Εμφανίζονται 1 - 20 Αποτελέσματα από 36 για την αναζήτηση '"ГАНГЛИОЗНЫЕ КЛЕТКИ"', χρόνος αναζήτησης: 0,68δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 22, № 1 (2025); 5-15 ; Офтальмология; Том 22, № 1 (2025); 5-15 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2025-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2569/1293; Петров СЮ, Ловпаче ДН, Брежнев АЮ. Международные мультицентровые исследования по глаукоме. Российский офтальмологический журнал. 2016;9(2):96–101. doi:10.21516/2072-0076-2016-9-2-96-101.; Kolko M. Present and New Treatment Strategies in the Management of Glaucoma. Open Ophthalmol J. 2015;9:89–100. doi:10.2174/1874364101509010089.; Qi YX, Zhang J, Su XJ. Can neuroprotection effectively manage primary open-angle glaucoma? a protocol of systematic review and meta-analysis. Medicine (Baltimore). 2020;99(23):e20380. doi:10.1097/MD.0000000000020380.; Shen J, Wang Y, Yao K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp Eye Res. 2021;205:108506. doi:10.1016/j.exer.2021.108506.; Клинические рекомендации «Глаукома первичная открытоугольная» (одобрены Минздравом России). Год утверждения 2024. https://cr.minzdrav.gov.ru; Клинические рекомендации «Глаукома первичная закрытоугольная» (одобрены Минздравом России). Год утверждения 2024. https://cr.minzdrav.gov.ru; Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. Journal of Cell Biology. 2007;179:1523–1537. doi:10.1083/jcb.200706181.; Guo L, Salt TE, Maass A. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Investigative Ophthalmology and Visual Science. 2006;47(2):626–633. doi:10.1167/iovs.05-0754.; Russo R, Cavaliere F. Modulation of pro-survival and death-associated pathways under retinal ischemia/reperfusion: effects of NMDA receptor blockade. J. of Neurochem. 2008;107(5):1347–1357. doi:10.1111/j.1471-4159.2008.05694.x.; Rusciano D, Pezzino S, Mutolo MG. Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci. 2017;2017:4320408. doi:10.1155/2017/4320408.; Jain KK. Neuroprotective agents. The Handbook of Neuroprotection Humana, New York, 2019. P. 45–173.; He S, Stankowska DL, Ellis DZ. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther. 2018;34(1–2):85–106. doi:10.1089/jop.2017.0041.; Pellegrini JW, Lipton SA. Delayed administration of memantine prevents N-methyl-D-aspartate receptor-mediated neurotoxicity. Ann Neurol. 1993;33(4):403–407. doi:10.1002/ana.410330414.; Ju WK, Kim KY, Angert M, Duong-Polk KX, Lindsey JD, Ellisman MH, Weinreb RN. Memantine blocks mitochondrial OPA1 and cytochrome c release and subsequent apoptotic cell death in glaucomatous retina. Invest Ophthalmol Vis Sci. 2009;50(2):707–716. doi:10.1167/iovs.08-2499.; Yücel YH, Gupta N, Zhang Q. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol. 2006;124(2):217–225. doi:10.1001/archopht.124.2.217.; Gupta N, Ang L, de Tilly LN. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90(6):674–678. doi:10.1136/bjo.2005.086769.; Weinreb RN, Liebmann JM, Cioffi GA. Oral Memantine for the Treatment of Glaucoma: Design and Results of 2 Randomized, Placebo-Controlled, Phase 3 Studies. Ophthalmology. 2018;125(12):1874–1885. doi:10.1016/j.ophtha.2018.06.017.; Астахов ЮС, Бутин ЕВ, Морозова НВ, Соколов ВО. К вопросу о нейропротекторном влиянии акатинол-мемантина и бетаксолола у больных первичной открытоугольной глаукомой. Глаукома: проблемы и решения. Всероссийская научно-практическая конференция. М., 2004;170–184.; Курышева НИ, Иртегова ЕЮ, Ходак НА. Оценка клинической эффективности акатинол мемантина в лечении прогрессирующей глаукомной оптиконейропатии. Глаукома: реальность и перспективы. М., 2008. P. 233–239.; Osborne NN. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci. 1999;16(1):45–52. doi:10.1017/s0952523899161017.; Sánchez-López E, Egea MA, Davis BM. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small. 2018;14(2). doi:10.1002/smll.201701808.; Ekici F, Korkmaz Ş, Karaca EE. The Role of Magnesium in the Pathogenesis and Treatment of Glaucoma. Int Sch Res Notices. 2014;2014:745439. doi:10.1155/2014/745439.; Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol. 2013;13(1):43–49. doi:10.1016/j.coph.2012.10.001.; Almasieh M, Zhou Y, Kelly ME, Casanova C, Di Polo A. Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis. 2010;1(2):e27. doi:10.1038/cddis.2009.23.; Yamamoto T, Niwa Y, Kawakami H. The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma. J Glaucoma. 1998;7(5):301–305.; Rainer G, Kiss B, Dallinger S. A double masked placebo controlled study on the effect of nifedipine on optic nerve blood flow and visual field function in patients with open angle glaucoma. Br J Clin Pharmacol. 2001;52(2):210–212. doi:10.1046/j.0306-5251.2001.01432.x.; Ramdas WD, Wolfs RC, Kiefte-de Jong JC. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol. 2012;27(5):385–393. doi:10.1007/s10654-012-9672-z.; Lehrer S, Rheinstein PH. Amlodipine increases risk of primary open-angle glaucoma. Clin Hypertens. 2024;30(1):33. doi:10.1186/s40885-024-00290-9.; Tavakoli K, Sidhu S, Radha Saseendrakumar B, Weinreb RN, Baxter SL. Long-Term Systemic Use of Calcium Channel Blockers and Incidence of Primary Open-Angle Glaucoma. Ophthalmol Glaucoma. 2024t;7(5):491–498. doi:10.1016/ j.ogla.2024.06.003.; Vallabh NA, Lane B, Simpson D, Fuchs M, Choudhary A, Criddle D, Cheeseman R, Willoughby C. Massively parallel sequencing of mitochondrial genome in primary open angle glaucoma identifies somatically acquired mitochondrial mutations in ocular tissue. Sci Rep. 2024;14(1):26324. doi:10.1038/s41598-024-72684-6.; Henderson J, O’Callaghan J, Campbell M. Gene therapy for glaucoma: Targeting key mechanisms. Vision Res. 2024;225:108502. doi:10.1016/j.visres.2024.108502.; Cheung W, Guo L, Cordeiro MF. Neuroprotection in glaucoma: drug-based approaches. Optom Vis Sci. 2008;85(6):406–416. doi:10.1097/OPX.0b013e31817841e5.; Chen M, Liu B, Ma J, Ge J, Wang K. Protective effect of mitochondria‑targeted peptide MTP‑131 against oxidative stress‑induced apoptosis in RGC‑5 cells. Mol Med Rep. 2017;15(4):2179–2185. doi:10.3892/mmr.2017.6271.; Noh YH, Kim KY, Shim MS. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis. 2013;4(10):e820. doi:10.1038/cddis.2013.341.; Nucci C, Martucci A, Giannini C. Neuroprotective agents in the management of glaucoma. Eye (Lond). 2018;32(5):938–945. doi:10.1038/s41433-018-0050-2.; Martucci A, Reurean-Pintilei D, Manole A. Bioavailability and Sustained Plasma Concentrations of CoQ10 in Healthy Volunteers by a Novel Oral Timed-Release Preparation. Nutrients. 2019;11(3):527. doi:10.3390/nu11030527.; Parisi V, Centofanti M, Gandolfi S. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma. 2014;23(6):391–404. doi:10.1097/IJG.0b013e318279b836.; Martucci A, Mancino R, Cesareo M. Combined use of coenzyme Q10 and citicoline: A new possibility for patients with glaucoma. Front Med (Lausanne). 2022;9:1020993. doi:10.3389/fmed.2022.1020993.; Pravst I, Rodríguez Aguilera JC, Cortes Rodriguez AB. Comparative Bioavailability of Different Coenzyme Q10 Formulations in Healthy Elderly Individuals. Nutrients. 2020;12(3):784. doi:10.3390/nu12030784.; Oddone F, Rossetti L, Parravano M. Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals (Basel). 2021;14(3):281. doi:10.3390/ph14030281.; Sahin AK, Kapti HB, Uzun A. Effect of oral citicoline therapy on retinal nerve fiber layer and ganglion cell-inner plexiform layer in patients with primary open angle glaucoma. Int J Ophthalmol. 2022;15(3):483–488. doi:10.18240/ijo.2022.03.17.; Skopiński P, Radomska-Leśniewska DM, Izdebska J. New perspectives of immunomodulation and neuroprotection in glaucoma. Cent Eur J Immunol. 2021;46(1):105–110. doi:10.5114/ceji.2021.104329.; Lanza M, Gironi Carnevale UA, Mele L. Morphological and Functional Evaluation of Oral Citicoline Therapy in Chronic Open-Angle Glaucoma Patients: A Pilot Study With a 2-Year Follow-Up. Front Pharmacol. 2019;10:1117. doi:10.3389/fphar.2019.01117.; Flammer J, Haefliger IO, Orgul S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? Journal of Glaucoma. 1999;8:212–219.; Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim SG, Wollstein G, Schuman JS, Chan KC. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep. 2016;6:31464. doi:10.1038/srep31464.; Tezel G, Chauhan BC, LeBlanc RP, Wax MB. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci. 2003;44(7):3025–3033. doi:10.1167/iovs.02-1136.; Курышева НИ. Механизмы снижения зрительных функций при первичной открытоугольной глаукоме и пути их предупреждения: aвтореф. дис. … докт. мед. наук. М., 2001. 43 с.; Husain S, Abdul Y, Singh S, Ahmad A, Husain M. Regulation of nitric oxide production by δ-opioid receptors during glaucomatous injury. PLoS One. 2014;9(10):e110397. doi:10.1371/journal.pone.0110397.; He S, Liu C, Ren C, Zhao H, Zhang X. Immunological Landscape of Retinal Ischemia-Reperfusion Injury: Insights into Resident and Peripheral Immune Cell Responses. Aging Dis. 2024. doi:10.14336/AD.2024.0129. Epub ahead of print.; Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel). 2024;17(4):441. doi:10.3390/ph17040441.; Sun J, Liu Y, Chen Z. Melatonin and retinal cell damage: molecular and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2024. doi:10.1007/s00210-024-03575-w. Epub ahead of print.; Hu C, Feng Y, Huang G, Cui K, Fan M, Xiang W, Shi Y, Ye D, Ye H, Bai X, Xu F, Xu Y, Huang J. Melatonin prevents EAAC1 deletion-induced retinal ganglion cell degeneration by inhibiting apoptosis and senescence. J Pineal Res. 2024;76(1):e12916. doi:10.1111/jpi.12916.; Morató X, Tartari JP, Pytel V, Boada M. Pharmacodynamic and Clinical Effects of Ginkgo Biloba Extract EGb 761 and Its Phytochemical Components in Alzheimer’s Disease. J Alzheimers Dis. 2024;101(s1):S285–S298. doi:10.3233/JAD-231372.; Li Y, Zhu X, Wang K, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts (GBE) protect human RPE cells from t-BHP-induced oxidative stress and necrosis by activating the Nrf2-mediated antioxidant defence. J Pharm Pharmacol. 2023;75(1):105–116. doi:10.1093/jpp/rgac069.; Labkovich M, Jacobs EB, Bhargava S, Pasquale LR, Ritch R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila). 2020;9(3):215–225. doi:10.1097/APO.0000000000000279.; Sim RH, Sirasanagandla SR, Das S, Teoh SL. Treatment of Glaucoma with Natural Products and Their Mechanism of Action: An Update. Nutrients. 2022;14(3):534. doi:10.3390/nu14030534.; Kang JM, Lin S. Ginkgo biloba and its potential role in glaucoma. Curr Opin Ophthalmol. 2018;29(2):116–120. doi:10.1097/ICU.0000000000000459.; Zhu Q, Liu D. Clinical efficacy and mechanism of Ginkgo biloba extract in the treatment of elderly ischemic cerebrovascular disease. Pak J Pharm Sci. 2024;37(3):705–713.; Hirooka K, Tokuda M, Miyamoto O, Itano T, Baba T, Shiraga F. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res. 2004 Mar;28(3):153–157. doi:10.1076/ceyr.28.3.153.26246.; Xia C, Zhou M, Dong X, Zhao Y, Jiang M, Zhu G, Zhang Z. Ginkgo biloba extract inhibits hippocampal neuronal injury caused by mitochondrial oxidative stress in a rat model of Alzheimer’s disease. PLoS One. 2024;19(8):e0307735. doi:10.1371/journal.pone.0307735.; Полунин ГС, Макаров ИА, Ширшиков ЮК, Макашова НВ. Эффективность антиоксидантного препарата гистохром в лечении гемофтальмов при гипертонической болезни и сахарном диабете. Вестник офтальмологии. 2000;2:19–20.; Власова АС, Малишевская ТН, Петров СА, Губин ДГ, Петров СЮ, Филиппова ЮЕ. Значение митохондриальной дисфункции в стабилизации глаукомного процесса. Вестник офтальмологии. 2024;140(4):48–57.; Федин АИ, Евсеев ВН, Кузнецов ОР. Антиоксидантная терапия ишемического инсульта. Клинико–электрофизиологические корреляции. Российский медицинский журнал. 2009;5:332.; Егоров ЕА, Давыдова НГ, Романенко ИА. Мексидол в комплексном лечении глаукомы. Клиническая офтальмология. 2011;12(3):107–109.; Мартынова ЕБ. Экспериментально-клиническое обоснование применения нового антиоксиданта «Эрисод» в терапии открытоугольной глаукомы: aвтореф. дисс. … канд. мед. наук. СПб., 1995. 21 c.; Мошетова ЛК, Алексеев ИБ, Ивашина АВ. Результаты использования препарата Лютеин-комплекс для лечения глаукомной оптической нейропатии. Клиническая офтальмология.2005;6:64–67.; https://www.ophthalmojournal.com/opht/article/view/2569

  2. 2
    Academic Journal

    Πηγή: National Journal glaucoma; Том 23, № 2 (2024); 70-78 ; Национальный журнал Глаукома; Том 23, № 2 (2024); 70-78 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/526/469; Лосев А.Ф., Тахо-Годи А.А. Платон. Диалоги. Пер. с древнегреч. М: Мысль 1986; 607.; Зураева А.М., Джелиева З. Т. Психотерапевтическая работа с больными, имеющими хронические заболевания. Азимут научных исследований: педагогика и психология 2018; 2(23):367-369.; Evans-Lacko S., Aguilar-Gaxiola S., Al-Hamzawi A. et al. Socio-economic variations in the mental health treatment gap for people with anxiety, mood, and substance use disorders: results from the WHO World Mental Health (WMH) surveys. Psychol Med 2018; 48(9):1560- 1571. https://doi.org/10.1017/S0033291717003336.; Rockwood K., Macknight C., Wentzel C. et al. The diagnosis of «mixed» dementia in the Consortium for the Investigation of Vascular Impairment of Cognition (CIVIC). Ann. N.Y. Acad. Sci. 2000; 903:522-528. https://doi.org/10.1111/j.1749-6632.2000.tb06408.x.; Акимова Е.В., Гафаров В.В., Гакова Е.И., Акимов А.М., Каюмова М.М. Изучение связи депрессии и ишемической болезни сердца у мужчин и женщин открытой популяции среднеурбанизированного города Западной Сибири. Кардиоваскулярная терапия и профилактика 2021; 20(2):2557. https://doi.org/10.15829/1728-8800-2021-2557.; Vaccarino V., Badimon L., Bremner J.D. et al. Depression and coronary heart disease: 2018 position paper of the ESC working group on coronary pathophysiology and microcirculation. Eur Heart J 2020; 41(17):1687-1696. https://doi.org/10.1093/eurheartj/ehy913.; Tang B., Yuan S., Xiong Y. et al. Major depressive disorder and cardiometabolic diseases: a bidirectional Mendelian randomisation study. Diabetologia 2020; 63(7):1305-1311.; Менделевич Е.Г. Хроническая мозговая сосудистая недостаточность: клинико-нейровизуализационные параметры, факторы риска и нейро-протективная терапия. РМЖ. 2016; 7:424-428.; Михайлов В.А. Терапия непсихотических психических расстройств в практике невролога. Обозрение психиатрии и медицинской психологии имени В.М. Бехтерева 2014; 4:100-105.; Tariot P.N., Farlow M.R., Grossberg G.T. et al. Memantine treatment in patients with moderate-to-severe Alzheimer disease already receiving donepizil: a randomized controlled trial. JAMA 2004; 291(3):317-324. https://doi.org/10.1001/jama.291.3.317.; Lippi G., Sanchis-Gomar F., Mattiuzzi C., Lavie C.J. Estimating Worldwide Impact of Low Physical Activity on Risk of Developing Ischemic Heart Disease-Related Disability: An Updated Search in the 2019 Global Health Data Exchange (GHDx). Medicines (Basel) 2022; 9(11):55. https://doi.org/10.3390/medicines9110055.; Lee J.Y., Kim J.M., Kim S.H. et al. Epidemiologic Survey Committee of the Korean Ophthalmological Society. Associations Among Pregnancy, Parturition, and Open-angle Glaucoma: Korea National Health and Nutrition Examination Survey 2010 to 2011. J Glaucoma 2019; 28(1):14-19. https://doi.org/10.1097/IJG.0000000000001101.; Корелина В.Е., Газизова И.Р. Возрастные аспекты приверженности терапии глаукомы. Эффективная фармакотерапия 2021; 17(37):34-39. https://doi.org/10.33978/2307-3586-2021-17-37-34-39.; Jean-Louis G., Zizi F., Lazzaro D.R., Wolintz A.H. Circadian rhythm dysfunction in glaucoma: A hypothesis. Journal of Circadian Rhythms 2008; 6:1. https://doi.org/10.1186/1740-3391-6-1.; Panda S., Nayak S.K., Campo B. et al. Illumination of the melanopsin signaling pathway. Science 2005; 28; 307(5709):600-604. https://doi.org/10.1126/science.1105121.; Drouyer E., Dkhissi-Benyahya O., Chiquet C. et al. Glaucoma alters the circadian timing system. PLoS One 2008; 3(12):e3931. https://doi.org/10.1371/journal.pone.0003931.; Губин Д.Г., Малишевская Т.В., Вайнерт Д. и др. Особенности циркадианного ритма внутриглазного давления при стабильной и прогрессирующей первичной открытоугольной глаукоме. Тюменский медицинский журнал 2018; 20(3):3-9.; Козина Е.В. Влияние биологической обратной связи на интраокулярную гемодинамику больных первичной открытоугольной начальной глаукомой. Сибирское медицинское обозрение 2006; 42(5):20-22.; Otori Y., Takahashi G., Urashima M., Kuwayama Y. Evaluating the quality of life of glaucoma patients using the state-trait anxiety inventory. J Glaucoma 2017; 26(11):1025-1029. https://doi.org/10.1097/IJG.0000000000000761.; Takahashi G ., Otori Y., Urashima M. et al. Evaluation of quality of life in Japanese glaucoma patients and its relationship with visual function. J Glaucoma 2016; 25(3):150-56. https://doi.org/10.1097/IJG.0000000000000221.; Габдрахманов Л.М., Газизова И.Р., Селезнев А.В. и др. Психология глаукомного больного. Российский офтальмологический журнал 2020; 13(3):92-96. https://doi.org/10.21516/2072-0076-2020-13-3-92-96; Doustar J., Torbati T., Black K.L., Koronyo Y., Koronyo-Hamaoui M. Optical Coherence Tomography in Alzheimer's Disease and Other Neurodegenerative Diseases. Front Neurol 2017; 19(8):701. https://doi.org/10.3389/fneur.2017.00701.; Grimaldi A., Brighi C., Peruzzi G. et al. Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis 2018; 9(6):685. https://doi.org/10.1038/s41419-018-0740-5.; Лобзин В.Ю., Мальцев Д.С., Струментова Е.С., Бурнашева М.А., Черемисин С.С. Офтальмологические маркеры болезни Альцгеймера. Медицинский алфавит 2022; 1:47-53. https://doi.org/10.33667/2078-5631-2022-1-47-53.; Martucci A., Picchi E., Di Giuliano F. et al. Imaging biomarkers for Alzheimer's disease and glaucoma: Current and future practices. Curr Opin Pharmacol 2022; 62:137-144. https://doi.org/10.1016/j.coph.2021.12.003.; De Lau L.M., Breteler M.M. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6):525-535. https://doi.org/10.1016/S1474-4422(06)70471-9.; Guzman-Martinez L., Maccioni R.B., Farías G.A., Fuentes P., Navarrete L.P. Biomarkers for Alzheimer's Disease. Curr Alzheimer Res 2019; 16(6):518-528. https://doi.org/10.2174/1567205016666190517121140.; Wostyn P., Audenaert K., De Deyn P.P. Alzheimer's disease and glaucoma: is there a causal relationship? Br J Ophthalmol 2009; 93(12): 1557-1559. https://doi.org/10.1136/bjo.2008.148064.; Bayer A.U., Ferrari F., Erb C. High occurrence rate of glaucoma among patients with Alzheimer's disease. Eur Neurol 2002; 47(3):165-168. https://doi.org/10.1159/000047976.; Tamura H., Kawakami H., Kanamoto T. et al. High frequency of openangle glaucoma in Japanese patients with Alzheimer's disease. J Neurol Sci 2006; 246(1-2):79-83. https://doi.org/10.1016/j.jns.2006.02.009.; Yoneda S., Hara H., Hirata A. et al. Vitreous fluid levels of beta-amyloid(1-42) and tau in patients with retinal diseases. Jpn J Ophthalmol 2005; 49(2):106-108. https://doi.org/10.1007/s10384-004-0156-x.; Nucci C., Martucci A., Martorana A., Sancesario G.M., Cerulli L. Glaucoma progression associated with altered cerebral spinal fluid levels of amyloid beta and tau proteins. Clin Exp Ophthalmol 2011; 39(3):279-281. https://doi.org/10.1111/j.1442-9071.2010.02452.x.; Bayer A.U., Ferrari F., Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 2002; 47:165-168. https://doi.org/10.1159/000047976.; Trick G.L., Trick L.R., Morris P., Wolf M. Visual field loss in senile dementia of the Alzheimer’s disease type. Neurology 1995; 45:68-74. https://doi.org/10.1212/wnl.45.1.68.; Den Haan J., Verbraak F.D., Visser P.J., Bouwman F.H. Retinal thickness in Alzheimer’s disease: A systematic review and meta-analysis. Alzheimers Dement (Amst) 2017; 6:162-170. https://doi.org/10.1016/j.dadm.2016.12.014.; Cerquera-Jaramillo M.A., Nava-Mesa M.O., González-Reyes R.E. et al. Visual Features in Alzheimer’s Disease: From Basic Mechanisms to Clinical Overview. Neural Plast 2018; 14:2941783. https://doi.org/10.1155/2018/2941783.; Jones-Odeh E., Hammond C.J. How strong is the relationship between glaucoma, the retinal nerve fibre layer, and neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis? Eye (Lond) 2015; 29(10):1270-1284. https://doi.org/10.1038/eye.2015.158.; Егоров Е.А., Корелина В.Е., Чередниченко Д.В., Газизова И.Р. Роль нейровоспаления в патогенезе глаукомной оптической нейропатии. Клиническая офтальмология 2022; 22(2):116-121. https://doi.org/10.32364/2311-7729-2022-22-2-116-121.; Mullany S., Xiao L., Qassim A. et al. Normal-tension glaucoma is associated with cognitive impairment. Br J Ophthalmol 2022; 106(7):952-956. https://doi.org/10.1136/bjophthalmol-2020-317461.; Chen Y.Y., Lai Y.J., Yen Y.F. et al. Association between normal tension glaucoma and the risk of Alzheimer's disease: a nationwide population-based cohort study in Taiwan. BMJ Open 2018; 8(11):e022987. https://doi.org/10.1136/bmjopen-2018-022987.; Lai S.W., Lin C.L., Liao K.F. Glaucoma may be a non-memory manifestation of Alzheimer's disease in older people. Int Psychogeriatr 2017; 29:1-7. https://doi.org/10.1017/S1041610217000801.; Kessing L.V., Lopez A.G., Andersen P.K., Kessing S.V. No increased risk of developing Alzheimer disease in patients with glaucoma. J Glaucoma 2007; 16(1):47-51. https://doi.org/10.1097/IJG.0b013e31802b3527.; Lee C.S., Larson E.B., Gibbons L.E. et al. Associations between recent and established ophthalmic conditions and risk of Alzheimer's disease. Alzheimers Dement 2019; 15(1):34-41. https://doi.org/10.1016/j.jalz.2018.06.2856; Nasreddine Z.S., Phillips N.A., Bédirian V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4):695-9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.; Davis D.H., Creavin S.T., Yip J.L. et al. Montreal Cognitive Assessment for the diagnosis of Alzheimer's disease and other dementias. Cochrane Database Syst Rev 2015; 10:CD010775. https://doi.org/10.1002/14651858.CD010775.pub2.; Iseri P.K., Altinaş O., Tokay T., Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 2006; 26(1):18-24. https://doi.org/10.1097/01.wno.0000204645.56873.26.; Ferrari L., Huang S.C., Magnani G. et al. Optical Coherence Tomography Reveals Retinal Neuroaxonal Thinning in Frontotemporal Dementia as in Alzheimer's Disease. J Alzheimers Dis 2017; 56(3):1101-1107. https://doi.org/10.3233/JAD-160886.; Almeida A.L.M., Pires L.A., Figueiredo E.A. Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment. Alzheimers Dement (Amst) 2019; 11:659-669. https://doi.org/10.1016/j.dadm.2019.08.006.; Ito Y., Sasaki M., Takahashi H. et al. Quantitative Assessment of the Retina Using OCT and Associations with Cognitive Function. Ophthalmology 2020; 127(1):107-118. https://doi.org/10.1016/j.ophtha.2019.05.021.; Ward D.D., Mauschitz M.M., Bönniger M.M. et al. Association of retinal layer measurements and adult cognitive function: A populationbased study. Neurology 2020; 95(9):e1144-e1152. https://doi.org/10.1212/WNL.0000000000010146.; Rezapour J., Nickels S., Schuster A.K. et al. Prevalence of depression and anxiety among participants with glaucoma in a population-based cohort study: The Gutenberg Health Study. BMC Ophthalmol 2018; 18(1):157. https://doi.org/10.1186/s12886-018-0831-1.; Richards S.H., Anderson L., Jenkinson C.E. et al. Psychological interventions for coronary heart disease: Cochrane systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25(3):247-259. https://doi.org/10.1177/2047487317739978.; Conversano C., Orrù G., Pozza A. et al. Is Mindfulness-Based Stress Reduction Effective for People with Hypertension? A Systematic Review and Meta-Analysis of 30 Years of Evidence. Int J Environ Res Public Health 2021; 18(6):2882. https://doi.org/10.3390/ijerph18062882.; Larionov P. Psychological methods in treatment of essential hypertension. Arterial Hypertension 2021; 25(2):53-62. https://doi.org/10.5603/AH.a2021.0002; Sabel B.A., Wang J., Cárdenas-Morales L., Faiq M., Heim C. Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J 2018; 9(2):133-160. https://doi.org/10.1007/s13167-018-0136-8.; Bertelmann T., Strempel I. Psychotherapeutic treatment options in glaucoma patients. Klin Monbl Augenheilkd 2021; 238(2):153-160. https://doi.org/10.1055/a-1244-6242.; Dada T., Mondal S., Midha N. et al. Effect of Mindfulness-Based Stress Reduction on Intraocular Pressure in Patients With Ocular Hypertension: A Randomized Control Trial. Am J Ophthalmol 2022; 239:66-73. https://doi.org/10.1016/j.ajo.2022.01.017.; Dada T., Bhai N., Midha N. et al. Effect of Mindfulness Meditation on Intraocular Pressure and Trabecular Meshwork Gene Expression: A Randomized Controlled Trial. Am J Ophthalmol 2021; 223:308-321. https://doi.org/10.1016/j.ajo.2020.10.012.; Корелина В.Е. Изучение коррекции перекисного окисления липидов антиоксидантами при экспериментальной глаукоме (экспериментальное исследование). Автореф. дисс. канд. мед. наук. 1999: 19.; Алексеев В.Н., Корелина В.Е., Шаша Ч. Нейропротекция новым антиоксидантом Рексод при экспериментальной глаукоме. Клиническая офтальмология 2008; 3:82-83.; Bredesen D.E., Sharlin K., Jenkins D. et al. Reversal of Cognitive Decline: 100 Patients. J Alzheimers Dis Parkinsonism 2018; 8:450. https://doi.org/10.4172/2161-0460.1000450.; Konkolÿ Thege B., Petroll C., Rivas C., Scholtens S. The Effectiveness of Family Constellation Therapy in Improving Mental Health: A Systematic Review. Fam Process 2021; 60(2):409-423. https://doi.org/10.1111/famp.12636.; Leaviss J., Davis S., Ren S. et al. Behavioural modification interventions for medically unexplained symptoms in primary care: systematic reviews and economic evaluation. Health Technol Assess. 2020; 24(46):1-490. https://doi.org/10.3310/hta24460; https://www.glaucomajournal.ru/jour/article/view/526

  3. 3
  4. 4
  5. 5
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 20, № 4 (2023); 708-713 ; Офтальмология; Том 20, № 4 (2023); 708-713 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2023-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2241/1167; Егоров, Е. А., Еричева В. П. Национальное руководство по глаукоме. М.: ГЭОТАР-Медиа, 2019. С. 3–8.; Tham YC, Li X, Wong TY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;(121):2081–2090. doi:10.1016/j.ophtha.2014.05.013.; Косакян С.М., Робустова О.В., Бессмертный А.М., Калинина О.М., Василенкова Л.В. Эффективность и безопасность комбинированной терапии первичной открытоугольной глаукомы. Вестник офтальмологии. 2020;136(5):96–102. doi:10.17116/oftalma202013605196.; Курышева Н.И., Арджевнишвили Т.Д., Трубилина А.В. Сравнительное исследование ретробульбарного и ретинального кровотока при первичной глаукоме и ее сочетании с ВМД. Новости глаукомы. 2017;1:69–72.; Страхов В.В., Ярцев А.В., Алексеев В.В., Климова О.Н., Казанова С.Ю., Воронин Н.А. Структурно-функциональные изменения слоев сетчатки при первичной глаукоме и возможные пути ретинопротекции. Вестник офтальмологии. 2019;135(2):70–82. doi:10.17116/oftalma201913502170.; Ying H, Yue BY. Optineurin: The autophagy connection. Exp Eye Res. 2016;(144):73–80. doi:10.1016/j.exer.2015.06.029.; Маркелова Е.В., Хохлова А.С., Кириенко А.В., Филина Н.В. Противовоспалительные цитокины и их роль в патогенезе первичной открытоугольной глаукомы. Медицинская иммунология. 2015;17(5):323.; Иванова Н.В., Кондратюк Г.И., Ляшенко Н.И. Структурно-функциональные изменения сетчатки при первичной открытоугольной глаукоме. Российский медицинский журнал. Клиническая офтальмология. 2015;2(15):61–64.; Матвеева Н.Ю., Калиниченко С.Г., Едранов С.С. Морфофункциональная характеристика ганглиозных клеток сетчатки и их состояние при открытоугольной форме глаукомы. Тихоокеанский медицинский журнал. 2015;3:6–10.; Зуева М.В. Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры. Национальный журнал глаукома. 2016;1(15):70–85.; VanderWall KB, Lu B, Alfaro JS, Allsop AR, Carr AS, Wang S, Meyer JS. Differential susceptibility of retinal ganglion cell subtypes in acute and chronic models of injury and disease. Sci. Rep. 2020;10:17359. doi:10.1038/s41598-020-71460-6; Perge JA, Nivan JE, Mugnaini E, Balasubramanian V, Sterling P. Why do axons differ in caliber? J Neurosci 2012;32:626–638. doi:10.1523/jneurosci.4254-11.2012.; Morgan JE. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin Exp Ophthalmol 2012;40:364–368. doi:10.1111/j.14429071.2012.02789.x.; Della Santina L, Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp. Eye Res. 2017;158:43–50. doi:10.1016/j.exer.2016.06.006.; Еричев В.П., Хачатрян Г.К., Хомчик О.В. Современные направления в изучении патогенеза первичной глаукомы. Вестник офтальмологии. 2021;137(5):268–274.; He J, Lu S, Chen L, Tam P, Zhang B, Leung C, Pang C, Tham C, Chu W. Coding Region Mutation Screening in Optineurin in Chinese Normal-Tension Glaucoma Patients. Dis Markers. 2019;5820537. doi:10.1155/2019/5820537.; Chen M, Yu X, Xu J, Ma J, Chen X, Chen B, Gu Y, Wang K. Association of gene polymorphisms with primary open-angle glaucoma: a systematic rewiew and metaanalysis. Investig Ophthalmol Vis Sci. 2019;60(4):1105–1121. doi:10.1167/iovs.1825922.; Романенко И.А. Генетика глаукомы. Военно-медицинский журнал. 2009;6:46–50.; Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retin Eye Res. 2012;31:702–719. doi:10.1016/j.preteyeress.2012.07.001.; Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK. Dysfunction of Mitochondrial Ca(2+) Regulatory Machineries in Brain Aging and Neurodegenerative Diseases. Front. Cell Dev. Biol. 2020;8:599792. doi:10.3389/fcell.2020.599792.; Ito YA, Di Polo A. Mitochondrial dynamics, transport, and quality control: A bottleneck for retinal ganglion cell viability in optic neuropathies. Mitochondrion. 2017;36:186–192. doi:10.1016/j.mito.2017.08.014.; Reeves TM, Smith TL, Williamson JC, Phillips LL. Unmyelinated axons show selective rostrocaudal pathology in the corpus callosum after traumatic brain injury. J Neuropathol Exp Neurol 2012;71:198–210. doi:10.1097/nen.0b013e3182482590.; Varnazza S, Tirendi S, Bassi AM, Traverso CE, Sacca SC. Neuroinflammation in primary Open-Angle Glaucoma. Journal of Clinical Medicine. 2020;9(10):3172. doi:10.3390/jcm9103172.; Tsai T, Grotegut P, Reinehr S, Joachim SC. Role of Heart Shock Proteins in Glaucoma. International Journal of Molecular Sciences. 2019;20(20):5160. doi:10.3390/ijms20205160.; Егоров Е.А., Корелина В.Е., Чередниченко Д.В., Газизова И.Р. Роль нейровоспаления в патогенезе глаукомной оптической нейропатии. Клиническая офтальмология. 2022;22(2):116–121.; Fernandez-Albarral JA, Salobrar-Garcia E, Martinez-Paramo R. Retinal glial changes in Alzheimer’s disease — A rewiew. J Ophtalm. 2019;12(3):198–207. doi:10.1016/j.optom.2018.07.001.; Должиков А.А., Победа А.С., Шевченко О.А. Морфофункциональные изменения сетчатки при моделировании глаукомного процесса у крыс. Научные результаты биомедицинских исследований. 2020;6(4):503–514. doi:10.18413/2658-6533-2020-6-4-0-6.; Van Hook MJ, Monaco C, Bierlein ER, Smith JC. Neuronal and Synaptic Plasticity in the Visual Thalamus in Mouse Models of Glaucoma. Front. Cell. Neurosci. 2021;14:626056. doi:10.3389/fncel.2020.626056.; El-Danaf R, Huberman AD. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci 2015;35(6):2329–2343. doi:10.1523/jneurosci.1419-14.2015.; Berry RH, Qu J, John SW, Howell GR, Jakobs TC. Synapse loss and dendrite remodeling in a mouse model of glaucoma. PLoS One 2015;10(12):e0144341. doi:10.1371/journal.pone.0144341. eCollection 2015.; Chen Q, Huang S, Ma Q, Lin H, Pan M, Liu X, Lu F, Shen M. Ultra-high resolution profiles of macular intra-retinal layer thicknesses and associations with visual field defects in primary open angle glaucoma. Sci Rep. 2017;7:41100. doi:10.1038/srep41100.; Курышева Н.И., Киселева Т.Н., Арджевнишвили Т.Д. и др. Хориоидея при глаукоме: результаты исследования методом оптической когерентной томографии. Глаукома. 2013;10(3-2):73–82. doi:10.18008/18165095-2013-4-26-31.; Zhang X, Dastiridou A, Francis BA. Baseline Fourier-Domain OCT Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study. Am J Ophthalmol. 2016;172:94–103. doi:10.1016/j.ajo.2016.09.015.; Weinreb NR, Bowd C, Moghimi S, Tafreshi A, Rausch S, Zangwill LM. Ophthalmic Diagnostic Imaging: Glaucoma. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet]. 2019. doi:10.1007/9783-030-16638-0_5.; Курышева Н.И. Роль нарушений ретинальной микроиркуляции в прогрессировании глаукомной оптиконейропатии. Вестник офтальмологии. 2020;136(4):57–65.; Kurysheva N.I., Maslova E.V., Zolnikova I.V., Fomin A.V., Lagutin M.B. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PLoS ONE;2018:13(8).; Kurysheva N.I. Does OCT Angiography of Macula Play a Role in Glaucoma Diagnostics? Ophthalmol Open J. 2016;2(1):1–11. doi:10.17140/OOJ-2-107.; Kurysheva NI, Shatalova EO. Parafoveal vessel Density Dropout May Predict Glaucoma Progression in The Long-Term Follow Up. Journal of Ophthalmology and Research. 2022:5:150–166.; Kurysheva NI, Ryabova TY, Shlapak VN. Heart rate variability: the comparison between high tension and normal tension glaucoma. EPMA Journal. 2018;9:35–45. doi:10.1007/s13167-017-0124-4.; Глазко Н.Г., Егоров А.Е. Анализ состояния микроциркуляторного русла центральной зоны сетчатки у больных глаукомой при проведении нейроретинопротекторной терапии. Клиническая офтальмология. 2021;1(21):3–8. doi:10.32364/2311-7729-2021-21-1-3-8.; Aghaei Fard M, Ritch R. Optical coherence tomography angiography in glaucoma. Ann Transl Med. 2020;8(18):1204. doi:10.21037/atm-20-2828.; Kim JS, Kim YK, Baek SU. Topographic correlation between macular superficial microvessel density and ganglion cell-inner plexiform layer thickness in glaucomasuspect and early normal-tension glaucoma. Br J Ophthalmol. 2020;104(1):104–109. doi:10.1136/bjophthalmol-2018-313732.; Hou H, Moghimi S, Zangwill LL. Macula Vessel Density and Thikness in Early Primary Open-Angle Glaucoma. Am J Ophthalmol. 2019;199:120–132. doi:10.1016/j.ajo.2018.11.012.; Курышева Н.И., Маслова Е.В., Трубилина А.В. Снижение перипапиллярного кровотока как фактор развития и прогрессирования первичной открытоугольной глаукомы. Российский офтальмологический журнал. 2016;3:34–41.; Жукова С.И., Юрьева Т.И., Помкина И.В., Грищук А.С. Особенности хориоретинального кровотока у больных с открытоугольной глаукомой. Сибирский научный медицинский журнал. 2018;38(5):38–44.; Жукова С.И., Юрьева Т.Н., Микова О.И., Самсонов Д.Ю., Григорьева А.В., Пятова Ю.С. ОКТ-ангиография в оценке хориоретинального кровотока при колебании внутриглазного давления у больных первичной открытоугольной глаукомой. Клиническая офтальмология. 2016;16(3):98–103.; Pelligrini M, Vagge A, Ferro Desideri LF, et al. Optical Coherence Tomography Angiography in Neurodegenerative disorders. J Clin Med. 2020;9(6):1706. doi:10.3390/jcm9061706.; Бгатова Н.П., Обанина Н.А., Еремина А.В., Трунов А.Н., Черных В.В. Структура сосудистого русла и интерстиция сетчатки глаза человека при терминальной стадии первичной открытоугольной глаукомы. Российский офтальмологический журнал. 2022;15(2):121–128. doi:10.21516/2072-0076-2022-15-2-supplement-121-128.; Shiihara H, Terasaki H, Sonoda S. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography. Sci rep. 2018;8(1):10143. doi:10.1038/s41598-018-28530-7.; Kwon G, Сhoi G, Shin GW. Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients with Central Visual Field Defects. Invest Ophthalmol with Sci. 2017;58(3):1637–1645. doi:10.1167/iovs.16-21079.; https://www.ophthalmojournal.com/opht/article/view/2241

  6. 6
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 19, № 3 (2022); 532-540 ; Офтальмология; Том 19, № 3 (2022); 532-540 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2022-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1917/1010; Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006;90:262–267. DOI:10.1136/bjo.2005.081224; Pascolini D., Mariotti S.P. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–618. DOI:10.1136/bjophthalmol-2011-300539; Tham Y.-Ch., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng Ch-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. A Systematic Review and Meta-Analysis. Ophthalmology. 2014;121(11):2081–2090. DOI:10.1016/j.ophtha.2014.05.013; Quigley H.A. Neuronal death in glaucoma. Prog Retin Eye Res 1999;18:39–57. DOI:10.1016/s1350-9462(98)00014-7; Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–478. DOI:10.1016/S0079-6123(08)01132-1; Sommer A. Intraocular pressure and glaucoma. Am. J. Ophthalmol. 1989;107:186– 188. DOI:10.1016/0002-9394(89)90221-3; Peters D., Bengtsson B., Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014;92:421–425. DOI:10.1111/aos.12203; Сollaborative normal-tension glaucoma study group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am. J. Ophthalmol. 1998;126:498–505. DOI:10.1016/s0002-9394(98)00272-4; Williams P.A., Thirgood R.A., Oliphant H., Frizzati A., Littlewood E., Votruba M., Good M.A., Williams J., Morgan J.E. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2013;34(7):1799–1806. DOI:10.1016/j.neurobiolaging.2013.01.006; Blanks J.C., Schmidt S.Y., Torigoe Y., Porrello K.V., Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol. Aging. 1996;17:385–395. DOI:10.1016/0197-4580(96)00009-7; Johnson L.V., Leitner W.P., Rivest A.J., Staples M.K., Radeke M.J., Anderson D.H. The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA. 2002;99:11830–11835. DOI:10.1073/pnas.192203399; Wostyn P., Audenaert K., De Deyn P.P. Alzheimer’s disease: cerebral glaucoma? Medical Hypotheses. 2010;74(6):973–977. DOI:10.1016/j.mehy.2009.12.019; Koronyo-Hamaoui M., Koronyo Y., Ljubimov A.V., Miller C.A., Ko M.K., Black K.L., Schwartz M., Farkas D.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54,204–217. DOI:10.1016/j.neuroimage.2010.06.020; Curcio C.A., Drucker D.N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 1993;33:248–257. DOI:10.1002/ana.410330305; Paquet C., Boissonnot M., Roger F., Dighiero P., Gil R., Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2007;420:97–99. DOI:10.1016/j.neulet.2007.02.090; Боголепова А.Н., Махнович Е.В., Журавлева А.Н. Коморбидность болезни Альцгеймера и геронтоофтальмологических заболеваний. Журнал неврологии и психиатрии имени С.С. Корсакова. 2019;119(9):17–22. DOI:10.17116/jnevro201911909117; Guo L., Salt T.E., Luong V., Wood N., Cheung W., Maass A., Ferrari G., Russo-Marie F., Sillito A.M., Cheetham M.E., Moss S.E., Fitzke F.W., Cordeiro M.F. Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. U.S.A. 2007;104:13444– 13449. DOI:10.1073/pnas.0703707104; No authors listed. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000;130:429–440. DOI:10.1016/s0002-9394(00)00538-9; Della Santina L., Inman D.M., Lupien C.B., Horner P.J., Wong R.O. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013;33:17444–17457. DOI:10.1523/JNEUROSCI.5461-12.2013; El-Danaf R.N., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci. 2015;35(6):2329–2343. DOI:10.1523/JNEUROSCI.1419-14.2015; Sabharwal J., Seilheimer R.L., Tao X., Cowan C.S., Frankfort B.J., Wu S.M. Elevated IOP alters the space–time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U.S.A. 2017;114:8859–8864. DOI:10.1073/pnas.1706994114; Della Santina L., Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp. Eye Res. 2017;158:43–50. DOI:10.1016/j.exer.2016.06.006; Tao X., Sabharwal J., Seilheimer R.L., Wu S.M., Frankfort B.J. Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J. Neurosci. 2019;39(10):1881–1891. DOI:10.1523/JNEUROSCI.2085-18.2019; Son J.L., Soto I., Oglesby E., Lopez-Roca T., Pease M. E., Quigley H.A., MarchArmstrong N. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 2010;58(7):780–789. DOI:10.1002/glia.20962; Guo L., Salt T.E., Maass A., Luong V., Moss S.E., Fitzke F.W., Cordeiro M.F. Assessment of neuroprotective effects of glutamate modulation on glaucomarelated retinal ganglion cell apoptosis in vivo. Invest. Ophthalmol. Vis. Sci. 2006;47:626–633. DOI:10.1167/iovs.05-0754; Sladek A.L., Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front. Synaptic Neurosci. 2020;12:30. Published 2020 Jul 24. DOI:10.3389/fnsyn.2020.00030; Farlow M.R. NMDA receptor antagonists: a new therapeutic approach for Alzheimer’s disease. Geriatrics. 2004;59:22–27.; Prati F., Cavalli A., Bolognesi M.L. Navigating the chemical space of multitargetdirected ligands: from hybrids tofragments in Alzheimer’s disease. Molecules. 2016;21(4): Article 466. 12 p. DOI:10.3390/molecules21040466; Loffler K.U., Edward D.P., Tso M.O. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest. Ophthalmol. Visual. Sci. 1995;36:24–31.; Salt T.E., Nizari S., Cordeiro M.F., Russ H., Danysz W. Effect of the Ab Aggregation Modulator MRZ-99030 on Retinal Damage in an Animal Model of Glaucoma. Neurotox Res. 2014;26:440–446. DOI:10.1007/s12640-014-9488-6; Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008;28:144–154. DOI:10.1097/wno.0b013e318177edf0; Klunk W.E., Engler H., Nordberg A., Wang Y., Blomqvist G., Holt D.P., Bergstrom M., Savitcheva I., Huang G.F., Estrada S., Ausen B., Debnath M.L., Barletta J., Price J.C., Sandell J., Lopresti B.J., Wall A., Koivisto P., Antoni G., Mathis C.A., Langstrom B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004;55:306–319. DOI:10.1002/ana.20009; McEvoy L.K., Brewer J.B. Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Rev. Neurother. 2010;10:1675–1688. DOI:10.1586/ern.10.162; Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–791. DOI:10.1126/science.1074069; Cordeiro M.F., Guo L., Coxon K.M., Duggan J., Nizari S., Normando E.M., Sensi S.L., Sillito A.M., Fitzke F.W., Salt T.E., Moss S.E. Imaging multiple phases of neurodegeneration: a novel approach to assessing cell. Cell Death Dis. 2010;1:3. DOI:10.1038/cddis.2009.3; Koronyo Y., Salumbides B.C., Black K.L., Koronyo-Hamaoui M. Alzheimer’s disease in the retina: imaging retinal aß plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 2012;10:285–293. DOI:10.1159/000335154. Epub 2012 Feb 10.; Morgan J.E., Datta A.V., Erichsen J.T., Albon J., Boulton M.E. Retinal ganglion cell remodelling in experimental glaucoma. Adv Exp Med Biol. 2006;572:397–402. DOI:10.1007/0-387-32442-9_56; Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2304–2320.; Williams P.A., Piechota M., von Ruhland C., Taylor E., Morgan J.E., Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain. 2012;135:493–505. DOI:10.1093/brain/awr330; Scheff S.W., Price D.A., Schmitt F.A., Mufson E.J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging. 2006;27:1372–1384. DOI:10.1016/j.neurobiolaging.2005.09.012. Epub 2005 Nov 9.; Beckers A., Moons L. Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? Neural Regen Res. 2019;14(8):1313–1316. DOI:10.4103/1673-5374.253505; O’Brien J., Bloomfield S.A. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Ann. Rev. Vis. Sci. 2018;4:79–100. DOI:10.1146/annurevvision-091517-034133; Dutescu R.M., Li Q.X., Crowston J., Masters C.L., Baird P.N., Culvenor J.G. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes. Arch. Clin. Exp. Ophthalmol. 2009;247:1213–1221. DOI:10.1007/s00417-009-1060-3; Lee V., Rekhi E., Hoh Kam J., Jeffery G. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta. Neurobiol. Aging. 2012;33:2382–2389. DOI:10.1016/j.neurobiolaging.2011.12.002; Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog. Retin. Eye Res. 2011;30:217–238. DOI:10.1016/j.preteyeres.2011.02.004; Osborne N.N. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog. Brain Res. 2008;173:339– 352. DOI:10.1016/S0079-6123(08)01124-2; Wang L., Dong J., Cull G., Fortune B., Cioffi G.A. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 2003;44:2–9. DOI:10.1167/iovs.02-0333; Calkins M.J., Manczak M., Mao P., Shirendeb U., Reddy P.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria. Hum. Mol. Genet. 2011;20:4515–4529. DOI:10.1093/hmg/ddr381. Epub 2011 Aug 25.; McAllister A.K. Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences (CMLS). 2001;58(8):1054–1060. DOI:10.1007/PL00000920; Зуева М.В. Созревание и пластичность зрительной системы: нейрогенез, синаптогенез и миелиногенез. I. Сетчатка и ретино-геникулятные проекции. Вестник офтальмологии. 2012;128(3):37–41.; McAllister A.K. Cellular and Molecular Mechanisms of Dendrite Growth. Cerebral Cortex. 2020; Nov. 10(10):963–973. DOI:10.1093/cercor/10.10.963; Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp. Neurol. 2017;298:137–147. DOI:10.1016/j.expneurol.2017.10.001; Gidday J.M. Adaptive Plasticity in the Retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Conditioning Medicine. 2018;1(2):85–97.; Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med., 12 March 2018, DOI:10.3389/fmed.2018.00061; Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI:10.1111/j.14429071.2012.02789.x; Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–250. DOI:10.1016/j.visres.2010.08.003; Kalesnykas G., Oglesby E.N., Zack D.J., Cone F.E., Steinhart M.R., Tian J., Pease M.E., Quigley H.A. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53(7):3847–3857. Published 2012 Jun 22. DOI:10.1167/iovs.12-9712; Agostinone J., Alarcon-Martinez L., Gamlin C., Yu W.Q., Wong R.O.L., Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain. 2018;141:1963–1980. DOI:10.1093/brain/awy142; Beckers A., Van Dyck A., Bollaerts I., Van Houcke J., Lefevere E., Andries L., Agostinone J., Van Hove I., Di Polo A., Lemmens K., Moons L. An antagonistic axon-dendrite interplay enables efficient neuronal repair in the adult Zebrafish central nervous system. Mol Neurobiol. 2018 56(5):3175–3192. DOI:10.1007/s12035-018-1292-5; Chung S.H., Awal M.R., Shay J., McLoed M.M., Mazur E., Gabel C.V. Novel DLKindependent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci U.S.A. 2016;113:E2852– 2860. DOI:10.1093/brain/awy142; Han S.M., Baig H.S., Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron. 2016;92:1308–1323. DOI:10.1016/j.neuron.2016.11.025; Mar F.M., Simoes A.R., Leite S., Morgado M.M., Santos T.E., Rodrigo I.S., Teixeira C.A., Misgeld T., Sousa M.M. CNS axons globally increase axonal transport after peripheral conditioning. J Neurosci. 2014;34:5965–5970. DOI:10.1523/JNEUROSCI.4680-13.2014; Cai Q., Sheng Z.H. Mitochondrial transport and docking in axons. Exp Neurol. 2009;218:257–267. DOI:10.1016/j.expneurol.2009.03.024; Drummond E.S., Rodger J., Penrose M., Robertson D., Hu Y., Harvey A.R. Effects of intravitreal injection of a Rho-GTPase inhibitor (BA-210), or CNTF combined with an analogue of cAMP, on the dendritic morphology of regenerating retinal ganglion cells. Restor Neurol Neurosci. 2014;32:391–402. DOI:10.3233/RNN-130360; McAllister A.K., Katz L.C., Lo D.C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron. 1996;17:1057–1064. DOI:10.1016/s08966273(00)80239-1; Lom B., Cohen-Cory S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 1999;19:9928–9938. DOI:10.1523/JNEUROSCI.19-22-09928; Rauskolb S., Zagrebelsky M., Dreznjak A., Deogracias R., Matsumoto T., Wiese S., Erne B., Sendtner M., Schaeren-Wiemers N., Korte M., Barde Y-A. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 2010;30:1739–1749. DOI:10.1523/JNEUROSCI.5100-09.2010; Di Polo A., Aigner L.J., Dunn R.J., Bray G.M., Aguayo A.J. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc. Natl. Acad. Sci. USA. 1998;95:3978– 3983. DOI:10.1073/pnas.95.7.3978; Weber A.J., Harman C.D. BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury. Invest. Ophth. Vis. Sci. 2008;49:2456–2463. DOI:10.1167/iovs.07-1325; Rodger J., Drummond E.S., Hellstrom M., Robertson D., Harvey A.R. Long-term gene therapy causes transgene-specific changes in the morphology of regenenerating retinal ganglion cells. PLoS One. 2012;7:e31061. DOI:10.1371/journal.pone.0031061; Binley K.E., Ng W.S., Barde Y.-A., Song B., Morgan J.E. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells. Eur. J. Neurosci. 2016;44:2028–2039. DOI:10.1111/ejn.13295; https://www.ophthalmojournal.com/opht/article/view/1917

  7. 7
  8. 8
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 18, № 2 (2021); 198-207 ; Офтальмология; Том 18, № 2 (2021); 198-207 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2021-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1533/818; Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006;90:262–267. DOI:10.1136/bjo.2005.081224; Pascolini D., Mariotti S.P. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–618. DOI:10.1136/bjophthalmol-2011-300539; Tham Y.-Ch., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng Ch-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. A Systematic Review and Meta-Analysis. Ophthalmology. 2014;121(11):2081–2090. DOI:10.1016/j.ophtha.2014.05.013; Quigley H.A. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18:39–57. DOI:10.1016/s1350-9462(98)00014-7; Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–478. DOI:10.1016/S00796123(08)01132-1; Sommer A. Intraocular pressure and glaucoma. Am. J. Ophthalmol. 1989;107:186– 188. DOI:10.1016/0002-9394(89)90221-3; Peters D., Bengtsson B., Heijl A. Factors associated with lifetime risk of open-angle glaucoma blindness. Acta Ophthalmol. 2014;92:421–425. DOI:10.1111/aos.12203; No authors listed The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma: collaborative normal-tension glaucoma study group. Am. J. Ophthalmol. 1998;126:498–505. DOI:10.1016/s0002-9394(98)00272-4; Williams P.A., Thirgood R.A., Oliphant H., Frizzati A., Littlewood E., Votruba M., Good M.A., Williams J., Morgan J.E. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer’s disease. Neurobiol. Aging. 2013;34(7):1799–1806. DOI:10.1016/j.neurobiolaging.2013.01.006; Blanks J.C., Schmidt S.Y., Torigoe Y., Porrello K.V., Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol. Aging. 1996;17:385–395. DOI:10.1016/0197-4580(96)00009-7; Johnson L.V., Leitner W.P., Rivest A.J., Staples M.K., Radeke M.J., Anderson D.H. The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA. 2002;99:11830–11835. DOI:10.1073/pnas.192203399; Wostyn P., Audenaert K., De Deyn P.P. Alzheimer’s disease: cerebral glaucoma? Medical Hypotheses. 2010;74(6):973–977. DOI:10.1016/j.mehy.2009.12.019; Koronyo-Hamaoui M., Koronyo Y., Ljubimov A.V., Miller C.A., Ko M.K., Black K.L., Schwartz M., Farkas D.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54,204–217. DOI:10.1016/j.neuroimage.2010.06.020; Curcio C.A., Drucker D.N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 1993;33:248–257. DOI:10.1002/ana.410330305; Paquet C., Boissonnot M., Roger F., Dighiero P., Gil R., Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2007;420:97–99. DOI:10.1016/j.neulet.2007.02.090; Боголепова А.Н., Махнович Е.В., Журавлева А.Н. Коморбидность болезни Альцгеймера и геронтоофтальмологических заболеваний. Журнал неврологии и психиатрии имени С.С. Корсакова. 2019;119(9):17–22. DOI:10.17116/jnevro201911909117; Guo L., Salt T.E., Luong V., Wood N., Cheung W., Maass A., Ferrari G., Russo-Marie F., Sillito A.M., Cheetham M.E., Moss S.E., Fitzke F.W., Cordeiro M.F. Targeting amyloid-beta in glaucoma treatment. Proc. Natl. Acad. Sci. U.S.A. 2007;104:13444– 13449. DOI:10.1073/pnas.0703707104; The AGIS Investigator. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol. 2000;130:429–440. DOI:10.1016/s0002-9394(00)00538-9; Della Santina L., Inman D.M., Lupien C.B., Horner P.J., Wong R.O. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 2013;33:17444–17457. DOI:10.1523/JNEUROSCI.5461-12.2013; El-Danaf R.N., Huberman A.D. Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci. 2015;35(6):2329–2343. DOI:10.1523/JNEUROSCI.1419-14.2015; Sabharwal J., Seilheimer R.L., Tao X., Cowan C.S., Frankfort B.J., Wu S.M. Elevated IOP alters the space–time profiles in the center and surround of both ON and OFF RGCs in mouse. Proc Natl Acad Sci U.S.A. 2017;114:8859–8864. DOI:10.1073/pnas.1706994114; Della Santina L., Ou Y. Who’s lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma. Exp. Eye Res. 2017;158:43–50. DOI:10.1016/j.exer.2016.06.006; Tao X., Sabharwal J., Seilheimer R.L., Wu S.M., Frankfort B.J. Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J. Neurosci. 2019;39(10):1881–1891. DOI:10.1523/JNEUROSCI.2085-18.2019; Son J.L., Soto I., Oglesby E., Lopez-Roca T., Pease M. E., Quigley H.A., MarchArmstrong N. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss. Glia. 2010;58(7):780–789. DOI:10.1002/glia.20962; Guo L., Salt T.E., Maass A., Luong V., Moss S.E., Fitzke F.W., Cordeiro M.F. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest. Ophthalmol. Vis. Sci. 2006;47:626–633. DOI:10.1167/iovs.05-0754; Sladek A.L., Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front. Synaptic Neurosci. 2020;12:30. Published 2020 Jul 24. DOI:10.3389/fnsyn.2020.00030; Farlow M.R. NMDA receptor antagonists: a new therapeutic approach for Alzheimer’s disease. Geriatrics. 2004;59:22–27.; Prati F., Cavalli A., Bolognesi M.L. Navigating the chemical space of multitargetdirected ligands: from hybrids tofragments in Alzheimer’s disease. Molecules. 2016;21(4):Article 466, 12 p. DOI:10.3390/molecules21040466; Loffler K.U., Edward D.P., Tso M.O. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest. Ophthalmol. Visual. Sci. 1995;36:24–31.; Salt T.E., Nizari S., Cordeiro M.F., Russ H., Danysz W. Effect of the Ab Aggregation Modulator MRZ-99030 on Retinal Damage in an Animal Model of Glaucoma. Neurotox Res. 2014;26:440–446. DOI:10.1007/s12640-014-9488-6; Астахов Ю.С., Бутин Е.В., Морозова Н.В., Соколов В.О., Флоренцева С.С. Опыт применения «Ретиналамина» в лечении глаукомной нейрооптикопатии и возрастной макулярной дегенерации. Офтальмологические ведомости. 2013;6(2):45–49.; Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008;28:144–154. DOI:10.1097/wno.0b013e318177edf0; Klunk W.E., Engler H., Nordberg A., Wang Y., Blomqvist G., Holt D.P., Bergstrom M., Savitcheva I., Huang G.F., Estrada S., Ausen B., Debnath M.L., Barletta J., Price J.C., Sandell J., Lopresti B.J., Wall A., Koivisto P., Antoni G., Mathis C.A., Langstrom B. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004;55:306–319. DOI:10.1002/ana.20009; McEvoy L.K., Brewer J.B. Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Rev. Neurother. 2010;10:1675–1688. DOI:10.1586/ern.10.162 35. Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–791. DOI:10.1126/science.1074069; Cordeiro M.F., Guo L., Coxon K.M., Duggan J., Nizari S., Normando E.M., Sensi S.L., Sillito A.M., Fitzke F.W., Salt T.E., Moss S.E. Imaging multiple phases of neurodegeneration: a novel approach to assessing cell. Cell Death Dis. 2010;1:3. DOI:10.1038/cddis.2009.3; Koronyo Y., Salumbides B.C., Black K.L., Koronyo-Hamaoui M. Alzheimer’s disease in the retina: imaging retinal aß plaques for early diagnosis and therapy assessment. Neurodegener. Dis. 2012;10:285–293. DOI:10.1159/000335154; Morgan J.E., Datta A.V., Erichsen J.T., Albon J., Boulton M.E. Retinal ganglion cell remodelling in experimental glaucoma. Adv Exp Med Biol. 2006;572:397–402. DOI:10.1007/0-387-32442-9_56; Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2304–2320.; Williams P.A., Piechota M., von Ruhland C., Taylor E., Morgan J.E., Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain. 2012;135:493–505. DOI:10.1093/brain/awr330; Scheff S.W., Price D.A., Schmitt F.A., Mufson E.J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging. 2006;27:1372–1384. DOI:10.1016/j.neurobiolaging.2005.09.012. Epub 2005 Nov 9.; Beckers A., Moons L. Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? Neural Regen Res. 2019;14(8):1313–1316. DOI:10.4103/1673-5374.253505; O’Brien J., Bloomfield S.A. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Ann. Rev. Vis. Sci. 2018;4:79–100. DOI:10.1146/annurevvision-091517-034133; Dutescu R.M., Li Q.X., Crowston J., Masters C.L., Baird P.N., Culvenor J.G. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes. Arch. Clin. Exp. Ophthalmol. 2009;247:1213–1221. DOI:10.1007/s00417-009-1060-3; Lee V., Rekhi E., Hoh Kam J., Jeffery G. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta. Neurobiol. Aging. 2012;33:2382–2389. DOI:10.1016/j.neurobiolaging.2011.12.002; Ohno-Matsui K. Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog. Retin. Eye Res. 2011;30:217–238. DOI:10.1016/j.preteyeres.2011.02.004; Osborne N.N. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog. Brain Res. 2008;173:339– 352. DOI:10.1016/S0079-6123(08)01124-2; Wang L., Dong J., Cull G., Fortune B., Cioffi G.A. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 2003;44:2–9. DOI:10.1167/iovs.02-0333; Calkins M.J., Manczak M., Mao P., Shirendeb U., Reddy P.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria. Hum. Mol. Genet. 2011;20:4515–4529. DOI:10.1093/hmg/ddr381; McAllister A.K. Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences (CMLS). 2001;58(8):1054–1060. DOI:10.1007/PL00000920; Зуева М.В. Созревание и пластичность зрительной системы: нейрогенез, синаптогенез и миелиногенез. I. Сетчатка и ретино-геникулятные проекции. Вестник офтальмологии. 2012;128(3):37–41.; McAllister A.K. Cellular and Molecular Mechanisms of Dendrite Growth. Cerebral Cortex. 2020;10(10):963–973. DOI:10.1093/cercor/10.10.963; Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease. Exp. Neurol. 2017;298:137–147. DOI:10.1016/j.expneurol.2017.10.001; Gidday J.M. Adaptive Plasticity in the Retina: Protection against acute injury and neurodegenerative disease by conditioning stimuli. Conditioning Medicine. 2018;1(2):85–97.; Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med., 12 March 2018, DOI:10.3389/fmed.2018.00061; Jakobs T.C., Libby R.T., Ben Y., John S.W., Masland R.H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 2005;171:313–325. DOI:10.1083/jcb.200506099; Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI:10.1111/j.14429071.2012.02789.x; Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–250. DOI:10.1016/j.visres.2010.08.003; Kalesnykas G., Oglesby E.N., Zack D.J., Cone F.E., Steinhart M.R., Tian J., Pease M.E., Quigley H.A. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012;53(7):3847–3857. DOI:10.1167/iovs.12-9712; Agostinone J., Alarcon-Martinez L., Gamlin C., Yu W.Q., Wong R.O.L., Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain. 2018;141:1963–1980. DOI:10.1093/brain/awy142; Beckers A., Van Dyck A., Bollaerts I., Van Houcke J., Lefevere E., Andries L., Agostinone J., Van Hove I., Di Polo A., Lemmens K., Moons L. An antagonistic axondendrite interplay enables efficient neuronal repair in the adult Zebrafish central nervous system. Mol Neurobiol. 2018 56(5):3175–3192. DOI:10.1007/s12035-0181292-5; Chung S.H., Awal M.R., Shay J., McLoed M.M., Mazur E., Gabel C.V. Novel DLKindependent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci 2016;113:E2852–2860. DOI:10.1093/brain/awy142; Han S.M., Baig H.S., Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron. 2016;92:1308–1323. DOI:10.1016/j.neuron.2016.11.025; Mar F.M., Simoes A.R., Leite S., Morgado M.M., Santos T.E., Rodrigo I.S., Teixeira C.A., Misgeld T., Sousa M.M. CNS axons globally increase axonal transport after peripheral conditioning. J Neurosci. 2014;34:5965–5970. DOI:10.1523/JNEU ROSCI.4680-13.2014; Cai Q., Sheng Z.H. Mitochondrial transport and docking in axons. Exp Neurol. 2009;218:257–267. DOI:10.1016/j.expneurol.2009.03.024; Drummond E.S., Rodger J., Penrose M., Robertson D., Hu Y., Harvey A.R. Effects of intravitreal injection of a Rho-GTPase inhibitor (BA-210), or CNTF combined with an analogue of cAMP, on the dendritic morphology of regenerating retinal ganglion cells. Restor Neurol Neurosci. 2014;32:391–402. DOI:10.3233/RNN-130360; McAllister A.K., Katz L.C., Lo D.C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron. 1996;17:1057–1064. DOI:10.1016/s08966273(00)80239-1; Lom B., Cohen-Cory S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 1999;19:9928–9938. DOI:10.1523/JNEUROSCI.19-22-09928; Rauskolb S., Zagrebelsky M., Dreznjak A., Deogracias R., Matsumoto T., Wiese S., Erne B., Sendtner M., Schaeren-Wiemers N., Korte M., Barde Y-A. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 2010;30:1739–1749. DOI:10.1523/JNEUROSCI.5100-09.2010; Di Polo A., Aigner L.J., Dunn R.J., Bray G.M., Aguayo A.J. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc. Natl. Acad. Sci. 1998;95:3978–3983. DOI:10.1073/pnas.95.7.3978; Weber A.J., Harman C.D. BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury. Invest. Ophth. Vis. Sci. 2008;49:2456–2463. DOI:10.1167/iovs.07-1325; Rodger J., Drummond E.S., Hellstrom M., Robertson D., Harvey A.R. Long-term gene therapy causes transgene-specific changes in the morphology of regenenerating retinal ganglion cells. PLoS One. 2012;7:e31061. DOI:10.1371/journal.pone.0031061; Binley K.E., Ng W.S., Barde Y.-A., Song B., Morgan J.E. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells. Eur. J. Neurosci. 2016;44:2028–2039. DOI:10.1111/ejn.13295; https://www.ophthalmojournal.com/opht/article/view/1533

  9. 9
    Academic Journal

    Πηγή: National Journal glaucoma; Том 20, № 3 (2021); 59-77 ; Национальный журнал Глаукома; Том 20, № 3 (2021); 59-77 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/343/348; Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009; 116:2305–2314. doi:10.1016/j.ophtha.2009.05.025; Kim Y.J., Kang M.H., Cho H.Y., Lim H.W., Seong M. Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma. Jpn J Ophthalmol. 2014; 58(3):244–251. doi:10.1007/s10384-014-0315-7; Sung K.R., Sun J.H., Na J.H., Lee J.Y., Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012; 119(2):308–313. doi:10.1016/j.ophtha.2011.08.022; Na J.H., Sung K.R., Lee J.R., Lee K.S., Baek S., Kim H.K., Sohn Y.H. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Ophthalmology. 2013; 120(7):1388–1395. doi:10.1016/j.ophtha.2012.12.014; Yip V.C.H., Wong H.T., Yong V.K.Y. et al. Optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma. 2019; 28(1):80–87. doi:10.1097/IJG.00000000000101125; Yarmohammadi A., Zangwill L.M., Manalastas P.I.C., Fuller N.J. et al. Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology. 2018; 125(4):578–587. doi:10.1016/j.ophtha.2017.10.029; Moghimi S., Zangwill L.M., Penteado R.C. et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2018; 125(11):1720–1728. doi:10.1016/j.ophtha.2018.05.006; Фурсова А.Ж., Гамза Ю.А., Тарасов М.С., Васильева М.А., Дербенева А.С. Сравнительное исследование структурных и микроциркуляторных параметров у пациентов с первичной открытоугольной глаукомой и сахарным диабетом. Российский офтальмологический журнал. 2020; 13(3):42–50. doi:10.21516/2072-0076-2020-13-3-42-50; Hou H., Shoji T., Zangwill L.M., Moghimi S. Progression of primary open-angle glaucoma in diabetic and nondiabetic patients. Am J Ophthalmol. 2018; 189:1–9. doi:10.1016/j.ajo.2018.02.002; Wang Y., Xin C., Li M., Swain D.L., Cao K., Wang H., Wang N. Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma. BMC Ophthalmol. 2020; 20(1):17. doi:10.1186/s12886-020-1304-x; Poli M., Cornut P.L., Nguyen A.M., De Bats F., Denis P. Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma. J Fr Ophtalmol. 2018;41(7):619–629.; Triolo G., Rabiolo A., Shemonski N.D., Fard A., Di Matteo F., Sacconi R. et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58(13):5713–5722.; Chung J.K., Hwang Y.H., Wi J.M., Kim M., Jung J.J. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res. 2017; 42(11):1458–1467.; Bojikian K., Nobrega P., Wen J.C., Zhang Q., Mudumbai R.C., Johnstone M.A., Wang R.K., Chen P.P. Macular vascular microcirculation in eyes with open-angle glaucoma using different visual field severity classification systems. J Glaucoma. 2019; 28(9):790–796. doi:10.1097/IJG.0000000000001308; Chen H.S., Liu C.H., Wu W.C., Tseng H.J., Lee Y.S. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017; 58(9):3637–3645. doi:10.1167/iovs.17-21846; Penteado R.C., Zangwill L.M., Daga F.B. et al. Optical coherence tomography angiography macular vascular density measurements and the Central 10-2 visual field in glaucoma. J Glaucoma. 2018; 27(6):481–489. doi:10.1097/IJG.0000000000000964; Freiberg F.J., Pfau M., Wons J., Wirth M.A., Becker M.D., Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254(6):1051–1058. doi:10.1007/s00417-015-3148-2; Kwon J., Choi J., Shin J.W., Lee J., Kook M.S. Glaucoma diagnostic capabilities of foveal avascular zone parameters using optical coherence tomography angiography according to visual field defect location. J Glaucoma. 2017; 26(12):1120–1129. doi:10.1097/IJG.0000000000000800; Shoji T., Zangwill L.M., Akagi T. et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol. 2017; 182:107e117.; Spaide F. Measurable aspects of the retinal neurovascular unit in diabetes, glaucoma, and controls. Am J Ophthalmol. 2019; 207:395–409. doi:10.1016/j.ajo.2019.04.035; Sohn E.H., van Dijk H.W., Jiao C. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA. 2016; 113(19):E2655–64. doi:10.1073/pnas.1522014113; Wu Z., Weng D.S.D., Thenappan A., Ritch R., Hood D.C. Evaluation of a region-of-interest approach for detecting progressive glaucomatous macular damage on optical coherence tomography. Transl Vis Sci Technol. 2018; 7(2):14. doi:10.1167/tvst.7.2.14; Ng D.S., Chiang P.P., Tan G., Cheung C.G., Cheng C.Y., Cheung C.Y., Wong T.Y., Lamoureux E.L., Ikram M.K. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016; 44(4):243–250. doi:10.1111/ceo.12724.; https://www.glaucomajournal.ru/jour/article/view/343

  10. 10
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 17, № 3s (2020); 533-541 ; Офтальмология; Том 17, № 3s (2020); 533-541 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-3s

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1314/738; Нероев В.В., Зуева М.В., Журавлева А.Н., Цапенко И.В. Структурно‑функциональные нарушения при глаукоме: перспективы доклинической диагностики. Часть 1. Насколько релевантен поиск того, что первично? Офтальмология. 2020;17(3):336–343.; Crish S.D., Sappington R.M., Inman D.M., Horner P.J., Calkins D.J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl. Acad. Sci. USA. 2010; 107:5196–5201. DOI:10.1073/pnas.0913141107; Calkins D.J., Horner P.J. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest. Ophthalmol. Vis. Sci. 2012;53:2482–2484. DOI:10.1167/iovs.12‑9483i; Calkins D.J. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog. Retin. Eye Res. 2012;31:702–719. DOI:10.1016/j.preteyeres.2012.07.001; Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012;32(4):354–358. DOI:10.1097/WNO.0b013e3182745600; Crish S.D., Dapper J.D., MacNamee S.E., Balaram P., Sidorova T.N., Lambert W.S., Calkins D.J. Failure of axonal transport induces a spatially coincident increase in astrocyte BDNF prior to synapse loss in a central target. Neuroscience 2013;229:55–70. DOI:10.1016/j.neuroscience.2012.10.069; Зуева М.В. Динамика гибели ганглиозных клеток сетчатки при глаукоме и ее функциональные маркеры. Национальный журнал глаукома. 2016;15(1):70–85.; Howell G.R., Libby R.T., Jakobs T.C., Smith R.S., Phalan F.C., Barter J.W., Barbay J.M., Marchant J.K., Mahesh N., Porciatti V., Whitmore A.V., Masland R.H., John S.W. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 2007;179:1523–1537. DOI:10.1083/jcb.200706181; Soto I., Oglesby E., Buckingham B.P., Son J.L., Roberson E.D., Steele M.R., Inman D.M., Vetter M.L., Horner P.J., Marsh‑Armstrong N. Retinal ganglion cells down‑regulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci. 2008;28:548 –561. DOI:10.1523/JNEUROSCI.3714‑07.2008; Baltan S., Inman D.M., Danilov C.A., Morrison R.S., Calkins D.J., Horner P.J. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J. Neurosci. 2010;30:5644–5652. DOI:10.1523/JNEUROSCI.5956‑09.2010; Cone F.E., Gelman S.E., Son J.L., Pease M.E., Quigley H.A. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res. 2010;91:415–424. DOI:10.1016/j.exer.2010.06.018; Sappington R.M., Carlson B.J., Crish S.D., Calkins D.J. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci. 2010;51:207–216. DOI:10.1167/iovs.09‑3947; Chen H., Wei X., Cho K.S., Chen G., Sappington R., Calkins D.J., Chen D.F. Optic neuropathy due to microbead‑induced elevated intraocular pressure in the mouse. Invest. Ophthalmol. Vis. Sci. 2011;52:36–44. DOI:10.1167/iovs.09‑5115; Lambert W.S., Ruiz L., Crish S.D., Wheeler L.A., Calkins D.J. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol. Neurodegener. 2011;6:4. DOI:10.1186/1750‑1326‑6‑4; Harwerth R.S., Crawford M.L., Frishman L.J., Viswanathan S., Smith E.L. 3rd, Carter‑Dawson L. Visual field defects and neural losses from experimental glaucoma. Prog. Retin. Eye Res. 2002;21:91–125.; Gupta N., Yucel Y.H. Brain changes in glaucoma. Eur. J. Ophthalmol.2003;13(3):S32–S35.; Yucel Y.H., Zhang Q., Weinreb R.N., Kaufman P.L., Gupta N. Effects of retinal ganglion cell loss on magno‑, parvo‑, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 2003;22:465–481.; Gupta N., Ang L.C., Noel de Tilly L., Bidaisee L., Yucel Y.H. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br. J. Ophthalmol. 2006;90(6):674–678. DOI:10.1136/bjo.2005.086769; Weber A.J., Chen H., Hubbard W.C., Kaufman P.L. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest. Ophthalmol. Vis. Sci. 2000;41:1370–1379.; Viswanathan S., Frishman L.J., Robson J.G. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest. Ophthalmol. Vis. Sci. 2000; 41(9):2797–2810.; Saleh M., Nagaraju M., Porciatti V. Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2J mouse model of glaucoma. Invest. Ophthalmol. Vis. Sci. 2007;48:4564–4572. DOI:10.1167/iovs.07‑0483; Buckingham B.P., Inman D.M., Lambert W., Oglesby E., Calkins D.J., Steele M.R., Vetter M.L., Marsh‑Armstrong N., Horner P.J. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J. Neurosci. 2008; 28:2735–2744. DOI:10.1523/JNEUROSCI.4443‑07.2008; Holcombe D.J., Lengefeld N., Gole G.A., Barnett N.L. Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br. J. Ophthalmol. 2008;92:683–688. DOI:10.1136/bjo.2007.133223; Bach M., Hoffmann M.B. Update on the pattern electroretinogram in glaucoma. Optom. Vis. Sci. 2008;85:386–395. DOI:10.1097/opx.0b013e318177ebf3; Nagaraju M., Saleh M., Porciatti V. IOP‑dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest. Ophthalmol. Vis. Sci. 2007;48:4573–4579. DOI:10.1167/iovs.07‑0582; Porciatti V., Nagaraju M. Head‑up tilt lowers IOP and improves RGC dysfunction in glaucomatous DBA/2J mice. Exp. Eye Res. 2010;90:452–460. DOI:10.1016/j.exer.2009.12.005; Fortune B., Burgoyne C.F., Cull G.A., Reynaud J., Wang L. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2012;53:3939–3950. DOI:10.1167/iovs.12‑9979; Frankfort B.J., Khan A.K., Tse D.Y., Chung I., Pang J.J., Yang Z., Gross R.L., Wu S.M. Elevated intraocular pressure causes inner retinal dysfunction before cell loss in a mouse model of experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2013;54:762–770. DOI:10.1167/iovs.12‑10581; Yucel Y., Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res. 2008;173:465–478. DOI:10.1016/S0079‑6123(08)01132‑1; Porciatti V., Ventura L.M. Physiological significance of steady‑state PERG losses in glaucoma: clues from simulation of abnormalities in normal subjects. J. Glaucoma. 2009;18(7):535–542. DOI:10.1097/ijg.0b013e318193c2e1; Ventura L.M., Sorokac N., De Los Santos R., Feuer W.J., Porciatti V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest. Ophthalmol. Vis. Sci. 2006;47(9):3904–3911. DOI:10.1167/iovs.06‑0161; Banitt M.R., Ventura L.M., Feuer W.J., Savatovsky E., Luna G., Shif O., Bosse B., Porciatti V. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest. Ophthalmol. Vis. Sci. 2013;54:2346–2352. DOI:10.1167/iovs.12‑11026; Morgan J.E., Tribble J.R. Microbead models in glaucoma. Exp. Eye Res. 2015;141:9–14. DOI:10.1016/j.exer.2015.06.020; Santina L.D., Inman D.M., Lupien C.B., Horner F.J., Wong R.O.L. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci. 2013;33(44):17444–17457. DOI:10.1523/JNEUROSCI.5461‑12.2013; Lacor P.N., Buniel M.C., Furlow P.W., Clemente A.S., Velasco P.T., Wood M., Viola K.L., Klein W.L. Abeta oligomer‑induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 2007;27:796–807. DOI:10.1523/JNEUROSCI.3501‑06.2007; Yoshiyama Y., Higuchi M., Zhang B., Huang S.M., Iwata N., Saido T.C., Maeda J., Suhara T., Trojanowski J.Q., Lee V.M. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53:337–351. DOI:10.1016/j.neuron.2007.01.010; Liu M., Duggan J., Salt T.E., Cordeiro M.F. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 2011;92:244–250. DOI:10.1016/j.exer.2011.01.014; Pavlidis M., Stupp T., Naskar R., Cengiz C., Thanos S. Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Invest. Ophthalmol. Vis Sci. 2003;44:5196–5205. DOI:10.1167/iovs.03‑0614; Jakobs T.C., Libby R.T., Ben Y., John S.W., Masland R.H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 2005;171:313–325. DOI:10.1083/jcb.200506099; Shou T., Liu J., Wang W., Zhou Y., Zhao K. Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. Invest. Ophthalmol. Vis. Sci 2003;44:3005–3010. DOI:10.1167/iovs.02‑0620; Weber A.J., Kaufman P.L., Hubbard W.C. Morphology of single ganglion cells in the glaucomatous primate retina. Invest. Ophthalmol. Vis. Sci. 1998;39:2304–2320.; Morquette J.B., Di Polo A. Dendritic and synaptic protection: is it enough to save the retinal ganglion cell body and axon? J. Neuroophthalmol. 2008;28:144–154. DOI:10.1097/wno.0b013e318177edf0; Yucel Y.H., Gupta N., Zhang Q., Mizisin A.P., Kalichman M.W., Weinreb R.N. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch. Ophthalmol. 2006;124:217–225. DOI:10.1001/archopht.124.2.217; Gupta N., Zhang Q., Kaufman P.L., Weinreb R.N., Yucel Y.H. Chronic ocular hypertension induces dendrite pathology in the lateral geniculate nucleus of the brain. Exp. Eye Res. 2007;84:176–184. DOI:10.1016/j.exer.2006.09.013; Ly T., Gupta N., Weinreb R.N., Kaufman P.L., Yucel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011;51(2):243–250. DOI:10.1016/j.visres.2010.08.003; Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012;40:364–368. DOI:10.1111/j.1442‑9071.2012.02789.x; Wilsey L.J., Fortune B. Electroretinography in glaucoma diagnosis. Curr. Opin. Ophthalmol. 2016;27(2):118–124. DOI:10.1097/ICU.0000000000000241; North R.V., Jones A.L., Drasdo N., Wild J.M., Morgan J.E. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. Invest. Ophthalmol. Vis. Sci. 2010;51:1216–1222. DOI:10.1167/iovs.09‑3409; Bach M., Unsoeld A.S., Philippin H., Staubach F., Maier P., Walter H.S., Bomer T.G., Funk J. Pattern ERG as an early glaucoma indicator in ocular hypertension: a longterm, prospective study. Invest. Ophthalmol. Vis. Sci. 2006;47:4881–4887. DOI; 1167/iovs.05‑0875; Bach M., Ramharter‑Sereinig A. Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols. Doc. Ophthalmol. 2013;127:227–238. DOI:10.1007/s10633‑013‑9412‑z; Bach M., Poloshek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013;353(2):287–296. DOI:10.1007/s00441‑013‑1598‑6; Bode S.F., Jehle T., Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest. Ophthalmol. Vis. Sci. 2011;52:4300–4306. DOI:10.1167/iovs.10‑6381; Luo X. Frishman L.J. Retinal pathway origins of the pattern electroretinogram (PERG). Invest. Ophthalmol. Vis. Sci. 2011;52:8571–8584.; Feng L., Zhao Y., Yoshida M., Chen H., Yang J.F., Kim T.S., Cang J., Troy J.B., Liu X. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest. Ophthalmol. Vis. Sci. 2013;54:1106–1117. DOI:10.1167/ iovs.12‑10791; Mavilio A., Scrimieri F., Errico D. Can variability of pattern ERG signal help to detect retinal ganglion cells dysfunction in glaucomatous eyes? BioMed Research International. 2015;2015:article ID 571314, 11 pages. DOI:10.1155/2015/571314; Slotnick S.D., Klein S.A., Carney T., Sutter E., Dastmalchi S. Using multi‑stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex. Clin. Neurophysiol. 1999;110:1793–1800.; Di Russo F., Martinez A., Sereno M.I., Pitzalis S., Hillyard S.A. Cortical sources of the early components of the visual evoked potential. Hum. Brain Mapp. 2002;15:95–111.; Viswanathan S., Frishman L.J., Robson J.G., Harwerth R.S., Smith E. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:1124–1136.; Viswanathan S., Frishman L.J., Robson J.G., Walters J.W. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2001;42:514–522.; Rangaswamy V.N., Shirato S., Kaneko M., Digby B.I., Robson J.G., Frishman L.J. Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Invest. Ophthalmol. Vis. Sci. 2007;48(10):4818–4828. DOI:10.1167/iovs.07‑0218; Sustar M., Cvenkel B., Brecelj J. The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open‑angle glaucoma patients. Doc. Ophthalmol. 2009;118:167–177. DOI:10.1007/s10633‑008‑9150‑9; Colotto A., Falsini B., Salgarello T., Iarossi G., Galan M.E., Scullica L. Photopic negative response of the human ERG: losses associated with glaucomatous damage. Invest. Ophthalmol. Vis. Sci. 2000;41:2205–2211.; Rangaswamy N.V., Frishman L.J., Dorotheo E.U., Schiffman J.S., Bahrani H.M., Tang R.A. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest. Ophthalmol. Vis. Sci. 2004;45:3827–3837. DOI:10.1167/iovs.04‑0458; Machida S., Raz‑Prag D., Fariss R.N., Sieving P.A., Bush R.A. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2008;49:442–452. DOI:10.1167/iovs.07‑0291; Machida S., Tamada K., Oikawa T., Gotoh Y., Nishimura T., Kaneko M., Kurosaka D. Comparison of photopic negative response of full‑field and focal electroretinograms in detecting glaucomatous eyes. J. Ophthalmology. 2011;2011:article ID 564131, 11 pages. DOI:10.1155/2011/564131; Machida S., Kaneko M., Kurosaka D. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr. Eye Res. 2015 Apr;40(4):439–449. DOI:10.3109/02713683.2014.922196; Kaneko M., Machida S., Hoshi Y., Kurosaka D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr. Eye Res. 2014;40:77–86. DOI:10.3109/02713683.2014.915575; Preiser D., Lagreze W.A., Bach M., Poloschek C.M. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest. Ophthalmol. Vis. Sci. 2013;54:1182–1191. DOI:10.1167/iovs.12‑11201; Cvenkel B., Sustar M., Perovšek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral‑domain optical coherence tomography. Doc. Ophthalmol. 2017;135(1):17–28. DOI:10.1007/s10633‑017‑9595‑9; Fortune B., Bui B.V., Cull G., Wang L., Cioffi G.A. Inter‑ocular and inter‑session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Exp. Eye Res. 2004;78:83–93. DOI:10.1016/j.exer.2003.09.013; Tang J., Edwards T., Crowston J.G., Sarossy M. The test‑retest reliability of the photopic negative response (PhNR). Trans. Vis. Sci. Tech. 2014;3(6):1. eCollection 2014. DOI:10.1167/tvst.3.6.1; Wu Z., Hadoux X., Hui F., Sarossy M.G., Crowston J.G. Photopic Negative Response Obtained Using a Handheld Electroretinogram Device: Determining the Optimal Measure and Repeatability. Trans Vis. Sci. Technol. 2016;5(4):8. eCollection 2016. DOI:10.1167/tvst.5.4.8; Chong R.S., Martin K.R. Glial cell interactions and glaucoma. Curr. Opin. Ophthalmol. 2015;26(2):73–77. DOI:10.1097/ICU.0000000000000125; Kimelberg H.K. Functions of mature mammalian astrocytes: a current view. Neuroscientist. 2010;16:79–106. DOI:10.1177/1073858409342593; Morgan J.E. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye (Lond). 2000;14(Pt 3B):437–444. DOI:10.1038/eye.2000.128; Wang M., Ma W., Zhao L., Fariss R.N., Wong W.T. Adaptive Muller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation. 2011;8:173. DOI:10.1186/1742‑2094‑8‑173; Lebrun‑Julien F., Duplan L., Pernet V., Osswald I., Sapieha P., Bourgeois P., Dickson K., Bowie D., Barker P.A., Di Polo A. Excitotoxic death of retinal neurons in vivo occurs via a non‑cell‑autonomous mechanism. J. Neurosci. 2009;29:5536–5545. DOI:10.1523/JNEUROSCI.0831‑09.2009; Wang M., Wang X., Zhao L., Ma W., Rodriguez I.R., Fariss R.N., Wong W.T. Macroglia–microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J. Neurosci. 2014;34:3793–3806. DOI:10.1523/JNEUROSCI.3153‑13.2014; Kugler P., Beyer A. Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem. Cell Biol. 2003;120:199–212. DOI:10.1007/s00418‑003‑0555‑y; Pease M.E., Zack D.J., Berlinicke C., Bloom K., Cone F., Wang Y., Klein R.L., Hauswirth W.W., Quigley H.A. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 2009;50:2194–2200. DOI:10.1167/iovs.08‑3013; Bringmann A., Iandiev I., Pannicke T., Wurm A., Hollborn M., Wiedemann P., Osborn N.B., Reichenbach A. Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and developmental effects. Prog. Retin. Eye Res. 2009;28:423–451. DOI:10.1016/j.preteyeres.2009.07.001; Gao F., Ji M., Wu J.H., Wang Z.F. Roles of retinal Müller cells in health and glaucoma [Article in Chinese]. Sheng Li Xue Bao. 2013;65(6):654–663. DOI:10.1007/s00441‑013‑1666‑y; Зуева М.В., Цапенко И.В. Клетки Мюллера: спектр и профиль глио‑нейрональных взаимодействий в сетчатке. Российский физиологический журнал им. Сеченова. 2004;90(8):435–436.; Нероев В.В., Зуева М.В., Цапенко И.В., Рябина М.В., Лю Хун. Функциональная диагностика ретинальной ишемии: 1 — реакция клеток Мюллера на ранних стадиях диабетической ретинопатии. Вестник офтальмологии. 2004;120(5):21–24.; Зуева М.В., Цапенко И.В. Структурно‑функциональная организация клеток Мюллера: роль в развитии и патологии сетчатки. В кн: Клиническая физиология зрения. Очерки. Под ред. Шамшиновой А.М. М.: Научно‑медицинская фирма МБН, 2006:128–191.; Зуева М.В., Нероев В.В., Цапенко И.В., Сарыгина О.И., Гринченко М.И., Зайцева С.И. Топографическая диагностика нарушений ретинальной функции при регматогенной отслойке сетчатки методом ритмической ЭРГ широкого спектра частот. Российский офтальмологический журнал. 2009;1(2):18–23.; Li H., Tran V.V., Hu Y., Saltzman W.M., Barnstable C.J., Tombran‑Tink J. A PEDF N‑terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp. Eye Res. 2006;83:824–833. DOI:10.1016/j.exer.2006.04.014; Gwon J.S., Kim I.B., Lee M.Y., Oh S.J., Chun M.H. Expression of clusterin in Müller cells of the rat retina after pressureinduced ischemia. Glia. 2004;47:35–45. DOI:10.1002/glia.20021; Pannicke T., Iandiev I., Uckermann O., Biedermann B., Kutzera F., Wiedemann P., Wolburg H., Reichenbach A., Bringmann A. A potassium channel‑linked mechanism of glial cell swelling in the postischemic retina. Mol. Cell. Neurosci. 2004;26:493–502. DOI:10.1016/j.mcn.2004.04.005; Hirrlinger P.G., Ulbricht E., Iandiev I., Reichenbach A., Pannicke T. Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia. Neurosci. Lett. 2010;472:73–78. DOI:10.1016/j.neulet.2010.01.062; Wurm A., Iandiev I., Uhlmann S., Wiedemann P., Reichenbach A., Bringmann A., Pannicke T. Effects of ischemia‑reperfusion on physiological properties of Müller glial cells in the porcine retina. Invest. Ophthalmol. Vis. Sci. 2011;52:3360–3367.; Da T., Verkman A.S. Aquaporin‑4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest. Ophthalmol. Vis. Sci. 2004;45:4477–4483. DOI:10.1167/iovs.04‑0940; Iandiev I., Pannicke T., Biedermann B., Wiedemann P., Reichenbach A., Bringmann A. Ischemia‑reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neurosci. Lett. 2006;408:108–112. DOI:10.1016/j.neulet.2006.08.084; Нероев В.В., Зуева М.В., Катаргина Л.А. Прорывные технологии в офтальмологии: фундаментальные науки в решении проблем патологии сетчатки и зрительного нерва. Российский офтальмологический журнал. 2013;2(2):4–8; Lee J.H., Shin J.M., Shin Y.J., Chun M.H., Oh S.J. Immunochemical changes of calbindin, calretinin and SMI32 in ischemic retinas induced by increase of intraocular pressure and by middle cerebral artery occlusion. Anat. Cell Biol. 2011;44:25–34. DOI:10.5115/acb.2011.44.1.25; Chan H.H.‑L., Ng Y.‑f., Chu P. H.‑W. Applications of the multifocal electroretinogram in the detection of glaucoma. Clin. Exp. Optom. 2011;94(3):247–258. DOI:10.1111/j.1444‑0938.2010.00571.x; Hood D., Frishman LJ, Saszik S., Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest. Ophthalmol. Vis. Sci. 2002;43:1673–1685.; Hood D.C., Greenstein V.C. Multifocal VEP and ganglion cell damage: Applications and limitations for the study of glaucoma. Prog. Ret. Eye Res. 2003;22:201–251.; Hood D.C., Zhang X., Greenstein V.C., Kangovi S., Odel J.G., Liebmann J.M., Ritch R. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis. Sci. 2000;41:1580–1587.; Harrison W.W., Viswanathan S., Malinovsky V.E. Multifocal pattern electroretinogram: cellular origins and clinical implications. Optom. Vis. Sci. 2006;83:473–485. DOI:10.1097/01.opx.0000218319.61580.a5; Wilsey L., Gowrisankaran S, Cull G., Hardin C., Burgoyne CF, Fortune B. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc. Ophthalmol. 2017;134(2):111–128. DOI:10.1007/s10633‑017‑9578‑x; https://www.ophthalmojournal.com/opht/article/view/1314

  11. 11
    Academic Journal

    Πηγή: National Journal glaucoma; Том 19, № 3 (2020); 66-74 ; Национальный журнал Глаукома; Том 19, № 3 (2020); 66-74 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/290/298; Rossetti L., Digiuni M., Giovanni M. et al. Blindness and glaucoma: a multicenter data review from 7 Academic Eye Clinics. PLoS ONE. 2015; 10(8):e0136632. doi:10.1371/journal.pone.0136632; Tatham A., Medeiros F., Zangwill L., Weinreb R. Strategies to improve early diagnosis in glaucoma. Progress in Brain Research. 2015; 221:103-133. doi:10.1016/bs.pbr.2015.03.001; Mardin C.Y., Horn F.K., Jonas J.B. et al. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthalmol. 1999; 83(3):299–304. doi:10.1136/bjo.83.3.299; Hollo G., Szabo A., Vargha P. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: Changes during a 12-month follow up in preperimetric glaucoma. A pilot study. Acta Ophthalmol Scand. 2001: 79(4):403–407. doi:10.1034/j.1600-0420.2001.079004403.x; Baraibar B., Sánchez-Cano A., Pablo L.E., Honrubia F.M. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma. 2007; 16(8):659-664. doi:10.1097/IJG.0b013e318093e5bf; Ferreras A., Vicente P., Joseґ M. et al. Can frequency-doubling technology and short wave length automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma. J Glaucoma. 2007; 16(4):372–383. doi:10.1097/IJG.0b013e31803bbb17; Burk R., Rohrschneider K, Takamoto T. et al. Laser scanning tomography and stereogrammetry in three dimensional optic disc analysis. Graefes Arch Clin Exp Ophthalmol. 1993; 231(4):193–198. doi:10.1007/bf00918840; Dichtl A., Jonas J.B., Mardin C.Y. Comparison between tomographic scanning evaluation and photographic measurement of the neuroretinal rim. Am J Ophthalmol. 1996; 121(5):494–501. doi:10.1016/ s0002-9394(14)75423-6; Mikelberg F.S., Parfitt C.M., Swindale N.V. et al. Ability of the Heidelberg retina tomograph to detect early glaucomatous visual field loss. J Glaucoma. 1995; 4(4):242–247. doi:10.1097/00061198-199508000-00005; Schuman J.S., Hee M.R., Puliafito C.A. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study. Arch Ophthalmol. 1995; 113(5):586–596. doi:10.1001/archopht.1995.01100050054031; Tjon-Fo-Sang M.J., de Vries J., Lemji H.G. Measurement by nerve fiber analyzer of retinal nerve fiber layer thickness in normal subjects and patients with ocular hypertension. Am J Ophthalmol. 1996; 122(2):220–227. doi:10.1016/s0002-9394(14)72013-6; Hollo G., Szabo A., Vargha P. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: Changes during a 12-month follow up in preperimetric glaucoma. A pilot study. Acta Ophthalmol. Scand. 2001; 79(4):403–407. doi:10.1034/j.1600-0420.2001.079004403.x; Kim H.G., Heo H., Park S.W. Comparison of scanning laser polarimetry and optical coherence tomography in preperimemetric glaucoma. Optom Vis Sci. 2011; 88(1):124-129. doi:10.1097/ijg.0b013e3181b21e87; Ferreras A., Pajarin A.B., Pinilla I. et al. Diagnostic ability of glaucoma probability score to discriminate between healthy individuals and glaucoma suspects. Acta Ophthalmol. 2008; 86(9):243. doi:10.1111/j.1755-3768.2008.507.x; Hirashima T., Hangai M., Nukada M. et al. Frequency-doubling technology and retinal measurements with spectral-domain optical coherence tomography in preperimetric glaucoma. Graefes Arch Clin Exp Ophthalmol. 2013; 251(1):129-137. doi:10.1007/s00417-012-2076-7; Choi J.A., Lee N.Y., Park C.K. Interpretation of the Humphrey Matrix 24-2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol. 2009; 53(1):24-30. doi:10.1007/s10384-008-0604-0; Asaoka R., Iwase,A., Hirasawa K. et al. Identifying ‘‘Preperimetric’’ Glaucoma in Standard Automated Perimetry Visual Fields. Invest Ophthalmol Vis Sci. 2014; 55:7814–7820. doi:10.1167/iovs.14-15120; Sriram P., Klistorner A., Graham S. et al. Optimizing the detection of preperimetric glaucoma by combining structural and functional tests. Invest Ophthalmol Vis Sci. 2015; 56(13):7794–7800. doi:10.1167/iovs.15-16721; Tan O., Chopra V., Lu A.T. et al. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology. 2009; 116(12):2305–2314. doi:10.1016/j.ophtha.2009.05.025; Lisboa R., Mauro T. Leite M., Zangwill L.M. et al. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012; 119(11):2261–2269. doi:10.1016/j.ophtha.2012.06.009; Na J.H., Lee K., Lee J.R. et al. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fiber defects by spectral-domain optical coherence tomography. Clin Exp Ophthalmol. 2013; 41(9):870-880. doi:10.1111/ceo.12142; Jeoung J.W., Choi Y.J., Park K.H. et al. Macular Ganglion Cell Imaging Study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013; 54(7):4422–4429. doi:10.1167/iovs.12-11273; Ангелов Б., Петрова К. Оптическая когерентная томография и её роль в диагностике глазной гипертензии, препериметрической и периметрической глаукомы. Офтальмология. 2015; 12(1):46–56. doi:10.18008/1816-5095-2015-1-46-56; Курышева Н.И., Паршунина О.А., Арджеинишвили Т.Д. Новые технологии в диагностике первичной открытоугольной глаукомы. Глаукома. 2015; 14(2):21-31.; Seol B.R., Jeoung J.W., Park K.H. Glaucoma detection ability of macular ganglion cell-inner plexiform layer thickness in myopic preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2015; 56(13):8306-8313. doi:10.1167/iovs.15-18141; Begum V.U., Addepalli U.K., Yadav R.K. et al. Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2014; 55(8):4768–4775. doi:10.1167/iovs.14-14598; Shin H-Y., Park L. Jung K.I. et al. Comparative study of macular ganglion cell–inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure–function analysis. Invest Ophthalmol Vis Sci. 2013; 54(12):7344–7353. doi:10.1167/iovs.13-12667; Sawada A., Manabe Y., Yamamoto T., Nagata C. Long-term clinical course of normotensive preperimetric glaucoma. Br J Ophthalmol. 2017; 101(12):1649-1653. doi:10.1136/bjophthalmol-2016-309401; Kim H.J., Song Y.J., Kim Y.K. et al. Development of visual field defect after first-detected optic disc hemorrhage in preperimetric open-angle glaucoma. J Ophthalmol. 2017; 61(4):307-313. doi:10.1007/s10384-017-0509-x; Daga F.B., Gracitelli C.P.B., Diniz-Filho A. et al. Is vision-related quality of life impaired in patients with preperimetric glaucoma? Br J Ophthalmol. 2018; Pii: bjophthalmol-2018-312357. doi:10.1136/bjophthalmol-2018-312357; Мачехин В.А., Бондаренко О.А., Савилова Е.Л. Оптимизация анализа данных ретинотомографического обследования. Свидетельство о государственной регистрации программы для ЭВМ № 2008614495, 2008.; Мачехин В.А., Фабрикантов О.Л. Цветная топография патологических параметров ДЗН с помощью лазерного сканирующего ретинотомографа HRT III. Bulgarian Forum Glaucoma. Edition of the National Academy Glaucoma Foundation. 2014; 4(1):13-20.; Мачехин В.А. Ретинотомографические исследования диска зрительного нерва в норме и при глаукоме. М.: Офтальмология; 2011. 334 с.; Мачехин В.А. Наш опыт оценки морфометрических параметров диска зрительного нерва у больных глаукомой. Вестник Тамбовского университета. 2013; 18(1):265-272.; Мачехин В.А., Фабрикантов О.Л. Гейдельбергская ретинотомография диска зрительного нерва в ранней диагностике глаукомы. Вестник офтальмологии. 2017; 133(4):17-24. doi:10.17116/oftalma2017133417-24.; Мачехин В.А., Фабрикантов О.Л. К чему обязывает офтальмолога диагноз «подозрение на глаукому». Медицина. 2017; 19(3): 108-124.; https://www.glaucomajournal.ru/jour/article/view/290

  12. 12
  13. 13
    Academic Journal

    Πηγή: National Journal glaucoma; Том 18, № 1 (2019); 85-94 ; Национальный журнал Глаукома; Том 18, № 1 (2019); 85-94 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/236/244; Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006; 90(3): 262-267.; Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004; 82(11): 887-888.; Resnikoff S. et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004; 82(11): 844-851.; European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Part 1Supported by the EGS Foundation. Br J Ophthalmol. 2017; 101(4): 1-72.; Kaushik S., Pandav S.S., Ram J. Neuroprotection in glaucoma. J Postgrad Med. 2003; 49(1): 90-95.; Егоров Е.А., Егорова Т.Е., Шрамко Ю.Г. Эффективность применения Ретиналамина у пациентов с компенсированной первичной открытоугольной глаукомой. РМЖ Клиническая офтальмология. 2014; 15(4): 188-193.; The Glaucoma Book: A Practical, Evidence-Based Approach to Patient Care. Ed. Schacknow P.N., Samples J.R. New York: Springer-Verlag; 2010.; Dielemans I. et al. The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology. 1994; 101(11):1851-1855.; Haefliger I.O., Fleischhauer J.C., Flammer J. In glaucoma, should enthusiasm about neuroprotection be tempered by the experience obtained in other neurodegenerative disorders? Eye Lond Engl. 2000; 14(Pt 3B): 464-472.; Levin L.A. Direct and indirect approaches to neuroprotective therapy of glaucomatous optic neuropathy. Surv Ophthalmol. 1999; 43 (Suppl 1):98-101.; Osborne N.N. et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 1999; 43 (Suppl 1): 102-128.; Salt T., Cordeiro M. Glutamate excitotoxicity in glaucoma. Eye Lond Engl. 2006; 20(6):730-732.; Miguel-Hidalgo J.J. et al. Neuroprotection by memantine against neurodegeneration induced by beta-amyloid (1-40). Brain Res. 2002; 958(1): 210-221.; Levy D.I., Lipton S.A. Comparison of delayed administration of competitive and uncompetitive antagonists in preventing NMDA receptor-mediated neuronal death. Neurology. 1990; 40(5): 852-852.; Sisk D.R., Kuwabara T. Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefes Arch Clin Exp Ophthalmol. 1985; 223(5):250-258.; Osborne N.N. et al. Ganglion cell death in glaucoma: what do we really know? Br J Ophthalmol. 1999; 83(8):980-986.; Garcia-Campos J. et al. Morphological and functional changes in experimental ocular hypertension and role of neuroprotective drugs. Histol Histopathol. 2007; 22(12): 1399-1411.; Naskar R., Dreyer E.B. New horizons in neuroprotection. Surv Ophthalmol. 2001; 45(Suppl 3):250-255; discussion S273-276.; Sucher N.J., Lipton S.A., Dreyer E.B. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 1997; 37(24):3483-3493.; Fang J.H. et al. Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage. BMC Neurosci. 2010; 11:31.; Kapin M.A. et al. Neuroprotective effects of eliprodil in retinal excitotoxicity and ischemia. Invest Ophthalmol Vis Sci. 1999; 40(6): 1177-1182.; Brooks D.E. et al. Vitreous body glutamate concentration in dogs with glaucoma. Am J Vet Res. 1997; 58(8):864-867.; Dreyer E.B. et al. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol Chic. 1960. 1996; 114(3):299-305.; Carter-Dawson L. et al. Vitreal glutamate concentration in monkeys with experimental glaucoma. Invest Ophthalmol Vis Sci. 2002; 43(8):2633-2637.; Lipton S.A. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol. 2003; 48 (Suppl 1):38-46.; Guo L. et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci. 2006; 47(2):626-633.; Lipton S.A. Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci. 1993; 16(12):527-532.; Vorwerk C.K. et al. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996; 37(8):1618-1624.; Lagreze W.A. et al. Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci. 1998; 39(6):1063-1066.; Hare W.A. et al. Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures. Invest Ophthalmol Vis Sci. 2004; 45(8): 2625-2639.; Stout A.K. et al. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998; 1(5):366-373.; Crish S.D., Calkins D.J. Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience. 2011; 176:1-11.; Yamada H. et al. Neuroprotective effect of calcium channel blocker against retinal ganglion cell damage under hypoxia. Brain Res. 2006; 1071(1):75-80.; Koseki N. et al. Effects of oral brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999; 8(2):117-123.; Koseki N. et al. A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology. 2008; 115(11):2049-2057.; Langham M.E. Ocular blood flow and vision in healthy and glaucomatous eyes. Surv Ophthalmol. 1994; 38:161-S168.; Prunte C., Orgul S., Flammer J. Abnormalities of microcirculation in glaucoma: facts and hints. Curr Opin Ophthalmol. 1998; 9(2):50-55.; Tielsch J.M. et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995; 113(2):216-221.; Takayama J. et al. Time course of the change in optic nerve head circulation after an acute increase in intraocular pressure. Invest Ophthalmol Vis Sci. 2003; 44(9):3977-3985.; Izzotti A., Bagnis A., Sacca S.C. The role of oxidative stress in glaucoma. MutatRes. 2006; 612(2):105-114.; Ferreira S.M. et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol. 2004; 137(1):62-69.; Мищенко Н.П., Федореев С.А., Догадова Л.П. Препарат гистохром для офтальмологии. Вестник Дальневосточного отделения Российской академии наук. 2004; 3.; Azzi A., Stocker A. Vitamin E: non-antioxidant roles. Prog Lipid Res. 2000; 39(3):231-255.; Tran K., Chan A.C. R-alpha-tocopherol potentiates prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule. Biochim Biophys Acta. 1990; 1043(2):189-197.; Chatelain E. et al. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim Biophys Acta. 1993; 1176(1-2):83-89.; Антоненко Ю.Н. и др. Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения 1. Катионные производные пластохинона: синтез и исследование in vitro. Биохимия. 2008; 73(12):1589-1606.; Birks J., Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst. Rev. 2007(2):. CD003120.; Ghiso J.A. et al. Alzheimer’s disease and glaucoma: mechanistic similarities and differences. J Glaucoma. 2013; 22(5):36-38.; Ritch R. Potential role for Ginkgo biloba extract in the treatment of glaucoma. Med Hypotheses. 2000; 54(2):221-235.; Sacca S.C. et al. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. Chic. Ill 1960. 2005; 123(4):458-463.; Eckert A. et al. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N YAcad. Sci. 2005; 1056:474-485.; Quaranta L. et al. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003; 110(2):359-362; discussion 362-364.; Guo X. et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014; 55(1):110-116.; Le Bars P.L., Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr. 2000; 3(4):495-499.; Johnson J.E. et al. Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci Off J Soc Neurosci. 1986; 6(10):3031-3038.; Sawai H. et al. Brain-derived neurotrophic factor and neurotro-phin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. J Neurosci Off J Soc Neurosci. 1996; 16(12): 3887-3894.; Mey J., Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 1993; 602(2):304-317.; Donello J.E. et al. Alpha2-adrenoreceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther. 2001; 296(1):216-223.; Kalapesi F.B., Coroneo M.T., Hill M.A. Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br J Ophthalmol. 2005; 89(6):758-763.; Yoles E., Wheeler L.A., Schwartz M. Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci. 1999; 40(1):65-73.; Lambert W.S. et al. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener. 2011; 6(1):4.; Krupin T. et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011; 151(4):671-681.; Sena D.F., Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2013; 2: CD006539.; Абизгильдина Г.Ш. Опыт комбинированного лечения глаукомной оптической нейропатии. Медицинский Вестник Башкортостана. 2014; 9(2).; Pease M.E. et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009; 50(5): 2194-2200.; Liu B., Neufeld A.H. Nitric oxide synthase-2 in human optic nerve head astrocytes induced by elevated pressure in vitro. Arch Ophthalmol. 2001; 119(2):240-245.; Neufeld A.H., Sawada A., Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad. Sci. U. S. A. 1999; 96(17):9944-9948.; Geyer O. et al. Nitric oxide synthase inhibitors protect rat retina against ischemic injury. FEBS Lett. 1995; 374(3):399-402.; Егоров Е.А., Брежнев А.Ю., Егоров А.Е. Нейропротекция при глаукоме: современные возможности и перспективы. РМЖ. Клиническая офтальмология. 2014; 2:108-112.; Егоров Е.А. Нейропротекторы в лечении ранних стадий первичной открытоугольной глаукомы. РМЖ. Клиническая офтальмология. 2015; 3:154-159.; Астахов Ю.С., Бутин Е.В., Морозова Н.В., Соколов В.О. Результаты применения ретиналамина у больных с первичной открытоугольной глаукомой. Глаукома. 2006; 2:43-47.; Егоров Е.А., Егорова Т.Е., Шрамко Ю.Г. Эффективность применения Ретиналамина у пациентов с компенсированной первичной открытоугольной глаукомой. РМЖ. Клиническая Офтальмология. 2014; 14(4):188-193.; Ильина С.Н., Ломаник И.Ф., Логош С.М., Шавловская Т.В. Ретина-ламин в нейропротекторной терапии больных первичной открытоугольной глаукомой. Офтальмология Восточная Европа. 2012; 4:96-101.; Мазунин И.Ю. Результаты применения нейроретинапротекто-ра “Ретиналамин” после лазерной трабекулопластики при лечении компенсированной первичной открытоугольной глаукомы. Медицинский Альманах. 2014; 1(31):69-73.; Малишевская Т.Н., Долгова И.Г. Сравнительный анализ эффективности различных методов нейропротекторной терапии больных первичной стабилизированной глаукомой в далекозашедшей стадии. Национальный журнал глаукома. 2016; 15(2):84-92-92.; Рожко Ю.И., Марченко Л.Н., Чилд Н.А. и др. Нейроретинопротекторное действие кортексина и ретиналамина в терапии открытоугольной глаукомы. Проблемы здоровья и экологии. 2010; 3(25).; https://www.glaucomajournal.ru/jour/article/view/236

  14. 14
    Academic Journal

    Πηγή: National Journal glaucoma; Том 16, № 3 (2017); 98-102 ; Национальный журнал Глаукома; Том 16, № 3 (2017); 98-102 ; 2311-6862 ; 2078-4104

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/168/167; Хавинсон В.Х., Кузник Б.И., Рыжак Г.А. Пептидные биорегуляторы — новый класс геропротекторов. Сообщение 1. Результаты экспериментальных исследований. Успехи геронтологии 2012; 25(4):696-708. [Khavinson V.Kh., Kuznik B.I., Ryzhak G.A. Peptide bioregulators: the new class of geroprotectors. Message 1. Experimental studies results. Advances in gerontology 2012; 25(4):696-708. (In Russ.)].; Хавинсон В.Х., Разумовский М.И., Балашов Н.В. и др. Влияние пептидов сетчатки на регенерацию нейрорецепторного аппарата глаза. Реактивность и регенерация тканей 1990:15. [Khavinson V.Kh., Razumovskiy M.I., Balashov N.V. et al. Retinal peptide influence on the neuroreceptive eye mechanism regeneration. Reaktivnost’ I regeneratsiya tkanei 1990:15. (In Russ.)].; Харинцева С.В. Влияние ретилина на фибринолитическую и коагуляционную активность слезной жидкости у больных с тромбозами вен сетчатки. Экологические интоксикации: биохимия, фармакология, клиника: тезисы докладов Всеросс. конф. Чита, 1996; 283-285. [Kharintseva S.V. Retilin influence on the tear coagulative activity in the patients with retinal vein trombosis. Ecological intoxications: biochemistry, pharmacology, clinics: theses of All-Russ. conference. Chita, 1996; 283-285. (In Russ.)].; Анисимов С.В., Бохелер К.Р., Хавинсон В.Х., Анисимов В.Н. Изучение действия пептидов вилона и эпиталона на экспрессию генов в сердце мыши с помощью технологии на основе микрочипов. Бюллетень экспериментальной биологии 2002; 133:340-347. [Anisimov S.V., Bokheler K.R., Khavinson V.N. Study of vilon and epithalon peptides on the gene expression in murine heart with microchip technology. Bulletin of experimental biology 2002; 133:340-347. (In Russ.)].; Анисимов В.Н., Хавинсон В.Х., Алимова И.Н., Провинциали М., Манчини Р., Франчески К. Эпиталон угнетает развитие опухолей и экспрессию онкогена HER-2/NEU в опухолях молочной железы у трансгенных мышей с ускоренным старением. Бюллетень экспериментальной биологии и медицины 2002; 133(2):199-202. [Anisimov V.N., Khavinson V.Kh., Alimova I.N., Provintsiali M., Manchini R., Francheski K. Epithalon inhibits tumor development and HER-2/NEU oncogene expression in the mammae tumors in transgenic mice with accelerated aging. Bulletin of experimental biology and medicine 2002; 133(2): 199-202. (In Russ.)].; Бродский В.Я., Хавинсон В.Х., Золотарев Ю.А., Нечаева Н.В., Малинин В.В., Новикова Т.Е. и др. Ритм синтеза белка в культурах гепатоцитов крыс разного возраста. Норма и действие пептида ливагена. Известия РАН. Серия биологическая 2001; 5:517-521. [Brodskiy V.Ya., Khavinson V.Kh., Zolotarev Yu.A., Nechaeva N.V., Malinin V.V., Novikova T.E. et al. Protein syntesis rhythm in hepatocytic cultures of mice of different age. Biology Bulletin 2001; 5:517-521. (In Russ.)].; Гончарова Н.Д., Хавинсон В.Х., Лапин Б.А. Регулирующее влияние эпиталона на продукцию мелатонина и кортизола у старых обезьян. Бюллетень экспериментальной биологии и медицины 2001; 131(4):466-468. [Goncharova N.D., Khavinson V.Kh., Lapin B.A. Regulatory effect of Epithalon on production of melatonin and cortisol in old monkeys. Bulletin of experimental biology and medicine 2001; 131(4):466-468. (In Russ.)].; Трофимова С.В., Хавинсон В.Х. Сетчатка и старение. Успехи геронтологии 2002; 9:79-82. [Trofinova S.V., Khavinson V.Kh. Retina and aging. Advances in gerontology 2002; 9:79-82. (In Russ.)].; Хавинсон В.Х., Земчихина В.Н., Трофимова С.В., Малинин В.В. Влияние пептидов на пролиферативную активность клеток и пигментного эпителия. Бюллетень экспериментальной биологии и медицины 2003; 135(6):700-702. [Khavinson V.Kh., Zemchikhina V.N., Trofimova S.V., Malinin V.V. Peptide influence on the cell and pigment epithelium proliferative activity. Bulletin of experimental biology and medicine 2003; 135(6):700-702. (In Russ.)].; Алексеев В.Н., Чурилина Н.Ю., Павлова Е.А. Морфометрическое обоснование нейропротекторного действия пептидов при первичной открытоугольной глаукоме. Успехи современного естествознания 2008; 2:49-51. [Alekseev V.N., Churilina N.Yu., Pavlova E.A. Morphometric justification of peptide neuroprotective activity in primary open-angle glaucoma. Advances in current natural sciences 2008; 2:49-51. (In Russ.)].; Бикбов М.М., Файзрахманов Р.Р., Ярмухаметова А.Л., Бикбулатов Р.М. Макулярная дегенерация сетчатки в эксперименте. Медицинский вестник Башкортостана 2012; 7(3):53-56. [Bikbov M.M., Faizrakhmanov R.R., Yarmukhametova A.L., Bikbulatov R.M. Retinal macular degeneration in experimental study. Meditsinskiy vestnik Baskorstana 2012; 7(3):53-56. (In Russ.)].; Исайкина Н.В., Запускалов И.В., Кривошеина О.И. Возможность применения ретиналамина методом эпиретинального введения. Современные проблемы науки и образования 2015; 6:320-326. [Isaykina N.V., Zapuskalov I.V., Krivosheina O.I. Possible application of retinalamin in form of epiretinal therapy. Modern problems of science and education 2015; 6:320-326. (In Russ.)].; https://www.glaucomajournal.ru/jour/article/view/168

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20