Showing 1 - 20 results of 132 for search '"ВЯЗКОСТЬ РАЗРУШЕНИЯ"', query time: 0.83s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Vestnik of Brest State Technical University; No. 3(129) (2022): Vestnik of Brest State Technical University; 12-15
    Вестник Брестского государственного технического университета; № 3(129) (2022): Вестник Брестского государственного технического университета; 12-15

    File Description: application/pdf

  3. 3
  4. 4
    Academic Journal

    Contributors: the work was supported by the Belarusian Republican Foundation for Fundamental Research (grant no. Т22M-006), работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Т22М-006)

    Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 68, № 4 (2023); 271-279 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 68, № 4 (2023); 271-279 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2023-68-4

    File Description: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/816/643; Robertson J. Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 2002, vol. 37, iss. 4–6, pp. 129–281. https://doi.org/10.1016/S0927-796X(02)00005-0; Kumar S., Dwivedi N., Rauthan C. M. S., Panwar O. S. Properties of nitrogen diluted hydrogenated amorphous carbon (n-type a-C:H) films and their realization in n-type a-C:H/p-type crystalline silicon heterojunction diodes. Vacuum, 2010, vol. 84, iss. 7, pp. 882–889. http://doi.org/10.1016/j.vacuum.2009.12.003; Godet C., Kumar S., Chu V. Field-enhanced electrical transport mechanisms in amorphous carbon films. Philosophical Magazine, 2003, vol. 83, no. 29, pp. 3351–3365. https://doi.org/10.1080/14786430310001605010; Zhou Z. B., Cui R. Q., Pang Q. J., Hadi G. M., Ding Z. M., Li W. Y. Schottky solar cells with amorphous carbon nitride thin films prepared by ion beam sputtering technique. Solar Energy Materials and Solar Cells, 2002, vol. 70, iss. 4, pp. 487–493. https://doi.org/10.1016/S0927-0248(01)00086-1; Dwivedi N., Kumar S., Rauthan C. M. S., Panwar O. s., Siwach P. K. Photoluminescence and electrical conductivity of silicon containing multilayer structures of diamond like carbon. Journal of Optoelectronics and Advanced Materials, 2009, vol. 11, pp. 1618–1626.; Weiser P. S., Prawer S., Manory R. R., Hoffman A., Evans P. J., Paterson P. J. K. Chemical vapour deposition of diamond onto steel: the effect of a Ti implant layer. Surface and Coatings Technology, 1995, vol. 71, iss. 2, pp. 167–172. https://doi.org/10.1016/0257-8972(94)01016-C; Chen J. J. Indentation-based methods to assess fracture toughness for thin coatings. Journal of Physics D: Applied Physics, 2012, vol. 45, no. 20, art. ID 203001. https://doi.org/10.1088/0022-3727/45/20/203001; Chen J. J., Bull S. J. Indentation Fracture and Toughness Assessment for Thin Optical Coatings on Glass. Journal of Physics D: Applied Physics, 2007, vol. 40, no. 18, pp. 5401–5417. https://doi.org/10.1088/0022-3727/40/18/S01; Xinjie Chen, Yao Du, Yip-Wah Chung. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films, 2019, vol. 688, art. ID 137265. https://doi.org/10.1016/j.tsf.2019.04.040; Faisal N. H., Ahmed R., Prathuru A. K., Spence S., Hossain M., Steel J. A. An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings. Engineering Fracture Mechanics, 2014, vol. 128, pp. 189–204. https://doi.org/10.1016/j.engfracmech.2014.07.015; Jiefang Wang, Tiantian Shao, Xiaolong Cai, Lisheng Zhong, Nana Zhao, Yunhua Xu. Study on Microstructure and Fracture Toughness of TaC Ceramic Coating on HT300. Advanced Materials Research, 2015, vols. 1120–1121, pp. 740–744. https://doi.org/10.4028/www.scientific.net/AMR.1120-1121.740; Zhaoliang Qu, Kai Wei, Qing He, Rujie He, Yongmao Pei, Shixing Wang, Daining Fanga. High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method. Ceramics International, 2018, vol. 44, iss. 7, pp. 7926–7929. https://doi.org/10.1016/j.ceramint.2018.01.230; Kataria S., Srivastava S. K., Kumar P., Srinivas G., Siju, Khan J., Sridhar Rao D. V., Barshilia H. C. Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate. Surface and Coatings Technology, 2012, vol. 206, iss. 19–20, pp. 4279–4286. https://doi.org/10.1016/j.surfcoat.2012.04.040; Jianning Ding, Yonggang Meng, Shizhu Wen. Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation. Thin Solid Films, 2000, vol. 371, iss. 1–2, pp. 178–182. https://doi.org/10.1016/S00406090(00)01004-X; Malzbender J., With G. Energy dissipation, fracture toughness and the indentation load-displacement curve of coated materials. Surface and Coatings Technology, 2000, vol. 135, iss. 1, pp. 60–68. https://doi.org/10.1016/S02578972(00)00906-3; Schiffmann K. I. Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models. Philosophical Magazine, 2011, vol. 91, iss. 7–9, pp. 1163–1178. https://doi.org/10.1080/14786435.2010.487984; Schwan J., Ulrich S., Batori V., Ehrhardt H., Silva S. R. P. Raman spectroscopy on amorphous carbon films. Journal of Applied Physics, 1996, vol. 80, pp. 440–447. https://doi.org/10.1063/1.362745; Ferrari A. C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 2000, vol. 61, iss. 20, pp. 4095–4107. https://doi.org/10.1103/PhysRevB.61.14095; Cloutier M., Harnagea C., Hale P., Seddiki O., Rosei F., Mantovani D. Long-term stability of hydrogenated DLC coatings: Effects of aging on the structural, chemical and mechanical properties. Diamond and Related Materials, 2014, vol. 48, pp. 65–72. https://doi.org/10.1016/j.diamond.2014.07.002; Robertson J., O’Reilly E. P. Electronic and atomic structure of amorphous carbon. Physical Review B, 1987, vol. 35, iss. 6, pp. 2946–2957. https://doi.org/10.1103/PhysRevB.35.2946; Tuinstra F., Koenig J. L. Raman spectrum of graphite. Journal of Chemical Physics, 1970, vol. 53, iss. 3, pp. 1126–1130. https://doi.org/10.1063/1.1674108; Salvadori M. C., Martins D. R., Cattani M. DLC coating roughness as a function of film thickness. Surface and Coatings Technology, 2006, vol. 200, iss. 16–17, pp. 5119–5122. https://doi.org/10.1016/j.surfcoat.2005.05.030; Meng W. J., Gillispie B. A. Mechanical properties of Ti-containing and W-containing diamondlike carbon coatings. Journal of Applied Physics, 1998, vol. 84, iss. 8, pp. 4314–4321. https://doi.org/10.1063/1.368650; Li X., Bhushan B. Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques. Thin Solid Films, 1999, vol. 355–356, pp. 330–336. http://dx.doi.org/10.1016/S0040-6090(99)00446-0; https://vestift.belnauka.by/jour/article/view/816

  5. 5
    Academic Journal

    Source: Eastern-European Journal of Enterprise Technologies; Том 6, № 12 (108) (2020): Матеріалознавство; 61-71
    Eastern-European Journal of Enterprise Technologies; Том 6, № 12 (108) (2020): Материаловедение; 61-71
    Eastern-European Journal of Enterprise Technologies; Том 6, № 12 (108) (2020): Materials Science; 61-71

    File Description: application/pdf

  6. 6
    Academic Journal

    Source: Devices and Methods of Measurements; Том 14, № 4 (2023); 277-283 ; Приборы и методы измерений; Том 14, № 4 (2023); 277-283 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2023-14-4

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/845/674; Tilli M, Paulasto-Kröckel M, Petzold M, Theuss H, Motooka T, Lindroos V. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier, 2020.636 p.; Masolin A, Bouchard PO, Martini R, Bernacki M. Thermo-mechanical and fracture properties in singlecrystal silicon, Journal of Materials Science. 2013;48: 979-988. DOI:10.1007/s10853-012-6713-7; Hashimov AM, Hasanli ShM. Influence the heat treatment on the mechanical characteristics of silicon plates, Fizika. 2004;CILD X №4:71-73.; Courtney TH. Mechanical Behavior of Materials: Second Edition. Waveland Press;2005. 733 p.; Lauener CM, Petho L, Chen M, Xiao Y, Michler J, Wheeler JM. Fracture of Silicon: Influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting. Materials & Design. 2018;142:340-349. DOI:10.1016/j.matdes.2018.01.015; Gdoutos EE. Fracture Mechanics. Cham: Springer. 2020; XIX, 477 p. DOI:10.1007/1-4020-3153-X; McLaughlin JC, Willoughby AFW. Fracture of silicon wafers. Journal of Crystal Growth. 1987;85:83-90. DOI:10.1016/0022-0248(87)90207-7; Mohamed Cherif Ben Romdhane, Hatem Mrad, Fouad Erchiqui, Ridha Ben Mrad. Thermomechanical Study and Fracture Properties of Silicon Wafer under Effect of Crystal Orientation. IOP Conf. Series: Materials Science and Engineering. 2019;521, article № 012004. DOI: doi:10.1088/1757-899X/521/1/012004; Tanaka M, Higashida K, Nakashima H, Takagi H, Fujiwara M. Orientation dependence of fracture toughness measured by indentation methods and its relation to surface energy in single crystal silicon. International Journal of Fracture. 2006;139:383-394. DOI:10.1007/s10704-006-0021-7; Ebrahimi F, Kalwani L. Fracture anisotropy in silicon single crystal. Materials Science and Engineering: A. 1999;268:116-126. DOI:10.1016/S0921-5093(99)00077-5; Tanaka M, Higashida K, Nakashima H, Takagi H, Fujiwara M. Fracture toughness evaluated by indentation methods and its relation to surface energy in silicon single crystals. Materials Transactions. 2003;44(4):681684. DOI:10.2320/matertrans.44.681; Yang C, Pham J. On the Fracture Toughness Measurement of Thin Film Coated Silicon Wafers. Silicon. 2015;7:27-30. DOI:10.1007/s12633-014-9215-1; Lapitskaya VA, Kuznetsova TA, Chizhik SA, Warcholinski B. Methods for Accuracy Increasing of Solid Brittle Materials Fracture Toughness Determining. Devices and Methods of Measurements. 2022;13(1):4049. DOI:10.21122/2220-9506-2022-13-1-40-49; Lapitskaya VA, Kuznetsova TA, Khudoley AL, Khabarava AV, Chizhik SA, Aizikovich SM, Sadyrin EV. Influence of polishing technique on crack resistance of quartz plates. International Journal of Fracture. 2021;231(1):61-77. DOI:10.1007/s10704-021-00564-5; Lapitskaya VA, Kuznetsova TA, Khabarava AV, Chizhik SA, Aizikovich SM, Sadyrin EV, Mitrin BI, Weifu Sun. The use of AFM in assessing the crack resistance of silicon wafers of various orientations. Engineering Fracture Mechanics. 2022;259, Article №. 107926. DOI:10.1016/j.engfracmech.2021.107926; Wang QJ, Chung YW. Encyclopedia of Tribology. Boston: Springer. 2013. 4192 p. DOI:10.1007/978-0-387-92897-5; Shigeki Nakao, Taeko Ando, Mitsuhiro Shikida, Kazuo Sato. Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode. Journal of micromechanics and microengineering. 2008;18, article № 015026 (7 pp). DOI:10.1088/0960-1317/18/1/015026; https://pimi.bntu.by/jour/article/view/845

  7. 7
    Academic Journal

    Contributors: The work was financially supported by Russian Science Foundation Grant No. 22-29-01220., Работа выполнена при финансовой поддержке гранта РНФ 22-29-01220.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023); 320-331 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023); 320-331 ; 2413-6387 ; 1609-3577

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/562/473; https://met.misis.ru/jour/article/downloadSuppFile/562/199; https://met.misis.ru/jour/article/downloadSuppFile/562/201; https://met.misis.ru/jour/article/downloadSuppFile/562/202; https://met.misis.ru/jour/article/downloadSuppFile/562/203; https://met.misis.ru/jour/article/downloadSuppFile/562/204; https://met.misis.ru/jour/article/downloadSuppFile/562/205; Basu R.N. Materials for solid oxide fuel cells. In: Basu S. (Eds). Recent trends in fuel cell science and technology. New York, NY: Springer; 2007. P. 286—331. https://doi.org/10.1007/978-0-387-68815-2_12; Clarke D.R., Oechsner M., Padture N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012; 37(10): 891—898. https://doi.org/10.1557/mrs.2012.232; Yildirim H., Pachter R. Extrinsic dopant effects on oxygen vacancy formation energies in ZrO2 with implication for memristive device performance. ACS Applied Electronic Materials. 2019; 1(4): 467—477. https://doi.org/10.1021/acsaelm.8b00090; Hongsong Z., Jianguo L., Gang L., Zheng Z., Xinli W. Investigation about thermophysical properties of Ln2Ce2O7 (Ln = Sm, Er and Yb) oxides for thermal barrier coatings. Materials Research Bulletin. 2012; 47(12): 4181—4186. https://doi.org/10.1016/j.materresbull.2012.08.074; Guo L., Guo H., Ma G., Gong S., Xu H. Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln = Nd and Sm) ceramics. Ceramics International. 2013; 39(6): 6743—6749. https://doi.org/10.1016/j.ceramint.2013.02.003; Wei X., Hou G., An Y., Yang P., Zhao X., Zhou H., Chen J. Effect of doping CeO2 and Sc2O3 on structure, thermal properties and sintering resistance of YSZ. Ceramics International. 2021; 47(5): 6875—6883. https://doi.org/10.1016/j.ceramint.2020.11.032; Liu X.Y., Wang X.Z., Javed A., Zhu C., Liang G.Y. The effect of sintering temperature on the microstructure and phase transformation in tetragonal YSZ and LZ/YSZ composites. Ceramics International. 2016; 42(2): 2456—2465. https://doi.org/10.1016/j.ceramint.2015.10.046; Evans A.G., Mumm D.R., Hutchinson J.W., Meier G.H., Pettit F.S. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science. 2001; 46(5): 505—553. https://doi.org/10.1016/S0079-6425(00)00020-7; Vaßen R., Jarligo M.O., Steinke T., Mack D.E., Stöver D. Overview on advanced thermal barrier coatings. Surface and Coatings Technology. 2010; 205(4): 938—942. https://doi.org/10.1016/j.surfcoat.2010.08.151; Bahamirian M., Hadavi S.M.M., Farvizi M., Rahimipour M.R., Keyvani A. Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications. Ceramics International. 2019; 45(6): 7344—7350. https://doi.org/10.1016/j.ceramint.2019.01.018; Bobzin K., Zhao L., Öte M., Königstein T. A highly porous thermal barrier coating based on Gd2O3–Yb2O3 co-doped YSZ. Surface and Coatings Technology. 2019; 366: 349—354. https://doi.org/10.1016/j.surfcoat.2019.03.064; Shi Q., Yuan W., Chao X., Zhu Z. Phase stability, thermal conductivity and crystal growth behavior of RE2O3 (RE = La, Yb, Ce, Gd) co-doped Y2O3 stabilized ZrO2 powder. Journal of Sol-Gel Science and Technology. 2017; 84(1): 341—348. https://doi.org/10.1007/s10971-017-4483-z; Chen D., Wang Q., Liu Y., Ning X. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surface and Coatings Technology. 2020; 403:v126387. https://doi.org/10.1016/j.surfcoat.2020.126387; Sharma A., Witz G., Howell P.C., Hitchman N. Interplay of the phase and the chemical composition of the powder feedstock on the properties of porous 8YSZ thermal barrier coatings. Journal of the European Ceramic Society. 2021; 41(6): 3706—3716. https://doi.org/10.1016/j.jeurceramsoc.2020.10.062; Bisson J.F., Fournier D., Poulain M., Lavigne O., Mévrel R. Thermal conductivity of yttria-zirconia single crystals, determined with spatially resolved infrared thermography. Journal of the American Ceramic Society. 2000; 83(8): 1993—1998. https://doi.org/10.1111/j.1151-2916.2000.tb01502.x; Fan W., Wang Z.Z., Bai Y., Che J.W., Wang R.J., Ma F., Tao W.Z., Liang G.Y. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. Journal of the European Ceramic Society. 2018; 38(13): 4502—4511. https://doi.org/10.1016/j.jeurceramsoc.2018.06.002; Raghavan S., Wang H., Porter W.D., Dinwiddie R.B, Mayo M.J. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scripta Materialia. 1998; 39(8): 1119—1125.; Loganathan A., Gandhi A.S. Toughness evolution in Gd-and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. Journal of Materials Science. 2017; 52: 7199—7206. https://doi.org/10.1007/s10853-017-0956-2; Ponnuchamy M.B., Gandhi A.S. Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides. Journal of the European Ceramic Society. 2015; 35(6): 1879—1887. https://doi.org/10.1016/j.jeurceramsoc.2014.12.027; Rebollo N.R., Gandhi A.S., Levi C.G. Phase stability issues in emerging TBC systems. High Temperature Corrosion and Materials Chemistry IV. 2003: 431—442.; Borik M.A., Chislov A., Kulebyakin A., Lomonova E., Milovich F., Myzina V., Ryabochkina P., Sidorova N., Tabachkova N. Phase composition and mechanical properties of Sm2O3 partially stabilized zirconia crystals. Crystals. 2022; 12(11): 1630. https://doi.org/10.3390/cryst12111630; Niihara K.A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. Journal of Materials Science Letters. 1983; 2: 221—223. https://doi.org/10.1007/BF00725625; Chien F.R., Ubic F.J., Prakash V., Heuer A.H. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals. Acta Materialia. 1998; 46(6): 2151—2171. https://doi.org/10.1016/S1359-6454(97)00444-8; https://met.misis.ru/jour/article/view/562

  8. 8
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 67, № 4 (2023); 340-344 ; Доклады Национальной академии наук Беларуси; Том 67, № 4 (2023); 340-344 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-4

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1146/1145; Механизм повышения прочности цементного материала, модифицированного наночастицами SiO2 и МУНТ / Е. Н. Полонина [и др.] // Инженерно-физ. журн. – 2021. – Т. 94, № 1. – С. 72–83.; Садовская, Е. А. Многоуровневая структура бетона: анализ и классификация уровней организации структуры конгломератных строительных композитов / Е. А. Садовская, Е. Н. Полонина, С. Н. Леонович // Проблемы современного строительства. – Минск, 2019. – С. 285–297.; Физико-механические характеристики бетона, модифицированного пластифицирующей добавкой на основе наноструктурированного углерода / С. А. Жданок [и др.] // Инженерно-физ. журн. – 2019. – Т. 92, № 1. – С. 14–20.; Влияние пластифицирующей добавки, содержащей углеродный наноматериал на свойства самоуплотняющегося бетона / С. А. Жданок [и др.] // Вестн. гражданских инженеров. – 2018. – № 6 (71). – С. 76–85. https://doi.org/10.23968/1999-5571-2018-15-6-76-85; Повышение прочности бетона пластифицирующей добавкой на основе наноструктурированного углерода / С. А. Жданок [и др.] // Строительные материалы. – 2018. – № 6. – С. 67–72. https://doi.org/10.31659/0585-430x-2018-760-6-67-72; Материалы на основе цемента, модифицированные наноразмерными добавками / Е. Н. Полонина [и др.] // Наука и техника. – 2021. – Т. 20, № 3. – С. 189–194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194; Жданок, С. А. Влияние полимерных суперпластификаторов на различные виды углеродных наноматериалов / С. А. Жданок, Е. Н. Полонина, С. Н. Леонович // Инженерно-физ. журн. – 2022. – Т. 95, № 1. – С. 165–168.; Influence of the nanostructured-carbon-based plasticizing admixture in a self-compacting concrete mix on its technological properties / S. A. Zhdanok [et al.] // Journal of Engineering Physics and Thermophysics. – 2019. – Vol. 92, N 2. – P. 376–382. https://doi.org/10.1007/s10891-019-01941-7; Садовская, Е. А. Расчет коэффициента интенсивности напряжения при нормальном отрыве по прочности на растяжение при изгибе / Е. А. Садовская, С. Н. Леонович // Вестн. Полоцкого гос. ун-та. Сер. F. Строительство. Прикладные науки. – 2022. – № 8. – С. 27–31. https://doi.org/10.52928/2070-1683-2022-31-8-27-31; Критический коэффициент интенсивности напряжений при поперечном сдвиге для нанофибробетона / Е. А. Садовская [и др.] // Строительные материалы. – 2021. – № 9. – С. 41–46. https://doi.org/10.31659/0585-430X-2021-795-9-41-46; Вязкость разрушения цементных материалов, модифицированных углеродными нанотрубками / С. А. Жданок [и др.] // Вестник БрГТУ. – 2021. – № 3(126). – С. 48–53. https://doi.org/10.36773/1818-1112-2021-126-3-48-53; Вязкость разрушения нанофибробетона при нормальном отрыве и поперечном сдвиге / Е. А. Садовская [и др.] // Инженерно-физ. журн. – 2022. – Т. 95, № 4. – С. 961–968.; Жданок, С. А. Синергетическое влияние наночастиц SiO2 и углеродных нанотрубок на свойства бетона / С. А. Жданок, С. Н. Леонович, Е. Н. Полонина // Докл. Нац. акад. наук Беларуси. – 2022. – Т. 66, № 1. – С. 109–112. https://doi.org/10.29235/1561-8323-2022-66-1-109-112; https://doklady.belnauka.by/jour/article/view/1146

  9. 9
  10. 10
    Academic Journal

    Source: Science & Technique; Том 21, № 6 (2022); 499-503 ; НАУКА и ТЕХНИКА; Том 21, № 6 (2022); 499-503 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2022-21-6

    File Description: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2617/2230; Садовская, Е. А. Многоуровневая структура бетона: анализ и классификация уровней организации структуры конгломератных строительных композитов / Е. А. Садовская, Е. Н. Полонина, С. Н. Леонович // Проблемы современного строительства: материалы Междунар. науч.-техн. конф., 28 мая 2019 г. Минск: БНТУ, 2019. С. 285–297.; Баженов, Ю. М. Наноматериалы и нанотехнологии в современной технологии бетонов / Ю. М. Баженов, В. Р. Фаликман, Б. И. Булгаков // Вестник МГСУ. 2012. № 12. С. 125–133.; Чернышов, Е. М. Концепции и основания технологий наномодифицирования структур строительных композитов. Ч. 2. К проблеме концептуальных моделей наномодифицирования структуры / Е. М. Чернышов, О. В. Артамонова, Г. С. Славчева // Строительные материалы. 2014. № 4. С. 73–83.; Optimum Compositions of Crack-Stability and Waterproof Concrete for the Reliability and Durable Constructionsof Bridges [Electronic Resource] / А. Plugin [et al.] // 7th International Conference on Bridges Across the Danube 2010. Sofia. Mode of access: https://www.researchgate.net/publication/331473908.; Фаликман, В. Р. «Простор за пределом», или Как нанотехнологии могут изменить мир бетона. Ч. 2 [Электронный ресурс] / В. Р. Фаликман, К. Г. Соболев // Нанотехнологии в строительстве. 2011. № 2. Режим доступа: https://www.nanonewsnet.ru/files/nanobuild_1_2011.pdf.; Садовская, Е. А. Многопараметричная методика оценки показателей качества нанофибробетона для строительной площадки / Е. А. Садовская, С. Н. Леонович, Н. А. Будревич // Бетон и железобетон. 2021. № 4. С. 20–28.; Fracture Toughness of Carbon Nanotubes Cement Based Materials Modified / S. А. Zhdanok [et al.] // Вестник БрГТУ. 2021. № 3. С. 48–53. https://doi.org/10.36773/1818-1112-2021-126-3-48-53.; Нанотехнологии в строительном материаловедении: реальность и перспективы / С. А. Жданок [и др.] // Вестник Белорусского национального технического университета. 2009. № 3. С. 5–22.; Влияние пластифицирующей добавки на основе наноструктурированного углерода в самоуплотняющейся бетонной смеси на ее технологические свойства / С. А. Жданок [и др.] // Инженерно-физический журнал. 2019. Т. 92, № 2. С. 391–396.; Критический коэффициент интенсивности напряжений при нормальном отрыве для нанофибробетона / Е. А. Садовская [и др.] // Строительные материалы. 2021. № 9. С. 41–46. https://doi.org/10.31659/0585-430X-2021-795-9-41-46.; Прочность нанофибробетона на растяжение / Е. А. Садовская [и др.] // Инженерно-физический журнал. 2020. Т. 93, № 4. С. 1051–1055.; https://sat.bntu.by/jour/article/view/2617

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Vestnik of Brest State Technical University; No. 3(126) (2021): Vestnik of Brest State Technical University; 48-53
    Вестник Брестского государственного технического университета; № 3(126) (2021): Вестник Брестского государственного технического университета; 48-53

    File Description: application/pdf

  15. 15
    Academic Journal

    Source: Vestnik of Brest State Technical University; No. 2(125) (2021): Vestnik of Brest State Technical University; 20-23
    Вестник Брестского государственного технического университета; № 2(125) (2021): Вестник Брестского государственного технического университета; 20-23

    File Description: application/pdf

  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 7 (2020); 36-44 ; Новые огнеупоры; № 7 (2020); 36-44 ; 1683-4518 ; 10.17073/1683-4518-2020-7

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1438/1227; Bengisu, M. Engineering сeramics / M. Bengisu. ― Berlin, Germany, 2001. ― Р. 28‒30, 358, 407‒444.; Schilp, H. Fabrication of turbine-compressor-shaft assembly for мicro gas turbine engine / H. Schilp // M.Sc. thesis, Rapid prototyping laboratory Stanford University and Institute for Metal Forming and Casting University München, 2000.; Pierson, H. O. Handbook of refractory carbides and nitrides properties/ Characteristics/ Processing and applications / H. O. Pierson. ― New Jersey, USA, 1996. ― P. 2, 209‒326.; Basu, B. Toughening of yttria-stabilised tetragonal zirconia ceramics / B. Basu // International material review. ― 2005. ― Vol. 50. ― P. 239‒256.; Lin, H. T. Mechanical reliability evaluation of silicon nitride ceramic components after exposure in industrial gas turbines / H. T. Lin, M. K. Ferber // Eur. Ceram. Soc. ― 2002. ― Vol. 22. ― P. 2789‒2797.; Basu, B. Transformation behavior of yttria stabilized tetragonal zirconia polycrystal–TiB2 composites / B. Basu, J. Vleugels, O. Van Der Biest // J. Mater. Res. ― 2001. ― Vol. 16. ― P. 2158‒2169.; Tuan, W. H. Mechanical properties of Al2O3/ZrO2 composites / W. H. Tuan, T. C. Chen, C. H. Wang // J. Eur. Ceram. Soc. ― 2002. ― Vol. 22. ― P. 2827‒2833.; Lo, W. T. The effects of ytterbium oxide on the microstructure and R-curve behaviors of silicon nitride / W. T. Lo, J. L. Huang, Z. H. Shih // Mater. Chem. Phys. ― 2002. ― Vol. 73. ― P. 123‒128.; Fisher, J. G. Microwave reaction bonding of silicon nitride using an inverse temperature gradient and ZrO2 and Al2O3 sintering additives / J. G. Fisher, S. K. Woo, K. Bai // J. Eur. Ceram. Soc. ― 2003. ― Vol. 23. ― P. 791‒799.; Ling, G. Pressureless sintering of silicon nitride with magnesia and yttria / G. Ling, H. Yang // Mater. Chem. Phys.― 2005. ― Vol. 90. ― P. 31‒34.; Sun, Y. Effect of hexagonal BN on the microstructure and mechanical properties of Si3N4 ceramics / Y. Sun, Q. Menga, D. Jia // J. Mater. Process. Technol. ― 2007. ― Vol. 138. ― P. 134‒138.; Biasini, V. Silicon nitride-silicon carbide composite materials / V. Biasini, S. Guicciardi, A. Bellosi // Int. J. of Refract. Met. Hard Mater. ― 1992. ― Vol. 11. ― P. 213—221.; Kaya, H. The application of ceramic-matrix composites to the automotive ceramic gas turbine / H. Kaya // Compos. Sci. Technol. ― 1999. ― Vol. 59. ― P. 861‒872.; Demir, A. Mechanical property improvements in nicalon SiC fibre reinforced silicon nitride ceramics by oxide coating of Si3N4 starting powders / A. Demir, Z. Tatli // Composites. Part A. ― 2004. ― Vol. 35. ― P. 1433‒1440.; Sancho, J. P. Toughness of Si3N4 ceramics obtained by precipitating sintering aids as hydroxides / J. P. Sancho, J. P. Pero-Sanz, L. F. Verdeja // Materials Characterization. ― 2003. ― Vol. 50. ― P. 11‒22.; Stolarski, T. A. Attrition of silicon nitride as a function of counterface material and contact zone kinematics / T. A. Stolarski // J. Mater. Sci. ― 2001. ― Vol. 36. ― P. 1911‒1919.; Kobayashi, K. Current progress in Japan of advanced ceramics for high temperature application / K. Kobayashi // Materials & Design. ― 1990. ― Vol. 11. ― P. 59‒70.; Liu, X. J. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO–Al2O3–SiO2 as sintering additive / X. J. Liu, Z. Y. Huang, Q. M. Ge // J. Eur. Ceram. Soc. ― 2005. ― Vol. 25. ― P. 3353‒3359.; Warren, R. Ceramic Matrix Composites / R. Warren. ― New York, USA, 1992. ― P. 1‒11, 38, 51, 106, 152.; Cahn, R. W. Encyclopedia of materials science and technology / R. W. Cahn. ― UK, 2001.; King, A. G. Ceramic technology and processing / A. G. King. ― New York, USA, 2002. ― P. 134‒175, 231—290, 336.; Pablos, A. D. Correlation between microstructure and toughness of hot pressed Si3N4 ceramics seeded with β-Si3N4 particles / A. D. Pablos, M. I. Osendi, P. Miranzo // Ceram. Int. ― 2003. ― Vol. 29. ― P. 757‒764.; Abovyan, L. S. Synthesis of alumina-silicon carbide composites by chemically activated self-propagating reactions / L. S. Abovyan, H. H. Nersisyan, S. L. Kharatyan // Ceram. Int. ― 2001. ― Vol. 27. ― P. 163‒169.; Yeh, C. L. Use of Si3N4 as a reactant in preparation of TiN‒ Ti5Si3 composites by solid-state SHS reactions / C. L. Yeh, G. S. Teng // Alloys and Compounds. ― 2007. ― Vol. 429. ― P. 126‒132.; Bermudo, J. Study of AlN and Si3N4 powders synthesized by SHS reactions / J. Bermudo, M. I. Osendi // Ceram. Int. ― 1999. ― Vol. 25. ― P. 607‒612.; Matovic, B. Low temperature sintering additives for silicon nitride / B. Matovic. ― PhD thesis, Max-plankinstitute Stuttgart, 2003.; Swift, G. A. Neutron diffraction study of in situreinforced silicon nitride during creep / G. A. Swift. ― PhD, California Institute of Technology Pasadena, California, March 2004.; Ordonez, S. The influence of amount and type of additives on β → β-Si3N4 transformation / S. Ordonez // J. Mater. Sci. ― 1999. ― Vol. 34. ― P. 147‒153.; Dai, J. Effect of the residual phases in β-Si3N4 seed on the mechanical properties of self-reinforced Si3N4 ceramics / J. Dai, J. Li, Y. Chen // J. Eur. Ceram. Soc. ― 2003. ― Vol. 23. ― P. 1543‒1547.; Xu, X. Effects of α/β ratio in starting powder on microstructure and mechanical properties of silicon nitride ceramics / X. Xu, L. Huang, X. Liu // Ceram. Int. ― 2002. ― Vol. 28. ― P. 279‒281.; Nakamura, M. Wear behaviour of α-Si3N4 ceramics reinforced by rod-like β-Si3N4 grains / M. Nakamura, K. Hirao, Y. Yamauchi // Wear. ― 2003. ― Vol. 254. ― P. 94‒102.; Ogata, S. A comparative ab initio study of the ideal strength of single crystal α- and β-Si3N4 / S. Ogata, N. Hirosaki, C. Kocer // Acta Mater. ― 2004. ― Vol. 52. ― P. 233‒238.; Lee, C. J. Effect of β- Si3N4 starting powder size on elongated grain growth in β-Si3N4 ceramics / C. J. Lee, J. I. Chae, D. J. Kim // J. Eur. Ceram. Soc. ― 2000. ― Vol. 20. ― P. 2667‒2671.; Kim, Y. C. Effect of microwave heating on densification and α → β phase transformation of silicon nitride / Y. C. Kim, C. H. Kim, D. K. Kim // J. Eur. Ceram. Soc. ― 1997. ― Vol. 17. ― P. 1625‒1630.; Sneary, P. R. Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4 / P. R. Sneary, Z. Yeh, M. J. Crimp // J. Mater. Sci. ― 2001. ― Vol. 36. ― P. 2529‒2534.; Guaay, V. Processing and properties of pressurelesssintered Si3N4‒SiC composites / V. Guaay, S. Hampshire // Mater. Process. Technol. ― 1995. ― Vol. 54. ― P. 348‒354.; Haitao, Y. Effect of MgO/CeO2 on pressureless sintering of silicon nitride / Y. Haitao, G. Ling, Y. Runzhang // Mater. Chem. Phys. ― 2001. ― Vol. 69. ― P. 281‒283.; Yang, H. Pressurelesss sintering of silicon nitride with magnesia and ceria / H. Yang, G. Yang, R. Yuan // Mater. Res. Bull. ― 1998. ― Vol. 33. ― P. 1467‒1473.; Penas, O. Processing, microstructure, mechanical properties of Si3N4 obtained by slip casting and pressureless sintering / O. Penas, R. Zenati, J. Dubois // Ceram. Int. ― 2001. ― Vol. 27. ― P. 591‒596.; Bykov, Y. V. Sintering of Si3N4 ceramics with additives containing yttrium and ytterbium oxides with microwave and traditional heating / Y. V. Bykov, O. I. Getman, V. V. Panichkina // Powder Metall. Metal. Ceram. ― 2001. ― Vol. 40. ― P. 112‒120.; Lu, F. The effects of shock activation on sintering Si3N4 ceramics / F. Lu, Q. Cai, L. Lu // Mater. Process. Technol. ― 2004. ― Vol. 147. ― P. 90‒93.; Choi, H. J. High temperature strength and oxidation behaviour of hot-pressed silicon nitride-disilicate ceramics / H. J. Choi, J. G. Lee // J. Mater. Sci. ― 1997. ― Vol. 32. ― P. 1937‒1942.; Lee, Y. I. Effects of additive amount on microstructure and mechanical properties of silicon carbide-silicon nitride composites / Y. I. Lee, Y. W. Kim // J. Mater. Sci. ― 2001. ― Vol. 36. ― P. 699‒702.; Baldacim, S. A. Mechanical properties evaluation of hot-pressed Si3N4–SiC(w) composites / S. A. Baldacim, C. Santos, O. M. M. Silva // Int. J. of Refractory Metals & Hard Materials. ― 2003. ― Vol. 21. ― P. 233‒239.; Ewais, E. M. M. Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of α- & β-Si3N4 / E. M. M. Ewais, M. A. A. Attia, A. A. Hegazy, R. K. Bordia // Ceram. Int. ― 2010. ― Vol. 36. ― P. 1327‒1338.; Bhandhubanyong, P. Forming of silicon nitride by the HIP process / P. Bhandhubanyong, T. Akhadejdamrong // Mater. Process. Technol. ― 1997. ― Vol. 63. ― P. 277‒280.; Hoffmann, M. J. Potential of the sinter-HIP-technique for the development of high-temperature resistant Si3N4 ceramics / M. J. Hoffmann, A. Geyer, R. Oberacker // J. Eur. Ceram. Soc. ― 1999. ― Vol. 19. ― P. 2359‒2366.; Wan, J. Spark plasma sintering of silicon nitride / silicon carbide nanocomposites with reduced additive amounts / J. Wan, R. G. Duan, A. K. Mukherjee // Scripta Mater. ― 2005. ― Vol. 53. ― P. 663‒667.; Jung, Y. G. Fabrication of silicon nitride bilayer for roller bearing by plasma activated sintering / Y. G. Jung, J. H. Shin, C. G. Ha // Mater. Lett. ― 2002. ― Vol. 56. ― P. 1093‒1097.; Attia, M. A. A. X-ray induced color change on dense yttria samples obtained by spark plasma sintering / M. A. A. Attia, S. Garronib, D. Chiriu [et al.] // J. Chem. Phys. Lett. ― 2015. ― Vol. 618. ― P. 108‒113.; Attia, M. A. A. Effects of prior annealing on the spark plasma sintering of nanostructured Y2O3 powders / M. A. A. Attia, R. Orrù, F. Delogu [et al.] // J. Am. Ceram. Soc. ― 2015. ― P. 1‒7. DOI:10.1111/ jace.13515.; Lee, B. T. Effect of sintering additives on the nitridation behavior of reaction-bonded silicon nitride / B. T. Lee, H. D. Kim // Mater. Sci. Eng. ― 2004. ― Vol. A364. ― P. 126‒131.; Albano, M. P. Dispersion of aluminum hydroxide coated Si3N4 powders with ammonium polyacrylate dispersant / M. P. Albano, L. B. Garrido, A. B. Garcia // Colloids and Surfaces A: Physicochemical and Engineering Aspects. ― 2001. ― Vol. 181. ― P. 69‒78.; Vuckovic, A. Effect of β-Si3N4 seeds on densification and fracture toughness of silicon nitride / A. Vuckovic, S. Boskovic, B. Matovic // Ceram. Int. ― 2006. ― Vol. 32. ― P. 303‒307.; Kitayama, M. Modeling and simulation of grain growth in Si3N4. II. The α‒β transformation / M. Kitayama, K. Hirao, M. Toriyama // Acta Mater. ― 1998. ― Vol. 46. ― P. 6551‒6557.; Bonnie, L. Shock-enhanced alpha to beta phase transformation in Si3N4 powders / L. Bonnie, A. Turner, N. Naresh // Mater. Sci. Eng. ― 1998. ― Vol. A256. ― P. 289‒300.; Huang, Y. Effects of liquid medium and ball-milling on the surface group and aqueous dispersibility of Si3N4 powder / Y. Huang, J. Qing, T. Ma // Eur. Ceram. Soc. ― 2003. ― Vol. 23. ―P. 985—990.; Guicciardi, S. Effects of testing temperature and thermal treatments on some mechanical properties of a Si3N4/TiN composite / S. Guicciardi, V. Melandri, A. Bellosi // Mater. Sci. Eng. ― 2003. ― Vol. A360. ― P. 35‒45.; Umehara, N. Magnetic fluid grinding of HIP Si3N4 rollers / N. Umehara, R. Komanduri // Wear. ― 1996. ― Vol. 192. ― P. 85‒93.; Tatli, Z. Low temperature densification of silicon nitride materials / Z. Tatli, D. P. Thompson // J. Eur. Ceram. Soc. ― 2007. ― Vol. 27. ― P. 791‒795.; Demir, V. Vacuum heat treatment of LiAlO2 densified silicon nitride ceramics / V. Demir, D. P. Thompson // Materials and Design. ― 2006. ― Vol. 27. ― P. 1102‒1107.; Kleina, R. Influence of additives content on the high temperature oxidation of silicon nitride based composites / R. Kleina, V. Medrib, M. D. Bruta // Eur. Ceram. Soc. ― 2003. ― Vol. 23. ― P. 603‒611.; German, M. Model materials for liqauid phase sintering ― the case for tungstain heavy alloys / M. German, P. Suri // Proceeding of the 4th international conference on science, technology and application of sintering France, 2005. ― P. 280‒282.; Kutz, M. Handbook of Materials Selection / M. Kutz. ― New York, USA, 2002. ― P. 1113‒1163.; Annual book of ASTM standards. 2006. ― Section 15. ― Vol. 15.01.; Albakry, M. Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials / M. Albakry, M. Guazzato, M. V. Swain // Journal of Dentistry. ― 2003. ― Vol. 31. ― P. 181‒188.; Mukhopadhyay, A. Pressureless sintering of ZrO2‒ ZrB2 composites: Microstructure and properties / A. Mukhopadhyay // Int. J. of Refract. Met. Hard Mater.― 2006. ― P. 985‒990.; Santos, C. Mechanical properties improvement related to the isothermal holding time in Si3N4 ceramics sintered with an alternative additive / C. Santos, K. Strecker, S. A. Baldacim // Int. J. Refract. Met. Hard Mater. ― 2003. ― Vol. 21. ― P. 245‒250.; Baldacim, S. A. Mechanical properties of ceramic composite / S. A. Baldacim, C. A. A. Cairo, C. R. M. Silva // Mater. Process. Technol. ― 2001. ― Vol. 119. ― P. 273‒276.; Sergejev, F. Comparative study on indentation fracture toughness measurements of cemented carbides / F. Sergejev, M. Antonov // Proc. Estonian Acad. Sci. Eng. ― 2006. ― Vol. 12. ― P. 388‒398.; Inagaki, Y. Synthesis and evaluation of anisotropic porous silicon nitride / Y. Inagaki, Y. Shigegaki, T. Ohji // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 197‒200.; Dogan, C. P. Microstructure and abrasive wear in silicon nitride ceramics / C. P. Dogan, J. A. Hawk // Wear. ― 2001. ― Vol. 250. ― P. 256‒263.; Monteverde, F. Advances in microstructure and mechanical properties of zirconium diboride based ceramics / F. Monteverde, S. Guicciardi, A. Bellosi // Mater. Sci. Eng. ― 2003. ― Vol. A346. ― P. 310‒319.; Stathis, G. Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitary ware porcelain / G. Stathis, A. Ekonomakou, C. J. Stournaras // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24. ― P. 2357‒2366.; Ewais, E. M. M. Optimal conditions and significant factors for fabrication of soda lime glass foam from industrial waste using nano AlN / E. M. M. Ewais, M. A. A. Attia, A. A. M. El-Amir, A. M. H. Elshenway, T. Fend // J. Alloys Compd. ― 2018. ― Vol. 747. ― P. 408‒415.; Ewais, E. M. M. Sintering responses of in-situ zirconia/mullite ceramic composite / E. M. M. Ewais // Am. Ceram. Soc. Bull. ― 2008. ― Vol. 86. ― P. 9101‒9110.; https://newogneup.elpub.ru/jour/article/view/1438

  19. 19
    Academic Journal

    Contributors: Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Eusko Jaurlaritza, Universidad del País Vasco, Ministerio de Economía y Competitividad (España), Saint Petersburg State University, Tomsk State University, Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]

    Source: Digital.CSIC. Repositorio Institucional del CSIC
    Consejo Superior de Investigaciones Científicas (CSIC)
    instname
    Nano research. 2016. Vol. 9, № 4. P. 1032-1042

    Linked Full Text
  20. 20
    Report

    Contributors: Буякова, Светлана Петровна

    File Description: application/pdf

    Relation: Мировой Ю. А. Гетеромодульные композиционные материалы на основе Zrx(B,C)y – (SiC, BN, C), получение и свойства : научный доклад / Ю. А. Мировой; Национальный исследовательский Томский политехнический университет (ТПУ), Управление магистратуры, аспирантуры и докторантуры (УМАД), Отдел аспирантуры и докторантуры (ОАиД); науч. рук. С. П. Буякова. — Томск, 2020.; http://earchive.tpu.ru/handle/11683/61650