-
1Academic Journal
Συγγραφείς: Rusanova, N., Erofeeva, L.
Θεματικοί όροι: АБОРТЫ, ВСПОМОГАТЕЛЬНЫЕ РЕПРОДУКТИВНЫЕ ТЕХНОЛОГИИ, CONTRACEPTION, КОНТРАЦЕПЦИЯ, BIRTH CONTROL, ФЕРТИЛЬНОСТЬ, РЕГУЛИРОВАНИЕ РОЖДАЕМОСТИ, FERTILITY, ABORTIONS, ASSISTED REPRODUCTIVE TECHNOLOGIES
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elar.urfu.ru/handle/10995/146227
-
2
-
3
-
4Academic Journal
Συνεισφορές: Ивашкевич, Е. Ф., науч. рук.
Θεματικοί όροι: донорство половых клеток, бесплодие, вспомогательные репродуктивные технологии, медицинские услуги
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://rep.vsu.by/handle/123456789/46913
-
5Academic Journal
Πηγή: Высшая школа: научные исследования.
Θεματικοί όροι: гиперактивация сперматозоидов, интрацитоплазматическая инъекция сперматозоида, кофеин, вспомогательные репродуктивные технологии, экстракорпоральное оплодотворение, подвижность сперматозоидов
-
6Academic Journal
Πηγή: Высшая школа: научные исследования.
Θεματικοί όροι: подвижностьсперматозоидов, фертил-чип, бесплодие, вспомогательные репродуктивные технологии, экстракорпоральное оплодотворение, интрацитоплазматическая инъекциясперматозоида, свободные радикалы, оксидативный стресс
-
7Academic Journal
Πηγή: СОВРЕМЕННОЕ ПРАВО. :74-78
Θεματικοί όροι: суррогатное материнство, assisted reproductive technologies, surrogacy, essential terms of the contract, договор о суррогатном материнстве, вспомогательные репродуктивные технологии, surrogacy agreement, существенные условия договора, 16. Peace & justice, стороны договора, the parties to the contract
-
8Academic Journal
Συγγραφείς: A. V. Tikhonov, O. A Efimova, O. V. Malysheva, E. M. Komarova, N. I. Tapilskaya, A. A. Pendina, А. В. Тихонов, О. А. Ефимова, О. В. Малышева, Е. М. Комарова, Н. И. Тапильская, А. А. Пендина
Συνεισφορές: The study was carried out within a research program No. 1024062500021-3-3.2.2., Исследование выполнено в рамках ПНИ №1024062500021-3-3.2.2.
Πηγή: Medical Genetics; Том 24, № 9 (2025); 124-127 ; Медицинская генетика; Том 24, № 9 (2025); 124-127 ; 2073-7998
Θεματικοί όροι: вспомогательные репродуктивные технологии, human blastocyst, mosaicism, trophectoderm, inner cell mass, assisted reproductive technologies, бластоциста человека, мозаицизм, трофэктодерма, внутренняя клеточная масса
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/3196/2056; Harper J.C., Delhanty J.D. Preimplantation genetic diagnosis. Curr Opin Obstet Gynecol. 2000;12(2):67-72. doi:10.1097/00001703-200004000-00002.; Barbash-Hazan S., Frumkin T., Malcov M., et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92(3):890-896. doi:10.1016/j.fertnstert.2008.07.1761.; Capalbo A., Rienzi L. Mosaicism between trophectoderm and inner cell mass. Fertil Steril. 2017;107(5):1098-1106. doi:10.1016/j.fertnstert.2017.03.023.; McCoy R.C. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 2017;33:448–463. doi:10.1016/j.tig.2017.04.001.; Griffin D.K., Brezina P.R., Tobler K., et al. The human embryonic genome is karyotypically complex, with chromosomally abnormal cells preferentially located away from the developing fetus. Hum Reprod. 2023;38(1):180-188. doi:10.1093/humrep/deac238.; Kubicek D., Hornak M., Horak J., et al. Incidence and origin of meiotic whole and segmental chromosomal aneuploidies detected by karyomapping. Reprod. Biomed. Online. 2019;38,330–339. doi:10.1016/j.rbmo.2018.11.023.; Coll L., Parriego M., Carrasco B., et al. The effect of trophectoderm biopsy technique and sample handling on artefactual mosaicism. J Assist Reprod Genet. 2022;39:1333–1340. doi:10.1007/s10815-022-02453-9.; Popovic M., Borot L., Lorenzon A.R., et al. Implicit bias in diagnosing mosaicism amongst preimplantation genetic testing providers: results from a multicenter study of 36 395 blastocysts. Hum Reprod. 2024;39(1):258-274. doi:10.1093/humrep/dead213.; Treff N.R., Marin D. The «mosaic» embryo: Misconceptions and misinterpretations in preimplantation genetic testing for aneuploidy. Fertil. Steril. 2021;116:1205–1211. doi:10.1016/j.fertnstert.2021.06.027.; Johnson D.S., Cinnioglu C., Ross R., et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16(12):944-9. doi:10.1093/molehr/gaq062.; Capalbo A., Wright G., Elliott T., et al. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod. 2013;28(8):2298-307. doi:10.1093/humrep/det245.; Victor A.R., Griffin D.K., Brake A.J., et al. Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum Reprod. 2019;34:181–192. doi:10.1093/humrep/dey327.; Vera-Rodríguez M., Michel C.E., Mercader A., et al. Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril. 2016;105(4):1047-1055. e2. doi:10.1016/j.fertnstert.2015.12.022.; Babariya D., Fragouli E., Alfarawati S., et al. The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos. Hum Reprod. 2017;32(12):2549-2560. doi:10.1093/humrep/dex324.; Fragouli E., Lenzi M., Ross R., et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23(11):2596-608. doi:10.1093/humrep/den287.; Huang J., Yan L., Lu S., et al. Re-analysis of aneuploidy blastocysts with an inner cell mass and different regional trophectoderm cells. J Assist Reprod Genet. 2017;34:487–493. doi:10.1007/s10815-017-0875-9.; Capalbo A., Poli M., Rienzi L., et al. Mosaic human preimplantation embryos and their developmental potential in a prospective, nonselection clinical trial. Am J Hum Genet. 2021;108:2238–2247. doi:10.1016/j.ajhg.2021.11.002.; Tikhonov A.V., Krapivin M.I., Malysheva O.V., et al. ReExamination of PGT-A Detected Genetic Pathology in Compartments of Human Blastocysts: A Series of 23 Cases. J Clin Med. 2024;13(11):3289. doi:10.3390/jcm13113289.
-
9Academic Journal
Συγγραφείς: Kudratova , Rano
Πηγή: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 305-313 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 305-313 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 305-313 ; 2181-287X
Θεματικοί όροι: Бесплодие, экстракорпоральное оплодотворение (ЭКО), вспомогательные репродуктивные технологии (ВРТ), репродуктивное здоровье, перенос эмбрионов, криоконсервация, искусственный интеллект в медицине, показатели успешности, Узбекистан, глобальные тенденции здравоохранения, Infertility, In Vitro Fertilization (IVF), Assisted Reproductive Technologies (ART), Reproductive Health, Embryo Transfer, Cryopreservation, Artificial Intelligence in Medicine, Success Rates, Uzbekistan, Global Health Trends
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://in-academy.uz/index.php/EJMNS/article/view/63218
-
10Academic Journal
Συγγραφείς: V. O. Bitsadze, J. Kh. Khizroeva, E. Grandone, R. I. Gabidullina, M. V. Tretyakova, N. A. Makatsariya, N. R. Gashimova, K. N. Grigoreva, A. V. Vorobev, A. V. Lazarchuk, M. M. Muravyova, A. G. Krendeleva, T. E. Polyakova, M. S. Zainulina, D. L. Kapanadze, F. E. Yagubova, J.-C. Gris, I. Elalamy, G. Gerotziafas, P. Van Dreden, A. D. Makatsariya, В. О. Бицадзе, Д. Х. Хизроева, Э. Грандоне, Р. И. Габидуллина, М. В. Третьякова, Н. А. Макацария, Н. Р. Гашимова, К. Н. Григорьева, А. В. Воробьев, А. В. Лазарчук, М. М. Муравьёва, А. Г. Кренделева, Т. Е. Полякова, М. С. Зайнулина, Д. Л. Капанадзе, Ф. Э. Ягубова, Ж.-К. Гри, И. Элалами, Г. Геротзиафас, П. Ван Дреден, А. Д. Макацария
Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 377-388 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 377-388 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: риск тромбообразования, IVF, assisted reproductive technologies, ART, ovarian stimulation, thrombosis, ovarian hyperstimulation syndrome, OHSS, thrombophilia, venous thromboembolism, arterial thrombosis, risk factors, thrombosis prevention, thrombogenesis risk, ЭКО, вспомогательные репродуктивные технологии, ВРТ, стимуляция яичников, тромбоз, синдром гиперстимуляции яичников, СГЯ, тромбофилия, венозная тромбоэмболия, артериальный тромбоз, факторы риска, профилактика тромбозов
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2494/1346; Calhaz-Jorge C., De Geyter C.H., Kupka M.S. et al. Survey on ART and IUI: legislation, regulation, funding and registries in European countries: The European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum Reprod Open. 2020;2020(1):hoz044. https://doi.org/10.1093/hropen/hoz044.; European IVF Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE); Smeenk J., Wyns C., De Geyter C. et al. ART in Europe, 2019: results generated from European registries by ESHRE. Hum Reprod. 2023;3(12):2321–38. https://doi.org/10.1093/humrep/dead197.; Farquhar C., Marjoribanks J., Brown J. et al. Management of ovarian stimulation for IVF: narrative review of evidence provided for World Health Organization guidance. Reprod Biomed Online. 2017;35(1):3–16. https://doi.org/10.1016/j.rbmo.2017.03.024.; Nelson S.M. Venous thrombosis during assisted reproduction: novel risk reduction strategies. Thromb Res. 2013;131 Suppl 1:S1–3. https://doi.org/10.1016/S0049-3848(13)00023-6.; Grandone E., Villani M. Assisted reproductive technologies and thrombosis. Thromb Res. 2015;135 Suppl 1:S44–5. https://doi.org/10.1016/S0049-3848(15)50441-6.; Kupka M.S., Ferraretti A.P., de Mouzon J. et al.; European IVF-Monitoring Consortium, for the European Society of Human Reproduction and Embryology. Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE†. Hum Reprod. 2014;29(10):2099–113. https://doi.org/10.1093/humrep/deu175.; Sennström M., Rova K., Hellgren M. et al. Thromboembolism and in vitro fertilization – a systematic review. Acta Obstet Gynecol Scand. 2017;96(9):1045–52. https://doi.org/10.1111/aogs.13147.; Practice Committee of American Society for Reproductive Medicine. Ovarian hyperstimulation syndrome. Fertil Steril. 2008;90(5 Supple):S188–93. https://doi.org/10.1016/j.fertnstert.2008.08.034.; Grandone E., Colaizzo D., Vergura P. et al. Age and homocysteine plasma levels are risk factors for thrombotic complications after ovarian stimulation. Hum Reprod. 2004;19(8):1796–9. https://doi.org/10.1093/humrep/deh346.; Henriksson P., Westerlund E., Wallén H. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ. 2013;346:е8632. https://doi.org/10.1136/bmj.e8632.; Rova K., Passmark H., Lindqvist P.G. Venous thromboembolism in relation to in vitro fertilization: an approach to determining the incidence and increase in risk in successful cycles. Fertil Steril. 2012;97(1):95–100. https://doi.org/10.1016/j.fertnstert.2011.10.038.; Nelson S.M. Prophylaxis of VTE in women – during assisted reproductive techniques. Thromb Res. 2009;123 Suppl 3:S8–S15. https://doi.org/10.1016/S0049-3848(09)70127-6.; Hansen A.T., Kesmodel U.S., Juul S., Hvas A.M. No evidence that assisted reproduction increases the risk of thrombosis: a Danish national cohort study. Hum Reprod. 2012;27(5):1499–503. https://doi.org/10.1093/humrep/des041.; Serour G.I., Aboulghar M., Mansour R. et al. Complications of medically assisted conception in 3,500 cycles. Fertil Steril. 1998;70(4):638–42. https://doi.org/10.1016/s0015-0282(98)00250-7.; Girolami A., Scandellari R., Tezza F. et al. Arterial thrombosis in young women after ovarian stimulation: case report and review of the literature. J Thromb Thrombolysis. 2007;24(2):169–74. https://doi.org/10.1007/s11239-007-0009-9.; Chan W.S. The 'ART' of thrombosis: a review of arterial and venous thrombosis in assisted reproductive technology. Curr Opin Obstet Gynecol. 2009;21(3):207–18. https://doi.org/10.1097/GCO.0b013e328329c2b8.; Yang S., Yuan J., Qin W. et al. The clinical characteristics of acute cerebrovascular accidents resulting from ovarian hyperstimulation syndrome. Eur Neurol. 2017;77(5–6):221–30. https://doi.org/10.1159/000463383.; Filipovic-Pierucci A., Gabet A., Deneux-Tharaux C. et al. Arterial and venous complications after fertility treatment: a French nationwide cohort study. Eur J Obstet Gynecol Reprod Biol. 2019;237:57–63. https://doi.org/10.1016/j.ejogrb.2019.02.034.; Chan W.S, Dixon M.E. The "ART" of thromboembolism: a review of assisted reproductive technology and thromboembolic complications. Thromb Res. 2008;121(6):713–26. https://doi.org/10.1016/j.thromres.2007.05.023.; Villani M., Favuzzi G., Totaro P. et al. Venous thromboembolism in assisted reproductive technologies: comparison between unsuccessful versus successful cycles in an Italian cohort. J Thromb Thrombolysis. 2018;45(2):234–9. https://doi.org/10.1007/s11239-017-1584-z.; Mozes M., Bogokowsky H., Antebi E. et al. Thromboembolic phenomena after ovarian stimulation with human gonadotrophins. Lancet. 1965;2(7424):1213–5. https://doi.org/10.1016/s0140-6736(65)90636-7.; Kermode A.G., Churchyard A., Carroll W.M. Stroke complicating severe ovarian hyperstimulation syndrome. Aust N Z J Med. 1993;23(2):219–20. https://doi.org/10.1111/j.1445-5994.1993.tb01823.x.; Inbar O.J., Levran D., Mashiach S., Dor J. Ischemic stroke due to induction of ovulation with clomiphene citrate and menotropins without evidence of ovarian hyperstimulation syndrome. Fertil Steril. 1994;62(5):1075–6. https://doi.org/10.1016/s0015-0282(16)57078-2.; Cluroe A.D., Synek B.J. A fatal case of ovarian hyperstimulation syndrome with cerebral infarction. Pathology. 1995;27(4):344–6. https://doi.org/10.1080/00313029500169273.; Chan W.S., Ginsberg J.S. A review of upper extremity deep vein thrombosis in pregnancy: unmasking the 'ART' behind the clot. J Thromb Haemost. 2006;4(8):673–7. https://doi.org/10.1111/j.1538-7836.2006.02026.x.; Fleming T., Sacks G., Nasser J. Internal jugular vein thrombosis following ovarian hyperstimulation syndrome. Aust N Z J Obstet Gynaecol. 2012;52(1):87–90. https://doi.org/10.1111/j.1479-828X.2011.01392.x.; Salomon O., Schiby G., Heiman Z. et al. Combined jugular and subclavian vein thrombosis following assisted reproductive technology – new observation. Fertil Steril. 2009;92(2):620–5. https://doi.org/10.1016/j.fertnstert.2008.07.1708.; Aboulghar M.A., Mansour R.T., Serour G.I., Amin Y.M. Moderate ovarian hyperstimulation syndrome complicated by deep cerebrovascular thrombosis. Hum Reprod. 1998;13(8):2088–91. https://doi.org/10.1093/humrep/13.8.2088.; Kodama H., Fukuda J., Karube H. et al. Characteristics of blood hemostatic markers in a patient with ovarian hyperstimulation syndrome who actually developed thromboembolism. Fertil Steril. 1995;64(6):1207–9. https://doi.org/10.1016/s0015-0282(16)57987-4.; Delvigne A., Demoulin A., Smitz J. et al. The ovarian hyperstimulation syndrome in in-vitro fertilization: a Belgian multicentric study. I. Clinical and biological features. Hum Reprod. 1993;8(9):1353–60. https://doi.org/10.1093/oxfordjournals.humrep.a138260.; Dulitzky M., Cohen S.B., Inbal A. et al. Increased prevalence of thrombophilia among women with severe ovarian hyperstimulation syndrome. Fertil Steril. 2002;77(3):463–7. https://doi.org/10.1016/s0015-0282(01)03218-6.; Grandone E., Di Micco P.P., Villani M. et al.; RIETE Investigators. Venous thromboembolism in women undergoing assisted reproductive technologies: Data from the RIETE Registry. Thromb Haemost. 2018;118(11):1962–8. https://doi.org/10.1055/s-0038-1673402.; Olausson N., Discacciati A., Nyman A.I. et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilization with fresh respectively frozen-thawed embryo transfer: nationwide cohort study. J Thromb Haemost. 2020;18(8):1965–73. https://doi.org/10.1111/jth.14840.; Abramov Y., Elchalal U., Schenker J.G. Obstetric outcome of in vitro fertilized pregnancies complicated by severe ovarian hyperstimulation syndrome: a multicenter study. Fertil Steril. 1998;70(6):1070–6. https://doi.org/10.1016/s0015-0282(98)00350-1.; Bauersachs R.M., Manolopoulos K., Hoppe I. et al. More on: the 'ART' behind the clot: solving the mystery. J Thromb Haemost. 2007;5(2):438–9.; Richardson M.A., Berg D.T., Calnek D.S. et al. 17beta-estradiol, but not raloxifene, decreases thrombomodulin in the antithrombotic protein C pathway. Endocrinology. 2000;141(10):3908–11. https://doi.org/10.1210/endo.141.10.7798.; Rogolino A., Coccia M.E., Fedi S. et al. Hypercoagulability, high tissue factor and low tissue factor pathway inhibitor levels in severe ovarian hyperstimulation syndrome: possible association with clinical outcome. Blood Coagul Fibrinolysis. 2003;14(3):277–82. https://doi.org/10.1097/01.mbc.0000061296.28953.d0.; Ricci G., Bogatti P., Fischer-Tamaro L. et al. Factor V Leiden and prothrombin gene G20210A mutation and in vitro fertilization: prospective cohort study. Hum Reprod. 2011;26(11):3068–77. https://doi.org/10.1093/humrep/der261.; Goualou M., Noumegni S., de Moreuil C. et al. Venous thromboembolism associated with assisted reproductive technology: a systematic review and meta-analysis. Thromb Haemost. 2023;123(3):283–94. https://doi.org/10.1055/s-0042-1760255.; Pabinger I., Grafenhofer H., Kaider A. et al. Risk of pregnancy-associated recurrent venous thromboembolism in women with a history of venous thrombosis. J Thromb Haemost. 2005;3(5):949–54. https://doi.org/10.1111/j.1538-7836.2005.01307.x.; Milenkovic J., Milojkovic M., Mitic D. et al. Interaction of thrombophilic SNPs in patients with unexplained infertility-multifactor dimensionality reduction (MDR) model analysis. J Assist Reprod Genet. 2020;37(6):1449–58. https://doi.org/10.1007/s10815-020-01808-4.; Santos T.D.S., Ieque A.L., de Carvalho H.C. et al. Antiphospholipid syndrome and recurrent miscarriage: A systematic review and meta-analysis. J Reprod Immunol. 2017;123:78–87. https://doi.org/10.1016/j.jri.2017.09.007.; El Hasbani G., Khamashta M., Uthman I. Antiphospholipid syndrome and infertility. Lupus. 2020;29(2):105–17. https://doi.org/10.1177/0961203319893763.; Qublan H.S., Eid S.S., Ababneh H.A. et al. Acquired and inherited thrombophilia: implication in recurrent IVF and embryo transfer failure. Hum Reprod. 2006;21(10):2694–8. https://doi.org/10.1093/humrep/del203.; Nesbit C., Gunalp C., Zhang J. et al. Longitudinal assessment of coagulation potential before, during, and following an in vitro fertilization cycle. Thromb Res. 2024;238:97–102. https://doi.org/10.1016/j.thromres.2024.04.020.; Azem F., Many A., Ben Ami I. et al. Increased rates of thrombophilia in women with repeated IVF failures. Hum Reprod. 2004;19(2):368–70. https://doi.org/10.1093/humrep/deh069.; Hansen A.T., Kesmodel U.S., Juul S., Hvas A.M. Increased venous thrombosis incidence in pregnancies after in vitro fertilization. Hum Reprod. 2014;29(3):611–7. https://doi.org/10.1093/humrep/det458.; Refsum H., Nurk E., Smith A.D. et al. The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr. 2006;136(6 Suppl):1731S–1740S. https://doi.org/10.1093/jn/136.6.1731S.; Fuchs H.E., O'Connell K., Du M. et al. Vitamin B12 supplementation and vitamin B12 blood serum levels: evaluation of effect modification by gender and smoking status. Nutr Cancer. 2022;74(7):2373–83. https://doi.org/10.1080/01635581.2021.2007271.; Bazzano L.A., He J., Muntner P. et al. Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Ann Intern Med. 2003;138(11):891–7. https://doi.org/10.7326/0003-4819-138-11-200306030-00010.; Villani M., Dentali F., Colaizzo D. et al. Pregnancy-related venous thrombosis: comparison between spontaneous and ART conception in an Italian cohort. BMJ Open. 2015;5(10):e008213. https://doi.org/10.1136/bmjopen-2015-008213.; Rosendaal F.R. Risk factors for venous thrombotic disease. Thromb Haemost. 1999;82(2):610–9.; Grandone E., Ageno W. The legacy of Edwards and Steptoe and the windy roads of assisted reproduction: where do we stand with venous thromboembolism? Thromb Haemost. 2023;123(3):267–9. https://doi.org/10.1055/a-1996-1341.; Yinon Y., Pauzner R., Dulitzky M. et al. Safety of IVF under anticoagulant therapy in patients at risk for thrombo-embolic events. Reprod Biomed Online. 2006;12(3):354–8. https://doi.org/10.1016/s1472-6483(10)61009-7.; Bates S.M., Greer I.A., Middeldorp S. et al. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e691S–e736S. https://doi.org/10.1378/chest.11-2300.; Grandone E., Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: a case-based review. Semin Reprod Med. 2021;39(1–02):62–8. https://doi.org/10.1055/s-0041-1731827.; Sticchi E., Romagnuolo I., Cellai A.P. et al. Fibrinolysis alterations in infertile women during controlled ovarian stimulation: influence of BMI and genetic components. Thromb Res. 2012;130(6):919–24. https://doi.org/10.1016/j.thromres.2012.07.005.; Gurunath S., Vinekar S., Biliangady R. Assisted reproductive techniques in a patient with history of venous thromboembolism: a case report and review of literature. J Hum Reprod Sci. 2018;11(2):193–7. https://doi.org/10.4103/jhrs.JHRS5817.; Westerlund E., Antovic A., Hovatta O. et al. Changes in von Willebrand factor and ADAMTS13 during IVF. Blood Coagul Fibrinolysis. 2011;22(2):127–31. https://doi.org/10.1097/MBC.0b013e32834363ea.; https://www.gynecology.su/jour/article/view/2494
-
11Academic Journal
Συγγραφείς: A. D. Makatsariya, A. V. Vorobev, А. Д. Макацария, А. В. Воробьев
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 2 (2025); 152-157 ; Акушерство, Гинекология и Репродукция; Vol 19, No 2 (2025); 152-157 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: разрыв матки, NOS3 gene polymorphism, venous thrombosis, uterine fibroids, neural network analysis, premature birth, vasopressin, chronic kidney disease, coagulopathic bleeding, thromboelastometry, ferrous fumarate, microbiome, assisted reproductive technologies, ARID1A gene, fetal inflammatory syndrome, uterine rupture, полиморфизм гена NOS3, венозные тромбозы, миома матки, нейросетевой анализ, преждевременные роды, вазопрессин, хроническая болезнь почек, коагулопатические кровотечения, тромбоэластометрия, фумарат железа, микробиом, вспомогательные репродуктивные технологии, ген ARID1A, фетальный воспалительный синдром
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2424/1316; Габидуллина Р.И., Ганеева А.В., Капелюшник П.Л., Шигабутдинова Т.Н., Валеева Е.В., Нургатина А.Ф. Взаимосвязь полиморфизма rs1799983 гена NOS3 с риском развития преэклампсии и восприимчивостью к SARS-CoV-2 во время беременности. Акушерство, Гинекология и Репродукция. 2025;19(2):158–167. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.623.; Воробьев А.В., Солопова А.Г., Ломакин Н.В., Бицадзе В.О., Ким М.В., Григорьева К.Н., Гадацкая К.В., Галкин В.Н., Уткин Д.О., Элалами И., Макацария А.Д. Рецидивирующие тромбозы при злокачественных новообразованиях: клиническая значимость длительной антикоагулянтной профилактики. Акушерство, Гинекология и Репродукция. 2025;19(2):168–179. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.629.; Зиганшин А.М., Дикке Г.Б., Янбарисова А.Р. Прогнозирование возникновения миомы матки у женщин репродуктивного возраста с помощью нейронной сети. Акушерство, Гинекология и Репродукция. 2025;19(2):180–191. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.605.; Матюшонок Е.Н., Крюковский С.Б., Смирнова Т.И., Боженков К.А. Исследование уровня вазопрессина для прогнозирования исхода угрожающих преждевременных родов. Акушерство, Гинекология и Репродукция. 2025;19(2):192–200. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.608.; Прокопенко Е.И., Никольская И.Г., Губина Д.В., Ватазин А.В., Коваленко Т.С., Ефимкова Е.Б. Осложнения беременности и гестационная динамика протеинурии и сывороточного креатинина у пациенток с хроническим гломерулонефритом и хроническими тубулоинтерстициальными заболеваниями почек. Акушерство, Гинекология и Репродукция. 2025;19(2):201–215. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.553.; Сушко Т.А., Зайнулина М.С. Патогенетический подход к лечению коагулопатического кровотечения в акушерстве. Акушерство, Гинекология и Репродукция. 2025;19(2):216–229. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.557.; Громова О.А., Торшин И.Ю., Тетруашвили Н.К. Систематический компьютерный анализ фармакологии фумарата железа в контексте лечения дефицита железа и железодефицитной анемии. Акушерство, Гинекология и Репродукция. 2025;19(2):230–248. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.632.; Бицадзе В.О., Хизроева Д.Х., Третьякова М.В., Макацария Н.А., Габидуллина Р.И., Мостовой А.В.,Карпова А.Л., Войновский А.Е., Новосатрян М.Г., Лазарчук А.В., Хисамиева А.Р., Воробьев А.В., Агасян К.В., Капанадзе Д.Л., Зайнулина М.С., Серов В.Н., Блинов Д.В., Гри Ж.-К., Ван Дреден П., Элалами И., Геротзиафас Г., Макацария А.Д. Фетальный синдром системного воспалительного ответа, тромбовоспаление и неонатальный септический шок: патогенез, диагностика и лечение. Акушерство, Гинекология и Репродукция. 2025;19(2):250–272. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.619.; Бахтияров К.Р., Игнатко И.В., Зуева А.С., Синякова Е.В., Капырина Т.Д. Роль микробиома матки и влагалища в исходах вспомогательных репродуктивных технологий. Акушерство, Гинекология и Репродукция. 2025;19(2):273–281. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.592.; Марзаганова А.И., Мартиросян И.Р., Корчемкина А.С., Аванесян Э.Г., Коркмазова Д.А., Грахнова О.Б., Акимина В.В., Джамалутдинова А.П., Боллоев Д.А., Дугулубгова А.М., Бахмудова З.Г., Салихова А.Т., Дзигора П.А. Роль ARID1A при злокачественных новообразованиях женской репродуктивной системы: современный взгляд на возможности диагностики и терапии. Акушерство, Гинекология и Репродукция. 2025;19(2):282–298. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2024.581.; Бодыков Г.Ж., Локшин В.Н., Мухаметова Э.Е., Бищекова Б.Н. Спонтанный разрыв матки у многорожавшей женщины без рубца на матке. Акушерство, Гинекология и Репродукция. 2025;19(2):299–305. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.604.; Козлов Л.А., Чикмарева К.А. О зарождении и забвении способа Н.Н. Чукалова о выделении отделившегося последа. Акушерство, Гинекология и Репродукция. 2025;19(2):306–311. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2025.624.; https://www.gynecology.su/jour/article/view/2424
-
12Academic Journal
Συγγραφείς: I. R. Abdulazimova, L. L. Mezhidova, R. S. Barkinkhoeva, Z. U. Zarieva, Z. Kh. Abadieva, Kh. R. Magamadova, A. L. Vazikaeva, A. A. Bzhekshieva, D. A. Bogatyreva, E. A. Kauts, M. A. Bayanova, Kh. U. Umarova, Kh. A. Satuev, M. A.F. Qasem, И. Р. Абдулазимова, Л. Л. Межидова, Р. С. Баркинхоева, З. У. Зариева, З. Х. Абадиева, Х. Р. Магамадова, А. Л. Вазикаева, А. А. Бжекшиева, Д. А. Богатырёва, Э. А. Кауц, М. А. Баянова, Х. У. Умарова, Х. А. Сатуев, М. А.Ф. Касем
Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Θεματικοί όροι: криоконсервация, assisted reproductive technologies, cryopreservation, вспомогательные репродуктивные технологии
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2516/1359; Zegers-Hochschild F., Adamson G.D., de Mouzon J. et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod. 2009;24(11):2683–7. https://doi.org/10.1093/humrep/dep343.; Bártolo A., Reis S., Monteiro S. et al. Psychological adjustment of infertile men undergoing fertility treatments: an association with sperm parameters. Arch Psychiatr Nurs. 2016;30(5):521–6. https://doi.org/10.1016/j.apnu.2016.04.014.; Тювина Н.А., Николаевская А.О. Бесплодие и психические расстройства у женщин. Неврология, нейропсихиатрия, психосоматика. 2019;11(4):117–24. https://doi.org/10.14412/2074-2711-2019-4-117-124.; Beke A. Genetic causes of female infertility. Exp Suppl. 2019;111:367–83. https://doi.org/10.1007/s11934-019-0942-0.; Жураев И.И., Хайдаров О.Л., Бобокулов Н.А. Мужское бесплодие. Proceedings of International Conference on Scientific Research in Natural and Social Sciences.2023;2(3):163–70.; Tschudin S., Bitzer J. Psychological aspects of fertility preservation in men and women affected by cancer and other life-threatening diseases. Hum Reprod Update. 2009;15(5):587–97. https://doi.org/10.1093/humupd/dmp016.; Kenney L.B., Antal Z., Ginsberg J.P. et al. Improving male reproductive health after childhood, adolescent, and young adult cancer: progress and future directions for survivorship Research. J Clin Oncol. 2018;36(21):2160–8. https://doi.org/10.1200/JCO.2017.76.3839.; Dishuck C.F., Perchik J.D., Porter K.K. et al. Advanced imaging in female infertility. Curr Urol Rep. 2019;20(11):77. https://doi.org/10.1007/s11934-019-0942-0.; Bala R., Singh V., Rajender S. et al. Environment, lifestyle, and female infertility. Reprod Sci. 2021;28(3):617–38. https://doi.org/10.1007/s43032-020-00279-3.; Mustafa M., Sharifa A.M., Hadi J.E. et al. Male and female infertility: causes, and management. IOSR J Dent Med Sci. 2019;18(9):27–32. https://doi.org/10.9790/0853-1809132732.; Арипова Т.У., Мусаходжаева Д.А., Файзуллаева Н.Я., Ярмухамедов А.С. Различные аспекты бесплодия у мужчин (обзор литературы). Журнал теоретической и клинической медицины. 2020;(4):141–5.; Галимов Ш.Н., Божедомов В.А., Галимова Э.Ф. и др. Мужское бесплодие: молекулярные и иммунологические аспекты: моногафия. М.: ГЭОТАР-Медиа, 2020. 204 с.; Киракосян Е.В., Назаренко Т.А., Павлович С.В. Поиск причин формирования нарушений репродуктивной системы: обзор научных исследований. Акушерство и гинекология. 2021;(11):18–25. https://doi.org/10.18565/aig.2021.11.18-25.; No C.O. Female age-related fertility decline. Fertil Steril. 2014;101(3):633–4. https://doi.org/10.1016/j.fertnstert.2013.12.032.; Сонголова Е.Н. Контроль учета ЭКО по ОМС. Материалы Второго съезда медицинских статистиков Москвы «Статистика здравоохранения нового времени». М., 2020. 84–6.; Sidorova T.F. Philosophical analysis of procreation in the value dimension. Population and Economics. 2020;4(4):57–66. https://doi.org/10.3897/popecon.4.e58271.; Шевлюк Н.Н. Фундаментальные основы, биологические, медицинские и социальные аспекты вспомогательных репродуктивных технологий: история создания, современное состояние и перспективы. Журнал анатомии и гистопатологии. 2024;13(2):100–9. https://doi.org/10.18499/2225-7357-2024-13-2-100-109.; Walters E.M., Benson J.D., Woods E.J. et al. The history of sperm cryopreservation. In: Spermbanking: Theory and practice. Cambridge University Press, 2009. 1–10.; Castellani C. Spermatozoan biology from Leeuwenhoek to Spallanzani. J Hist Biol. 1973;6:37–68. https://doi.org/10.1007/BF00137298.; Lovelock J.E. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta. 1953;10(3):414–26. https://doi.org/10.1016/0006-3002(53)90273-X.; Jang T.H., Park S.C., Yang J.H. et al. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12–8. https://doi.org/10.1016/j.imr.2016.12.001.; Shenfield F., de Mouzon J., Scaravelli G. et al. ESHRE Working Group on Oocyte Cryopreservation in Europe. Oocyte and ovarian tissue cryopreservation in European countries: statutory background, practice, storage and use. Hum Reprod Open. 2020;2020:hoaa016. https://doi.org/10.1093/hropen/hox003.; Calhaz-Jorge C., de Geyter C., Kupka, M.S. et al. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE. Hum Reprod. 2016;31(2):233–48. https://doi.org/10.1093/humrep/dex264.; Одинцова И.А., Русакова С.Э., Шмидт А.А., Тимошкова Ю.Л. Криоконсервация половых клеток: история и современное состояние вопроса. Гены и клетки. 2021;16(3):44–51. https://doi.org/10.23868/202110005.; Öztürk A.E., Bucak M.N., Bodu M. et al. Cryobiology and cryopreservation of sperm. In: Cryopreservation – Current Advances and Evaluations. Ed. M. Quain. IntechOpen, 2019. 1–52 https://doi.org/10.5772/intechopen.89789.; AbdelHafez F., Bedaiwy M., El-Nashar S.A. et al. Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update. 2009;15(2):153–64. https://doi.org/10.1093/humupd/dmn061.; Di Santo M., Tarozzi N., Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol. 2012;2012:854837. https://doi.org/10.1155/2012/854837.; Rios A.P., Botella I.M. Description and outcomes of current clinical techniques for sperm cryopreservation. EMJ Reprod Health. 2019;7(1):79–92. https://doi.org/10.33590/emjreprohealth/10310343.; Liu S., Li F. Cryopreservation of single-sperm: where are we today? Reprod Biol Endocrinol. 2020;18(1):41. https://doi.org/10.1186/s12958-020-00600-5.; Just A., Gruber I., Wöber M. et al. Novel method for the cryopreservation of testicular sperm and ejaculated spermatozoa from patients with severe oligospermia: a pilot study. Fertil Steril. 2004;82(2):445–7. https://doi.org/10.1016/j.fertnstert.2003.12.050.; Tomita K., Sakai S., Khanmohammadi M. et al. Cryopreservation of a small number of human sperm using enzymatically fabricated, hollow hyaluronan microcapsules handled by conventional ICSI procedures. J Assist Reprod Genet. 2016;33(4):501–11. https://doi.org/10.1007/s10815-016-0656-x.; Glander H.J., Schaller J. Hidden effects of cryopreservation on quality of human spermatozoa. Cell Tissue Bank. 2000;1(2):133–42. https://doi.org/10.1023/A:1010122800157.; Isachenko V., Isachenko E., Katkov I.I. et al. Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, DNA integrity, and fertilization ability. Biol Reprod. 2004;71(4):1167–73. https://doi.org/10.1095/biolreprod.104.028811.; Maheshwari A., Bhattacharya S. Elective frozen replacement cycles for all: ready for prime time? Hum Reprod. 2013;28(1):6–9. https://doi.org/10.1093/humrep/des386.; Cohen J., Alikani M. The time has come to radically rethink assisted reproduction. Reprod Biomed Online. 2013;27(4):323–4. https://doi.org/10.1016/j.rbmo.2013.08.001.; Bosch E., De Vos M., Humaidan P. The future of cryopreservation in assisted reproductive technologies. Front Endocrinol (Lausanne). 2020;11:67. https://doi.org/10.3389/fendo.2020.00067.; McLaughlin M., Albertini D.F., Wallace W.H.B. et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24(3):135–42. https://doi.org/10.1093/molehr/gay002.; Gook D.A., Edgar D.H. Cryopreservation of female reproductive potential. Best Pract Res Clin Obstet Gynaecol. 2019;55:23–36.https://doi.org/10.18565/aig.2020.4.195-200.; Hussein R.S., Khan Z., Zhao Y. Fertility preservation in women: indications and options for therapy. Mayo Clin Proc. 2020;95(4):770–83. https://doi.org/10.1016/j.mayocp.2019.10.009.; Rivas Leonel E.C., Lucci C.M., Amorim C.A. Cryopreservation of human ovarian tissue: a review. Transfus Med Hemother. 2019;46(3):173–81. https://doi.org/10.1159/000499054.; Taylor M.J., Weegman B.P., Baicu S.C. et al. New approaches to cryopreservation of cells, tissues, and organs. Transfus Med Hemother. 2019;46(3):197–215. https://doi.org/10.1159/000499453.; Pegg D.E. The history and principles of cryopreservation. Semin Reprod Med. 2002;20(1):5–13. https://doi.org/10.1055/s-2002-23515.; Torquato P., Giusepponi D., Bartolini D. et al. Pre-analytical monitoring and protection of oxidizable lipids in human plasma (vitamin E and ω-3 and ω-6 fatty acids): an update for redox-lipidomics methods. Free Radic Biol Med. 2021;176:142–8. https://doi.org/10.1016/j.freeradbiomed.2021.09.012.; Pegg D.E. Principles of cryopreservation. Methods Mol Biol. 2007;368:39–57. https://doi.org/10.1007/978-1-59745-362-2_3.; Cobo A., García-Velasco J. A., Coello A. et al. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105(3):755–64. https://doi.org/10.1016/j.fertnstert.2015.11.027.; Ferraretti A.P., Gianaroli L., Magli C. et al. Elective cryopreservation of all pronucleate embryos in women at risk of ovarian hyperstimulation syndrome: efficiency and safety. Hum Reprod. 1999;14(6):1457–60. https://doi.org/10.1093/humrep/14.6.1457.; Shapiro B.S., Daneshmand S.T., Garner F.C. et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8. https://doi.org/10.1016/j.fertnstert.2011.05.050.; Aghahosseini M., Aleyasin A., Sarfjoo F.S. et al. In vitro fertilization outcome in frozen versus fresh embryo transfer in women with elevated progesterone level on the day of HCG injection: an RCT. Int J Reprod Biomed. 2017;15(12):757–62.; Alteri A., Pisaturo V., Somigliana E. et al. Cryopreservation in reproductive medicine during the COVID-19 pandemic: rethinking policies and European safety regulations. Hum Reprod. 2020;35(12):2650–7. https://doi.org/10.1093/humrep/deaa210.; Christianson M.S., Stern J.E., Sun F. et al. Embryo cryopreservation and utilization in the United States from 2004-2013. F S Rep. 2020;1(2):71–7. https://doi.org/10.1016/j.xfre.2020.05.010.; Ladeira C., Koppen G., Scavone F. et al. The comet assay for human biomonitoring: eEffect of cryopreservation on DNA damage in different blood cell preparations. Mutat Res Genet Toxicol Environ Mutagen. 2019;843:11–7. https://doi.org/10.1016/j.mrgentox.2019.02.002.; Guerif F., Bidault R., Cadoret V. et al. Parameters guiding selection of best embryos for transfer after cryopreservation: a reappraisal. Hum Reprod. 2002;17(5):1321–6. https://doi.org/10.1093/humrep/17.5.1321.; Якубец Ю.А., Дешко А.С., Голубец Л.В. и др. Эффективность криоконсервации эмбрионов, полученных в культуре in vitro. Международный вестник ветеринарии. 2020;(3):169–75.; Rienzi L.F., Iussig B., Dovere L. et al. Perspectives in gamete and embryo cryopreservation. Semin Reprod Med. 2018;36(5):253–64. https://doi.org/10.1055/s-0038-1677463.; Telfer E.E. Future developments: In vitro growth (IVG) of human ovarian follicles. Acta Obstet Gynecol Scand. 2019;98(5):653–8. https://doi.org/10.1111/aogs.13592.; Anderson R.A., Baird D.T. The development of ovarian tissue cryopreservation in Edinburgh: translation from a rodent model through validation in a large mammal and then into clinical practice. Acta Obstet Gynecol Scand. 2019;98(5):545–9. https://doi.org/10.1111/aogs.13560.; Hong B., Hao Y. The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: a retrospective study. Medicine (Baltimore). 2020;99(9):e18768. https://doi.org/10.1097/MD.0000000000018768.; Gleicher N., Orvieto R.J. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10(1):21. https://doi.org/10.1186/s13048-017-0318-3.; Whaley D., Damyar K., Witek R.P. et al. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021;30:963689721999617. https://doi.org/10.1177/09636897219996.; Raju R., Bryant S.J., Wilkinson B.L. et al. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim Biophys Acta Gen Subj. 2021;1865(1):129749. https://doi.org/10.1016/j.bbagen.2020.129749.; Bojic S., Murray A., Bentley B.L. et al. Winter is coming: the future of cryopreservation. BMC Biol. 2021;19(1):56. https://doi.org/10.1186/s12915-021-00976-8.; Erol O.D., Pervin B., Seker M.E. et al. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells. 2021;13(9):1197–214. https://doi.org/10.4252/wjsc.v13.i9.1197.; Crisol M., Wu K., Laouar L. et al. Antioxidant additives reduce reactive oxygen species production in articular cartilage during exposure to cryoprotective agents. Cryobiology. 2020;96:114–21. https://doi.org/10.1016/j.cryobiol.2020.07.008.; Manchester L.C., Coto-Montes A., Boga J.A. et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403–19. https://doi.org/10.1111/jpi.12267.; Marcantonini G., Bartolini D., Zatini L. et al. Natural cryoprotective and cytoprotective agents in cryopreservation: a focus on melatonin. Molecules. 2022;27(10):3254. https://doi.org/10.3390/molecules27103254.; Len J.S., Koh W.S.D., Tan S.X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019;39(8):BSR20191601. https://doi.org/10.1042/BSR20191601.; Trounson A., Wood C., Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril. 1994;62(2):353–62. https://doi.org/10.1016/S0015-0282(16)56891-5.; Полякова М.В. Криоконсервация сперматогониальных стволовых клеток: возможности клинического применения для сохранения фертильности у пациентов предпубертатного возраста. Журнал медико-биологических исследований. 2017;5(3):33–42. https://doi.org/10.17238/issn2542-1298.2017.5.3.33.; Белова Д.А. Актуальные проблемы криоконсервации и хранения репродуктивного биоматериала человека. Lex Genetica. 2024;3(3):26–43. https://doi.org/10.17803/lexgen-2024-3-3-26-43.; Schulz M., Risopatrón J., Uribe P. et al. Human sperm vitrification: a scientific report. Andrology. 2020;8(6):1642–50. https://doi.org/10.1111/andr.12847.; Shah D., Rasappan, Shila, Gunasekaran K. A simple method of human sperm vitrification. MethodsX. 2019;6:2198–204. https://doi.org/10.1016/j.mex.2019.09.022.; Кравчук Я.Н., Калугина А.С., Быстрова О.В. и др. Эффективность и исходы программ cкриоконсервацией эмбрионов в протоколах вспомогательных репродуктивных технологий. Журнал акушерства и женских болезней. 2014;6(4):39–46. https://doi.org/10.17816/JOWD63439-46.; Краснопольская К.В., Сесина Н.И., Бадалян Г.В. и др. Медленное замораживание и витрификация эмбрионов. Сравнение эффективности. Проблемы репродукции. 2015;21(1):48–53. https://doi.org/10.26442/2079-5696_2018.5.59-62.; Пурге А.Р. Криоконсервация эмбрионов: к вопросу о понятии. Юридические исследования. 2022;9:1–9. https://doi.org/ 10.25136/2409-7136.2022.9.38707.; https://www.gynecology.su/jour/article/view/2516
-
13Academic Journal
Συγγραφείς: Зайцева Дарья Михайловна, ФГБОУ ВО «Кубанский государственный аграрный университет им. И.Т. Трубилина», Daria M. Zaitseva, the Kuban State Agrarian University, Кудрявцева Лариса Владимировна, Larisa V. Kudriavtseva
Πηγή: Education and the family in the context of sustainable development; 93-96 ; Образование и семья в контексте устойчивого развития; 93-96
Θεματικοί όροι: семейное право, суррогатное материнство, вспомогательные репродуктивные технологии, установление происхождения детей
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-09-6; https://phsreda.com/e-articles/10666/Action10666-115608.pdf; Об основах охраны здоровья граждан в Российской Федерации: Федеральный закон от 21.11.2011 г. №323-ФЗ (ред. от 01.09.2024 г.) // СЗ РФ. – 2011. – №48. – Ст. 6724.; Савицкая А.А. Актуальные проблемы правового регулирования суррогатного материнства / А.А. Савицкая, Л.В. Кудрявцева // Научное обеспечение агропромышленного комплекса: сборник статей по материалам 74-й научно-практической конференции студентов по итогам НИР за 2018 год. – Краснодар, 2019. – С. 1394–1398. EDN NIHEVM; Об отказе в принятии к рассмотрению жалобы граждан Ч.П. и Ч.Ю. на нарушение их конституционных прав положениями пункта 4 статьи 51 Семейного кодекса Российской Федерации и пункта 5 статьи 16 Федерального закона «Об актах гражданского состояния»: Определение Конституционного Суда РФ от 15.05.2012 г. №880-О // СПС «Консультант Плюс».; Мнение судьи Конституционного Суда Российской Федерации А.Н. Кокотова по вопросу принятия Определения Конституционного Суда РФ от 27.09.2018 г. №2318-О // СПС «Консультант Плюс».; О применении судами законодательства при рассмотрении дел, связанных с установлением происхождения детей: Постановление Пленума Верховного Суда РФ от 16.05.2017 г. №16 (ред. от 26.12.2017 г.) // Бюллетень Верховного Суда РФ. – 2017. – №7.; Кудрявцева Л.В. Актуальные проблемы семейного права / Л.В. Кудрявцева, С.А. Куемжиева, Л.В. Масленникова. – Краснодар: Кубанский государственный аграрный университет имени И.Т. Трубилина, 2020. – 101 с. EDN LULTUP; Определение Судебной коллегии по гражданским делам Верховного Суда Российской Федерации от 02.07.2019 г. №64-КГ19-6 // СПС «Консультант Плюс».; По делу о проверке конституционности статьи 3 Федерального закона «О дополнительных мерах государственной поддержки семей, имеющих детей» в связи с запросом Конаковского городского суда Тверской области: Постановление Конституционного Суда РФ от 29.06.2021 г. №30-П // СЗ РФ. – 2021. – №28 (ч. II). – Ст. 5629.; О дополнительных мерах государственной поддержки семей, имеющих детей: Федеральный закон от 29.12.2006 г. №256-ФЗ (ред. от 08.08.2024 г.) // СЗ РФ. – 2007. – №1 (ч. I). – Ст. 19.; https://phsreda.com/article/115608/discussion_platform
-
14Academic Journal
Συγγραφείς: Звонова Елена Владимировна, ФГБОУ ВО «Российский государственный социальный университет», Elena V. Zvonova, Russian State Social University, Стужук Дарья Николаевна, Daria N. Stuzhuk
Πηγή: Law, Economics and Management; 388-394 ; Актуальные вопросы экономики, права и социологии; 388-394
Θεματικοί όροι: социальные представления, культурные нормы, вспомогательные репродуктивные технологии, содержание социальных представлений, ядро социальных представлений, проблема бесплодия
Περιγραφή αρχείου: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-38-6; https://phsreda.com/e-articles/10714/Action10714-127335.pdf; Емельянова Т.П. Конструирование социальных представлений в условиях трансформации российского общества / Т.П. Емельянова. – М.: Институт психологии РАН, 2006. – 537 с. EDN QOFIHT; Бовина И.Б. Социальная психология здоровья и болезни / И.Б. Бовина. – 2-е изд., испр. – М.: Аспект пресс, 2008. – 263 с. EDN QLSWVB; Ростовская Т.К. Вспомогательные репродуктивные технологии глазами россиян / Т.К. Ростовская, О.В. Кучмаева // Вестник Российской академии наук. – 2021. – Т. 91. №9. – С. 879–888. DOI 10.31857/S0869587321090073. EDN YWRXVB; Филиппова Г.Г. Психологические аспекты вспомогательных репродуктивных технологий: обзор зарубежных и российских исследований / Г.Г. Филиппова // Современная зарубежная психология. – 2022. – Т. 11. №1. – С. 26–38. DOI 10.17759/jmfp.2022110103. EDN ODDRXB; Abric J.C. A structural approach to social representations // Representations of the social: Bridging theoretical traditions. Ed. By K. Deaux, G. Philogene. Oxford: Blackwell Publishers, 2001. Pp. 42–47.; Cohen G., Bessin M., Gaymard S. Social representations, media, and iconography: A semiodiscursive analysis of Facebook posts related to the COVID-19 pandemic // European Journal of Communication. 2022. №37 (6). P. 629–645. doi:10.1177/02673231221096332. EDN CFGQDD; Moscovici S. Social Representations. Explorations in Social Psychology. Cambridge, UK: Polity Press, 2000. 313 p.; Vergès P. L'evocation de l'argent: Une méthode pour la définition du noyau central d'une representation // Bulletin de Psychologie. 1992. 45 (405). Pp. 203–209.; Vergès P. Un programme de recherche au risque d'une démarche cognitive // Sociologie et cognition sociale / N. Ramognino, P. Vergès (eds). Aix-en-Provence: Presse de l’Université de Provence, 2005. Pp. 143–158.; https://phsreda.com/article/127335/discussion_platform
-
15Academic Journal
Συγγραφείς: V. A. Lebina, O. Kh. Shikhalakhova, A. A. Kokhan, I. Yu. Rashidov, K. A. Tazhev, A. V. Filippova, E. P. Myshinskaya, Yu. V. Symolkina, Yu. I. Ibuev, A. A. Mataeva, A. N. Sirotenko, T. T. Gabaraeva, A. I. Askerova, В. А. Лебина, О. Х. Шихалахова, А. А. Кохан, И. Ю. Рашидов, К. А. Тажев, А. В. Филиппова, Е. П. Мышинская, Ю. В. Сымолкина, Ю. И. Ибуев, А. А. Матаева, А. Н. Сиротенко, Т. Т. Габараева, А. И. Аскерова
Συνεισφορές: The authors declare no funding, Авторы заявляют об отсутствии финансовой поддержки
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 3 (2025); 423-442 ; Акушерство, Гинекология и Репродукция; Vol 19, No 3 (2025); 423-442 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: репродуктивная медицина, AI, assisted reproductive technologies, ART, infertility, in vitro fertilization, IVF, ethics, reproduction, reproductive medicine, ИИ, вспомогательные репродуктивные технологии, ВРТ, бесплодие, экстракорпоральное оплодотворение, ЭКО, этика, репродукция
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2359/1349; Shah P.K., Gher J.M. Human rights approaches to reducing infertility. Int J Gynaecol Obstet. 2023;162(1):368–74. https://doi.org/10.1002/ijgo.14878.; Корсак В.С., Смирнова А.А., Шурыгина О.В. Регистр ВРТ Российской ассоциации репродукции человека. Отчет за 2019 год. Проблемы репродукции. 2021;27(6):14–29. https://doi.org/10.17116/repro20212706114.; Villani M.T., Morini D., Spaggiari G. et al. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology. 2022;10(2):310–21. https://doi.org/10.1111/andr.13123.; Louis C.M., Erwin A., Handayani N. et al. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF. J Assist Reprod Genet. 2021;38(7):1627–39. https://doi.org/10.1007/s10815-021-02123-2.; Khosravi P., Kazemi E., Zhan Q. et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21. https://doi.org/10.1038/s41746-019-0096-y.; Ламоткин А.И., Корабельников Д.И., Ламоткин И.А. и др. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2024;17(2):243–50. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254.; Мелдо А.А., Уткин Л.В., Трофимова Т.Н. Искусственный интеллект в медицине: современное состояние и основные направления развития интеллектуальной диагностики. Лучевая диагностика и терапия. 2020;11(1):9–17. https://doi.org/10.22328/2079-5343-2020-11-1-9-17.; Адамян Л.В. Использование искусственного интеллекта в репродуктивной медицине. Проблемы репродукции. 2021;27(3):6–13. https://doi.org/10.17116/repro2021270316.; Hanassab S., Abbara A., Yeung A.C. et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55. https://doi.org/10.1038/s41746-024-01006-x.; Jiang V.S., Pavlovic Z.J., Hariton E. The role of artificial intelligence and machine learning in assisted reproductive technologies. Obstet Gynecol Clin North Am. 2023;50(4):747–62. https://doi.org/10.1016/j.ogc.2023.09.003.; Bormann C.L., Kanakasabapathy M.K., Thirumalaraju P. et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020;9:e55301. https://doi.org/10.7554/eLife.55301.; Curchoe C.L., Bormann C., Hammond E. et al. Assuring quality in assisted reproduction laboratories: assessing the performance of ART Compass – a digital art staff management platform. J Assist Reprod Genet. 2023;40(2):265–78. https://doi.org/10.1007/s10815-023-02713-2.; Jiang V.S., Bormann C.L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil Steril. 2023;120(1):17–23. https://doi.org/10.1016/j.fertnstert.2023.05.149.; Wang R., Pan W., Jin L. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139–R154. https://doi.org/10.1530/REP-18-0523.; Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021;(5):17–24. https://doi.org/10.18565/aig.2021.5.17-24.; Coelho Neto M.A., Ludwin A., Borrell A. et al. Counting ovarian antral follicles by ultrasound: a practical guide. Ultrasound Obstet Gynecol. 2018;51(1):10–20. https://doi.org/10.1002/uog.18945.; Li H., Fang J., Liu S. et al. CR-Unet: A Composite Network for Ovary and Follicle Segmentation in Ultrasound Images. IEEE J Biomed Health Inform. 2020;24(4):974–83. https://doi.org/10.1109/JBHI.2019.2946092.; Mathur P., Kakwani K., Kudavelly S., Ramaraju G.A. Deep learning based quantification of ovary and follicles using 3D transvaginal ultrasound in assisted reproduction. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2109–12. https://doi.org/10.1109/EMBC44109.2020.9176703.; Yang X., Li H., Wang Y. et al. Contrastive rendering with semi-supervised learning for ovary and follicle segmentation from 3D ultrasound. Med Image Anal. 2021;73:102134. https://doi.org/10.1016/j.media.2021.102134.; Liang X., Liang J., Zeng F. et al. Evaluation of oocyte maturity using artificial intelligence quantification of follicle volume biomarker by three-dimensional ultrasound. Reprod Biomed Online. 2022;45(6):1197–206. https://doi.org/10.1016/j.rbmo.2022.07.012.; Noor N., Vignarajan C.P., Malhotra N., Vanamail P. Three-dimensional automated volume calculation (sonography-based automated volume count) versus two-dimensional manual ultrasonography for follicular tracking and oocyte retrieval in women undergoing in vitro fertilization-embryo transfer: a randomized controlled trial. J Hum Reprod Sci. 2020;13(4):296–302. https://doi.org/10.4103/jhrs.JHRS_91_20.; Андреева Е.А., Хонина Н.А., Пасман Н.М., Черных Е.Р. Цитокины в регуляции овариального фолликулогенеза (обзор литературы). Проблемы репродукции. 2017;23(1):8–14. https://doi.org/10.17116/repro20172318-14.; Manna C., Nanni L., Lumini A., Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod Biomed Online. 2013;26(1):42–9. https://doi.org/10.1016/j.rbmo.2012.09.015.; Targosz A., Przystałka P., Wiaderkiewicz R., Mrugacz G. Semantic segmentation of human oocyte images using deep neural networks. Biomed Eng Online. 2021;20(1):40. https://doi.org/10.1186/s12938-021-00864-w.; Fjeldstad J., Qi W., Mercuri N. et al. An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes. Reprod Biomed Online. 2024;48(6):103842. https://doi.org/10.1016/j.rbmo.2024.103842.; Boylan C.F., Sambo K.M., Neal-Perry G., Brayboy L.M. Ex ovo omnia-why don't we know more about egg quality via imaging? Biol Reprod. 2024;110(6):1201–12. https://doi.org/10.1093/biolre/ioae080.; Alper M.M., Fauser B.C. Ovarian stimulation protocols for IVF: is more better than less? Reprod Biomed Online. 2017;34(4):345–53. https://doi.org/10.1016/j.rbmo.2017.01.010.; Glujovsky D., Pesce R., Miguens M. et al. How effective are the non-conventional ovarian stimulation protocols in ART? A systematic review and meta-analysis. J Assist Reprod Genet. 2020;37(12):2913–28. https://doi.org/10.1007/s10815-020-01966-5.; Mol B.W., Bossuyt P.M., Sunkara S.K. et al. Personalized ovarian stimulation for assisted reproductive technology: study design considerations to move from hype to added value for patients. Fertil Steril. 2018;109(6):968–79. https://doi.org/10.1016/j.fertnstert.2018.04.037.; Doroftei B., Ilie O.D., Anton N. et al. A narrative review discussing the efficiency of personalized dosing algorithm of follitropin delta for ovarian stimulation and the reproductive and clinical outcomes. Diagnostics. 2023;13(2):177. https://doi.org/10.3390/diagnostics13020177.; Haahr T., Esteves S.C., Humaidan P. Individualized controlled ovarian stimulation in expected poor-responders: an update. Reprod Biol Endocrinol. 2018;16(1):20. https://doi.org/10.1186/s12958-018-0342-1.; Hariton E., Pavlovic Z., Fanton M., Jiang V.S. Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertil Steril. 2023;120(1):8–16. https://doi.org/10.1016/j.fertnstert.2023.05.148.; AlSaad R., Abd-Alrazaq A., Choucair F. et al. Harnessing artificial intelligence to predict ovarian stimulation outcomes in in vitro fertilization: scoping review. J Med Internet Res. 2024;26:e53396. https://doi.org/10.2196/53396.; Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 2019;36(4):591–600. https://doi.org/10.1007/s10815-019-01408-x.; Siristatidis C., Stavros S., Drakeley A. et al. Omics and artificial intelligence to improve in vitro fertilization (IVF) success: a proposed protocol. Diagnostics. 2021;11(5):743. https://doi.org/10.3390/diagnostics11050743.; Mann M., Kumar C., Zeng W.F., Strauss M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021;12(8):759–70. https://doi.org/10.1016/j.cels.2021.06.006.; Zieliński K., Pukszta S., Mickiewicz M. et al. Personalized prediction of the secondary oocytes number after ovarian stimulation: a machine learning model based on clinical and genetic data. PLoS Comput Biol. 2023;19(4):e1011020. https://doi.org/10.1371/journal.pcbi.1011020.; Letterie G., MacDonald A., Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions. Reprod Biomed Online. 2022;44(2):254–60. https://doi.org/10.1016/j.rbmo.2021.10.006.; Cesario A., D'Oria M., Bove F. et al. Personalized clinical phenotyping through systems medicine and artificial intelligence. J Pers Med. 2021;11(4):265. https://doi.org/10.3390/jpm11040265.; Ferrand T., Boulant J., He C. et al. Predicting the number of oocytes retrieved from controlled ovarian hyperstimulation with machine learning. Hum Reprod. 2023;38(10):1918–26. https://doi.org/10.1093/humrep/dead163.; Simopoulou M., Sfakianoudis K., Maziotis E. et al. Are computational applications the "crystal ball" in the IVF laboratory? The evolution from mathematics to artificial intelligence. J Assist Reprod Genet. 2018;35(9):1545–57. https://doi.org/10.1007/s10815-018-1266-6.; Basile N., Elkhatib I., Meseguer M. A strength, weaknesses, opportunities and threats analysis on time lapse. Curr Opin Obstet Gynecol. 2019;31(3):148–55. https://doi.org/10.1097/GCO.0000000000000534.; Zaninovic N., Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–20. https://doi.org/10.1016/j.fertnstert.2020.09.157.; Capalbo A., Rienzi L., Cimadomo D. et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29(6):1173–81. https://doi.org/10.1093/humrep/deu033.; Gardner D.K., Meseguer M., Rubio C., Treff N.R. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21(6):727–47. https://doi.org/10.1093/humupd/dmu064.; Rubio I., Galán A., Larreategui Z. et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e5. https://doi.org/10.1016/j.fertnstert.2014.07.738.; Meng Q., Xu Y., Zheng A. et al. Noninvasive embryo evaluation and selection by time-lapse monitoring vs. conventional morphologic assessment in women undergoing in vitro fertilization/intracytoplasmic sperm injection: a single-center randomized controlled study. Fertil Steril. 2022;117(6):1203–12. https://doi.org/10.1016/j.fertnstert.2022.02.015.; Fruchter-Goldmeier Y., Kantor B., Ben-Meir A. et al. An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential. Sci Rep. 2023;13(1):14617. https://doi.org/10.1038/s41598-023-40923-x.; Siristatidis C., Pouliakis A., Chrelias C., Kassanos D. Artificial intelligence in IVF: a need. Syst Biol Reprod Med. 2011;57(4):179–85. https://doi.org/10.3109/19396368.2011.558607.; Bori L., Paya E., Alegre L. et al. Novel and conventional embryo parameters as input data for artificial neural networks: an artificial intelligence model applied for prediction of the implantation potential. Fertil Steril. 2020;114(6):1232–41. https://doi.org/10.1016/j.fertnstert.2020.08.023.; Fordham D.E., Rosentraub D., Polsky A.L. et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum Reprod. 2022;37(10):2275–90. https://doi.org/10.1093/humrep/deac171.; Milewski R., Kuczyńska A., Stankiewicz B., Kuczyński W. How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Adv Med Sci. 2017;62(1):202–6. https://doi.org/10.1016/j.advms.2017.02.001.; Liu X., Lou H., Zhang J. et al. Clinical outcome analysis of frozen-thawed embryo transfer on Day 7. Front Endocrinol. 2022;13:1082597. https://doi.org/10.3389/fendo.2022.1082597.; Canosa S., Licheri N., Bergandi L. et al. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development. J Ovarian Res. 2024;17(1):63. https://doi.org/10.1186/s13048-024-01376-6.; Luong T.M., Le N.Q.K. Artificial intelligence in time-lapse system: advances, applications, and future perspectives in reproductive medicine. J Assist Reprod Genet. 2024;41(2):239–52. https://doi.org/10.1007/s10815-023-02973-y.; Petersen B.M., Boel M., Montag M., Gardner D.K. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum Reprod. 2016;31(10):2231–44. https://doi.org/10.1093/humrep/dew188.; Reignier A., Girard J.M., Lammers J. et al. Performance of Day 5 KIDScore™ morphokinetic prediction models of implantation and live birth after single blastocyst transfer. J Assist Reprod Genet. 2019;36(11):2279–85. https://doi.org/10.1007/s10815-019-01567-x.; Tartia A.P., Wu C.Q., Gale J. et al. Time-lapse KIDScoreD5 for prediction of embryo pregnancy potential in fresh and vitrified-warmed single-embryo transfers. Reprod Biomed Online. 2022;45(1):46–53. https://doi.org/10.1016/j.rbmo.2022.03.019.; Брусиловский И.А., Лившиц И.В. Морфологическая оценка эмбрионов человека. «Коллеги, давайте договоримся!». Проблемы репродукции. 2018;24(2):63–8. https://doi.org/10.17116/repro201824263-68.; Lee C.I., Huang C.C., Lee T.H. et al. Associations between the artificial intelligence scoring system and live birth outcomes in preimplantation genetic testing for aneuploidy cycles. Reprod Biol Endocrinol. 2024;22(1):12. https://doi.org/10.1186/s12958-024-01185-y.; Ueno S., Berntsen J., Ito M. et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study. Fertil Steril. 2021;116(4):1172–80. https://doi.org/10.1016/j.fertnstert.2021.06.001.; Ezoe K., Shimazaki K., Miki T. et al. Association between a deep learning-based scoring system with morphokinetics and morphological alterations in human embryos. Reprod Biomed Online. 2022;45(6):1124–32. https://doi.org/10.1016/j.rbmo.2022.08.098.; Johansen M.N., Parner E.T., Kragh M.F. et al. Comparing performance between clinics of an embryo evaluation algorithm based on time-lapse images and machine learning. J Assist Reprod Genet. 2023;40(9):2129–37. https://doi.org/10.1007/s10815-023-02871-3.; Жигалина Д.И., Скрябин Н.А., Канбекова О.Р. и др. Структура хромосомных аномалий в циклах ЭКО-ПГС. Медицинская генетика. 2019;18(3):47–54. https://doi.org/10.25557/2073-7998.2019.03.47-54.; Alfarawati S., Fragouli E., Colls P. et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95(2):520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003.; Fragouli E. Next generation sequencing for preimplantation genetic testing for aneuploidy: friend or foe? Fertil Steril. 2018;109(4):606–7. https://doi.org/10.1016/j.fertnstert.2018.01.028.; Sato T., Sugiura-Ogasawara M., Ozawa F. et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34(12):2340–8. https://doi.org/10.1093/humrep/dez229.; Cozzolino M., Diaz-Gimeno P., Pellicer A., Garrido N. Evaluation of the endometrial receptivity assay and the preimplantation genetic test for aneuploidy in overcoming recurrent implantation failure. J Assist Reprod Genet. 2020;37(12):2989–97. https://doi.org/10.1007/s10815-020-01948-7.; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Electronic address: ASRM@asrm.org; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109(3):429–36. https://doi.org/10.1016/j.fertnstert.2018.01.002.; Fitz V.W., Kanakasabapathy M.K., Thirumalaraju P. et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. J Assist Reprod Genet. 2021;38(10):2663–70. https://doi.org/10.1007/s10815-021-02318-7.; Buldo-Licciardi J., Large M.J., McCulloh D.H. et al. Utilization of standardized preimplantation genetic testing for aneuploidy (PGT-A) via artificial intelligence (AI) technology is correlated with improved pregnancy outcomes in single thawed euploid embryo transfer (STEET) cycles. J Assist Reprod Genet. 2023;40(2):289–99. https://doi.org/10.1007/s10815-022-02695-7.; Chavez-Badiola A., Flores-Saiffe-Farías A., Mendizabal-Ruiz G. et al. Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online. 2020;41(4):585–93. https://doi.org/10.1016/j.rbmo.2020.07.003.; Diakiw S.M., Hall J.M.M., VerMilyea M. et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105–17. https://doi.org/10.1016/j.rbmo.2022.07.018.; Popovic M., Borot L., Lorenzon A.R. et al. Implicit bias in diagnosing mosaicism amongst preimplantation genetic testing providers: results from a multicenter study of 36395 blastocysts. Hum Reprod. 2024;39(1):258–74. https://doi.org/10.1093/humrep/dead213.; Muñoz E., Bronet F., Lledo B. et al. Representing the Special Interest Group in Reproductive Genetics of the Spanish Society of Fertility. To transfer or not to transfer: the dilemma of mosaic embryos – a narrative review. Reprod Biomed Online. 2024;48(3):103664. https://doi.org/10.1016/j.rbmo.2023.103664.; Greco E., Minasi M.G., Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90. https://doi.org/10.1056/NEJMc1500421.; Greco E., Greco P.F., Listorti I. et al. The mosaic embryo: what it means for the doctor and the patient. Minerva Obstet Gynecol. 2024;76(1):89–101. https://doi.org/10.23736/S2724-606X.23.05281-8.; Yakovlev P., Vyatkina S., Polyakov A. et al. Neonatal and clinical outcomes after transfer of a mosaic embryo identified by preimplantation genetic testing for aneuploidies. Reprod Biomed Online. 2022;45(1):88–-100. https://doi.org/10.1016/j.rbmo.2022.01.010.; Basile N., Nogales Mdel C., Bronet F. et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699–704. https://doi.org/10.1016/j.fertnstert.2013.12.005.; Li X., Yao Y., Zhao D. et al. Clinical outcomes of single blastocyst transfer with machine learning guided noninvasive chromosome screening grading system in infertile patients. Reprod Biol Endocrinol. 2024;22(1):61. https://doi.org/10.1186/s12958-024-01231-9.; Ortiz J.A., Morales R., Lledó B. et al. Application of machine learning to predict aneuploidy and mosaicism in embryos from in vitro fertilization cycles. AJOG Glob Rep. 2022;2(4):100103. https://doi.org/10.1016/j.xagr.2022.100103.; Ma B.X., Zhao G.N., Yi Z.F. et al. Enhancing clinical utility: deep learning-based embryo scoring model for non-invasive aneuploidy prediction. Reprod Biol Endocrinol. 2024;22(1):58. https://doi.org/10.1186/s12958-024-01230-w.; Zou Y., Pan Y., Ge N. et al. Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation? Reprod Biomed Online. 2022;45(4):643–51. https://doi.org/10.1016/j.rbmo.2022.06.007.; Yuan Z., Yuan M., Song X. et al. Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments. Sci Rep. 2023;13(1):2322. https://doi.org/10.1038/s41598-023-29319-z.; Popovic M., Dhaenens L., Boel A. et al. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26(3):313–34. https://doi.org/10.1093/humupd/dmz050.; Diakiw S.M., Hall J.M.M., VerMilyea M.D. et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022;37(8):1746–59. https://doi.org/10.1093/humrep/deac131.; Weimar C.H., Post Uiterweer E.D., Teklenburg G. et al. In-vitro model systems for the study of human embryo-endometrium interactions. Reprod Biomed Online. 2013;27(5):461–76. https://doi.org/10.1016/j.rbmo.2013.08.002.; Lacconi V., Massimiani M., Carriero I. et al. When the embryo meets the endometrium: identifying the features required for successful embryo implantation. Int J Mol Sci. 2024;25(5):2834. https://doi.org/10.3390/ijms25052834.; Ruiz-Alonso M., Valbuena D., Gomez C. et al. Endometrial Receptivity Analysis (ERA): data versus opinions. Hum Reprod Open. 2021;2021(2):hoab011. https://doi.org/10.1093/hropen/hoab011.; Li B., Duan H., Wang S. et al. Establishment of an artificial neural network model using immune-infiltration related factors for endometrial receptivity assessment. Vaccines. 2022;10(2):139. https://doi.org/10.3390/vaccines10020139.; Liang X., He J., He L. et al. An ultrasound-based deep learning radiomic model combined with clinical data to predict clinical pregnancy after frozen embryo transfer: a pilot cohort study. Reprod Biomed Online. 2023;47(2):103204. https://doi.org/10.1016/j.rbmo.2023.03.015.; Сысоева А.П., Макарова Н.П., Калинина Е.А. и др. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020;(7):28–36. https://doi.org/10.18565/aig.2020.7.28-36.; Wald M., Sparks A., Sandlow J. et al. Computational models for prediction of IVF/ICSI outcomes with surgically retrieved spermatozoa. Reprod Biomed Online. 2005;11(3):325–31. https://doi.org/10.1016/s1472-6483(10)60840-1.; Benchaib M., Labrune E., Giscard d'Estaing S. et al. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth. Reprod Med Biol. 2022;21(1):e12486. https://doi.org/10.1002/rmb2.12486.; Kato K., Ueno S., Berntsen J. et al. Comparing prediction of ongoing pregnancy and live birth outcomes in patients with advanced and younger maternal age patients using KIDScore™ day 5: a large-cohort retrospective study with single vitrified-warmed blastocyst transfer. Reprod Biol Endocrinol. 2021;19(1):98. https://doi.org/10.1186/s12958-021-00767-4.; VerMilyea M., Hall J.M.M., Diakiw S.M. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770–84. https://doi.org/10.1093/humrep/deaa013.; Савельева Г.М., Коноплянников А.Г., Гергерт Е.В. и др. Прегравидарная подготовка у больных с бесплодием и неэффективностью экстракорпорального оплодотворения в анамнезе. Российский вестник акушера-гинеколога. 2019;19(5):43–51. https://doi.org/10.17116/rosakush20191905143.; Доброхотова Ю.Э., Джохадзе Л.С. Комплексная прегравидарная подготовка – реальный путь улучшения перинатальных исходов. Проблемы репродукции. 2019;25(6):38–43. https://doi.org/10.17116/repro20192506138.; Доскина Е.В., Саркисова А.А. Прегравидарная подготовка и особенности пациенток с эндокринными патологиями. Справочник поликлинического врача. 2018;(3):60–4.; Щербакова Л.Н., Гаврикова П.А., Куприян А.А. и др. Значение медикаментозной прегравидарной подготовки в реализации репродуктивной функции при бесплодии, обусловленном наружным генитальным эндометриозом. Клиническая фармакология и терапия. 2018;27(4):18–22.; Kim H.K. The effects of artificial intelligence chatbots on women's health: a systematic review and meta-analysis. Healthcare (Basel). 2024;12(5):534. https://doi.org/10.3390/healthcare12050534.; Segundo E., Carrere-Molina J., Aragón M., Mallol-Parera R. Advancing geospatial preconception health research in primary care through medical informatics and artificial intelligence. Health Place. 2024;89:103337. https://doi.org/10.1016/j.healthplace.2024.103337.; Kaya Y., Bütün Z., Çelik Ö. et al. The early prediction of gestational diabetes mellitus by machine learning models. BMC Pregnancy Childbirth. 2024;24(1):574. https://doi.org/10.1186/s12884-024-06783-7.; Fraire-Zamora J.J., Ali Z.E., Makieva S. et al. #ESHREjc report: on the road to preconception and personalized counselling with machine learning models. Hum Reprod. 2022;37(8):1955–7. https://doi.org/10.1093/humrep/deac111.; Arora U., Sengupta D., Kumar M. et al. Perceiving placental ultrasound image texture evolution during pregnancy with normal and adverse outcome through machine learning prism. Placenta. 2023;140:109–16. https://doi.org/10.1016/j.placenta.2023.07.014.; Демкина Е.А., Иванова Н.А. Правовые и этические аспекты использования искусственного интеллекта в репродуктивной медицине. Вестник Саратовской государственной юридической академии. 2024;3(158):122–7. https://doi.org/10.24412/2227-7315-2024-3-122-127.; Si K., Huang B., Jin L. Application of artificial intelligence in gametes and embryos selection. Hum Fertil. 2023;26(4):757–77. https://doi.org/10.1080/14647273.2023.2256980.; Hogan N.R., Davidge E.Q., Corabian G. On the ethics and practicalities of artificial intelligence, risk assessment, and race. J Am Acad Psychiatry Law. 2021;49(3):326–34. https://doi.org/10.29158/JAAPL.200116-20.; Serdarogullari M., Liperis G., Sharma K. et al. Unpacking the artificial intelligence toolbox for embryo ploidy prediction. Hum Reprod. 2023;38(12):2538–42. https://doi.org/10.1093/humrep/dead223.; Allahbadia G.N., Allahbadia S.G., Gupta A. In contemporary reproductive medicine human beings are not yet dispensable. J Obstet Gynaecol India. 2023;73(4):295–300. https://doi.org/10.1007/s13224-023-01747-x.; Senders J.T., Zaki M.M., Karhade A.V. et al. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018;160(1):29–38. https://doi.org/10.1007/s00701-017-3385-8.; Horer S., Feichtinger M., Rosner M., Hengstschläger M. Pluripotent stem cell-derived in vitro gametogenesis and synthetic embryos – it is never too early for an ethical debate. Stem Cells Transl Med. 2023;12(9):569–75. https://doi.org/10.1093/stcltm/szad042.; Hengstschläger M. Artificial intelligence as a door opener for a new era of human reproduction. Hum Reprod Open. 2023;2023(4):hoad043. https://doi.org/10.1093/hropen/hoad043.; Harper J., Magli M.C., Lundin K. et al. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2012;27(2):303–13. https://doi.org/10.1093/humrep/der414.; Medenica S., Zivanovic D., Batkoska L. et al. The future is coming: artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes – the value of regulatory frameworks. Diagnostics. 2022;12(12):2979. https://doi.org/10.3390/diagnostics12122979.; Драпкина Ю.С., Калинина Е.А., Макарова Н.П. и др. Искусственный интеллект в репродуктивной медицине: этические и клинические аспекты. Акушерство и гинекология. 2022;(11):37–44. https://doi.org/10.18565/aig.2022.11.37-44.; https://www.gynecology.su/jour/article/view/2359
-
16Academic Journal
Συγγραφείς: K. R. Bakhtiyarov, I. V. Ignatko, A. S. Zueva, E. V. Siniakova, T. D. Kapyrina, К. Р. Бахтияров, И. В. Игнатко, А. С. Зуева, Е. В. Синякова, Т. Д. Капырина
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 2 (2025); 273-281 ; Акушерство, Гинекология и Репродукция; Vol 19, No 2 (2025); 273-281 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: повторные неудачи имплантации, uterine microbiome, assisted reproductive technologies, ART, in vitro fertilization, IVF, infertility, repeated implantation failures, микробиом матки, вспомогательные репродуктивные технологии, ВРТ, экстракорпоральное оплодотворение, ЭКО, бесплодие
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2360/1325; Шермухамедова М.П., Хомидова Г.Ж., Насриддинова К.П. Современные подходы к диагностике и лечению женского бесплодия. Экономика и социум. 2022;(1–2):408–12.; Li P., Wei K., He X. et al. Vaginal probiotic Lactobacillus crispatus seems to inhibit spem activity and subsequently reduces pregnancies in rat. Front Cell Dev Bioly. 2021;9:705690. https://doi.org/10.3389/fcell.2021.705690.; V?in?m? S., Saqib S., Kalliala I. et al. Longitudinal analysis of vaginal microbiota during IVF fresh embryo transfer and in early pregnancy. Microbiol Spectr. 2023;11(6):e0165023. https://doi.org/10.1128/spectrum.01650-23.; Tian Q., Jin S., Zhang G. et al. Assessing vaginal microbiome through Vaginal Microecology Evaluation System as a predictor for in vitro fertilization outcomes: a retrospective study. Front Endocrinol. 2024:9(15):1380187. https://doi.org/10.3389/fendo.2024.1380187.; Рудакова Е.Б., Стрижова Т.В., Федорова Е.А. и др. Материнские факторы риска неудач и дефектов имплантации после ЭКО. Медицинский совет. 2020;(13):166–78. https://doi.org/10.21518/2079-701X-2020-13-166-178.; Подзолкова Н.М., Шамугия, Н.Л. Варлакова П.М. Роль фактора эндометрия в повторных неудачах имплантации (обзор литературы). Медицинский алфавит. 2023;(3):30–6. https://doi.org/10.33667/2078-5631-2023-3-30-36.; Barrientos-Dur?n A., Fuentes-L?pez A., de Salazar A. et al. Reviewing the composition of vaginal microbiota: inclusion of nutrition and probiotic factors in the maintenance of eubiosis. Nutrients. 2020;12(2):419. https://doi.org/10.3390/nu12020419.; Foteinidou P., Exindari M., Chatzidimitriou D., Gioula G. Endometrial microbiome and its correlation to female infertility: a systematic review and meta-analysis. Acta Microbiologica Hellenica. 2024;69(1):14–28. https://doi.org/10.3390/amh69010004.; Elkafas H., Walls M., Al-Hendy A., Ismail N. Gut and genital tract microbiomes: dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol. 2022;12:1059825. https://doi.org/10.3389/fcimb.2022.1059825.; Wensel C.R., Pluznick J.L., Salzberg S.L., Sears C.L. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Invest. 2022;132(7):e154944. https://doi.org/10.1172/JCI154944.; Sola-Leyva A., Andr?s-Le?n E., Molina N.M. et al. Mapping the entire functionally active endometrial microbiota. Hum Reprod. 2021;36(4):1021–31. https://doi.org/10.1093/humrep/deaa372.; Vanstokstraeten R., Callewaert E., Blotwijk S. et al. Comparing vaginal and endometrial microbiota using culturomics: proof of concept. Int J Mol Sci. 2023;24(6):5947. https://doi.org/10.3390/ijms24065947.; Gao X., Louwers Y.V., Laven J.S.E., Schoenmakers S. Clinical relevance of vaginal and endometrial microbiome investigation in women with repeated implantation failure and recurrent pregnancy loss. Int J Mol Sci. 2024;25(1):622. https://doi.org/10.3390/ijms25010622.; Carosso A., Revelli A., Gennarelli G. et al. Controlled ovarian stimulation and progesterone supplementation affect vaginal and endometrial microbiota in IVF cycles: a pilot study. J Assist Reprod Genet. 2020;37(9):2315–26. https://doi.org/10.1007/s10815-020-01878-4.; Kyono K., Hashimoto T., Nagai Y., Sakuraba Y. Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: a single-center pilot study. Reprod Med Biol. 2018;17(3):297–306. https://doi.org/10.1002/rmb2.12105.; Ji L., Peng C., Bao X. Effect of vaginal flora on clinical outcome of frozen embryo transfer. Front Cell Infect Microbiol. 2022;12:987292. https://doi.org/10.3389/fcimb.2022.987292.; Lledo B., Fuentes A., Lozano F. M. et al. Identification of vaginal microbiome associated with IVF pregnancy. Sci Rep. 2022;12(1):6807. https://doi.org/10.1038/s41598-022-10933-2.; Ravel J., Gajer P., Abdo Z. et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4680–7. https://doi.org/10.1073/pnas.1002611107.; France M.T., Ma B., Gajer P. et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome. 2020;8:166. https://doi.org/10.1186/s40168-020-00934-6.; Hugerth L.W., Krog M.C., Vomstein K. et al. Defining Vaginal Community Dynamics: daily microbiome transitions, the role of menstruation, bacteriophages, and bacterial genes. Microbiome. 2024;12(1):153. https://doi.org/10.1186/s40168-024-01870-5.; Haahr T., Jensen J.S., Thomsen L. et al. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients. Hum Reprod. 2016;31(4):795–803. https://doi.org/10.1093/humrep/dew026.; Lebedeva O.P., Popov V.N., Syromyatnikov M.Y. et al. Female reproductive tract microbiome and early miscarriages. APMIS. 2023;131(2):61–76. https://doi.org/10.1111/apm.13288.; Fu M., Zhang X., Liang Y. et al. Alterations in vaginal microbiota and associated metabolome in women with recurrent implantation failure. mBio. 2020;11(3):e03242-19. https://doi.org/10.1128/mBio.03242-19.; Lledo B., Fuentes A., Lozano F.M. et al. Identification of vaginal microbiome associated with IVF pregnancy. Sci Rep. 2022;12(1):6807. https://doi.org/10.1038/s41598-022-10933-2.; Wang R., Zhou G., Wu L. et al. The microbial composition of lower genital tract may affect the outcome of in vitro fertilization-embryo transfer. Front Microbiol. 2021;12:729744. https://doi.org/10.3389/fmicb.2021.729744.; Su W., Gong C., Zhong H. et al. Vaginal and endometrial microbiome dysbiosis associated with adverse embryo transfer outcomes. Reprod Biol Endocrinol. 2024;22(1):111. https://doi.org/10.1186/s12958-024-01274-y.; Koedooder R., Singer M., Schoenmakers S. et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Hum Reprod. 2019;34(6):1042–54. https://doi.org/10.1093/humrep/dez065.; Wang J., Li Z., Ma X. et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun. 2021:12(1):4191. https://doi.org/10.1038/s41467-021-24516-8.; Tomaiuolo R., Veneruso I., Cariati F., D'Argenio V. Microbiota and human reproduction: the case of female infertility. High Throughput. 2020;9(2):12. https://doi.org/10.3390/ht9020012.; Moreno I., Garcia-Grau I., Perez-Villaroya D. et al. Endometrial microbiota сomposition is associated with reproductive outcome in infertile patients. Microbiome. 2022;10(1):1. https://doi.org/10.1186/s40168-021-01184-w.; Chen Q., Zhang X., Hu Q. et al. The alteration of intrauterine microbiota in chronic endometritis patients based on 16S rRNA sequencing analysis. Ann Clin Microbiol Antimicrob. 2023;22(1):4. https://doi.org/10.1186/s12941-023-00556-4.; Leoni C., Ceci O., Manzari C. et al. Human endometrial microbiota at term of normal pregnancies. Genes. 2019;10(12):971. https://doi.org/10.3390/genes10120971.; Moreno I., Codo?er F.M., Vilella F. et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;6(215):684–703. https://doi.org/10.1016/j.ajog.2016.09.075.; Kaluanga Bwanga P., Tremblay-Lemoine P.L., Timmermans M. et al. The endometrial microbiota: challenges and prospects. Medicina. 2023;59(9):1540. https://doi.org/10.3390/medicina59091540.; Li F., Chen C., Wei W. et al. The metagenome of the female upper reproductive tract. Gigascience. 2018;7(10):giy107. https://doi.org/10.1093/gigascience/giy107.; Wang W., Feng D., Ling B. Biologia Futura: endometrial microbiome affects endometrial receptivity from the perspective of the endometrial immune microenvironment. Biol Futur. 2022;73(3):291–300. https://doi.org/10.1007/s42977-022-00134-3.; Zheng N., Guo R., Wang J. et al. Contribution of Lactobacillus iners to vaginal health and diseases: a systematic review. Front Cell Infect Microbiol. 2021;11:792787. https://doi.org/10.3389/fcimb.2021.792787.; Zhang H., Zou H., Zhang C., Zhang S. Chronic endometritis and the endometrial microbiota: implications for reproductive success in patients with recurrent implantation failure. Ann Clin Microbiol Antimicrob. 2024;23(1):49. https://doi.org/10.1186/s12941-024-00710-6.; Cariati F., Carotenuto C., Bagnulo F. et al. Endometrial microbiota profile in in-vitro fertilization (IVF) patients by culturomics-based analysis. Front Endocrinol. 2023;14:1204729. https://doi.org/10.3389/fendo.2023.1204729.; Баринова В.В., Кузнецова Н.Б., Буштырева И.О. и др. Микробиом эндометрия у женщин с многократными неудачами экстракорпорального оплодотворения. Вопросы гинекологии, акушерства и перинатологии. 2021;20(3):5–11. https://doi.org/10.20953/1726-1678-2021-3-5-11.; Баринова В.В., Кузнецова Н.Б., Буштырева И.О. и др. Микробиом эндометрия при многократных неудачах вспомогательных репродуктивных технологий и у здоровых женщин: где норма и где патология? Акушерство и гинекология. 2021;(6):105–14. https://doi.org/10.18565/aig.2021.6.105-114.; Турсунова Н.Б., Лебедева О.П., Алтухова О.Б., Нагорный А.В. Современный взгляд на роль микробиома женского репродуктивного тракта в исходах ЭКО. Акушерство, Гинекология и Репродукция. 2023;17(4):512–25. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.433.; Куценко И.И., Боровиков И.О., Кравцова Е.И. и др. Вагинальный и эндометриальный микробиом: оценка, влияние на имплантацию эмбриона. Медицинский вестник Юга России. 2023;14(3):5–15. https://doi.org/10.21886/2219-8075-2023-14-3-5-15.; Keburiya L.K., Smolnikova V.Y., Priputnevich T.V. et al. Does the uterine microbiota affect the reproductive outcomes in women with recurrent implantation failures? BMC Womens Health. 2022;22(1):168. https://doi.org/10.1186/s12905-022-01750-w.; https://www.gynecology.su/jour/article/view/2360
-
17Academic Journal
Συγγραφείς: Нажмутдинова, Дилбар К., Камилова, Ирода А., Рахманова, Сарвиноз Г., Назарова, Дилрабо Э.
Πηγή: JOURNAL OF HEALTHCARE AND LIFE-SCIENCE RESEARCH; Vol. 4 No. 2 (2025): Journal of Healthcare and Life-Science Research; 52-57
Θεματικοί όροι: Воспалительные заболевания женских половых органов, бесплодие, репродуктивное здоровье, экстракорпоральное оплодотворение (ЭКО), вспомогательные репродуктивные технологии (ВРТ)
Περιγραφή αρχείου: application/pdf
-
18Academic Journal
Πηγή: Медицина и организация здравоохранения, Vol 9, Iss 3 (2024)
Θεματικοί όροι: Medicine (General), R5-920, отделение патологии беременности, вспомогательные репродуктивные технологии, бесплодие, медико-социальная характеристика
Σύνδεσμος πρόσβασης: https://doaj.org/article/ffc5913dbc6a4ffabe19cf5442035c05
-
19Academic Journal
Πηγή: Медицина и организация здравоохранения, Vol 9, Iss 2 (2024)
Θεματικοί όροι: Medicine (General), беременные, R5-920, отделение патологии беременности, акушерский и перинатальный риск, бесплодие, вспомогательные репродуктивные технологии
Σύνδεσμος πρόσβασης: https://doaj.org/article/6ec39cdac2f849ac9869748c7d557ed5
-
20Academic Journal
Πηγή: Российский психологический журнал. 2023. Т. 20, № 2. С. 211-229
Θεματικοί όροι: материальное положение, психическое развитие, 05 social sciences, детско-родительские отношения, экстракорпоральное оплодотворение, физическое развитие, 03 medical and health sciences, семейная среда, 0302 clinical medicine, индуцированная беременность, вспомогательные репродуктивные технологии, супружеские отношения, 0501 psychology and cognitive sciences, дошкольный возраст
Σύνδεσμος πρόσβασης: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001129886