Εμφανίζονται 1 - 5 Αποτελέσματα από 5 για την αναζήτηση '"ВТОРИЧНАЯ ГИПЕРОКСАЛУРИЯ"', χρόνος αναζήτησης: 0,46δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 66, № 2 (2021); 35-40 ; Российский вестник перинатологии и педиатрии; Том 66, № 2 (2021); 35-40 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2021-66-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1371/1070; Юрьева Э.А., Длин В.В., Новикова Н.Н., Воздвиженская Е.С., Харабадзе М.Н., Князева Д.П. Обменные нефропатии у детей: причины развития, клинико-лабораторные проявления. Российский вестник перинатологии и педиатрии. 2016; 61(2): 28–34. [Yur’yeva E.A., Dlin V.V., Novikova N.N., Vozdvizhenskaya E.S., Kharabadze M.N., Knyazeva D.P. Metabolic nephropathies in children: causes of development, clinical and laboratory manifestations. Rossiyskiy vestnik perinatologii i pediatrii. 2016; 61(2): 28–34. (in Russ.)]; Длин В.В., Османов И.М. Дисметаболическая нефропатия с оксалатно-кальциевой кристаллурией. Эффективная фармакология 2013; 4(42): 8–16. [Dlin V.V., Osmanov I.M. Dysmetabolic nephropathy with oxalate-calcium crystalluria. Jeffektivnaya farmakologiya 2013; 4(42): 8–16. (in Russ.)]; Степаненко В.М. Клинико-лабораторная характеристика обменной нефропатии у детей. Курортная медицина 2017; 3:150–157. [Stepanenko V.M. Clinical and laboratory characteristics of metabolic nephropathy in children. Kurortnaya meditsina 2017; 3:150–157. (in Russ.)]; Аверьянова Н.И., Балуева Л.Г., Иванова Н.В., Рудавина Т.И. Нарушения обмена щавелевой кислоты у детей. Современные проблемы науки и образования 2015; 3: 174–179. [Aver’yanova N.I., Baluyeva L.G., Ivanova N.V.,Rudavina T.I. Disorders of oxalic acid metabolism in children. Sovremennye problemy nauki i obrazovaniya 2015; 3: 174–179. (in Russ.)]; Юрьева Э.А., Морозов С.Л. Дисметаболические нефропатии у детей. Практика педиатра. 2017; 4: 34–38. [Yur’yeva E.A., Morozov S.L. Dysmetabolic nephropathies in children. Praktika pediatra. 2017; 4: 34–38. (in Russ.)]; Длин В.В., Османов И.М., Чугунова О.Л. Инфекция мочевой системы у детей: Руководство для врачей. Под ред. В.В. Длина, И.М. Османова, О.Л. Чугуновой (сост. С.Л. Морозов). 2-е изд., доп. М.: Оверлей, 2017. [Dlin V.V., Osmanov I.M., Chugunova O.L. Urinary infection in children: a guide for physicians. Ed. V.V. Dlin, I.M. Osmanov, O.L. Chugunova (comp. S.L. Morozov). 2nd ed., suppl. M.: Overlei, 2017. (in Russ.)]; Suryavanshi M.V., Bhute S.S., Jadhav S.D., Bhatia M.S., Gune R.P., Shouche Y.S. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific Reports 2016; 6: 1–15; Mehta M., Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 2016; 36: 607–612 DOI:10.1016/j.ijsu.2016.11.024; Miller A.W., Oakeson K.F., Dale C., Dearing M.D. Microbial community transplant results in increased and long-term oxalate degradation. Microb Ecol 2016; 72 (2): 470–478. DOI:10.1007/s00248-016-0800-2; Zhao C., Yang H., Zhu X., Li Y., Wang N., Han S. et al. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria. Urology 2018; 113: 253.e1–253.e7. DOI:10.1016/j.urology.2017.11.038; Cresci G., Bawden Е. Gut microbiome: what we do and don’t know. Nutr Clin Pract 2015; 30 (6): 734–746. DOI:10.1177/0884533615609899; Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J. et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81(4): 1–67. DOI:10.1128/MMBR.00036-17; Assimos D.G. Oxalobacter formigenes-Associated Host Features and Microbial Community Structures Examined Using the American Gut Project. J Urol 2018; 199(4):888. DOI:10.1016/j.juro.2018.01.037; Liu M., Koh H., Kurtz Z.D., Battaqlia T., PeBenito A., Li H. et al. Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project. Microbiome 2017; 5(1):108. DOI:10.1186/s40168-017-0316-0; Sadaf H., Raza S., Hassan S. Role of gut microbiota against calcium oxalate. Microb Pathog 2017; 109: 287–291. DOI:10.1016/j.micpath.2017.06.009; Klimesova K., Whittamore J., Hatch M. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 2015; 43(2): 107–117. DOI:10.1007/s00240-014-0728-2; Sasikumar P., Gomathi S., Anbazhagan K., Abhishek A., Paul E., Vasudevan V. et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate de- carboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci 2014; 30: 86–99. DOI:10.1186/s12929-014-0086-y; Рымашевский А.Н., Набока Ю.Л., Продеус А.П., Свирава Э.Г. Бактериальное приданое новорожденного. Смена парадигмы: нестерильность плода как норма. Status Praesens. Педиатрия и неонатология 2017; 2(41): 23–29. [Ry- mashevskiy A.N., Naboka Yu.L., Prodeus A.P., Svirava E.G. Bacterial dowry of the newborn. Paradigm shift: non-sterility of the fetus as the norm. Status Praesens. Pediatriya i neonatologiya 2017; 2(41): 23–29. (in Russ.)]; Беляева И.А., Бомбардирова Е.П., Турти Т.В., Потехина Т.В. Кишечная микробиота у недоношенных детей – современное состояние проблемы. Педиатрическая фармакология 2015; 3(12): 296–303. [Belyayeva I.A., Bombardirova E.P., Turti T.V., Potekhina T.V. Intestinal microbiota in premature babies-the current state of the problem. Pediatricheskaya farmakologiya 2015; 3(12): 296–303. (in Russ.)]; Moossavi S., Azad M.B. Origins of human milk microbiota: new evidence and arising questions. Gut Microbes 2019; 4: 1–10. DOI:10.1080/19490976.2019.1667722; Turroni F., Milani C., Ferrario S., Lugli G.A., Mancabelli L., van Sinderen D. et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018; 75(1): 103–118. DOI:10.1007/s00018-017-2672-0; Макарова С.Г., Намазова-Баранова Л.С. Кишечная микробиота и использование пробиотиков в практике педиатра. Что нового? Педиатрическая фармакология 2015; 1(12): 38–45. [Makarova S.G., Namazova-Baranova L.S. Intestinal microbiota and the use of probiotics in pediatrician practice. What’s new? Pediatricheskaya farmakologiya 2015; 1(12): 38–45. (in Russ.)]; Donovan S.M. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes 2017; 8(2): 75–81. DOI:10.1080/19490976.2017.1299309; Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K. et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017; 15(1): 73– 90. DOI:10.1186/s12967-017-1175-y; Lieske J.C. Probiotics for prevention of urinary stones. Transl Med 2017; 5(2): 1–8. DOI:10.21037/atm.2016.11.86; Rodríguez J.M. Probiotics: from the lab to the consumer. Nutr Hosp 2015; 31: 33–47. DOI:10.3305/nh.2015.31.sup1.8705; Shokryazdan P., Faseleh Jahromi M., Liang J.B., Ho Y.W. Probiotics: From Isolation to Application. J Am Coll Nutr 2017; 36(8): 666–676. DOI:10.1080/07315724.2017.1337529; Brunser O. Probiotics: innocuousness, prevention and risks. Rev Chil Pediatr 2017; 88(4): 534–540. DOI:10.4067/S0370-41062017000400015; Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491–502. DOI:10.1038/nrgastro.2017.75; Markowiak P., Śliżewska К. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9(9): 1021– 1051. DOI:10.3390/nu9091021; Matsuda K. PCR-Based detection methods for single-nucleotide polymorphism or mutation: real-time PCR and its substantial contribution toward technological refinement. Adv Clin Chem 2017; 80: 45–72. DOI:10.1016/bs.acc.2016.11.002; Krawczyk B., Kur J., Stojowska-Swedrzynska K., Spibida M. Principles and applications of ligation mediated PCR methods for DNA-based typing of microbial organisms. Acta Biochim Pol 2016; 17; 63(1): 39–52. DOI:10.18388/abp.2015_1192; Garofalo C., Bancalari E., Milanovic V., Cardinali F., Osimani A., Savo Sardaro M. L. et al. Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR. Int J Food Microbiol 2017; 2: 24–36. DOI:10.1016/j.ijfoodmicro.2016.11.008; Padilha M., Villarreal Morales M.L., Silva Vieira A.D., Maia Costa M.G., Isay Saad S.M. A prebiotic mixture improved Lactobacillus acidophilus and Bifidobacterium animalis gastrointestinal in vitro resistance in petit-suisse. Food Funct 2016; 7(5): 2312–2319. DOI:10.1039/c5fo01592h; Cherdyntseva T.A., Kotova I.B., Netrusov A.I. The isolation, identification and analyses of Lactobacillus genus bacteria with probiotic potential. Adv Exp Med Biol 2016; 897: 103– 111. DOI:10.1007/5584_2015_5008; Гасилина Т.В., Бельмер С.В. Коррекции нарушений кишечного микробиоценоза: значение метаболических пробиотиков. Практика педиатра 2016; 4: 53–58. [Gasilina T.V., Bel’mer S.V. Correction of intestinal microbiocenosis disorders: the value of metabolic probiotics. Praktika pediatra 2016; 4: 53–58. (in Russ.)]; Di Cerbo A., Palmieri B., Aponte M., Morales-Medina J.C., Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 2016; 69(3): 187–203. DOI:10.1136/jclinpath-2015-202976; Klimesova K., Whittamore J.M., Hatch M. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 2015; 43(2): 107–117. DOI:10.1007/s00240-014-0728-2; Sanders M.E. Probiotics and microbiota composition. BMC Med 2016; 14(1): 82–84. DOI:10.1186/s12916-016-0629-z; Bindels L.B., Delzenne N.M., Cani P.D., Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015; 12: 303–310. DOI:10.1038/nrgastro.2015.47; Orel R., Reberšak L. Clinical effects of prebiotics in pediatric population. Indian Pediatr 2016; 53(12): 1083–1089; Rasmussen H.E., Hamaker B.R. Prebiotics and inflammatory bowel disease. Gastroenterol Clin North Am 2017; 46(4): 783–795. DOI:10.1016/j.gtc.2017.08.004; Holscher H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8(2): 172–184. DOI:10.1080/19490976.2017.1290756; Singla V., Chakkaravarthi S. Applications of prebiotics in food industry: a review. Food Sci Technol Int 2017; 23(8): 649– 667. DOI:10.1177/1082013217721769; Wegh C.A.M., Schoterman M.H.C., Vaughan E.E., Belzer C., Benninga M.A. The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert Rev Gastroenterol Hepatol 2017; 11(11): 1031–1045. DOI:10.1080/17474124.2017.1359539; Herve V., Junier T., Bindschedler S., Verrecchia E., Junier P. Diversity and ecology of oxalotrophic bacteria. World J Microbiol Biotechnol 2016; 32(2): 28–36. DOI:10.1007/s11274-015-1982-3; Arvans D., Jung Y.C., Antonopoulos D., Koval J., Granja I., Bashir M. et al. Oxalobacter formigenes – derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 2017; 28(3): 876–887. DOI:10.1681/ASN.2016020132; Turroni F., Milani C., Duranti S., Mancabelli L., Mangifesta M., Viapppiani A. et al. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME J 2016; 10(7): 1656–1668. DOI:10.1038/ismej.2015.236; Jairath A., Parekh N., Otano N., Mishra S., Ganpule A., Sabnis R. et al. Oxalobacter formigenes: opening the door to probiotic therapy for the treatment of hyperoxaluria. J Urol 2015; 49(4): 334–337. DOI:10.3109/21681805.2014.996251; Assimos D.G. Oxalobacter formigenes: opening the door to probiotic therapy for the treatment of hyperoxaluria. J Urol 2015; 194(2): 424–425. DOI:10.1016/j.juro.2015.05.039

  2. 2
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 4 (2020); 41-46 ; Российский вестник перинатологии и педиатрии; Том 65, № 4 (2020); 41-46 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1199/954; Длин В.В., Османов И.М. Дисметаболическая нефропатия с оксалатно-кальциевой кристаллурией. Эффективная фармакотерапия. Педиатрия 2013; 42: 8-17.; Борисова Т.П. Гипероксалурия и оксалатно-кальциевая кристаллурия: механизмы развития и возможности коррекции. Мгжнародний журнал пед1атри, акушерства та гшекологп Травень 2016; 9: (3): 51-57.; Степаненко В.М. Клинико-лабораторная характеристика обменной нефропатии у детей. Курортная медицина 2017; 3: 150-157.; Лойманн Э., Цыгин А.Н., Саркисян А.А. Детская нефрология: практическое руководство. Москва: Литтерра, 2010; 370.; Аверьянова Н.И., Балуева Л.Г., Иванова Н.В., Рудави-на Т.И. Нарушения обмена щавелевой кислоты у детей. Современные проблемы науки и образования 2015; 3: 174-179.; Tekgal S., Dogan H.S., Erdem E., Hoebeke P., Kocvara R, Ni-jman J.M. et al. Guidelines on Paediatric Urology. European Society for Paediatric Urology, 2016; 136. http://uroweb.org/ Ссылка активна на 10.12.2018.; Юрьева Э.А., Длин В.В., Кудин М.В., Новикова Н.Н., Воздвиженская Е.С., Харабадзе М.Н. и др. Обменные нефропатии у детей: причины развития, клинико-лабораторные проявления. Российский вестник перинатологии и педиатрии 2016; 61(2): 28-34.; Prezioso D., Strazzullo P., Lotti T, Bianchi G., Borghi L., Cai-one P. et al. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl 2016; 88(1): 76. DOI:10.4081/aiua.2016.1.76.; Беляева И.А., Бомбардирова Е.П., Турти Т.В., Ми-тиш М.Д., Потехина Т.В. Кишечная микробиота у недоношенных детей - современное состояние проблемы. Педиатрическая фармакология 2015; 12(3): 296-303.; Макарова С.Г., Намазова-Баранова Л.С. Кишечная микробиота и использование пробиотиков в практике педиатра. Что нового? Педиатрическая фармакология 2015; 12(1): 38-45.; Holscher H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8(2): 172-184. DOI:10.1080/19490976.2017.1290756; Singh R.K., Chang H-W, Yan D., Lee K.M., Ucmak D., Wong K. et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017; 15(1): 73-90. DOI:10.1186/s12967-017-1175-y; Yang A.L., Kashyap P.C. A clinical primer of the role of gut microbiome in health and disease. Trop Gastroenterol 2015; 36(1): 1-13.; Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Ma-hony J. et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81(4): 1-67. DOI:10.1128/MMBR.00036-17; Ардатская М.Д., Бельмер С.В., Добрица В.П., Захаренко С.М., Лазебник Л.Б., Минушкин О.Н. и др. Дисбиоз (дисбактериоз) кишечника: современное состояние проблемы, комплексная диагностика и лечебная коррекция. Экспериментальная и клиническая гастроэнтерология 2015; 5: (117):13—50.; Власов В.В., Мошкин М.П. Микробный «орган» человека. Наука из первых рук 2014; 1(55): 32-35.; Siener R., Bangen U., Sidhu H, Honow R., Von Unruh G., Hesse A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 2013; 83(6): 1144-1149. DOI:10.1038/ki.2013.104.; Torzewska A. Oxalobacter formigenes-characteristics and role in development of calcium oxalate urolithiasis. Postepy Hig Med Dosw 2013; 27: 1144-1153.; Дорофеев А.Э., Руденко Н.Н., Деркач И.А., Чечула Ю.В. Заболевания кишечника и почки. Гастроэнтерология 2015; 3: (57): 101-105.; Allison M.J., Dawson K.A., Mayberry W.R., Foss J.G. Oxalo-bacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 1985; 141: 1-7.; Dawson K.A., Allison K.A., Hartman P.A. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl Environ Microbiol 1980; 40(4): 833-839.; Knight J., Deora R., Assimos D.G., Holmes R.P. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis 2013; 41(3): 187-196.; Mehta M., Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 2016; 36: 607-612. DOI:10.1016/j.ijsu.2016.11.024; Miller A.W., Oakeson K.F., Dale C., Dearing M.D. Microbial community transplant results in increased and long-term oxalate degradation. Microb Ecol 2016; 72(2): 470-478. DOI:10.1007/s00248-016-0800-2.; Шестаев А.Ю., Паронников М.В., Протощак В.В., Бабкин П.А., Гулько А.М. Метаболизм оксалата и роль Ox-alobacter formigenes в развитии мочекаменной болезни. Экспериментальная и клиническая урология 2013; 2: 68-73.; Herve V., Junier T., Bindschedler S., Verrecchia E., Junier P. Diversity and ecology of oxalotrophic bacteria. World J Microbiol Biotechnol 2016; 32(2): 28-36. DOI:10.1007/s11274-015-1982-3; Peck A.B., Canales B.K., Nguyen C.Q. Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease? Urolithiasis 2016; 44(1): 45-50. DOI:10.1007/s00240-015-0845-6; Whittamore J., Hatch M. The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 2017; 45(1): 89-108. DOI:10.1007/s00240-016-0952-z; PeBenito A., Nazzal L., Wang C., Li H., Noya-Alarcon O., Contreras M. et al. Comparative prevalence of Oxalobacter formigenes in three human populations. Sci Rep 2019; 9(1): 574. DOI:10.1038/s41598-018-36670-z; Arvans D., Jung Y.C., Antonopoulos D., Koval J., Granja I., Bashir M. et al. Oxalobacter formigenes - derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 2017; 28(3): 876-887. DOI:10.1681/ASN.2016020132; Krawczyk B., Kur J., Stojowska-Swedrzynska K., Spibida M. Principles and applications of ligation mediated PCR methods for DNA-based typing of microbial organisms. Acta Bio-chim Pol 2016; 63(1): 39-52. DOI:10.18388/abp.2015_1192; Assimos D. Sensitivity of human strains of Oxalobacter for-migenes to commonly prescribed antibiotics. J Urol 2013; 189(1): 171-172. DOI:10.1016/j.juro.2012.09.124; Mehta M., Goldfarb D., Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 2016; 36: 607-612. DOI:10.1016/j.ijsu.2016.11.024; Sadaf H., Raza S., Hassan S. Role of gut microbiota against calcium oxalate. Microb Pathog 2017; 109: 287-291. DOI:10.1016/j.micpath.2017.06.009; Goldstein E.J., Tyrrell K.L. Citron D.M. Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clin Infect Dis 2015; 60: 98-107. DOI:10.1093/cid/civ072; Bull M., Plummer S., Marchesi J., Mahenthiralingam E. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 2013; 349(2): 77-87. DOI:10.1111/1574-6968.12293; Zhao C., Yang H., Zhu X., Li Y., Wang N., Han S. et al. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria. Urology 2018; 113: 253.e1-253.e7. DOI:10.1016/j.urology.2017.11.038; Di Cerbo A., Palmieri B., Aponte M., Morales-Medina J.C. Lannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 2016; 69(3): 187-203. DOI:10.1136/jclinpath-2015-202976; Sasikumar P., Gomathi S., Anbazhagan K., Abhishek A., Paul E., Vasudevan V. et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci 2014; 30: 86-99. DOI:10.1186/s12929-014-0086-y; Paul E., Albert A., Ponnusamy S., Srishti R.M., Amalraj G.V., Selvi M.S. et al. Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II in-tron degrades intestinal oxalate in hyperoxaluric rats. Microbiol Res 2018; 215: 65-75.; Anbazhagan K., Sasikumar P., Sivasamy G., Palaniswamy H. In vitro degradation of oxalate by recombinant Lactobacillus plan-tarum expressing heterologous oxalate decarboxylase. J Appl Microbiol 2013; 115(3): 880-887. DOI:10.1111/jam.12269; Sasikumar P., Gomathi S., Anbazhagan K., Selvam G.S. Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. Biomed Res Int 2013; 1—9. DOI:10.1155/2013/280432; Gomathi G., Sasikumar P., Anbazhagan K., Sasikumar S., Ka-vitha M., Selvi M.S. Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential. Sci World J 2014; 4: 1-11. DOI:10.1155/2014/648059; Murru N., Blaiotta G., Peruzy M.F., Santonicola S., Mercogli-ano R., Aponte M. Screening of oxalate degrading lactic acid bacteria of food origin. Ital J Food Saf 2017; 6(2): 61-64. DOI:10.4081/ijfs.2017.6345; Sanders M.E. Probiotics and microbiota composition. BMC Med 2016; 14(1): 82-84. DOI:10.1186/s12916-016-0629-z.; Mogna L., Pane M., Nicola S., Raiteri E. Screening of different probiotic strains for their in vitro ability to metabolise oxalates: any prospective use in humans? J Clin Gastroenterol 2014; 48: 91-95. DOI:10.1097/MCG.0000000000000228; Fontana L., Bermudez-Brito M., Plasa-Diaz J., Munoz.-Quez.a-da S., Gil A. Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 2013; 109: 35-50. DOI:10.1017/S0007114512004011; Esaiassen E., Hjerde E., Cavanagh J.P., Simonsen G.S., Klin-genberrg C. et al. Bifidobacterium bacteremia: clinical characteristics and a genomic approach to assess pathogenicity. J Clin Microbiol 2017; 55(7): 2234-2248. DOI:10.1128/JCM.00150-17; Klimesova K., Whittamore J., Hatch M. Bifidobacterium an-imalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis 2015; 43(2): 107-117. DOI:10.1007/s00240-014-0728-2

  3. 3
  4. 4
  5. 5