Εμφανίζονται 1 - 11 Αποτελέσματα από 11 για την αναζήτηση '"ВЫСОКООЛЕИНОВОЕ ПОДСОЛНЕЧНОЕ МАСЛО"', χρόνος αναζήτησης: 0,81δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Πηγή: Food systems; Vol 6, No 2 (2023); 148-158 ; Пищевые системы; Vol 6, No 2 (2023); 148-158 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/265/226; Панфилов, В.А., Белозеров, Г.А., Андреев, С.П. (2022). Аграрно-пищевые технологии как этап диалектики АПК. Аграрно-пищевые инновации, 1(17), 7–16. https://doi.org/10.31208/2618–7353–2022–17–7–16; Кочеткова, А.А., Саркисян, В.А., Коденцова, В.М., Фролова, Ю.В., Соболев, Р.В. (2019). Пищевые олеогели: свойства и перспективы использования. Пищевая промышленность, 8, 30–35. https://doi.org/10.24411/0235–2486–2019–10132; Matthäus, B., Schubert, M., Erlenbusch, N., Smit, I., Weber, L., Nikolay, S. (2020). Oleogels as alternatives for frying fats oils. Inform, 31(7), 22–26.; Lam, X. Y. (2020). Stability of wax-based oleogel as novel frying medium of par-fried french fries. Bachelor dissertation, Universiti Sains. Pulau Pinanag, Malaysia.; Guneser, B. A., Yılmaz, E., Uslu, E.K. (2021). Sunflower oil-beeswax oleogels are promising frying medium for potato strips. European Journal of Lipid Science and Technology, 123(10), Article 2100063. http://doi.org/10.1002/ejlt.202100063; Adrah, K., Adegoke, S.C., Tahergorabi, R. (2022). Physicochemical and microbial quality of coated raw and oleogel-fried chicken. LWT, 154, Article 112589. http://doi.org/10.1016/j.lwt.2021.112589; Puşcaş, A., Mureşan, V., Socaciu, C., Muste, S. (2020). Oleogels in food: A review of current and potential applications. Foods, 9(1), Article 70. http://doi.org/10.3390/foods9010070; Soo Yong, L., Jeong Taek, I. Oleogel with natrual vegetable wax, vegetable oil and fried noodle therefrom. Patent South Korea, no. KR101963783B1, 2019. (In Korean); Lim, J., Jeong, S., Oh, I.K., Lee, S. (2017). Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT, 84, 788–794. http://doi.org/10.1016/j.lwt.2017.06.054; Frolova, Yu.V., Sobolev, R.V., Kochetkova, A.A. (2021). Comparative analysis of the properties of cookies containing oleogel based on beeswax and its fractions. IOP Conf. Series: Earth and Environmental Science, 941, Article 012033. http://doi.org/10.1088/1755–1315/941/1/012033; Bharti, D., Kim, D., Cerqueira, M.A., Mohanty, B., Habibullah, S.K., Banerjee, I. et al. (2021). Effect of biodegradable hydrophilic and hydrophobic emulsifiers on the oleogels containing sunflower wax and sunflower oil. Gels, 7(3), Article 133. https://doi.org/10.3390/gels7030133; Frolova, Yu., Sarkisyan, V., Sobolev, R., Makarenko, M., Semin, M., Kochetkova, A. (2022). The influence of edible oils’ composition on the properties of beeswax-based oleogels. Gels, 8(1), Article 48. https://doi.org/10.3390/gels8010048; Park, C., Maleky, F. (2020). A critical review of the last 10 years of oleogels in food. Frontiers in Sustainable Food Systems, 4, Article 139. https://doi.org/10.3389/fsufs.2020.00139; Singh, A., Auzanneau, F.-I., Rogers, M.A. (2017). Advances in edible oleogel technologies — A decade in review. Food Research International, 97, 307–317. https://dx.doi.org/10.1016/j.foodres.2017.04; Sarkisyan, V., Sobolev, R., Frolova, Yu., Malinkin, A., Makarenko, M., Kochetkova, A. (2020). Beeswax fractions used as potential oil gelling agents. Journal of the American Oil Chemists’ Society, 98(3), 281–296. https://doi.org/10.1002/aocs.12451; Öğütcü, M., Yılmaz, E. (2014). Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes. International Journal of Food Properties, 18(8), 1741–1755. https://dx.doi.org/10.1080/10942912.2014.9333; Yilmaz, E., Öğütcü, M. (2014). Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. Journal of Food Science, 79(9), E1732–E1738. https://doi.org/10.1111/1750–3841.12561; Fayaz, G., Calligaris, S., Nicoli, M.C. (2019). Comparative study on the ability of different oleogelators to structure sunflower oil. Food Biophysics, 15, 42–49. https://doi.org/10.1007/s11483–019–09597–9; Martins, A.J., Vicente, A.A., Cunha, R.L., Cerqueira, M.A. (2018). Edible oleogels: an opportunity for fat replacement in foods. Food and Function, 9(2), 758–773. https://doi.org/10.1039/c7fo01641g; Hwang, H.-S., Singh, M., Bakota, E.L., Winkler-Moser, J.K., Kim, S., Liu, S.X. (2013). Margarine from organogels of plant wax and soybean oil. Journal of the American Oil Chemists’ Society, 90(11), 1705–1712. https://doi.org/10.1007/s11746–013–2315-z; Yılmaz, E., Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Advances, 5, 50259–50267. https://doi.org/10.1039/c5ra06689a; Yilmaz, E., Uslu, E.K., Öz, C. (2021). Oleogels of some plant waxes: Characterization and comparison with sunflower wax oleogel. Journal of the American Oil Chemists’ Society, 98(6), 643–655. https://doi.org/10.1002/aocs.12490; Winkler-Moser, J.K., Anderson, J., Felker, F.C., Hwang, H.-S. (2019). Physical properties of beeswax, sunflower wax, and candelilla wax mixtures and oleogels. Journal of the American Oil Chemists’ Society, 96(10), 1125–1142. https://doi.org/10.1002/aocs.12280; Sandoval, J. M., Carelli, A., Palla, C., Baümler, E. (2020). Preparation and characterization of oleogel emulsions: A comparative study between the use of recovered and commercial sunflower waxes as structuring agent. Journal of Food Science, 85(9), 2866–2878. https://doi.org/10.1111/1750–3841.15361; Wolfer, T.L., Acevedo, N.C., Prusa, K.J., Sebranek, J.G., Tarté, R. (2018). Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat Science, 145, 352–362. https://doi.org/10.1016/j.meatsci.2018.07; Holey, S.A., Sekhar, K.P.C., Mishra, S.S., Kanjilal, S., Nayak, R.R. (2020). Sunflower wax-based oleogel emulsions: Physicochemical characterizations and food application. ACS Food Science and Technology, 1(2), 152–164. https://doi.org/10.1021/acsfoodscitech.0c0; Yılmaz, E., Öğütcü, M. (2015). The texture, sensory properties and stability of cookies prepared with wax oleogels. Food and Function, 6(4), 1194–1204. https://doi.org/10.1039/c5fo00019j; Loh, W.H.-T., Liu, L., Lampert, D. S. Fat compositions containing waxes. Patent US, no. US6582748B1, 2003.; Marangony, A., Kranis, N., Ghazani, S. Wax oleogels as fat substitutes. Patent World Intellectual Property Organization, no. WO2021046642A1, 2021.; Nikolay, S., Erlenbusch, N., Schubert, M., Matthäus, B. (2022). Neuartige Fette — Rapsölbasierte Oleogele als neue innovative Fettphasen zur Optimierung des Fettsäureprofils von Feinen Backwaren und Alternative zu Palmfett. In: 55. Jahrestagung DGQ: Qualität 2030: Produktqualität in Zeiten des globalen Wandels; 22./23. März 2022, Universität Hohenheim (Online-Veranstaltung). Quedlinburg, Deutschland: Julius KühnInstitut. Retrieved from https://www.openagrar.de/receive/openagrar_mods_00078591. Accessed December 1, 2022; Aladedunye, F., Przybylski, R., Matthäus, B. (2017). Performance of antioxidative compounds under frying conditions: A review. Critical Reviews in Food Science and Nutrition, 57(8), 1539–1561. https://doi.org/10.1080/10408398.2013.777686; Николаева, Ю.В., Нечаев, А.П., Смирнов, Д.А., Самойлов, А.В. (2017). Влияние натуральных антиоксидантов в мицеллированной форме на сроки годности макаронных изделий быстрого приготовления. Хлебопечение России, 6, 18–21.; Aladedunye, F.A. (2014). Natural antioxidants as stabilizers of frying oils. European Journal of Lipid Science and Technology, 116(6), 688–706. https://doi.org/10.1002/ejlt.201300267; Самойлов, А.В., Николаева, Ю.В. (2021). Окисление жиров: пути предотвращения и роль антиокислителей. В книге: Пищевые ингредиенты в продуктах питания: от науки к технологиям. Под ред. В. А. Тутельяна, А. П. Нечаева, М. Г. Балыхина, Москва: МГУПП, 2021.; Hudson, B.J.F., Lewis, J.I. (1983). Polyhydroxy flavonoid antioxidants for edible oils. Phospholipids as synergists. Food Chemistry, 10(2), 111–120. https://doi.org/10.1016/0308–8146(83)90027–4; Cui, L., Decker, E.A. (2016). Phospholipids in foods: prooxidants or antioxidants? Journal of the Science of Food and Agriculture, 96(1), 18–31. https://doi.org/10.1002/jsfa.7320; Doert, M., Jaworska, K., Moersel, J.-T., Kroh, L. W. (2012). Synergistic effect of lecithins for tocopherols: lecithin-based regeneration of α-tocopherol. European Food Research and Technology, 235(5), 915–928. https://doi.org/10.1007/s00217–012–1815–7; Сторожок, Н.М., Цимбал, И.Н. (29 сентября- 2 октября, 2020). Эффекты синергизма в совместном ингибирующим действии важнейших природных антиоксидантов с различными фосфолипидами и энзимами. Биоантиоксидант, материалы X Международной конференции, посвященной 105-летию со дня рождения академика Н. М. Эмануэля. Москва: РУДН, 2020; Gertz, C., Aladedunye, F., Matthäus, B. (2017). A new analytical and statistical approach to predict the sensory properties of deep frying fats and oils to determine the point of discard during processing. European Journal of Lipid Science and Technology, 119(11), Article 1600393. https://doi.org/10.1002/ejlt.201600393; https://www.fsjour.com/jour/article/view/265

  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
    Academic Journal