Showing 1 - 20 results of 592 for search '"ВРОЖДЕННЫЕ ПОРОКИ СЕРДЦА"', query time: 0.87s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: International Journal of Scientific Pediatrics; Vol. 4 No. 5 (2025): September-October; 1110-1114 ; Международный журнал научной педиатрии; Том 4 № 5 (2025): Сентябрь-Октябрь; 1110-1114 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 5 (2025): Sentabr-Oktabr; 1110-1114 ; 2181-2926

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: International Journal of Scientific Pediatrics; Vol. 4 No. 5 (2025): September-October; 1067-1071 ; Международный журнал научной педиатрии; Том 4 № 5 (2025): Сентябрь-Октябрь; 1067-1071 ; Xalqaro ilmiy pediatriya jurnali; Nashr soni. 4 No. 5 (2025): Sentabr-Oktabr; 1067-1071 ; 2181-2926

    File Description: application/pdf

  8. 8
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования исследования.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 5 (2025); 236-255 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 5 (2025); 236-255 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1672/1101; Аладьева Н.В. Основные вопросы обеспечения спортивной безопасности в сфере физической культуры и спорта // IX Международная научно-практическая конференция «Культура, наука, образование: проблемы и перспективы». 2021. Т. 1 №1. C. 261-266. doi:10.36906/KSP-2021/37а; Халиков А.А., Кузнецов К.О., Искужина Л.Р., Халикова Л.В. Судебно-медицинские аспекты внезапной аутопсия-отрицательной сердечной смерти // Судебно-медицинская экспертиза. 2021. Т. 64. №3. С. 59 63. Doi:10.17116/sudmed20216403159; Фатенков О.В., Рубаненко О.А., Яшин С.С., Авезова Д.Б. Современные аспекты понятия, этиологии, патогенеза и профилактики внезапной сердечной смерти // Наука и инновации в медицине. Т. 2. №. 2. С. 20-25. doi:10.35693/2500-1388-2017-0-2-20-25; Tsuda T, Fitzgerald KK, Temple J. Sudden cardiac death in children and young adults without structural heart disease: a comprehensive review // Rev Cardiovasc Med. Vol. 21. N. 2. P. 205-216. doi:10.31083/j.rcm.2020.02.55.; Malhotra A, Dhutia H, Finocchiaro G, et al. Outcomes of Cardiac Screening in Adolescent Soccer Players // N Engl J Med. Vol. 379. N. 6. P. 524-534. doi:10.1056/NEJMoa1714719.; Алимсултанов И.И., Крайнюков И.П. Внезапная смерть в спорте: причины, частота возникновения и профилактика // Известия Российской Военно-медицинской академии. 2020. Т. 39. №2S. C. 19. doi:10.17816/rmmar43192; Иванова А.А., Нестерец А.М., Максимов В.Н. Внезапная сердечная смерть: эпидемиология, этиология, патогенез и факторы риска // Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. №4S. С. 159-167. Doi:10.17802/2306-1278-2024-13-4S-159-167; Линчак Р.М., Недбайкин А.М., Семенцова Е.В., Юсова И.А., Струкова В.В., Кузовлев А.Н. Роль алкоголя в развитии внезапной сердечной смерти по данным регистра гермина (регистр внезапной сердечной смертности трудоспособного населения Брянской области) // Российский кардиологический журнал. 2017. №6. С. 108-112. Doi:10.15829/1560-4071-2017-6-108-112; Баглай Ю.С., Старинская М.А., Самородская И.В. Внезапная сердечная смерть: показатели смертности в регионах РФ в 2015 году // Кардиоваскулярная терапия и профилактика. 2017. Т. 16. №S. С. 5a-5b.; Зайцев Д.Н., Василенко П.В., Говорин А.В., и др. Результаты регистра внезапной сердечной смертности населения Забайкальского края (ЗОДИАК) 2017-2019гг // Российский кардиологический журнал. 2020. Т. 25. №11. С. 3997. Doi:10.15829/29/1560-4071-2020-3997; Hookana E, Junttila MJ, Puurunen VP, et al. Causes of nonischemic sudden cardiac death in the current era // Heart Rhythm. Vol. 8. N. 10. P. 1570-5. doi:10.1016/j.hrthm.2011.06.031.; Макаров Л.М., Комолятова В.Н., Киселева И.И., Солохин Ю.А. Распространенность внезапной сердечной смерти лиц молодого возраста в крупном мегаполисе // Медицинский алфавит. 2014. Т. 1. №3. С. 35-40.; Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006 // Circulation. Vol. 119. N. 8. P. 1085-92. doi:10.1161/CIRCULATIONAHA.108.804617.; Harmon KG. Incidence and Causes of Sudden Cardiac Death in Athletes // Clin Sports Med. Vol. 41. N. 3. P. 369-388. doi:10.1016/j.csm.2022.02.002.; Rattanawong P, Vutthikraivit W, Charoensri A, et al. Fever-Induced Brugada Syndrome Is More Common Than Previously Suspected: A Cross-Sectional Study from an Endemic Area // Ann Noninvasive Electrocardiol. Vol. 21. N. 2. P. 136-41. doi:10.1111/anec.12288.; Mitchell JH. J.B // Wolffe memorial lecture. Neural control of the circulation during exercise. Med Sci Sports Exerc. Vol. 22. N. 2. P. 141-54.; Isath A, Koziol KJ, Martinez MW, et al. Exercise and cardiovascular health: A state-of-the-art review // Prog Cardiovasc Dis. Vol. 79. P. 44-52. doi:10.1016/j.pcad.2023.04.008.; Maron BJ, Levine BD, Washington RL, et al. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 2: Preparticipation Screening for Cardiovascular Disease in Competitive Athletes: A Scientific Statement From the American Heart Association and American College of Cardiology // Circulation. 2015;132(22):e267-72. doi:10.1161/CIR.0000000000000238; Winkel BG, Risgaard B, Sadjadieh G, Bundgaard H, Haunsø S, Tfelt-Hansen J. Sudden cardiac death in children (1-18 years): symptoms and causes of death in a nationwide setting // Eur Heart J. Vol. 35. N. 13. P. 868-75. doi:10.1093/eurheartj/eht509.; Ларинцева О.С. Скрининг спортсменов на предмет внезапной сердечной смерти в разных странах. История и современность // Спортивная медицина: наука и практика. 2018. Т. 8. №3. С. 96-103. Doi:10.17238/ISSN2223-2524.2018.3.96; Gajewski KK, Saul JP. Sudden cardiac death in children and adolescents (excluding Sudden Infant Death Syndrome) // Ann Pediatr Cardiol. Vol. 3. N. 2. P. 107-12. doi:10.4103/0974-2069.74035.; Енисеева Е.С. Гипертрофическая кардиомиопатия: современные подходы к диагностике и лечению // Байкальский медицинский журнал. 2024. Т. 3. №3. С. 11-24. Doi:10.57256/2949-0715-2024-3-11-24; Norrish G, Ding T, Field E, et al. Development of a Novel Risk Prediction Model for Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy (HCM Risk-Kids) // JAMA Cardiol. Vol. 4. N. 9. P. 918-927. doi:10.1001/jamacardio.2019.2861.; Balaji S, DiLorenzo MP, Fish FA, et al. Risk factors for lethal arrhythmic events in children and adolescents with hypertrophic cardiomyopathy and an implantable defibrillator: An international multicenter study // Heart Rhythm. Vol. 16. N. 10. P. 1462-1467. doi:10.1016/j.hrthm.2019.04.040.; Melacini P, Maron BJ, Bobbo F, et al. Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy // Heart. Vol. 93. N. 6. P. 708-10. doi:10.1136/hrt.2006.099416.; Shah MJ, Silka MJ, Silva JNA, et al. 2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients // Cardiol Young. Vol. 31. N. 11. P. 1738-1769. doi:10.1017/S1047951121003413.; Sweeting J, Ingles J, Timperio A, et al. Physical activity in hypertrophic cardiomyopathy: prevalence of inactivity and perceived barriers // Open Heart. 2016;3(2):e000484. doi:10.1136/openhrt-2016-000484.; Lampert R, Ackerman MJ, Marino BS, et al. Vigorous Exercise in Patients With Hypertrophic Cardiomyopathy // JAMA Cardiol. Vol. 8. N. 6. P. 595-605. doi:10.1001/jamacardio.2023.1042; Liao YW, Redfern J, Somauroo JD, Cooper RM. Hypertrophic cardiomyopathy and exercise restrictions: time to let the shackles off? // Br J Cardiol. 2020;27(2):11. doi:10.5837/bjc.2020.011.; Lampert R, Chung EH, Ackerman MJ, et al. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play // Heart Rhythm. 2024;21(10):e151-e252. doi:10.1016/j.hrthm.2024.05.018; Writing Committee Members; Ommen SR, Ho CY, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines // J Am Coll Cardiol. 2024. Vol. 83. N 23. P. 2324-2405. doi:10.1016/j.jacc.2024.02.014.; Shibbani K, Abdulkarim A, Budts W, et al. Participation in Competitive Sports by Patients With Congenital Heart Disease: AHA/ACC and EAPC/ESC/AEPC Guidelines Comparison // J Am Coll Cardiol. Vol. 83. N. 7. P. 772-782. doi:10.1016/j.jacc.2023.10.037.; Алексеева Д.Ю., Кофейникова О.А., Марапов Д.И., Васичкина Е.С. Клинические особенности различных фенотипических форм аритмогенной кардиомиопатии в педиатрической популяции: систематический обзор и метаанализ // Российский кардиологический журнал. 2022. Т. 27. №4S. С. 5146. Doi:10.15829/1560-4071-2022-5146; Corrado D, Perazzolo Marra M, Zorzi A, et al. Diagnosis of arrhythmogenic cardiomyopathy: The Padua criteria // Int J Cardiol. Vol. 319. P. 106-114. doi:10.1016/j.ijcard.2020.06.005.; Lie ØH, Dejgaard LA, Saberniak J, et al. Harmful Effects of Exercise Intensity and Exercise Duration in Patients With Arrhythmogenic Cardiomyopathy // JACC Clin Electrophysiol. Vol. 4. N. 6. P. 744-753. doi:10.1016/j.jacep.2018.01.010.; Ruwald AC, Marcus F, Estes NA 3rd, et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy // Eur Heart J. Vol. 36. N. 27. P. 1735-43. doi:10.1093/eurheartj/ehv110.; James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers // J Am Coll Cardiol. Vol. 62. N. 14. P. 1290-1297. doi:10.1016/j.jacc.2013.06.033.; Agbaedeng TA, Roberts KA, Colley L, et al. Incidence and predictors of sudden cardiac death in arrhythmogenic right ventricular cardiomyopathy: a pooled analysis // Europace. Vol. 24. N. 10. P. 1665-1674. doi:10.1093/europace/euac014.; Pahl E, Sleeper LA, Canter CE, et al. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry // J Am Coll Cardiol. Vol. 59. N. 6. P. 607-15. doi:10.1016/j.jacc.2011.10.878.; Балмагамбетова Г.Н., Нугманова Ж.М., Лиcогор С.А., и др. Врожденные пороки сердца – одна из основных причин перинатальной и младенческой смертности // Актуальные проблемы теоретической и клинической медицины.2022. №1. С. 49-56.; Van Hare GF, Ackerman MJ, Evangelista JA, et al. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 4: Congenital Heart Disease: A Scientific Statement From the American Heart Association and American College of Cardiology // Circulation. 2015. Vol. 132. N22. P. e281-91. doi:10.1161/CIR.0000000000000240.; Bonow RO, Nishimura RA, Thompson PD, et al. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 5: Valvular Heart Disease: A Scientific Statement From the American Heart Association and American College of Cardiology // Circulation. 2015. Vol. 132. N 22. P. e292-7. doi:10.1161/CIR.0000000000000241.; Mishra V, Zaidi S, Axiaq A, Harky A. Sudden cardiac death in children with congenital heart disease: a critical review of the literature // Cardiol Young. Vol. 30. N. 11. P. 1559-1565. doi:10.1017/S1047951120003613.; Hoffman JI, Kaplan S. The incidence of congenital heart disease // J Am Coll Cardiol. Vol. 39. N. 12. P. 1890-900. doi:10.1016/s0735-1097(02)01886-7.; Minners J, Rossebo A, Chambers JB, et al. Sudden cardiac death in asymptomatic patients with aortic stenosis // Heart. Vol. 106. N. 21. P. 1646-1650. doi:10.1136/heartjnl-2019-316493.; Baleilevuka-Hart M, Teng BJ, Carson KA, et al. Sports Participation and Exercise Restriction in Children with Isolated Bicuspid Aortic Valve // Am J Cardiol. Vol. 125. N. 11. P. 1673-1677. doi:10.1016/j.amjcard.2020.02.039.; Baumgartner H., De Backer J., Babu-Narayan S.V., et al. Рекомендации ESC по ведению взрослых пациентов с врожденными пороками сердца 2020 // Российский кардиологический журнал. 2021. Т. 26. №9. С. 4702.; Morris SA, Flyer JN, Yetman AT, et al. Cardiovascular Management of Aortopathy in Children: A Scientific Statement From the American Heart Association // Circulation. 2024;150(11):e228-e254. doi:10.1161/CIR.0000000000001265.; Finocchiaro G, Behr ER, Tanzarella G, et al. Anomalous Coronary Artery Origin and Sudden Cardiac Death: Clinical and Pathological Insights From a National Pathology Registry // JACC Clin Electrophysiol. Vol. 5. N. 4. P. 516-522. doi:10.1016/j.jacep.2018.11.015.; Gentile F, Castiglione V, De Caterina R. Coronary Artery Anomalies // Circulation. 2021. Vol. 144. N 12. P. 983-996. doi:10.1161/CIRCULATIONAHA.121.055347.; Moorman AJ, Dean LS, Yang E, Drezner JA. Cardiovascular Risk Assessment in the Older Athlete // Sports Health. Vol. 13. N. 6. P. 622-629. doi:10.1177/19417381211004877.; Thompson PD, Myerburg RJ, Levine BD, et al. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 8: Coronary Artery Disease: A Scientific Statement from the American Heart Association and American College of Cardiology // Circulation. 2015. Vol. 132. N 22. P. e310-4. doi:10.1161/CIR.0000000000000244.; Курако М.М., Абрамян М.А., Бедин А.В. Аномальное отхождение огибающей коронарной артерии от правого синуса вальсальвы у детей: диагностика и течение // Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. №2. С. 26-33.; Арингазина Р.А., Мусина А.З., Жолдасова Н.Ж., и др. Синдром Вольфа–Паркинсона–Уайта: особенности патогенеза, диагностики и катетерной аблации // Кардиологический вестник. 2023. Т. 18. №3. С. 29 34. doi:10.17116/Cardiobulletin20231803129; Hong Yee L., Lee Yee L., Kuan Yee L. Фибрилляция предсердий с синдромом предвозбуждения у пациента в возрасте 81-го года: клиническое наблюдение // Вестник аритмологии. 2023. Т. 30. №4. С. e16-e19.; Etheridge SP, Escudero CA, Blaufox AD, et al. Life-Threatening Event Risk in Children With Wolff-Parkinson-White Syndrome: A Multicenter International Study // JACC Clin Electrophysiol. Vol. 4. N. 4. P. 433-444. doi:10.1016/j.jacep.2017.10.009; Escudero CA, Ceresnak SR, Collins KK, et al. Loss of ventricular preexcitation during noninvasive testing does not exclude high-risk accessory pathways: A multicenter study of WPW in children // Heart Rhythm. Vol. 17. N. 10. P. 1729-1737. doi:10.1016/j.hrthm.2020.05.035.; Ha FJ, Han HC, Sanders P, et al. Sudden Cardiac Death in the Young: Incidence, Trends, and Risk Factors in a Nationwide Study // Circ Cardiovasc Qual Outcomes. 2020. Vol. 13. N 10. P. e006470. doi:10.1161/CIRCOUTCOMES.119.006470.; Тарадин Г.Г., Игнатенко Г.А., Куглер Т.Е. Внезапная сердечная смерть при миокардите // Альманах клинической медицины. Т. 51. №. 2. С. 99-109. doi:10.18786/2072-0505-2023-51-010; Maron BJ, Zipes DP, Kovacs RJ. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Preamble, Principles, and General Considerations: A Scientific Statement From the American Heart Association and American College of Cardiology // J Am Coll Cardiol. Vol. 66. N. 21. P. 2343-2349. doi:10.1016/j.jacc.2015.09.032; Чупрова С.Н., Мельникова И.Ю. Синдром удлиненного интервала QT у юных спортсменов // Cardiac Arrhythmias. Т. 3. №. 1. С. 41-48. doi:10.17816/cardar321415; Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing // J Am Coll Cardiol. Vol. 47. N. 4. P. 764-8. doi:10.1016/j.jacc.2005.09.056.; Sauer AJ, Moss AJ, McNitt S, et al. Long QT syndrome in adults // J Am Coll Cardiol. Vol. 49. N. 3. P. 329-37. doi:10.1016/j.jacc.2006.08.057.; Tobert KE, Bos JM, Garmany R, Ackerman MJ. Return-to-Play for Athletes With Long QT Syndrome or Genetic Heart Diseases Predisposing to Sudden Death // J Am Coll Cardiol. Vol. 78. N. 6. P. 594-604. doi:10.1016/j.jacc.2021.04.026.; Mazzanti A, Maragna R, Vacanti G, et al. Interplay Between Genetic Substrate, QTc Duration, and Arrhythmia Risk in Patients With Long QT Syndrome // J Am Coll Cardiol. Vol. 71. N. 15. P. 1663-1671. doi:10.1016/j.jacc.2018.01.078.; Schwartz PJ. Idiopathic long QT syndrome: progress and questions // Am Heart J. Vol. 109. N. 2. P. 399-411. doi:10.1016/0002-8703(85)90626-x.; Кульбачинская Е.К., Березницкая В.В. Лечение катехоламинергической полиморфной желудочковой тахикардии // Вопросы современной педиатрии. 2024. Т. 23. №2. С. 63-70. Doi:10.15690/vsp.v23i2.2740; Кульбачинская Е.К., Березницкая В.В. CASQ2: клинико-генетические особенности катехоламинергической полиморфной желудочковой тахикардии в трех семьях // Альманах клинической медицины. Т. 51. №. 3. С. 192-199. doi:10.18786/2072-0505-2023-51-022; Leenhardt A, Lucet V, Denjoy I, et al. Catecholaminergic polymorphic ventricular tachycardia in children // A 7-year follow-up of 21 patients. Circulation. Vol. 91. N. 5. P. 1512-9. doi:10.1161/01.cir.91.5.1512.; Krahn AD, Behr ER, Hamilton R, et al. Brugada Syndrome // JACC Clin Electrophysiol. Vol. 8. N. 3. P. 386-405. doi:10.1016/j.jacep.2021.12.001.; Eime RM, Young JA, Harvey JT, et al. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport // Int J Behav Nutr Phys Act. 201. Vol. 10. P. 98. doi:10.1186/1479-5868-10-98.; Asif IM, Price D, Fisher LA, et al. Stages of psychological impact after diagnosis with serious or potentially lethal cardiac disease in young competitive athletes: a new model // J Electrocardiol. Vol. 48. N. 3. P. 298-310. doi:10.1016/j.jelectrocard.2014.12.018.; Chang C, Putukian M, Aerni G, et al. Mental health issues and psychological factors in athletes: detection, management, effect on performance and prevention: American Medical Society for Sports Medicine Position Statement-Executive Summary // Br J Sports Med. Vol. 54. N. 4. P. 216-220. doi:10.1136/bjsports-2019-101583.; Austin AV, DeLong RN, Kucera KL, et al. Differences in Survival Outcomes in Adolescent Male Basketball Players at School-Sponsored Versus Select Club-Sponsored Events and Implications for Racial Disparities // Circ Cardiovasc Qual Outcomes. 2022. Vol. 15. N 8. P. e008640. doi:10.1161/CIRCOUTCOMES.121.008640.

  9. 9
    Academic Journal

    Source: Eurasian Journal of Medical and Natural Sciences; Vol. 5 No. 10 (2025): Eurasian Journal of Medical and Natural Sciences; 59-69 ; Евразийский журнал медицинских и естественных наук; Том 5 № 10 (2025): Евразийский журнал медицинских и естественных наук; 59-69 ; Yevrosiyo tibbiyot va tabiiy fanlar jurnali; Jild 5 Nomeri 10 (2025): Евразийский журнал медицинских и естественных наук; 59-69 ; 2181-287X

    File Description: application/pdf

  10. 10
    Academic Journal

    Contributors: Исследование не имело спонсорской поддержки

    Source: Medical Herald of the South of Russia; Том 16, № 1 (2025); 46-54 ; Медицинский вестник Юга России; Том 16, № 1 (2025); 46-54 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2025-16-1

    File Description: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/2037/1076; https://www.medicalherald.ru/jour/article/downloadSuppFile/2037/1040; https://www.medicalherald.ru/jour/article/downloadSuppFile/2037/1074; Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913. https://doi.org/10.1183/13993003.01913-2018; Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43(38):3618- 3731. Erratum in: Eur Heart J. 2023;44(15):1312. https://doi.org/10.1093/eurheartj/ehac237.; Chazova IY, Martynyuk TV, Valieva ZS, Gratsianskaya SY, Aleevskaya AM, et al. Clinical and Instrumental Characteristics of Newly Diagnosed Patients with Various Forms of Pulmonary Hypertension according to the Russian National Registry. Biomed Res Int. 2020;2020:6836973. https://doi.org/10.1155/2020/6836973; Чазова И.Е., Мартынюк Т.В., Шмальц А.А., Грамович В.В., Данилов Н.М., и др. Евразийские рекомендации по диагностике и лечению лёгочной гипертензии (2023). Евразийский Кардиологический Журнал. 2024;(1):6-85. https://doi.org/10.38109/2225-1685-2024-1-6-85; Leber L, Beaudet A, Muller A. Epidemiology of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: identification of the most accurate estimates from a systematic literature review. Pulm Circ. 2021;11(1):2045894020977300. https://doi.org/10.1177/2045894020977300; Pektas A, Pektas BM, Kula S. An epidemiological study of paediatric pulmonary hypertension in Turkey. Cardiol Young. 2016;26(4):693-697. https://doi.org/10.1017/S1047951115001043; Chang KY, Duval S, Badesch DB, Bull TM, Chakinala MM, et al. Mortality in Pulmonary Arterial Hypertension in the Modern Era: Early Insights From the Pulmonary Hypertension Association Registry. J Am Heart Assoc. 2022;11(9):e024969. https://doi.org/10.1161/JAHA.121.024969; Валиева З.С., Валеева Э.Г., Глухова С.И., Мартынюк Т.В., Чазова И.Е. Разработка скринингового опросника для улучшения ранней диагностики легочной артериальной гипертензии. Системные гипертензии. 2014;11(4):62-67. eLIBRARY ID: 22808067 EDN: TFCVLL; Валиева З.С., Глухова С.И., Мартынюк Т.В., Чазова И.Е. Валидация опросника для ранней диагностики легочной артериальной гипертензиии хронической тромбоэмболической легочной гипертензии. Системные гипертензии. 2016;13(1):34-38. eLIBRARY ID: 26001737 EDN: VWZXCB; McGoon M, Gutterman D, Steen V, Barst R, McCrory DC, et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):14S-34S. https://doi.org/10.1378/chest.126.1_suppl.14S; https://www.medicalherald.ru/jour/article/view/2037

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Source: Mother and Baby in Kuzbass; № 3 (2024): сентябрь; 13-19 ; Мать и Дитя в Кузбассе; № 3 (2024): сентябрь; 13-19 ; 2542-0968 ; 1991-010X

    File Description: text/html; application/pdf

  19. 19
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 15, № 1 (2024); 78-86 ; Лучевая диагностика и терапия; Том 15, № 1 (2024); 78-86 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/975/634; Подзолков В.П., Шведунова В.Н. Врожденные пороки сердца // Российский медицинский журнал. 2001. № 10. 430 с.; Frommelt P., Lopez L., Dimas V.V., Eidem B., Han B.K., Ko H.H., Lorber R., Nii M., Printz B., Srivastava S., Valente A.M., Cohen M.S. Recommendations for Multimodality Assessment of Congenital Coronary Anomalies: A Guide from the American Society of Echocardiography: Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance // J. Am. Soc. Echocardiogr. 2020. Vol. 33, № 3. Р. 259-294. doi:10.1016/j.echo.2019.10.011. PMID: 32143778.; Базылев В.В, Черногривов А.Е. Хирургическое лечение транспозиции магистральных артерии // Детские болезни сердца и сосудов. 2016. Т. 13, № 1. С. 33–41; Cohen M.S., Mertens L.L. Educational series in congenital heart: Echocardiographic assessment of transposition of the great arteries and congenitally corrected transposition of the great arteries // Echo Res. Pract. 2019. Dec 1; Vol. 6, No. 4. R107-R119. doi:10.1530/ERP-19-0047. PMID: 31729212; PMCID: PMC6865365.; Files M.D., Arya B. Preoperative Physiology, Imaging, and Management of Transposition of the Great Arteries // Semin. Cardiothorac. Vasc. Anesth. 2015 Sep; Vol. 19, No. 3. Р. 210–222. doi:10.1177/1089253215581851. Epub 2015 Apr 21. PMID: 25900899.; Angelini P., de la Cruz M.V., Valencia A.M., Sánchez-Gómez C., Kearney D.L., Sadowinski S., Real G.R. Coronary arteries in transposition of the great arteries // Am.J.Cardiol. 1994. Nov 15; Vol. 74, No. 10. Р. 1037–1041. doi:10.1016/0002-9149(94)90855-9. PMID: 7977043.; Ефимочкин Г.А., Борисков М.В., Барбухатти К.О., Кандинский М.Л., Порханов В.А. Влияние анатомии коронарных артерий при транспозиции магистральных артерий на выбор метода реимплантации — возможно ли упростить стандартные классификации? // Сибирский журнал клинической и экспериментальной медицины. 2016. Т. 31, № 4. С. 48–55. https://doi.org/10.29001/2073-8552-2016-31-4-48-55.; Martins P., Castela E. Transposition of the great arteries // Orphanet J. Rare Dis. 2008. Oct 13; Vol. 3. Р. 27. doi:10.1186/1750–1172–3-27. PMID: 18851735; PMCID: PMC2577629.; Canan A., Ashwath R., Agarwal P.P., François C., Rajiah P. Multimodality Imaging of Transposition of the Great Arteries // Radiographics. 2021. Mar-Apr; Vol. 41, No. 2. Р. 338–360. doi:10.1148/rg.2021200069. Epub 2021 Jan 22. PMID: 33481689.; Xie L.J., Jiang L., Yang Z.G., Shi K., Xu H.Y., Li R., Diao K.Y., Guo Y.K. Assessment of transposition of the great arteries associated with multiple malformations using dual-source computed tomography // PLoS One. 2017. Nov 20; Vol. 12, No. 11. e0187578. doi:10.1371/journal.pone.0187578. PMID: 29155835; PMCID: PMC5695805.; Хасанова К.А., Терновой С.К., Абрамян М.А. Роль трансторакальной ЭхоКГ, КТ и МРТ сердца в оценке легочных артерий у детей с тетрадой Фалло // REJR. 2023. Т. 13, № 3. С. 39–50. doi:10.21569/2222-7415-2023-13-3-39-50.; Schidlow D.N., Jenkins K.J., Gauvreau K., Croti U.A., Giang D.T.C., Konda R.K., Novick W.M., Sandoval N.F., Castañeda A. Transposition of the Great Arteries in the Developing World: Surgery and Outcomes // J.Am.Coll Cardiol. 2017. Jan 3; Vol. 69, No. 1. Р. 43–51. doi:10.1016/j.jacc.2016.10.051. PMID: 28057249; PMCID: PMC7144419.; Odawara Y., Kawamura N., Yamasaki Y., Hashimoto J., Ishikawa S., Honda H. Evaluation of coronary artery variations using dual-source coronary computed tomography angiography in neonates with transposition of the great arteries // Jpn J. Radiol. 2019. Apr; Vol. 37, No. 4. Р. 308–314. doi:10.1007/s11604-018-00807-x. Epub 2019 Jan 2. PMID: 30603834.; Шабанова М.С. Сопоставление результатов измерения степени стенозирования просвета коронарных артерий при компьютерной томографии, внутрисосудистом ультразвуковом исследовании и коронарной ангиографии // REJR. 2016. Т. 6, № 3. С. 38–47. doi:10.21569/2222-7415-2016-6-3-38-47.; Swanson S.K., Sayyouh M.M., Bardo D.M.E., Ghadimi Mahani M., Lu J.C., Dorfman A.L., Agarwal P.P. Interpretation and Reporting of Coronary Arteries in Transposition of the Great Arteries: Cross-sectional Imaging Perspective // J. Thorac. Imaging. 2018. Jul; Vol. 33, No. 4. W14-W21. doi:10.1097/RTI.0000000000000333. PMID: 29927871.

  20. 20
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 693–705 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 693–705 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2231/1259; Erdoes G., Ahmed A., Kurz S.D. et al. Perioperative hemostatic management of patients with type A aortic dissection. Front Cardiovasc Med. 2023;10:1294505. https://doi.org/10.3389/fcvm.2023.1294505.; Simmons J.W., Powell M.F. Acute traumatic coagulopathy: pathophysiology and resuscitation. Br J Anaesth. 2016;117(suppl 3):iii31–iii43. https://doi.org/10.1093/bja/aew328.; Choi H., Aboulfatova K., Pownall H.J. et al. Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor. J Biol Chem. 2007;282(49):35604–11. https://doi.org/10.1074/jbc.M704047200.; Бицадзе В.О., Слуханчук Е.В., Солопова А.Г. и др. Фактор фон Виллебранда и ADAMTS13 как предикторы тромбоза у онкогинекологических пациенток на фоне химиотерапии. Вопросы гинекологии, акушерства и перинатологии. 2023;22(4):39–47. https://doi.org/10.20953/1726-1678-2023-4-39-47.; Rauch A., Susen S., Zieger B. Acquired von Willebrand syndrome in patients with ventricular assist device. Front Med. 2019;6:7. https://doi.org/10.3389/fmed.2019.00007.; Hassan M.I., Saxena A., Ahmad F. Structure and function of von Willebrand factor. Blood Coagul Fibrinolysis. 2012;23(1):11–22. https://doi.org/10.1097/MBC.0b013e32834cb35d.; Lancellotti S., Sacco M., Basso M., De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts. 2019;10(1):194–208. https://doi.org/10.1515/bmc-2019-0022.; Lenting P.J., Christophe O.D., Denis C.V. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125(13):2019–28. https://doi.org/10.1182/blood-2014-06-528406.; Kanaji S., Fahs S.A., Shi Q. et al. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost. 2012;10(8):1646–52. https://doi.org/10.1111/j.1538-7836.2012.04797.x.; Wang Y., Nguyen K.T., Ismail E. et al. Effect of pulsatility on shear-induced extensional behavior of Von Willebrand factor. Artif Organs. 2022;46(5):887–98. https://doi.org/10.1111/aor.14133.; Heilmann C., Geisen U., Beyersdorf F. et al. Acquired von Willebrand syndrome in patients with extracorporeal life support (ECLS). Intensive Care Med. 2012;38(1):62–8. https://doi.org/10.1007/s00134-011-2370-6.; Tauber H., Ott H., Streif W. et al. Extracorporeal membrane oxygenation induces short-term loss of high-molecular-weight von Willebrand factor multimers. Anesth Analg. 2015;120(4):730–6. https://doi.org/10.1213/ANE.0000000000000554.; Takahashi Y., Kalafatis M., Girma J.P. et al. Localization of a factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor. Blood. 1987;70(5):1679–82.; Kaufman D.P., Sanvictores T., Costanza M. Weibel-Palade bodies. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2024 Jan.; Simionescu M. The morphologic basis for normal endothelial permeability; intercellular pathways. Adv Exp Med Biol. 1977;82:965–8. https://doi.org/10.1007/978-1-4613-4220-5_188.; Romani de Wit T., Rondaij M.G., Hordijk P.L. et al. Real-time imaging of the dynamics and secretory behavior of Weibel-Palade bodies. Arterioscler Thromb Vasc Biol. 2003;23(5):755–61. https://doi.orgdoi:10.1161/01.ATV.0000069847.72001.E8.; Michaux G., Abbitt K.B., Collinson L.M. et al. The unique shape of endothelial Weibel-Palade bodies is essential to the physiological function of von Willebrand’s factor. Dev Cell. 2006;10(2):223–32. https://doi.orgdoi:10.1016/j.devcel.2005.12.012.; Григорьева К.Н., Гашимова Н.Р., Бицадзе В.О. и др. Клиническое значение состояния оси ADAMTS-13/vWF у беременных в различные триместры гестации. Акушерство, Гинекология и Репродукция. 2023;17(2):221–30. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.405.; Haberichter S.L., Jacobi P., Montgomery R.R. Critical independent regions in the VWF propeptide and mature VWF that enable normal VWF storage. Blood. 2003;101(4):1384–91. https://doi.org/10.1182/blood-2002-07-2281.; Michaux G., Pullen T.J., Haberichter S.L., Cutler D.F. P-selectin binds to the D'-D3 domains of von Willebrand factor in Weibel-Palade bodies. Blood. 2006;15;107(10):3922–4. https://doi.org/10.1182/blood-2005-09-3635.; Dayananda K.M., Singh I., Mondal N., Neelamegham S. von Willebrand factor self-association on platelet GpIb-alpha under hydrodynamic shear: effect on shear-induced platelet activation. Blood. 2010 11;116(19):3990–8. https://doi.org/10.1182/blood-2010-02-269266.; Ng C., Motto D., Di Paola J. Diagnostic approach to von Willebrand disease. Blood. 2015;125(13):2029–37. https://doi.org/10.1182/blood-2014-08-528398.; Barg A., Ossig R., Goerge T. et al. Soluble plasma-derived von Willebrand factor assembles to a haemostatically active filamentous network. Thromb Haemost. 2007;97(4):514–26.; Rack K., Huck V., Hoore M. et al. Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Sci Rep. 2017;7(1):14278. https://doi.org/10.1038/s41598-017-14346-4.; Kalagara T., Moutsis T., Yang Y. et al. The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood Adv. 2018;2(18):2347–57. https://doi.org/10.1182/bloodadvances.2017013995.; Dong J.F., Moake J.L., Nolasco L. et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 2002;100(12):4033–9. https://doi.org/10.1182/blood-2002-05-1401.; Porter S., Clark I.M., Kevorkian L., Edwards D.R. The ADAMTS metalloproteinases. Biochem J. 2005;386(Pt 1):15–27. https://doi.org/10.1042/BJ20040424.; Waldow H.C., Westhoff-Bleck M., Widera C. et al. Acquired von Willebrand syndrome in adult patients with congenital heart disease. Int J Cardiol. 2014;176(3):739–45. https://doi.org/10.1016/j.ijcard.2014.07.104.; Sadler J.E. Aortic stenosis, von Willebrand factor, and bleeding. N Engl J Med. 2003;349(4):323–5. https://doi.org/10.1056/NEJMp030055.; Loeffelbein F., Funk D., Nakamura L. et al. Shear-stress induced acquired von Willebrand syndrome in children with congenital heart disease. Interact Cardiovasc Thorac Surg. 2014;19(6):926–32. https://doi.org/10.1093/icvts/ivu305.; Nightingale T., Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost. 2013;11(Suppl 1):192–201. https://doi.org/10.1111/jth.12225.; Li Y., Li L., Dong F. et al. Plasma von Willebrand factor level is transiently elevated in a rat model of acute myocardial infarction. Exp Ther Med. 2015;10(5):1743–9. https://doi.org/10.3892/etm.2015.2721.; Metcalf D.J., Nightingale T.D., Zenner H.L. et al. Formation and function of Weibel-Palade bodies. J Cell Sci. 2008;121(Pt 1):19–27. https://doi.org/10.1242/jcs.03494.; Авдонин П.П., Цветаева Н.В., Гончаров Н.В. и др. Фактор Виллебранда в норме и при патологии. Биологические мембраны. 2021;38(4):237–56.; de Wit T.R., van Mourik J.A. Biosynthesis, processing and secretion of von Willebrand factor: biological implications. Best Pract Res Clin Haematol. 2001;14(2):241–55. https://doi.org/10.1053/beha.2001.0132.; Pawelzik S.C., Bäck M. von Willebrand factor's vascular crossroad. Cardiovasc Res. 2022; 29;118(2):353–4. https://doi.org/10.1093/cvr/cvab253.; Matsunari Y., Sugimoto M., Doi M. et al. Functional characterization of tissue factor in von Willebrand factor-dependent thrombus formation under whole blood flow conditions. Int J Hematol. 2016;104(6):661–8. https://doi.org/10.1007/s12185-016-2086-z.; Lin J., Ding X., Yang P. et al. Force-induced biphasic regulation of VWF cleavage by ADAMTS13. Thromb Res. 2023;229:99–106. https://doi.org/10.1016/j.thromres.2023.06.024.; Lippok S., Radtke M., Obser T. et al. Shear-induced unfolding and enzymatic cleavage of full-length vWF multimers. Biophys J. 2016;110(3):545–54. https://doi.org/10.1016/j.bpj.2015.12.023.; Sixma J.J., Schiphorst M.E., Verweij C.L., Pannekoek H. Effect of deletion of the A1 domain of von Willebrand factor on its binding to heparin, collagen and platelets in the presence of ristocetin. Eur J Biochem. 1991;196(2):369–75. https://doi.org/10.1111/j.1432-1033.1991.tb15826.x.; Adachi T., Matsushita T., Dong Z. et al. Identification of amino acid residues essential for heparin binding by the A1 domain of human von Willebrand factor. Biochem Biophys Res Commun. 2006;339(4):1178–83. https://doi.org/10.1016/j.bbrc.2005.11.126.; Huffman J.E., de Vries P.S., Morrison A.C. et al. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood. 2015;126(11):19–29. https://doi.org/10.1182/blood-2015-02-624551.; Brass L.F., Diamond S.L. Transport physics and biorheology in the setting of hemostasis and thrombosis. J Thromb Haemost. 2016;14(5):906–17. https://doi.org/10.1111/jth.13280.; Fogarty H., Ahmad A., Atiq F. et al. VWF-ADAMTS13 axis dysfunction in children with sickle cell disease treated with hydroxycarbamide vs blood transfusion. Blood Adv. 2023;7(22):6974–89. https://doi.org/10.1182/bloodadvances.2023010824.; Michels A., Lillicrap D., Yacob M. Role of von Willebrand factor in venous thromboembolic disease. JVS Vasc Sci. 2021;3:17–29. https://doi.org/10.1016/j.jvssci.2021.08.002.; Receveur N., Nechipurenko D., Knapp Y. et al. Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a VWF-dependent manner. Haematologica. 2020;105(10):2471–83. https://doi.org/10.3324/haematol.2019.235754.; Seth R., McKinnon T.A., Zhang X.F. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol. 2022;322(1):H87–H93. https://doi.org/10.1152/ajpheart.00204.2021.; Mazurkiewicz-Pisarek A., Płucienniczak G., Ciach T., Płucienniczak A. The factor VIII protein and its function. Acta Biochim Pol. 2016;63(1):11–6. https://doi.org/10.18388/abp.2015_1056.; James P., Rydz N. Structure, biology, and genetics of von Willebrand factor In: Hematology: Basic Principles and Practice. Eds. R. Hoffman, E.J. Benz, L.E. Silberstein. Elsevier, 2018. Chapter 138. 2051–63. https://doi.org/10.1016/B978-0-323-35762-3.00138-4.; Cao W., Trask A.R., Bignotti A.I. et al. Coagulation factor VIII regulates von Willebrand factor homeostasis in vivo. J Thromb Haemost. 2023;21(12):3477–89. https://doi.org/10.1016/j.jtha.2023.09.004.; Lenting P.J., Pegon J.N., Christophe O.D., Denis C.V. Factor VIII and von Willebrand factor – too sweet for their own good. Haemophilia. 2010;16 Suppl 5:194–9. https://doi.org/10.1111/j.1365-2516.2010.02320.x.; Fan M., Wang X., Peng X. Prognostic value of plasma von Willebrand factor levels in major adverse cardiovascular events: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2020;20(1):72. https://doi.org/10.1186/s12872-020-01375-7.; Schneider S.W., Nuschele S., Wixforth A. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007;104(19):7899–903. https://doi.org/10.1073/pnas.0608422104.; Goldsmith H.L., Turitto V.T. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report – Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost. 1986;55(3):415–35.; Kania S., Oztekin A., Cheng X. et al. Predicting pathological von Willebrand factor unraveling in elongational flow. Biophys J. 2021;120(10):1903–15. https://doi.org/10.1016/j.bpj.2021.03.008.; Manz X.D., Bogaard H.J., Aman J. Regulation of vWF (von Willebrand factor) in inflammatory thrombosis. Arterioscler Thromb Vasc Biol. 2022;42(11):1307–20. https://doi.org/10.1161/ATVBAHA.122.318179.; Zhao Y.C., Li Z., Ju L.A. The soluble N-terminal autoinhibitory module of the A1 domain in von Willebrand factor partially suppresses its catch bond with glycoprotein Ibα in a sandwich complex. Phys Chem Chem Phys. 2022;24(24):14857–65. https://doi.org/10.1039/d2cp01581a.; Li L., Wang S., Han K. et al. Quantifying shear-induced margination and adhesion of platelets in microvascular blood flow. J Mol Biol. 2023;15;435(1):167824. https://doi.org/10.1016/j.jmb.2022.167824.; Stalker T.J., Traxler E.A., Wu J. et al. Hierarchical organization in the hemostatic response and its relationship to the plateletsignaling network. Blood. 2013;121(10):1875–85. https://doi.org/10.1182/blood-2012-09-457739.; Stalker T.J., Welsh J.D., Tomaiuolo M. et al. A systems approach to hemostasis: thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood. 2014;124(11):1824–31. https://doi.org/10.1182/blood-2014-01-550319.; Arisz R.A., de Vries J.J., Schols S.E. et al. Interaction of von Willebrand factor with blood cells in flow models: a systematic review. Blood Adv. 2022;6(13):3979–90. https://doi.org/10.1182/bloodadvances.2021006405.; Vahidkhah K., Diamond S.L., Bagchi P. Platelet dynamics in three-dimensional simulation of whole blood. Biophys J. 2014;106(11):2529–40. https://doi.org/10.1016/j.bpj.2014.04.028.; Mody N.A., King M.R. Influence of Brownian motion on blood platelet flow behavior and adhesive dynamics near a planar wall. Langmuir. 2007;23(11):6321–8. https://doi.org/10.1021/la0701475.; Khrapak S., Khrapak A. Prandtl number in classical hard-sphere and one-component plasma fluids. Molecules. 2021;26(4):821. https://doi.org/10.3390/molecules26040821.; Chen H., Angerer J.I., Napoleone M. et al. Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor. Biomicrofluidics. 2013;7(6):64113. https://doi.org/10.1063/1.4833975.; Janoschek F, Mancini F, Harting J, Toschi F. Rotational behaviour of red blood cells in suspension: a mesoscale simulation study. Philos Trans A Math Phys Eng Sci. 2011;369(1944):2337–44. https://doi.org/10.1098/rsta.2011.0086.; Mehta R., Athar M., Girgis S. et al. Acquired Von Willebrand Syndrome (AVWS) in cardiovascular disease: a state of the art review for clinicians. J Thromb Thrombolysis. 2019;48(1):14–26. https://doi.org/10.1007/s11239-019-01849-2.; Jensen A.S., Johansson P.I., Bochsen L. et al. Fibrinogen function is impaired in whole blood from patients with cyanotic congenital heart disease. Int J Cardiol. 2013;167(5):2210–4. https://doi.org/10.1016/j.ijcard.2012.06.019.; Horigome H., Hiramatsu Y., Shigeta O. et al. Overproduction of platelet microparticles in cyanotic congenital heart disease with polycythemia. J Am Coll Cardiol. 2002;39(6):1072–7. https://doi.org/10.1016/s0735-1097(02)01718-7.; Federici A.B., Mannucci P.M. Diagnosis and management of acquired von Willebrand syndrome. Clin Adv Hematol Oncol. 2003;1(3):169–75.; Heyde E. Gastrointestinal bleeding in aortic stenosis. N Engl J Med. 1958;259(4):196. https://doi.org/10.1056/NEJM195807242590416.; Reinecke I.R., Weber C.F., Budde U. et al. Prospective evaluation of ADAMTS-13 and von Willebrand factor multimers in cardiac surgery. Blood Coagul Fibrinolysis. 2016;27(8):886–91. https://doi.org/10.1097/MBC.0000000000000510.; Bartoli C.R., Restle D.J., Zhang D.M. et al. Pathologic von Willebrand factor degradation with a left ventricular assist device occurs via two distinct mechanisms: mechanical demolition and enzymatic cleavage. J Thorac Cardiovasc Surg. 2015;149(1):281–9. https://doi.org/10.1016/j.jtcvs.2014.09.031.; Ruggeri Z.M. Von Willebrand factor, platelets and endothel al cell interactions. J Thromb Haemost. 2003;1(7):1335–42. https://doi.org/10.1046/j.1538-7836.2003.00260.x.; Ruggeri Z.M. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Pract Res Clin Haematol. 2001;14(2):257–79. https://doi.org/10.1053/beha.2001.013.; Onimoe G., Grooms L., Perdue K., Ruymann F. Acquired von Willebrand syndrome in congenital heart disease: does it promote an increased bleeding risk? Br J Haematol. 2011;155(5):622–4. https://doi.org/10.1111/j.1365-2141.2011.08732.x.; Ластовка В.А. Предикторы тромботических осложнений у детей после искусственного кровообращения: Автореф. дисс… канд. мед. наук. М., 2021. 24 с.; Ibrahim H., Rondina M.T., Kleiman N.S. Von Willebrand factor and the aortic valve: Concepts that are important in the transcatheter aortic valve replacement era. Thromb Res. 2018;170:20–7. https://doi.org/10.1016/j.thromres.2018.07.028.; Fiedler U., Scharpfenecker M., Koidl S. et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103(11):4150–6. https://doi.org/10.1182/blood-2003-10-3685.; McCormack J.J., Lopes da Silva M., Ferraro F. et al. Weibel-Palade bodies at a glance. J Cell Sci. 2017;130(21):3611–3. https://doi.org/10.1242/jcs.208033.; Selim J., Hamzaoui M., Boukhalfa I. et al. Cardiopulmonary bypass increases endothelial dysfunction after pulmonary ischaemia-reperfusion in an animal model. J Cardiothorac Surg. 2021;59(5):1037–47. https://doi.org/10.1093/ejcts/ezaa412.; Campbell M.J, Quartermain M.D., Cohen M.S. et al. Longitudinal changes in echocardiographic measures of ventricular function after Fontan operation. Echocardiography. 2020;37(9):1443–8. https://doi.org/10.1111/echo.14826.; Jahren S.E., Heinisch P.P., Hasler D. et al. Can bioprosthetic valve thrombosis be promoted by aortic root morphology? An in vitro study. Interact Cardiovasc Thorac Surg. 2018;27(1):108–15. https://doi.org/10.1093/icvts/ivy039.; McCrindle B.W., Michelson A.D., Van Bergen A.H. et al. Thromboprophylaxis for children post-Fontan procedure: insights from the UNIVERSE Study. J Am Heart Assoc. 2021;10(24):e020766. https://doi.org/10.1161/JAHA.120.021765.; Giglia T.M., Massicotte M.P., Tweddell J.S. et al. Prevention and treatment of thrombosis in pediatric and congenital heart disease: a scientific statement from the American Heart Association. Circulation. 2013;128(24):2622–70. https://doi.org/10.1161/01.cir.0000436140.77832.7a.; Goldberg D.J., Dodds K., Rychik J. Rare problems associated with the Fontan circulation. Cardiol Young. 2010;20 Suppl 3:113–9. https://doi.org/10.1017/S1047951110001162.; Elder R.W., McCabe N.M., Veledar E. et al. Risk factors for major adverse events late after Fontan palliation. Congenit Heart Dis. 2015;10(2):159–68. https://doi.org/10.1111/chd.12212.; Mery C.M., De León L.E., Trujillo-Diaz D. et al. Contemporary outcomes of the Fontan operation: a large single-institution cohort. Ann Thorac Surg. 2019;108(5):1439–46. https://doi.org/10.1016/j.athoracsur.2019.05.039.; Grewal J., Al Hussein M., Feldstein J. et al. Evaluation of silent thrombus after the Fontan operation. Congenit Heart Dis. 2013;8(1):40–7. https://doi.org/10.1111/j.1747-0803.2012.00699.; Alsaied T., Ashfaq A. From other journals: a review of recent articles by our editorial team. Pediatr Cardiol. 2021;42(7):1483–7. https://doi.org/10.1007/s00246-021-02682-2.; Rondaij M.G., Bierings R., Kragt A. et al. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(5):1002–7. https://doi.org/10.1161/01.ATV.0000209501.56852.6c.; Wu Q.Y., Drouet L., Carrier J.L. et al. Differential distribution of von Willebrand factor in endothelial cells. Comparison between normal pigs and pigs with von Willebrand disease. Arteriosclerosis. 1987;7(1):47–54. https://doi.org/10.1161/01.atv.7.1.47.; Page C., Rose M., Yacoub M., Pigott R. Antigenic heterogeneity of vascular endothelium. Am J Pathol. 1992;141(3):673–83.; Yuan L., Janes L., Beeler D. et al. Role of RNA splicing in mediating lineage-specific expression of the von Willebrand factor gene in the endothelium. Blood. 2013;121(21):4404–12. https://doi.org/10.1182/blood-2012-12-473785.; Starke R.D., Ferraro F., Paschalaki K.E. et al. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011;117(3):1071–80. https://doi.org/10.1182/blood-2010-01-264507.; https://www.gynecology.su/jour/article/view/2231