filipe J., Cremonesi P., Piccioli-Cappelli F., Trevisi E., Amadori M. Relevance of the dairy cow biodiversity in the development of a profitable and environmentally sustainable livestock. CABI Rev. 2019;14:1-11. doi:10.1079/PAVSNNR201914024; Dmitriev N.G., Ernst L.K. Animal Genetics Resources of the USSR. Rome: Food and Agriculture Organization of the United Nations, 1989; FAO. Status and Trends of Animal Genetic Resources. Rome: Commission on Genetic Resources for Food and Agriculture, 2024; Gonzalez Y.I.R., Moyer A.L., LeTexier N.J., Bratti A.D., Feng S., Sun C., Liu T., Mula J., Jha P., Iyer S.R., Lovering R.M., O’Rourke B., Noh H.L., Suk S., Kim J.K., Essien Umanah G.K., Wagner K.R. Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight. 2019;4(20):e122247. doi:10.1172/jci.insight.122247; Iso-Touru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim Genet. 2016;47(6):647-657. doi:10.1111/age.12473; Kochetkov A.A. Use of world and Russian breed resources of beef cattle to increase the production of high-quality meat in the North Caucasus and the central zone of Russia: Dr. (Agricultural Sci.) Dissertation. 2011 (in Russian); Korenev M.M., Furaeva N.S., Khrustaleva V.I., Ursol A.Yu., Vorobyova S.S., Konovalov A.V., Kosyachenko N.M., Ilyina A.V., Muratova N.S., Gvazava D.G., Tarasenkova N.A., Malyukova M.A. Breeding Measures for the Preservation and Improvement of the Yaroslavl Cattle Breed for 2013–2020. Yaroslavl: Kantsler Publ., 2013 (in Russian); Lu G., Moriyama E.N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform. 2004;5(4):378-388. doi:10.1093/bib/5.4.378; Monoenkov M.I. Yaroslavl Breed of Cattle. Yaroslavl, 1974 (in Russian); Moyer A.L., Wagner K.R. Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism. J Neuromuscul Dis. 2015;2(4):371-385. doi:10.3233/JND-150119; Ota M., Fukushima H., Kulski J.K., Inoko H. Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism. Nat Protoc. 2007;2(11):2857-2864. doi:10.1038/nprot.2007.407; Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575. doi:10.1086/519795; Ruvinskiy D., Igoshin A., Yurchenko A., Ilina A.V., Larkin D.M. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes. Anim Genet. 2022;53(5):680-684. doi:10.1111/age.13230; Sambrook J., Russell D.W. The Condensed Protocols from Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, 2006; Tamarova R.V. Will we save our Yaroslavl wet nurse? On the 140 th anniversary of the creation of the Yaroslavl breed. Vestnik APK Verkhnevolzh’ya = Agroindustrial Complex of Upper Volga Region Herald. 2009;3(7):20-23 (in Russian); van der Heide E.M.M., Lourenco D.A.L., Chen C.Y., Herring W.O., Sapp R.L., Moser D.W., Tsuruta S., Masuda Y., Ducro B.J., Misztal I. Sexual dimorphism in livestock species selected for economically important traits. J Anim Sci. 2016;94(9):3684-3692. doi:10.2527/jas.2016-0393; Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi:10.1186/1471-2105-13-134; Yudin N.S., Larkin D.M. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2019;23(5):559-568. doi:10.18699/VJ19.525 (in Russian); Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb). 2018;120(2):125-137. doi:10.1038/s41437-017-0024-3; Zhang L.X., Lemire G., Gonzaga-Jauregui C., Molidperee S., Galaz-Montoya C., Liu D.S., Verloes A., … Bamshad M.J., Lee B.H., Yang X.-J., Lupski J.R., Campeau P.M. Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants. Genet Med. 2020;22(8):1338-1347. doi:10.1038/s41436-020-0811-8; Zhu L., Lv L., Wu D., Shao J. KAT6B genetic variant identified in a short stature chinese infant: a report of physical growth in clinical spectrum of KAT6B-related disorders. Front Pediatr. 2020;8:124. doi:10.3389/fped.2020.00124; https://vavilov.elpub.ru/jour/article/view/4483
-
2Academic Journal
Συγγραφείς: Ye. O. Budakva, K. F. Pochernyaev, S. M. Korinnyi, M. G. Povod
Πηγή: Біологія тварин, Vol 24, Iss 3, Pp 3-13 (2022)
Θεματικοί όροι: 0301 basic medicine, haplotype, haplogroup, mtdna, QH301-705.5, Veterinary medicine, кластер, hybrid gilts (large white × landrace), 03 medical and health sciences, гаплотип, SF600-1100, origin, клада, Biology (General), cluster, плр-пдрф аналіз, d-loop, 2. Zero hunger, (landrace × large white), clade, breeding sows of the large white, (ландрас × велика біла), гаплогрупа, племінні свиноматки великої білої породи, гібридні свинки (велика біла × ландрас), походження, pcr-rflp analysis, мтднк
Σύνδεσμος πρόσβασης: https://doaj.org/article/d63b94718bd846c5bc34153b66980cc7
-
3Academic Journal
Συγγραφείς: Ye. O. Budakva
Πηγή: Біологія тварин, Vol 24, Iss 2, Pp 3-8 (2022)
Θεματικοί όροι: 0301 basic medicine, 2. Zero hunger, haplotype, QH301-705.5, Veterinary medicine, pigs, mitochondrial dna, мітохондріальна днк, (велика біла × ландрас) × maxgro, свині, 03 medical and health sciences, (large white × landrace) × maxgro, гаплотип, final irish hybrid, SF600-1100, плр-пдрф, pcr-rflp, Biology (General), фінальний ірландський гібрид
Σύνδεσμος πρόσβασης: https://doaj.org/article/e50a7ec28ef1403199e722c53bae83a3
-
4Academic Journal
Συνεισφορές: Vicent García, Juan Manuel [0000-0003-2834-1985], Martínez Navarrete, María Isabel [0000-0002-3060-6033], Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Πηγή: Digital.CSIC. Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
instname
Археология евразийских степей, Iss 2, Pp 290-301 (2022)Θεματικοί όροι: Bronze Age, chalcolithic, Prehistory, radiocarbon chronology, genomic research, Bell Beakers, bell beakers, Pадиоуглеродный хронологический анализ, eurasia, Исследования генома, Энеолит, бронзовый век, haplotype yr1b, Radiocarbon chronology, Колоколовидные кубки, archaeology, Steppe ancestry, Евразия, Haplotype YR1B, Chalcolithic, Genomic research, iberian peninsula, bronze age, Пиренейский полуостров, Archaeology, Степное происхождение, Eurasia, Гаплотип YR1B, steppe ancestry, Bell beakers, CC1-960, Aрхеология, Iberian Peninsula
-
5Academic Journal
Πηγή: Труды БГТУ: Серия 2. Химические технологии, биотехнологии, геоэкология, Iss 1, Pp 54-57 (2022)
Θεματικοί όροι: Chemical engineering, гаплотип, str-локусы, TP155-156, ДНК-анализ, STR-локусы Y-хромосомы, молекулрно-генетическая идентификация, днк-анализ, генотипирование, молекулярно-генетическая идентификация, биологические образцы
Περιγραφή αρχείου: application/pdf
-
6Academic Journal
Συγγραφείς: I. A. Guseva, M. D. Chanyshev, A. V. Torgashina, N. V. Vlasenko, Yu. I. Khvan, E. Yu. Samarkina, M. V. Shabatina, K. F. Khafizov, И. А. Гусева, М. Д. Чанышев, А. В. Торгашина, Н. В. Власенко, Ю. И. Хван, Е. Ю. Самаркина, М. В. Шабатина, К. Ф. Хафизов
Συνεισφορές: The article was prepared within the framework of the state assignment on topic № 1021051402790-6., Статья подготовлена в рамках государственного задания по теме № 1021051402790-6.
Πηγή: Modern Rheumatology Journal; Том 18, № 6 (2024); 53-60 ; Современная ревматология; Том 18, № 6 (2024); 53-60 ; 2310-158X ; 1996-7012
Θεματικοί όροι: предковый гаплотип 8.1 (AH8.1), Sjögren's syndrome, Ro/SSA autoantibodies, La/SSB autoantibodies, HLA, HLA alleles, HLA haplotypes, ancestral haplotype 8.1 (AH8.1), синдром Шегрена, аутоантитела к Ro/SSA, аутоантитела к La/SSB, аллели HLA, гаплотипы HLA
Περιγραφή αρχείου: application/pdf
Relation: https://mrj.ima-press.net/mrj/article/view/1666/1552; Сафонова ТН, Васильев ВИ, Лихванцева ВГ. Синдром Шегрена: Руководство для врачей. Москва: Московский государственный университет имени М.В.Ломоносова; 2013. 600 с.; Negrini S, Emmi G, Greco M, et al. Sjögren's syndrome: a systemic autoimmune disease. Clin Exp Med. 2022 Feb;22(1):9-25. doi:10.1007/s10238-021-00728-6.; Thorlacius GE, Björk A, Wahren-Herlenius M, et al. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol. 2023 May; 19(5):288-306. doi:10.1038/s41584-023-00932-6.; Björk A, Mofors J, Wahren-Herlenius M et al. Environmental factors in the pathogenesis of primary Sjögren's syndrome. J InternMed. 2020 May;287(5):475-492. doi:10.1111/joim.13032. Epub 2020 Feb 27.; Mariette X, Gozlan J, Clerc D, et al. Detection of Epstein-Barr virus DNA by in situ hybridization and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjögren's syndrome. Am J Med. 1991 Mar;90(3):286-94.; Triantafyllopoulou A, Tapinos N, Moutsopoulos HM. Evidence for coxsackievirus infection in primary Sjögren's syndrome. Arthritis Rheum. 2004 Sep;50(9): 2897-902. doi:10.1002/art.20463.; Perez P, Anaya JM, Aguilera S, et al. Gene expression and chromosomal location for susceptibility to Sjögren's syndrome. J Autoimmun. 2009 Sep;33(2):99-108. doi:10.1016/j.jaut.2009.05.001.; Yin J, Zheng J, Deng F, et al. Gene Expression Profiling of Lacrimal Glands Identifies the Ectopic Expression of MHC II on Glandular Cells as a Presymptomatic Feature in a Mouse Model of Primary Sjögren's Syndrome. Front Immunol. 2018 Oct 31; 9:2362. doi:10.3389/fimmu.2018.02362.; Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009 Jan;54(1):15-39. doi:10.1038/jhg.2008.5; Fye KH, Terasaki PI, Michalski JP, et al. Relationshipp of HLA-Dw3 and HLA-B8 to Sjögren's syndrome. Arthritis Rheum. 1978 Apr;21(3):337-42. doi:10.1002/art.1780210308.; Kruskall MS. The major histocompatibility complex: the value of extended haplotypes in the analysis of associated immune diseases and disorders. Yale J Biol Med. 1990 Sep-Oct;63(5):477-86; Price P, Witt C, Allcock R, et al. The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev. 1999 Feb;167:257-74. doi:10.1111/j.1600-065x.1999.tb01398.x.; Shiina T, Kulski JK. HLA Genetics for the Human Diseases. Adv Exp Med Biol. 2024:1444:237-258. doi:10.1007/978-981-99-9781-7_16.; Gambino CM, Aiello A, Accardi G. et al. Autoimmune diseases and 8.1 ancestral haplotype: An update. HLA. 2018 Sep;92(3): 137-143. doi:10.1111/tan.13305.; Mehra NK, Kaur G. MHC-based vaccination approaches: progress and perspectives. Expert Rev Mol Med. 2003 Feb 24;5(7):1-17. doi:10.1017/S1462399403005957.; Cruz-Tapias P, Rojas-Villarraga A, MaierMoore S, Anaya JM. HLA and Sjögren's syndrome susceptibility. A meta-analysis of worldwide studies. Autoimmun Rev. 2012 Feb;11(4):281-7. doi:10.1016/j.autrev.2011.10.002.; Tzioufas AG, Wassmuth R, Dafni UG, et al. Clinical, immunological, and immunogenetic aspects of autoantibody production against Ro/SSA, La/SSB and their linear epitopes in primary Sjögren's syndrome (pSS): a European multicentre study. Ann Rheum Dis. 2002 May;61(5):398-404. doi:10.1136/ard.61.5.398.; Shiboski CH, Shiboski SC, Seror R, et al. International Sjögren's Syndrome Criteria Working Group. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren's syndrome: A consensus and datadriven methodology involving three international patient cohorts. Ann Rheum Dis. 2017 Jan;76(1):9-16. doi:10.113619.; Bolstad AI, Wassmuth R, Haga HJ, Jonsson R. HLA markers and clinical characteristics in Caucasians with primary Sjögren's syndrome. J Rheumatol. 2001 Jul;28(7):1554-62.; Solberg OD, Mack SJ, Lancaster AK, et al. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum Immunol. 2008 Jul;69(7):443-64. doi:10.1016/j.humimm.2008.05.001.; Doherty PC, Zinkernagel RM. A biological role for the major histocompatibility antigens. Lancet. 1975 Jun 28;1(7922):1406-9. doi:10.1016/s0140-6736(75)92610-0.; Хамаганова ЕГ, Леонов ЕА, Абдрахимова АР и др. HLA генетическое разнообразие русской популяции, выявленное методом секвенирования следующего поколения. Медицинская иммунология. 2021; 23(3):509-522.; Candore G, Lio D, Colonna Romano G, Caruso C. Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun Rev. 2002 Feb;1(1-2):29-35. doi:10.1016/s1568-9972(01)00004-0.; Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017 Apr 27;18(1):76. doi:10.1186/s13059-017-1207-1
-
7Academic Journal
Συγγραφείς: Baikuzina P.G., Gorbacheva D.V., Apt A.S., Korotetskaya M.V.
Πηγή: Russian Journal of Infection and Immunity; Vol 14, No 3 (2024); 525-531 ; Инфекция и иммунитет; Vol 14, No 3 (2024); 525-531 ; 2313-7398 ; 2220-7619
Θεματικοί όροι: tuberculosis, haplotype, sensitivity, mycobacterium, major histocompatibility complex, susceptibility, туберкулез, гаплотип, чувствительность, микобактерия, главный комплекс гистосовместимости, восприимчивость
Περιγραφή αρχείου: application/pdf
Relation: https://iimmun.ru/iimm/article/view/17731/1994; https://iimmun.ru/iimm/article/downloadSuppFile/17731/137704; https://iimmun.ru/iimm/article/downloadSuppFile/17731/137705; https://iimmun.ru/iimm/article/downloadSuppFile/17731/137706; https://iimmun.ru/iimm/article/view/17731
-
8Academic Journal
Συγγραφείς: Gubska, O. Yu., Kuzminets, A. A., Bashynska, V. V., Moseiko, V. V., Dolko, O. A., Zaplatnikov, Ya. S., Borysovych, Yu. G., Zahorodnia, O. O., Koliada, O. K., Naumova, O. O.
Πηγή: Современная гастроэнтерология; № 2 (2020); 18—23
Сучасна гастроентерологія; № 2 (2020); 18—23
Modern Gastroenterology; № 2 (2020); 18—23Θεματικοί όροι: целиакия, непереносимость глютена без целиакии, гаплотип, аллели риска, украинская популяция, celiac disease, non‑celiac gluten intolerance, haplotype, risk alleles, Ukrainian population, целіакія, непереносність глютену без целіакії, алелі ризику, українська популяція, 3. Good health
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://sgastro.com.ua/article/view/MG-2020-2-18
-
9Academic Journal
Συγγραφείς: Bugaev, Leonid A., Nebesikhina, Natalya, Mirzoyan, Arsen V., Vojkina, Anna
Θεματικοί όροι: Haplotype, Genetic typing, Русский осетр, Севрюга, Митохондриальная ДНК, Гаплотип, Генотипирование, ОРЗ «Донской», Russian sturgeon, Don Sturgeon Hatchery, Temryuk Sturgeon Hatchery, Acipenser gueldenstaedtii, ASFA_2015::M::mtDNA
Θέμα γεωγραφικό: Sea of Azov, Don River, Temryuk
Περιγραφή αρχείου: pp.222-228
Relation: http://hdl.handle.net/1834/42929
Διαθεσιμότητα: http://hdl.handle.net/1834/42929
-
10Academic Journal
Συγγραφείς: A. M. Cherdonova, T. V. Borisova, V. G. Pshennikova, F. M. Teryutin, L. A. Klarov, A. A. Nikanorova, G. P. Romanov, A. V. Solovyev, S. A. Fedorova, N. A. Barashkov, А. М. Чердонова, Т. В. Борисова, В. Г. Пшенникова, Ф. М. Терютин, Л. А. Кларов, А. А. Никанорова, Г. П. Романов, А. В. Соловьев, С. А. Федорова, Н. А. Барашков
Συνεισφορές: This work was supported by research work of the YSC CMP “Study of the genetic structure and burden of hereditary pathology in the populations of the Republic of Sakha (Yakutia)” and the Ministry of Science and Higher Education of the Russian Federation (FSRG-2023-0003)., Работа выполнена в рамках НИР ЯНЦ КМП «Изучение генетической структуры и груза наследственной патологии в популяциях Республики Саха (Якутия) и Государственного задания Министерства науки и высшего образования РФ (FSRG-2023-0003).
Πηγή: Medical Genetics; Том 22, № 7 (2023); 51-60 ; Медицинская генетика; Том 22, № 7 (2023); 51-60 ; 2073-7998
Θεματικοί όροι: Бурятия, inner ear anomalies, enlarged vestibular aqueduct (EVA), incomplete partition of the cochlea (IP-1 and IP-2), thyroid dysfunction, Pendred syndrome, SLC26A4 gene, CEVA haplotype, Buryatia, аномалии внутреннего уха, расширение водопровода преддверия (EVA), неполное разделение улитки (IP-1 и IP-2), нарушение тиреоидной функции, синдром Пендреда, ген SLC26A4, CEVA-гаплотип
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2328/1729; Baldwin C.t., Weiss S., Farrer L.A., et al. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum. Mol. Genet. 1995; 4: 1637–1642. https://doi.org/10.1093/hmg/4.9.1637.; Everett L.A., Glaser B., Beck J.C., et al. Pendred Syndrome Is Caused by Pathogenic variants in a Putative Sulphate transporter Gene (PDS). Nat. Genet. 1997; 17: 411–422. https://doi.org/10.1038/ng1297-411.; Abe S., Usami S., Hoover D.M., et al. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the Pendred gene. Am. J. Med. Genet. 1999; 82: 322–328.; Li X.C., Everett L.A., Lalwani A.K., et al. A pathogenic variant in PDS causes non-syndromic recessive deafness. Nat. Genet. 1998; 18: 215–217. https://doi.org/10.1038/ng0398-215.; Usami S., Abe S., Weston M.D., et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS pathogenic variants. Hum. Genet. 1999; 104: 188–192. doi:10.1007/s004390050933.; Campbell C., Cucci R.A., Prasad S., et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel pathogenic variants and possible genotype-phenotype correlations. Hum. Mutat. 2001; 17: 403–411. https://doi.org/10.1002/humu.1116.; Valvassori G.E., Clemis J.D. the large vestibular aqueduct syndrome. Laryngoscope 1978; 88: 723–728. https://doi.org/10.1002/lary.1978.88.5.723.; Jackler R.K., Luxford W.M., House W.F. Congenital Malformations of the Inner Ear: A Classification Based on Embryogenesis. Laryngoscope 1987; 97: 2–14. https://doi.org/10.1002/lary.5540971301.; Sennaroglu L., Saatci I. A New Classification for Cochleovestibular Malformations. Laryngoscope 2002; 112: 2230–2241. https://doi.org/10.1097/00005537-200212000-00019.; Sennaroğlu L., Bajin M.D. Classification and Current Management of Inner Ear Malformations. Balkan Med. J. 2017; 34: 397–411. https://doi.org/10.4274/balkanmedj.2017.0367.; Pendred V. Deaf-mutism and goitre. The Lancet. 1896; 148: 532. https://doi.org/10.1016/S0140-6736(01)74403-0; Fraser G.R. Association of congenital deafness with goitre (pendred’s syndrome): a study of 207 families. Ann. Hum. Genet. 1965; 28: 201– 249. https://doi.org/10.1111/j.1469-1809.1964.tb00479.x; Royaux I.E., Suzuki K., Mori A., et al. Pendrin, the Protein Encoded by the Pendred Syndrome Gene (PDS), Is an Apical Porter of Iodide in the thyroid and Is Regulated by thyroglobulin in FRtL-5 Cells. Endocrinology. 2000; 141: 839–845. https://doi.org/10.1210/endo.141.2.7303.; Royaux I.E., Wall S.M., Karniski L.P., et al. Pendrin, Encoded by the Pendred Syndrome Gene, Resides in the Apical Region of Renal Intercalated Cells and Mediates Bicarbonate Secretion. Proc. Natl. Acad. Sci. USA 2001; 98: 4221–4226. https://doi.org/10.1073/pnas.071516798.; Scott D.A., Wang R., Kreman t.M., et al. the Pendred Syndrome Gene Encodes a Chloride-Iodide transport Protein. Nat. Genet. 1999; 21: 440–443. https://doi.org/10.1038/7783.; Scott D.A., Karniski L.P. Human Pendrin Expressed in Xenopus Laevis Oocytes Mediates Chloride/Formate Exchange. Am. J. Physiol. Cell Physiol. 2000; 278: 207–211. https://doi.org/10.1152/ajpcell.2000.278.1.C207.; Soleimani M. Molecular physiology of the renal chloride-formate exchanger. Curr. Opin. Nephrol. Hypertens. 2001; 10: 677–683. https://doi.org/10.1097/00041552-200109000-00020.; Pedemonte N., Caci E., Sondo E., et al. thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 2007; 178: 5144– 5153. https://doi.org/10.4049/jimmunol.178.8.5144; Dossena S., Bernardinelli E., Sharma A.K., et al. the Pendrin Polypeptide. In the Role of Pendrin in Health and Disease. Springer: Cham. 2017; 187–220. https://doi.org/10.1007/978-3-319-43287-8_11.; Циркин В.И., Трухина С.И., Трухин А.Н. Нейрофизиология: физиология сенсорных систем: учебник для вузов. Москва: Издательство Юрайт, 2020: 459 с.; Wangemann P. the role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 2011; 28: 527–534. https://doi.org/10.1159/000335113; Griffith A.J., Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 2011; 281: 11– 17. https://doi.org/10.1016/j.heares.2011.05.009; Park H.-J., Shaukat S., Liu X.-Z., et al. Origins and Frequencies of SLC26A4 (PDS) Pathogenic variants in East and South Asians: Global Implications for the Epidemiology of Deafness. J. Med. Genet. 2003; 40: 242–248. https://doi.org/10.1136/jmg.40.4.242.; tsukamoto K., Suzuki H., Harada D. et al. Distribution and frequencies of PDS (SLC26A4) pathogenic variants in Pendred Syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: A unique spectrum of pathogenic variants in Japanese. Eur. J. Hum. Genet. 2003; 11: 916–922. https://doi.org/10.1038/sj.ejhg.5201073.; Blons H., Feldmann D., Duval V., et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: A large spectrum of pathogenic variants in France and phenotypic heterogeneity. Clin. Genet. 2004; 66: 333–340. https://doi.org/10.1111/j.1399-0004.2004.00296.x.; Hutchin t., Coy N.N., Conlon H., et al. Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK— Implications for genetic testing. Clin. Genet. 2005; 68: 506–512. doi:10.1111/j.1399-0004.2005.00539.x.; Pryor S.P., Demmler G.J., Madeo A.C., et al. Investigation of the Role of Congenital Cytomegalovirus Infection in the Etiology of Enlarged Vestibular Aqueducts. Arch. Otolaryngol. Head Neck Surg. 2005; 131: 388–392. https://doi.org/10.1001/archotol.131.5.388.; Albert S., Blons H., Jonard L., et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur. J. Hum. Genet. 2006; 14: 773–779. doi:10.1038/sj.ejhg.5201611.; Guo Y.F., Liu X.W., Guan J., et al. GJB2, SLC26A4 and mitochondrial DNA A1555G pathogenic variants in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol. 2008; 128: 297–303. doi:10.1080/00016480701767382.; Pourová R., Janousek P., Jurovcík M., et al. Spectrum and frequency of SLC26A4 pathogenic variants among Czech patients with early hearing loss with and without Enlarged Vestibular Aqueduct (EVA). Ann. Hum. Genet. 2010; 74: 299–307. doi:10.1111/j.1469-1809.2010.00581.x.; Pang X., Chai Y., Chen P., et al. Mono-allelic pathogenic variants of SLC26A4 is over-presented in deaf patients with non-syndromic enlarged vestibular aqueduct. Int. J. Pediatr. Otorhinolaryngol. 2015; 79: 1351–1353. doi:10.1016/j.ijporl.2015.06.009.; Chai Y., Huang Z., tao Z., et al. Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am. J. Med. Genet. Part A 2013; 161: 2226–2233. doi:10.1002/ajmg.a.36068.; Miyagawa M., Nishio S.Y., Usami S. Deafness Gene Study Consortium. Pathogenic variant spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 pathogenic variants in the Japanese: A large cohort study. J. Hum. Genet. 2014; 5: 262– 268. https://doi.org/10.1038/jhg.2014.12.; Wu C.C., Yeh t.H., Chen P.J., et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in taiwan, including a frequent founder mutation. Laryngoscope. 2005; 115: 1060-1064. doi:10.1097/01.MLG.0000163339.61909.D0.; tsukada K., Nishio S.Y., Hattori M., et al. Ethnic-specific spectrum of GJB2 and SLC26A4 pathogenic variants: their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015; 124 (Suppl. 1): 61–76. https://doi.org/10.1177/0003489415575060.; Erdenechuluun J., Lin Y.-H., Ganbat K., et al. Unique spectra of deafness-associated pathogenic variants in Mongolians provide in-sights into the genetic relationships among Eurasian populations. PLoS ONE. 2018; 13: e0209797. doi:10.1371/journal.pone.0209797.; Xiang Y.B., tang S.H., Li H.Z., et al. Pathogenic variant analysis of common deafness-causing genes among 506 patients with nonsyndromic hearing loss from Wenzhou city, China. Int. J. Pediatr. Otorhinolaryngol. 2019; 122: 185–190. doi:10.1016/j.ijporl.2019.04.024.; Koohiyan M. A systematic review of SLC26A4 pathogenic variants causing hearing loss in the Iranian population. Int. J. Pediatr. Otorhinolaryngol. 2019; 125: 1–5. doi:10.1016/j.ijporl.2019.06.012.; Han J.J., Nguyen P.D., Oh D.Y., et al. Elucidation of the unique pathogenic variant spectrum of severe hearing loss in a Vietnamese pediatric population. Sci. Rep. 2019; 9(1): 1604. doi:10.1038/s41598-018-38245-4.; Zhang M., Han Y., Zhang F., et al. Pathogenic variant spectrum and hotspots of the common deafness genes in 314 patients with nonsyndromic hearing loss in Heze area, China. Acta Otolaryngol. 2019; 139: 612–617. doi:10.1080/00016489.2019.1609699.; tian Y., Xu H., Liu D., et al. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol. Genet. Genom. Med. 2021; 9 (8): e1734. doi:10.1002/mgg3.1734.; Roesch S., Rasp G., Sarikas A., et al. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol. Res. 2021; 11(3): 423-442. doi:10.3390/audiolres11030040.; Honda K., Griffith A.J. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum. Genet. 2022; 141(3-4): 455-464. https://doi.org/10.1007/s00439-021-02311-1.; Yang t., Vidarsson H., Rodrigo-Blomqvist S., et al. transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J. Hum. Genet. 2007: 80: 1055–1063. https://doi.org/10.1086/518314.; Yang t., Gurrola J.G., Wu H., et al. Pathogenic variants of KCNJ10 together with pathogenic variants of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet. 2009; 84(5): 651–657. doi:10.1016/j.ajhg.2009.04.014.; Wu C.C., Lu Y.C., Chen P.J., et al. Phenotypic analyses and pathogenic variant screening of the SLC26A4 and FOXI1 genes in 101 taiwanese families with bilateral nonsyndromic enlarged vestibular aqueduct (DFNB4) or Pendred syndrome. Audiol. Neurootol. 2010; 15: 57–66. https://doi.org/10.1159/000231567.; Chen K., Wang X., Sun L., et al. Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation. Otolaryngol. Head Neck Surg. 2012; 146: 972–978. https://doi.org/10.1177/0194599812439670.; Pique L.M., Brennan M., Davidson C.J., et al. Pathogenic variant analysis of the SLC26A4, FOXI1 and KCNJ10 genes in individuals with congenital hearing loss. PeerJ 2014; 2: e384. https://doi.org/10.7717/peerj.384.; Landa P., Differ A.-M., Rajput K., et al. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet. 2013; 14: 85. https://doi.org/10.1186/1471-2350-14-85; Klarov L.A., Pshennikova V.G., Romanov G.P., et al. Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies. International Journal of Molecular Sciences. 2022; 23(23): 15372. https://doi.org/10.3390/ijms232315372; Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Insight into the Natural History of Pathogenic Variant c.919-2A>G in the SLC26A4 Gene Involved in Hearing Loss: the Evidence for Its Common Or igin in Southern Siberia (Russia). Genes. 2023, 14: 928. https://doi.org/10.3390/genes14040928; Li M., Nishio S.-Y., Naruse C., et al. Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat. Commun. 2020; 11: 1343. https://doi.org/10.1038/s41467-020-15198-9; Pryor S.P., Madeo A.C., Reynolds J.C., et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet 2005; 42: 159–165. https://doi.org/10.1136/jmg.2004.024208; Azaiez H., Yang t., Prasad S., et al. Genotype-phenotype correlations for SLC26A4-related deafness. Hum Genet. 2007; 122: 451– 457. https://doi.org/10.1007/s00439-007-0415-2; Choi B.Y., Madeo A.C., King K.A., et al. Segregation of enlarged vestibular aqueducts in families with non-diagnostic SLC26A4 genotypes. J Med Genet. 2009; 46: 856–861. https://doi.org/10.1136/ jmg.2009.067892; Chattaraj P., Munjal t., Honda K., et al. A common SLC26A4-linked haplotype underlying non-syndromic hearing loss with enlargement of the vestibular aqueduct. J. Med. Genet. 2017; 10: 665–673. https://doi.org/10.1136/jmedgenet-2017-104721.; Reardon W., Coffey R., Chowdhury t., et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J. Med. Genet. 1999; 36: 595–598. https://doi.org/10.1136/jmg.36.8.595; Madeo A.C., Manichaikul A., Reynolds J.C., et al. Evaluation of the thyroid in patients with hearing loss and enlarged vestibular aqueducts. Arch. Otolaryngol. Head. Neck. Surg. 2009; 135: 670–676. https://doi.org/10.1001/archoto.2009.66; Ladsous M., Vlaeminck-Guillem V., Dumur V., et al. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid. 2014; 24: 639–648.https://doi.org/10.1089/thy.2013.0164; Soh L.M., Druce M., Grossman A.B., et al. Evaluation of genotype-phenotype relationships in patients referred for endocrine assessment in suspected Pendred syndrome. Eur. J. Endocrinol. 2015; 172:217–226. https://doi.org/10.1530/eje-14-0679; Lee H.J., Jung J., Shin J.W., et al. Correlation between genotype and phenotype in patients with bi-allelic SLC26A4 mutations. Clin. Genet. 2014; 86(3): 270–275. doi:10.1111/cge.12273.; Zhao J., Yuan Y., Huang S., et al. KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects. PLoS ONE 2014; 9(11): e108134. doi:10.1371/journal.pone.0108134.; Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Different Rates of the SLC26A4-Related Hearing Loss in two Indigenous Peoples of Southern Siberia (Russia). Diagnostics 2021; 11: 2378. doi.org/10.3390/diagnostics11122378.; tesolin P., Fiorino S., Lenarduzzi S., et al. Pendred Syndrome, or Not Pendred Syndrome? that Is the Question. Genes. 2021; 12(10): 1569. https://doi.org/10.3390/genes12101569; Bałdyga N., Oziębło D., Gan N., et al. the Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes 2023; 14(2): 335. https://doi.org/10.3390/genes14020335; Smits J.J., de Bruijn S.E., Lanting C.P., et al. Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Hum. Genet. 2022; 141: 465–484. doi:10.1007/s00439-021-02336-6.; Chao J.R., Chattaraj P., Munjal t. et al. SLC26A4-linked CEVA haplotype correlates with phenotype in patients with enlargement of the vestibular aqueduct. BMC Med Genet 2019; 20 (1): 118. https://doi.org/10.1186/s12881-019-0853-4
-
11Academic Journal
Συγγραφείς: I.P. Gouriev
Πηγή: Yakut Medical Journal. :115-119
Θεματικοί όροι: haplotype, founder effect, 4. Education, гаплотип, эффект основателя, система HLA, population, Indo-Europeans, 10. No inequality, индоевропейцы, популяция, 3. Good health, HLA system
-
12Academic Journal
Συγγραφείς: M. A. Loginova, I. V. Paramonov, М. А. Логинова, И. В. Парамонов
Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 4 (2020); 35-42 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 4 (2020); 35-42 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-4
Θεματικοί όροι: стратегия рекрутирования, frequency, HLA-haplotype, recruiting strategy, частота встречаемости, HLA-гаплотип
Περιγραφή αρχείου: application/pdf
Relation: https://journal.nodgo.org/jour/article/view/665/609; Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИРЦ» Минздрава России, 2017. 250 с.; Старцева А.Ю., Янушевская Е.А., Усс А.Л., Кривенко С.И. Практические аспекты подбора донора для неродственной трансплантации гемопоэтических стволовых клеток. Проблемы здоровья и экологии 2011;S:83-5.; Hematopoietic Stem Cell Transplantation. A Handbook for Clinicians. Edit by Wingard J.R., Gastineau D.A., Leather H.L. BPharm, Snyder E., FACP MD, FCAP. 2nd edition. Maryland: AABB, 2015. 970 p.; Грицаев С.В., Павлова И.Е., Семенова Н.Ю. Отдельные аспекты трансплантации гемопоэтических стволовых клеток онкогематологическим больным (лекция). Вестник гематологии 2015;XI(3):1-20.; Поп В.П., Рукавицын О.А. Аллогенная трансплантация гемопоэтических стволовых клеток: перспективы и альтернативы, собственный опыт. Российский журнал детской гематологии и онкологии 2017; 4:46-69. doi:10.17650/2311-1267-2017-4-2-46-69.; Скворцова Ю.В., Шелихова Л.Н., Мякова Н.В., Биячуев Э.Р., Коновалов Д.М., Абрамов Д.С., Масчан М.А., Скоробогатова Е.В., Румянцев А.Г., Масчан А.А. Лимфоидные неоплазии после аллогенных трансплантаций гемопоэтических стволовых клеток. Случай развития вторичной лимфомы Ходжкина, дифференциальная диагностика с посттрансплантационным лимфопролиферативным заболеванием. Онкогематология 2017;12(2):54-61. doi:10.17650/1818-8346-2017-12-2-54-61.; HLA Alleles Numbers [Electronic resource]: http://hla.alleles.org/nomenclature/stats.html (appeal date 05.11.2020).; WMDA Database. [Electronic resource]: https://share.wmda.info/display/WMDAREG/Database#/ (appeal date 04.11.2020).; Evseeva I., Foeken L., Madrigal A. The Role of Unrelated Donor Registries in HSCT. In: The EBMT Handbook. Hematopoietic Stem Cell Transplantation and Cellular Therapies. Eds. E. Carreras, C. Dufour, M. Mohty, N. Kroger. Switzerland: Springer Nature, 2019. P. 19-25.; Население России: численность, динамика, статистика [Электронный ресурс]: http://www.statdata.ru/russia (дата обращения 05.11.2020).; Excoffier L., Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995;12(5):921-7. doi:10.1093/oxfordjournals.molbev.a040269.; Excoffier L., Laval G., Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 2005;1:47-50.; Болдырева М.Н., Гуськова И.А., Богатова О.В., Янкевич Т.Э., Хромова Н.А., Тегако О.В., Ашраментова Л.А., Ищук М.В., Дубова Н.А., Ганичева Л.Л., Поздеева О.С., Балановская Е.В., Алексеев Л.П. HLA-генетическое разнообразие населения России и СНГ. II. Народы Европейской части. Иммунология 2006;4:198-202.; Поздеева О.С., Болдырева М.Н., Янкевич Т.Э., Алексеев Л.П. Гены гистосовместимости II класса в популяции удмуртов. Иммунология 2014;2:60-3.; https://journal.nodgo.org/jour/article/view/665
-
13Academic Journal
Συγγραφείς: N. V. Blazhko, S. Kh. Vyshegurov, Yu. I. Khripko, T. I. Krytsyna, K. S. Shatokhin, S. I. Loginov, Н. В. Блажко, С. X. Вышегуров, Ю. И. Хрипко, Т. И. Крыцына, К. С. Шатохин, С. И. Логинов
Συνεισφορές: The work was performed with funding by the Ministry of Agriculture of Russian Federation (№ АААА-А18-118101190004-2), Работа выполнена на средства финансирования по заданию МСХРФ (№ АААА-А18-118101190004-2)
Πηγή: South of Russia: ecology, development; Том 14, № 4 (2019); 46-55 ; Юг России: экология, развитие; Том 14, № 4 (2019); 46-55 ; 2413-0958 ; 1992-1098 ; 10.18470/1992-1098-2019-4
Θεματικοί όροι: сельское хозяйство, bovine leukemia virus (BLV), LTR-region, restriction fragment length polymorphism, leukemia, haplotype, Agriculture, вирус лейкоза крупного рогатого скота (BLV), LTR-область, полиморфизм длин ристрикционных фрагментов, лейкоз, гаплотип
Περιγραφή αρχείου: application/pdf
Relation: https://ecodag.elpub.ru/ugro/article/view/1779/1114; Новикова М.В., Боровой В.Н., Барсуков Ю.И., Коломыцев С.А. Эпизоотическая ситуация по социально значимым и особо опасным болезням животных в Российской Федерации за 2017 год // Бизнес партнёр сельское хозяйство. Ежегодный справочник для руководителей и специалистов АПК, 2018. URL: http://www. tseNvik.ru/bizness/articles/mvet/epizooticheskaya-situatsiya-po-sotsialN-znachimym-i-osoboopasnym- bоleznyam-zhivotnykh-v-rossiysko1/(дата обращения: 22.02.2018); Juliarena M.A., Barrios C.N., Lutzelschwab C.M., Esteban E.N., Gutierrez S.E. Bovine leukemia virus: current perspectives // Virus Adaptation and Treatment. 2017. N 9. P. 13-26. DOI:10.2147/VAAT.S113947; Polat M., Takeshima S., Aida Y. Epidemiology and genetic diversity of bovine leukemia virus // Virol J. 2017. V. 14. 209 p. DOI:10.1186/s12985-017-0876-4; Tellam R.L., Worley K.C. The genome sequence of taurine cattle: a window to ruminant biology and evolution // Science. 2009. V. 324. Iss. 5926. P. 522-528. DOI:10.1126/science.1169588; Suzuki T., Ikeda H., Mase M. Restricted viral cDNA synthesis in cell lines that fail to support productive infection by bovine leukemia virus // Arch Virol. 2018. V. 163. Iss. 9. P. 2415-2422. DOI:10.1007/s00705-018-3887-6; Moelling K. Viruses: More Friends than Foes. Singapore: World Scientifc Publ., 2016. 420 p. DOI:10.1142/10230; Глазко В.И., Косовский Г.Ю., Глазко Т.Т. Введение в геномную селекцию животных. М.: ООО «Приятная компания», 2012. 258 c.; Ковалев Н., Красочко П. Вирусы и прионы в патологии животных и человека. М.: Litres, 2017. 428 с.; Марков А. Наймарк Е. Эволюция. Классические идеи в свете новых открытий. М.: изд-во ACT: CORPUS, 2015. 656 с.; Lewin B. Genes IX. Jones & Bartlett Learning, 2008. 892 p.; Tajima S., Ikawa Y., Aida Y. Complete bovine leukemia virus (BLV) provirus is conserved in BLV-infected cattle throughout the course of B-cell lymphosarcoma development // J Virol. 1998. V. 72. P. 7569-7576.; Yanagihara R., Saitou N., Nerurkar V.R., Song K.J., Bastian I., Franchini G., Gajdusek D.C. Molecular phy-logeny and dissemination of human T-cell lympho-tropic virus type I viewed within the context of primate evolution and human migration // Cell Mol Biol. 1995. V. 41. P. 145-161.; Ridley M. Genome: the Autobiography of a Species in 23 Chapters. Published by Harper Perennial, Paperback, 2006. 344 p.; Marawan M.A., Mekata H., Hayashi T., Sekiguchi S., Kirino Y., Horii Y., Moustafa A-M.M., Arnaout F.K., Gali-la E.S.M., Nrimine J. Phylogenetic analysis of env gene of bovine leukemia virus strains spread in Miyazaki prefecture, Japan // J Vet Med Sci. 2017. V. 79. Iss. 5. P. 912-916. DOI:10.1292/jvms.17-0055; Pluta А., Rola-tuszczak М., Douville R.N., Kuzmak J. Bovine leukemia virus long terminal repeat variability: identification of single nucleotide polymorphisms in regulatory sequences // Virol J. 2018. V. 15. P. 165. DOI:10.1186/s12985-018-1062-z; Andreolla A.P., ScheerErpen L.M., Frandoloso R., Kreutz L.K. Development of an indirect ELISA based on recombinant capsid protein to detect antibodies to bovine leukemia virus // Braz J Microbiol. 2018. V. 49. Supp. 1. P. 68-75. DOI:10.1016/j.bjm.2018.05.001; Смирнов Ю.П., Суворова И.Л., Грязева Н.А. Динамика эпизоотического процесса лейкоза крупного рогатого скота в Кировской области и эффективность противолейкозных мероприятий // Аграрная наука Евро-Северо-Востока. 2015. T. 44. N 1. C. 6065.; Мищенко В.А, Петрова О.Н., Караулов А.К., Мищенко А.В. Проблемы лейкоза крупного рогатого скота. Владимир, 2018. 38 с.; Lojkic I., Balic D., Rudan N., Kovacic M., Cac Z., Periskis M., Bedecovic T., Roic B., Ciglar Grozdanic I. Eradication of bovine leukosis virus on a dairy farm through improved virus detection // Vet. Arhiv. 2013. V. 83. P. 581-591.; Ruggiero V.J., Benitez O.J., Tsai Y.L., Lee P.A., Tsai C.F., Lin Y.C., Chang H.G., Wang H.T., Bartlett P. On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system // J Virol Methods. 2018. V. 259. P. 116-121. DOI:10.1016/j.jviromet.2018.06.008; Glazko T.T., Kosovskiy G.Yu., Kovaltchuk S.N., Zybailov B.L., Glazko V.I. Genomic scanning using inverted repeats of microsatellites (GAG)6C, (AG)9C // Biogeosystem Technique. 2015. V. 4. Iss. 2. P. 138-152. DOI:10.13187/bgt.2015.4.138; Moratorio G., Fischer S., Bianchi S., Tome L., Rama G., Obal G., Carrion F., Pritsch O., Cristina J. A detailed molecular analysis of complete bovine leukemia virus geNmes isolated from B-cell lymphosarcomas // Vet Res. 2013. V. 44. P. 19. DOI:10.1186/1297-9716-44-19. URL: http://www.veterinaryresearch.org/content/44/1/19) (дата обращения: 18.03.2013); Buske F.A., Mattick J.S., Bailey T.L. Potential in vivo roles of nucleic acid triple-helices // RNA Biology. 2011. V. 8. Iss. 3. P. 427-439. DOI:10.4161/rna.8.3.14999; Limanskaya O.Yu. Polypurine/polypyrimidine sequences with potential of forming triplexes in the proviral DNA of bovine retroviruses // Cytology and Genetics. 2010. V. 44. Iss. 1. P. 10-18.; Косовский Г.Ю., Глазко В.И., Архипов А.В., Петрова И.О., Глазко Т.Т. Популяционно-генетическая дифференциация молочного скота по ISSR-PCR маркёрам // Доклады Российской академии сельскохозяйственных наук. 2014. N 5. С. 53-56.; Buehring G.C., Philpott S.M., Choi K.Y. Humans have antibodies reactive with bovine leukemia virus // AIDS Res. Hum. Retroviruses. 2003. V. 19. N 12. P. 1105-1113. DOI:10.1089/088922203771881202; Блажко Н.В., Вышегуров С.Х., Донченко А.С., Шатохин К.С., Крыцына Т.И., Рябинина В.А. Связь гаплотипов SNP LTR-области BLVс гематологическими показателями крови крупного рогатого скота // Вавиловский журнал генетики и селекции. 2019. T. 23. N 3. C. 262-269. DOI:10.18699/VJ19.491; Зорина В.В. Основы полимеразной цепной реакции (ПЦР). Методическое пособие. М.: «ДНК-ТЕХНОЛОГИЯ», 2012. 80 с.; Principles and Techniques of Biochemistry and Molecular Biology. K. Wilson and J. Walker (eds). Sixth edition. Cambridge University Press, 2005.; Frandson R.D., Wilke W.L., Fails A.D. Anatomy and physiology of farm animals. Seven edition. Wiley-Blackwell: A John Wiley & Sons, Inc., Publication, 2009. 536 p.; Ruiz V., Porta N.G., Lomonaco M., Trono K., Alvarez I. Bovine leukemia virus infection in neonatal calves: Risk factors and control measures // Frontiers in Veterinary Science. 2018. V. 5. Article 267. DOI:10.3389/fvets.2018.00267; Gyles C. Should we be more concerned about bovine leukemia virus? // Can Vet. J. 2016. V. 57. Iss. 2. P. 115-116.; Сюрин В.Н., Самуйленко А.Я., Соловьёв Б.В., Фомина Н.В. Вирусные болезни животных. М.: ВНИ-ТИБП, 2001. 928 с.; Rice N.R., Stephens R.M., Burny A., Gilden R.V. The gag and pol genes of bovine leukemia virus: Nucleotide sequence and analysis // Virology. 1985. V. 142. P. 357377.; Агол В.И. Природа патогенности вирусов // Природа. 2015. N 5. C. 3-10.; Florins A., de Brogniez A., Elemans M., Bouzar A.B., Francois C., Reichert M., Asquith B, Willems L. Viral expression directs the fate of B cells in bovine leukemia virus-infected sheep // J Virol. 2012. V. 86. Iss. 1. P. 621-624. DOI:10.1128/JVI.05718-11; Barez P.Y., de Brogniez A., Carpentier A., Gazon H., Gillet N., Gutierrez G., Hamaidia M., Jacques J.R., Perike S., NeelatureSriramareddy S., ReNtte N., Stau-mont B., Reichert M., TroN K, Willems L. Recent Advances in BLV Research // Viruses. 2015. V. 7. Iss. 11. P. 6080-6088. DOI:10.3390/v7112929; https://ecodag.elpub.ru/ugro/article/view/1779
-
14Academic Journal
Συγγραφείς: M. V. Alfimova, N. V. Kondratyev, M. I. Bolgov, M. V. Gabaeva, V. E. Golimbet, М. В. Алфимова, Н. В. Кондратьев, М. И. Болгов, М. В. Габаева, В. Е. Голимбет
Πηγή: Medical Genetics; Том 19, № 4 (2020); 10-11 ; Медицинская генетика; Том 19, № 4 (2020); 10-11 ; 2073-7998
Θεματικοί όροι: environment, шизофрения, секвенирование, гаплотип, среда, epigenetics, schizophrenia, sequencing, haplotype
Περιγραφή αρχείου: application/pdf
-
15Academic Journal
Συγγραφείς: O. S. Shilkina, N. A. Shnayder, S. N. Zobova, D. V. Dmitrenko, P. V. Moskaleva, О. С. Шилкина, Н. А. Шнайдер, С. Н. Зобова, Д. В. Дмитренко, П. В. Москалева
Συνεισφορές: Работа выполнена в рамках комплексной темы научных исследований «Эпидемиологические, генетические и нейрофизиологические аспекты заболеваний центральной, периферической и вегетативной нервной системы и превентивная медицина» (руководитель – д.м.н., профессор Н.А. Шнайдер) №0120.0807480.
Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 11, No 4 (2019); 61-67 ; Неврология, нейропсихиатрия, психосоматика; Vol 11, No 4 (2019); 61-67 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2019-4
Θεματικοί όροι: фотосенситивность, genetics, BRD2, GJD2, single nucleotide polymorphisms, haplotype, photosensitivity, генетика, однонуклеотидный полиморфизм, гаплотип
Περιγραφή αρχείου: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/1211/965; Карлов ВА, Фрейдкова НВ. Юношеская миоклоническая эпилепсия. В кн.: Карлов ВА, редактор. Эпилепсия у детей и взрослых женщин и мужчин. Москва: Медицина; 2010. С. 244–8.; Петрухин АС, Калинина ЛВ, Анпилогова ИЭ. Клинико-эпидемиологическая характеристика эпилепсии у детей, проживающих в Тульской области. Педиатрия. Журнал им. Г.Н. Сперанского. 2004;83(6):101-3.; Мухин КЮ. Юношеская миоклоническая эпилепсия (синдром Янца). В кн.: Мухин КЮ, Петрухин АС. Идиопатические формы эпилепсии: систематика, диагностика, терапия. Москва: Арт-Бизнес-Центр; 2000. С. 120–35.; Martinez-Juarez IE, Alonso ME, Medina MT, et al. Juvenile myoclonic epilepsy subsyndromes: family studies and long-term follow-up. Brain. 2006 May;129(Pt 5):1269-80. Epub 2006 Mar 6.; Shilkina OS, Petrov KV, Diuzhakova AV, et al. Frequency of juvenile myoclonic epilepsy phenotypes in Siberia. World J Neurosci. 2016; (6):32-6. doi:10.4236/wjns.2016.61004.; Шнайдер НА, Шилкина ОС, Петров КВ и др. Клинико-генетическая гетерогенность юношеской миоклонической эпилепсии. Эпилепсия и пароксизмальные состояния. 2016;(2):20-36. doi:10.17749/2077-8333.2016.8.2.020-036.; Белоусова ЕД. Генетика эпилепсии: зачем и как обследовать детей с эпилепсией. Неврология, нейропсихиатрия, психосоматика. 2014;6(1S):4-8. doi:10.14412/2074-2711-2014-1S-4-8.; Greenberg DA, Stewart WC. How should we be searching for genes for common epilepsy? A critique and a prescription. Epilepsia. 2012 Sep;53 Suppl 4:72-80. doi:10.1111/j.1528-1167.2012.03616.x.; Delgado-Escueta AV, Koeleman BP, Bailey JN, et al. The quest for juvenile myoclonic epilepsy genes. Epilepsy Behav. 2013 Jul;28 Suppl 1:S52-7. doi:10.1016/j.yebeh.2012.06.033.; Online Mendelian Inheritance in Man. http://www.omim.org/; Delgado-Escueta AV. Advances in genetics of juvenile myoclonic epilepsies. Epilepsy Curr. 2007 May-Jun;7(3):61-7. doi:10.1111/j.1535-7511.2007.00171.x.; Bosco D, Haefliger JA, Meda P. Connexins: key mediators of endocrine function. Physiol Rev. 2011 Oct;91(4):1393-445. doi:10.1152/physrev.00027.2010.; Pal DK, Durner M, Klotz I, et al. Complex inheritance and parent-of-origin effect in juvenile myoclonic epilepsy. Brain Dev. 2006 Mar; 28(2):92-8. Epub 2006 Jan 18.; Shang E, Wang X, Wen D, et al. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev Dyn. 2009 Apr;238(4):908-17. doi:10.1002/dvdy.21911.; Pal DK, Greenberg DA. Major susceptibility genes for common idiopathic epilepsies: ELP4 in Rolandic epilepsy and BRD2 in juvenile myoclonic epilepsy. In: Noebels JL, Avoli M, Rogawski MA, et al, editors. Source. Jasper's Basic Mechanisms of the Epilepsies. 4th edition. Bethesda: National Center for Biotechnology Information; 2012.; Pal DK, Evgrafov OV, Tabares P, et al. BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am J Hum Genet. 2003 Aug;73(2): 261-70. Epub 2003 Jun 25. doi:10.1086/377006; De Kovel CG, Pinto D, de Haan GJ, et al. Association analysis of BRD2 (RING3) and epilepsy in a Dutch population. Epilepsia. 2007 Nov;48(11):2191-2. doi:10.1111/j.1528-1167.2007.01306.x; Lorenz S, Taylor KP, Gehrmann A, et al. Association of BRD2 polymorphisms with photoparoxysmal response. Neurosci Lett. 2006 May 29;400(1-2):135-9. Epub 2006 Mar 3.; Cavalleri G. Haplotype mapping in epilepsy genetics and pharmacogenetics. University College London; 2013. http://discovery.ucl.ac.uk/id/eprint/1445351; Mas C, Taske N, Deutsch S, et al. Association of theconnexin 36 gene with juvenile myoclonic epilepsy. J Med Genet. 2004 Jul; 41(7):e93.; Hempelmann A, Heils A, Sander T. Confirmatory evidence for an association of the connexin-36 gene with juvenile myoclonic epilepsy. Epilepsy Res. 2006 Oct;71(2-3):223-8. Epub 2006 Jul 28.
-
16Academic Journal
Συγγραφείς: E. T. Ilnitskaya, M. V. Makarkina, S. V. Tokmakov, L. G. Naumova, Е. Т. Ильницкая, М. В. Макаркина, С. В. Токмаков, Л. Г. Наумова
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 6 (2018); 703-707 ; Вавиловский журнал генетики и селекции; Том 22, № 6 (2018); 703-707 ; 2500-3259
Θεματικοί όροι: межвидовые гибриды, resistance to downy mildew, gene Rpv3, haplotype, DNA-markers, interspecific hybrids, устойчивость к милдью, ген Rpv3, гаплотип, ДНК-маркеры
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1656/1120; Alleweldt G., Possingham J.V. Progress in grapevine breeding. Theor. Appl. Genet. 1988:75:669-673.; Bellin D., Peressotti E., Merdinoglu D., Wiedemann-Merdinoglu S., Adam-Blondon A.F., Cipriani G., Di Gaspero G. Resistance to Plasmopara viticola in grapevine “Bianca” is controlled by a major dominant gene causing localised necrosis at the infection site. Theor. Appl. Genet. 2009;120(1):163-176. DOI 10.1007/s00122-009-1167-2.; Di Gaspero G., Copetti D., Coleman C., Castellarin S.D., Eibach R., Kozma P., Lacombe T., Gambetta G., Zvyagin A., Cindrić P., Kovács L., Morgante M., Testolin R. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor. Appl. Genet. 2012;124:227-286. DOI 10.1007/s00122-011-1703-8.; Eibach R., Zyprian E., Welter L., Töpfer R. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis. 2007;46:120-124.; International Variety Catalogue VIVC. Julius Kuhn-Institut. http:// www.vivc.de.; Ochssner I., Hausmann L., Töpfer R. Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis: J. Grapevine Res. 2016;55(2):79-81. DOI 10.5073/vitis.2016.55.79-81.; Petrov V.S., Talash A.I. Pest Resistance in Grape Varieties. Krasnodar, 2010. (in Russian); Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985;19(1):69-76.; Schwander F., Eibach R., Fechter I., Hausmann L., Zyprian E., Töpfer R. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor. Appl. Genet. 2012;124(1):163-176. DOI 10.1007/s00122-011-1695-4.; Talash A.I. Grades of pest harmfulness in vineyards. Plodovodstvo i Vinogradarstvo Yuga Rossii = Fruit Growing and Viticulture of South Russia. 2010;4(3):24-29. (in Russian); Troshin L.P., Radchevskiy P.P. Grapevine: Illustrated Catalog. Released, Promising, and Mass-Production Varieties. Rostov n/D., 2010. (in Russian); Venuti S., Copetti D., Foria S., Falginella L., Hoffmann S., Bellin D., Di Gaspero G. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE. 2013;8(4):1-7. DOI 10.1371/journal. pone.0061228.; Wan Y., Schwaninger H., He P., Wang Y. Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. Vitis. 2007;46:132-136.; Zini E., Raffeiner M., Di Gaspero G., Eibach R., Grando M.S., Letschka T. Applying a defined set of molecular markers to improve selection of resistant grapevine accessions. Acta Horticulturae. 2014; 1082:73-78. DOI 10.17660/ActaHortic.2015.1082.9.; https://vavilov.elpub.ru/jour/article/view/1656
-
17Academic Journal
Συγγραφείς: N. N. Chakova, S. S. Niyazova, S. M. Komissarova, M. A. Sasinovich, M. G. Goncharenko, Н. Н. Чакова, С. С. Ниязова, С. М. Комиссарова, М. А. Сасинович, М. Г. Гончаренко
Πηγή: Medical Genetics; Том 17, № 12 (2018); 36-43 ; Медицинская генетика; Том 17, № 12 (2018); 36-43 ; 2073-7998
Θεματικοί όροι: clinical features, мутация р.Gln1233* и замена р.Arg326Gln в гене MYBPC3, гаплотип, эффект основателя, клинические проявления, hypertrophic cardiomyopathy, р.Gln1233* mutation and р.Arg326Gln substitution in MYBPC3, haplotype, founder effect
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/610/391; Carrier L, Bonne G, Bahrend E et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3)and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 1997;80:427-434.; Richard P, Charron P, Carrier L et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227-2232.; Curila K, Benesova L, Penicka M et al. Spectrum and clinical manifestations of mutations in genes responsible for hypertrophic cardiomyopathy. Acta Cardiol. 2012 Feb;67(1):23-29.; Niimura H, Patton KK, McKenna WJ et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation. 2002 Jan 29;105(4):446-451.; Поляк МЕ, Ховалыг АБ, Букаева АА и др. Спектр мутаций в гене MYBPC3 у пациентов с гипертрофической кардиомиопатией. Медицинская генетика. 2016;15(8): 26-29.; Ingles J, Doolan A, Chiu C et al. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005 Oct;42(10):e59.; Roncarati R, Latronico MV, Musumeci B et al. Unexpectedly low mutation rates in beta-myosin heavy chain and cardiac myosin binding protein genes in Italian patients with hypertrophic cardiomyopathy. J Cell Physiol. 2011 Nov;226(11):2894-2900.; Erdmann J, Raible J, Maki-Abadi J et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2001 Aug;38(2):322-330.; Bos JM, Will ML, Gersh BJ et al. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2014 Jun;89(6):727-737.; Tоth T, Nagy V, Faludi R et al. The Gln1233ter mutation of the myosin binding protein C gene: causative mutation or innocent polymorphism in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2011 Dec 1;153(2):216-219.; Mathew CC. The isolation of high molecular weight eukaryotic DNA. Methods Mol Biol. 1984;2:31-34.; Glotov AS, Kazakov SV, Zhukova EA et al. Targeted next-generation sequencing (NGS) of nine candidate genes with custom AmpliSeq in patients and a cardiomyopathy risk group. Clin Chim Acta. 2015;446:132-140.; Rafael JF, Cruz FEDS Filho, Carvalho ACC et al. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy. Arq Bras Cardiol. 2017 Apr; 108(4): 354-360.; Maron BJ, Niimura H, Casey SA et al. Development of left ventricular hypertrophy in adults in hypertrophic cardiomyopathy caused by cardiac myosin-binding protein C gene mutations. J Am Coll Cardiol. 2001 Aug;38(2):315-321.; Jааskelаinen P, Kuusisto J, Miettinen R et al. Mutations in the cardiac myosin-binding protein C gene are the predominant cause of familial hypertrophic cardiomyopathy in eastern Finland. J Mol Med. 2002 Jul;80(7):412-422.; Jааskelаinen P, Heliо T, Aalto-Setаlа K et al. A new common mutation in the cardiac beta-myosin heavy chain gene in Finnish patients with hypertrophic cardiomyopathy. Ann Med. 2014 Sep;46(6):424-429.; Lopes LR, Zekavati A, Syrris P et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet. 2013 Apr;50(4): 228-239.; Brito D, Miltenberger-Miltenyi G, Vale Pereira S et al. Sarcomeric hypertrophic cardiomyopathy: genetic profile in a Portuguese population. Rev Port Cardiol. 2012 Sep;31(9):577-587.; Van Driest SL, Jaeger MA, Ommen SR et al. Comprehensive analysis of the beta-myosin heavy chain gene in 389 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(3): 602-610.; Lopes LR, Syrris P, Guttmann OP et al. Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart. 2015 Feb;101(4):294-301.; Ehlermann P, Weichenhan D, Zehelein J et al. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Med Genet. 2008 Oct 28;9:95.; Fokstuen S, Lyle R, Munoz A et al. A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy. Hum Mutat. 2008 Jun;29(6):879-885.
Διαθεσιμότητα: https://www.medgen-journal.ru/jour/article/view/610
-
18Academic Journal
Θεματικοί όροι: 0301 basic medicine, 2. Zero hunger, 0303 health sciences, haplotype, productivity, холмогорская порода, микросателлиты, mtDNA, генофонд, β-лактоглобулины, группы крови, β-lactoglobulin, casein, blood groups, microsatellites, gene pool, Y-хромосома, продуктивность, 03 medical and health sciences, Kholmogory breed, гаплотип, мтДНК, казеины, Y-chromosome
-
19Academic Journal
Συγγραφείς: A. E. Pushkareva, R. I. Khusainova, R. R. Valiev, G. P. Arutyunov, E. K. Khusnutdinova, А. Э. Пушкарева, Р. И. Хусаинова, Р. Р. Валиев, Г. П. Арутюнов, Э. К. Хуснутдинова
Πηγή: Medical Genetics; Том 15, № 6 (2016); 11-18 ; Медицинская генетика; Том 15, № 6 (2016); 11-18 ; 2073-7998
Θεματικοί όροι: haplotype, ХСН, ген ангиотензин-превращающего фермента (АСЕ), полиморфный локус, генотип, гаплотип, remodeling of the left ventricle, chronic heart failure (CHF), angiotensin-converting enzyme gene (ACE), polymorphic locus, genotype
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/137/125; Greenberg B. An ACE in the hole: Alternative Pathways of the Renin Angiotensin System and Their Potential Role in Cardiac Remodeling // J. Am. Coll. Cardiol. - 2008. - Vol. 52. - P. 755-757.; Der Sarkissan S., Huentelman M.J., Sterwart J., Katovich M.J., Raizada M.K. ACE2: A novel therapeutic target for cardiovascular diseases // Prog. Biophys. Mol. Biol. - 2006. - May-Jun. - Vol. 91(1-2). - P. 163-198.; Wang Yazhu, Li Ying, Fan Jinqi et al. Association study of the angiotensin-converting enzyme (ACE) gene rs4340 and rs4343 polymorphism with atrial fibrillation // Heart. - 2011. - Vol. 97. - A57 doi:10.1136/heartjnl-2011-300867.168.; Liza U Ljungberg, Carl Johan Ostgren, Fredrik H Nystrom et al. Associations of genetic polymorphisms in the renin-angiotensin system with central aortic and ambulatory blood pressure in type 2 diabetic patients. Journal of Renin-Angiotensin-Aldosteron System published online 28 January 2013. http://jra.sagepub.com/content/early/2013/ 01/28/1470320312474052; Rudnicki M., Mayer G. Significance of genetic polymorphisms of the renin-angiotensin-aldosterone system in cardiovascular and renal disease // Pharmacogenomics. - 2009. - 10. - P. 463-476.; Fatini Cinzia MD, PhD; Sticchi, Elena BS, Marcucci, Rossalla MD, PhD et al. ACE Insertion/Deletion, but not -240A>T polymorphism, modulate the severity in heart failure // Journal of Investigative Medicine. - 2008. - December. - Vol. 56. - Issue 8. - P. 1004-1010.; Marcin Zakrzewski-Jakubiak, Simon de Denus, Marie-Pierre Dube et al. Ten renin-angiotensin system-related gene polymorphisms in maximally treated Canadian Cacausian patients with heart failure // Br. J. Clin. Pharmacol. - 2008. - 65:5. - P. 742-751.; En-Zhi Jia, Zhen-Xia Xu, Chang-Yan Guo et al. Renin-angiotensin-aldosterone polymorphisms and coronary artery disease: detection of gene-gene and gene-environment interactions // Cell Physiology and Biochemistry. - 2012. - Vol. 29. - P. 443-452.; QIU Chunguang, HAN Zhanying, LU Wenjie, ZHANG Cuntai. Association of polymorphisms in angiotensin-converting enzyme and type1 angiotensinII receptor genes with coronary heart disease and severity of coronary artery stenosis // Journal of Huazhong University and Techology. - 2007. - Vol. 27(6). - P. 660-663.; Frank G.A. De Bakker, Peter Groenewegen, Frank Den Hond. A Bibliometric Analysis of 30 Years of Research and Theory on Corporate Social Responsibility and Corporate Social Performance // Business & Society. - 2005. - Vol. 44(3). - P. 283-317.; Crawford D.C., Akey D.T., Nickersson D.A. The patterns of natural variation in human genes // Annu Rev Genomics Hum Genet. - 2005. - 6. - P. 287-312.; Bin Zhang and Steve Horvath. Statistical applications in genetics and molecular biology. Volume 4, Issue 1. 2005. Article 17. Department of Human Genetics and Biostatistcs, University of California at Los Angeles.; Slatkin M. Linkage disequilibrium- understanding the evolutionary past and mapping the medical future // Nat. Rev. Genet. - 2008. - Jun. - 9(6). - P. 477-485.; Levenstein M.A., Ott J., Gordon D. Are molecular haplotypes worth the time and expense? A cost-effective method for applying molecular haplotypes // PLoS Genet. - 2006. - 2.; Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П. и др. Национальные рекомендации ВНОК и ОССН по диагностике и лечению ХСН (III пересмотр) // Сердечная недостаточность. - 2010. - №1(57).; Функциональная диагностика в кардиологии: клиническая интерпретация: Учебное пособие / Под ред. Васюка Ю.А. - М.: Практическая медицина, 2009. - 312 с.; Hsieh Y.Y., Chang C.C., Tsai F.J., Hsu C.M., Lin C.C., Tsai C.H. Angiotensin I-converting enzyme ACE2350*G and ACE-240*T-related genotypes and alleles are associated with higher susceptibility to endometriosis // Mol. Hum. Reprod. - 2005. - Jan;(1). - P. 11-14.; Iwai N., Ohmichi N., Nakamura Y., Kinoshita M. DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy // Circulation. - 1994. - Dec. - Vol. 90(6). - P. 2622-2628.; Barrett J.C., Fry B., Maller J., Daly M.J. Haploview: analysis and visualization of LD and haplotype maps // Bioinformatics. - 2005. - 21(2). - P. 263-265.; McNamara D.M. Pharmocogenetics in Heart Failure: Genomic markers of endothelial and neurohumoral function // Congestive Heart Failure. - 2004. - 10. - P. 302-308.; Marzia Rigolli, Mariantonietta Cicoira, Corinna Bergamini et al. Progression of left ventricular dysfunction and remodelling under optimal medical therapy in CHF patients: role of individual genetic background // Cardiology Research and Practice. - 2011. - Vol. 2011; Article ID 798658; Haixin Lei, Ian N.M. Day, Igor Vorechovsky. Exonization of AluYa5 in human ACE gene requires mutations in both 3/ and 5/ splice sites and it facilitated by a conserved splicing enhancer // Nucleic Acids Res. - 2005. - Vol. 33(12). - P. 3897-3906.; Воевода М.И., Степанов В.А., Ромащенко А.Т., Максимов В.Н. Этногенетические особенности подверженности атеросклерозу в этнических группах Сибири на примере аполипопротеина Е // Бюллетень СО РАМН. - 2006. - №2(120). - С. 63-72.; Ana I Freitas, Isabel Mendonca, Maria Brion et al. RAS gene polymorphisms, classical risk factors and the advent of coronary artery disease in Portuguese population // BMC Cardiovascular Disordes. - 2008. - 8. - 15.; Nancy Martinez-Rodriquez, Carios Posadas-Romero, Teresa Villarreal-Molina et al. Single Nucleotide Polymorphisms of the angiotensin-converting enzyme (ACE) gene are associated with essential hypertension and increased ACE enzyme levels in Mexican individuals // PloS One. - 2013. - 8(5). - e65700.; Paolo Catarsi, Roberto Ravazzolo, Francesco Emma et al. Angiotensin-converting enzyme (ACE) haplotypes and cydosporine A(CsA) response: a model of the complex relationship between ACE quantitave trait locus and pathological phenotypes // Hum. Mol. Genet. 2005. - Aug 7. - Vol. 14(16). - P. 2357-2367.
-
20Academic Journal
Συγγραφείς: ЛИТОВКА ДЕНИС ИГОРЕВИЧ
Περιγραφή αρχείου: text/html