Showing 1 - 20 results of 33 for search '"ВНУТРИВИДОВАЯ ДИФФЕРЕНЦИАЦИЯ"', query time: 0.86s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Леса России и хозяйство в них

    File Description: application/pdf

    Relation: Леса России и хозяйство в них. — 2024. — Вып. 2 (89); Кожевников, А. П. Относительные значения параметров листьев Malus baccata (l.) Borkh. как признак внутривидовой адаптации в лесных парках Екатеринбурга = Relative leaf parameters of Malus baccata (L.) Borkh. as an indicator of intraspecifi c adaptation in forest parks of Yekaterinburg / А. П. Кожевников, Р. П. Егоров. – Текст : электронный // Леса России и хозяйство в них. – 2024. – № 2 (89). – С. 34–40. DOI:10.51318/FRET.2024.89.2.004.; https://elar.usfeu.ru/handle/123456789/13240

  3. 3
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 1 (2023); 132-141 ; Проблемы особо опасных инфекций; № 1 (2023); 132-141 ; 2658-719X ; 0370-1069

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/1799/1369; List of Procariotic names with Standing in Nomenclature (LPSN). [Электронный ресурс]. URL: http://www.bacterio.net/francisella.html (дата обращения 15.01.2023).; Molins-Schneekloth C.R., Belisle J.T., Petersen J.M. Genomic markers for differentiation of Francisella tularensis subsp. tularensis AI and AII strains. Appl. Environ. Microbiol. 2008; 74(1):336–41. DOI:10.1128/AEM.01522-07.; Gunnell M.K., Lovelace C.D., Satterfield B.A., Moore E.A., O’Neill K.L., Robison R.A. A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies. J. Med. Microbiol. 2012; 61(Pt. 1):1525–31. DOI:10.1099/jmm.0.046631-0.; Tomaso H., Scholz H.C., Neubauer H., Al Dahouk S., Seibold E., Landt O., Forsman M., Splettstoesser W.D. Real-time PCR using hybridization probes for the rapid and specific identification of Francisella tularensis subspecies tularensis. Mol. Cell. Probes. 2007; 21(1):12–6. DOI:10.1016/j.mcp.2006.06.001.; WHO. Guidelines on Tularaemia. WHO Press; 2007. 115 p.; Woubit A., Yehualaeshet T., Habtemariam T., Samuel T. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered food-borne pathogens. J. Food Prot. 2012; 75(4):660–70. DOI:10.4315/0362-028X.JFP-11-480.; Broekhuijsen M., Larsson P., Johansson A., Byström M., Eriksson U., Larsson E., Prior R.G., Sjöstedt A., Titball R.W., Forsman M. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin. Microbiol. 2003; 41(7):2924–31. DOI:10.1128/JCM.41.7.2924-2931.2003.; Осина Н.А., Мошкова М.С., Уткин Д.В., Ляшова О.Ю., Куличенко А.Н. Идентификация подвидов туляремийного микроба методом мультиплексной полимеразной цепной реакции. Проблемы особо опасных инфекций. 2007; 1:92–3.; Вахрамеева Г.М., Лапин А.А., Павлов В.М., Мокриевич А.Н., Миронова Р.И., Дятлов И.А. ПЦР -дифференциация подвидов Francisella tularensis с помощью одного праймера. Проблемы особо опасных инфекций. 2011; 1:46–8. DOI:10.21055/0370-1069-2011-1(107)-46-48.; Larson M.A., Sayood K., Bartling A.M., Meyer J.R., Starr C., Baldwin J., Dempsey M.P. Differentiation of Francisella tularensis subspecies and subtypes. J. Clin. Microbiol. 2020. 58(4):e01495-19. DOI:10.1128/JCM.01495-19.; Birdsell D.N., Vogler A.J., Buchhagen J., Clare A., Kaufman E., Naumann A., Driebe E., Wagner D.M., Keim P.S. TaqMan realtime PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. PLoS One. 2014; 9(9):e107964. DOI:10.1371/journal.pone.0107964.; Сорокин В.М., Водопьянов А.С., Цимбалистова М.В., Павлович Н.В. Дифференциация подвидов Francisella tularensis методом INDEL-типирования. Журнал микробиологии, эпидемиологии и иммунологии. 2022; 99(2):193–202. DOI:10.36233/0372-9311-189.; Champion M.D., Zeng Q., Nix E.B., Nano F.E., Keim P., Kodira C.D., Borowsky M., Young S., Koehrsen M., Engels R., Pearson M., Howarth C., Larson L., White J., Alvarado L., Forsman M., Bearden S.W., Sjöstedt A., Titball R., Michell S.L., Birren B., Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog. 2009; 5(5):e1000459. DOI:10.1371/journal.ppat.1000459.; Rohmer L., Fong C., Abmayr S., Wasnick M., Larson Freeman T.J, Radey M., Guina T., Svensson K., Hayden H.S., Jacobs M., Gallagher L.A., Manoil C., Ernst R.K., Drees B., Buckley D., Haugen E., Bovee D., Zhou Y., Chang J., Levy R., Lim R., Gillett W., Guenthener D., Kang A., Shaffer S.A., Taylor G., Chen J., Gallis B., D’Argenio D.A., Forsman M., Olson M.V., Goodlett D.R., Kaul R., Miller S.I., Brittnacher M.J. Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol. 2007; 8(6):R102. DOI:10.1186/gb-2007-8-6-r102.; LeButt H. The Construction and Use of a Francisella tularensis DNA Microarray. PhD thesis The Open University. 2008. DOI:10.21954/ou.ro.0000fd6f.; Sarva S.T., Waldo R.H., Belland R.J., Klose K.E. Comparative transcriptional analyses of Francisella tularensis and Francisella novicida. PLoS One. 2016; 11(8):e0158631. DOI:10.1371/journal. pone.0158631.; Samrakandi M.M., Zhang C., Zhang M., Nietfeldt J., Kim J., Iwen P.C., Olson M.E., Fey P.D., Duhamel G.E., Hinrichs S.H., Cirillo J.D., Benson A.K. Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. FEMS Microbiol. Lett. 2004; 237(1):9–17. DOI:10.1016/j.femsle.2004.06.008.; Johansson A., Farlow J., Larsson P., Dukerich M., Chambers E., Byström M., Fox J., Chu M., Forsman M., Sjöstedt A., Keim P. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J. Bacteriol. 2004; 186(17):5808–18. DOI:10.1128/JB.186.17.5808–5818.2004.; Chandler J.C., Molins C.R., Petersen J.M., Belisle J.T. Differential chitinase activity and production within Francisella species, subspecies, and subpopulations. J. Bacteriol. 2011; 193(13):3265–75. DOI:10.1128/JB.00093-11.; Осина Н.А., Уткин Д.В., Сеничкина А.М., Бугоркова Т.В., Кутырев В.В. Набор штаммов бактерий вида Francisella tularensis для получения комплекта контрольных ДНК препаратов, комплект ДНК препаратов для генно-диагностических исследований. Патент РФ № 2443772, опубл. 27.02.2012. Бюл. № 6.; Barns S.M., Grow C.C., Okinaka R.T., Keim P., Kuske C.R. Detection of diverse new Francisella-like bacteria in environmental samples. Appl. Environ. Microbiol. 2005; 71(9):5494–500. DOI:10.1128/AEM.71.9.5494-5500.2005.; Berrada Z.L., Telford S.R. Diversity of Francisella species in environmental samples from Martha’s Vineyard, Massachusetts. Microb. Ecol. 2010; 59(2):277–83. DOI:10.1007/s00248-009-9568-y.; https://journal.microbe.ru/jour/article/view/1799

  4. 4
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 3 (2022); 145-150 ; Проблемы особо опасных инфекций; № 3 (2022); 145-150 ; 2658-719X ; 0370-1069

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/1736/1331; Онищенко Г.Г., Кутырев В.В., редакторы. Лабораторная диагностика опасных инфекционных болезней. Практическое руководство. М.: Шико; 2013. 560 с.; Балахонов С.В., Миронова Л.В., Афанасьев М.В., Куликалова Е.С., Остяк А.С. MALDI ToF масс-спектрометрическое определение видовой принадлежности патогенов в совершенствовании эпидемиологического надзора за опасными инфекционными болезнями. Бактериология. 2016; 1(1):88–94. DOI:10.20953/2500-1027-2016-1-88-94.; Nano F.E., Zhang N., Cowley S.C., Klose K.E., Cheung K.K., Roberts M.J., Ludu J.S., Letendre G.W., Meierovics A.I., Stephens G., Elkins K.L. A Francisella tularensis pathogenicity island required for intramacrophage growth. J. Bacteriol. 2004; 186(19):6430–6. DOI:10.1128/JB.186.19.6430-6436.2004.; Seibold E., Maier T., Kostrzewa M., Zeman E., Splettstoesser W. Identification of Francisella tularensis by wholecell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J. Clin. Microbiol. 2010; 48(4):1061–9. DOI:10.1128/JCM.01953-09.; Karatuna O., Celebi B., Can S., Akyar I., Kilic S. The use of matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis. Bosn. J. Basic Med. Sci. 2016; 16(2):132–8. DOI:10.17305/bjbms.2016.894.; Gekenidis M.-T., Studer P., Wüthrich S., Brunisholz R., Drissner D. Beyond the matrix-assisted laser desorption ionization (MALDI) biotyping workflow: in search of microorganism-specific tryptic peptides enabling discrimination of subspecies. Appl. Environ. Microbiol. 2014; 80(14):4234–41. DOI:10.1128/AEM.00740-14.; Gao W., Li B., Ling L., Zhang L., Yu S. MALDI TOF MS method for differentiation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus using (E)-Propyl α-cyano4-Hydroxyl cinnamylate. Talanta. 2022; 244:123405. DOI:10.1016/j.talanta.2022.123405.; Цимбалистова М.В., Павлович Н.В., Аронова Н.В., Чайка И.А., Чайка С.О., Водопьянов А.С. Масс-спектрометрический анализ природных и антиген-измененных штаммов туляремийного микроба. Проблемы особо опасных инфекций. 2017; 4:92–6. DOI:10.21055/0370-1069-2017-4-92-96.; Seibold E., Bogumil R., Vorderwülbecke S., Al Dahouk S., Buckendahl A., Tomaso H., Splettstoesser W. Optimized application of surface-enhanced laser desorption/ionization time-of-flight MS to differentiate Francisella tularensis at the level of subspecies and individual strains. FEMS Immunol. Med. Microbiol. 2017; 49(3):364– 73. DOI:10.1111/j.1574-695X.2007.00216.x.; https://journal.microbe.ru/jour/article/view/1736

  5. 5
    Academic Journal

    Contributors: The research has been accomplished with financial support of the Russian Foundation for Basic Research within the framework of Scientific Project No. 20-016-00072-A, and Budgetary Project No. 0662-2019-0002

    Source: Vavilov Journal of Genetics and Breeding; Том 25, № 6 (2021); 620-630 ; Вавиловский журнал генетики и селекции; Том 25, № 6 (2021); 620-630 ; 2500-3259 ; 10.18699//VJ21.06

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3134/1544; Adhikari K.N., Galwey N.W., Dracup M. The genetic control of highly restricted branching in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica. 2001;117:261-274.; Anokhina V.S., Debely G.A., Konorev P.M. Lupine. Selection. Genetics. Evolution. Minsk, 2012. (in Russian); Barashkova E.A., Stepanova S.I., Smirnova V.S. Resistance of lupine seedlings to low temperatures. In: VIR World Collection Catalog. Iss. 242. Leningrad, 1978. (in Russian); Benken I.I., Kurlovich B.S., Kartuzova L.T., Nikishkina M.A., Vlasov V.A., Kutuzova E.A., Nazarova N.S., Pilipenko S.I., Rybnikova V.A. Narrow-leafed lupine – Lupinus angustifolius L.: Biochemical characterization of specimens. In: VIR World Collection Catalog. Iss. 637. St. Petersburg, 1993. (in Russian); Berger J., Buirchell B., Luckett D., Nelson M. Domestication bottlenecks limit genetic diversity and constrain adaptation in narrowleafed lupin (Lupinus angustifolius L.). Theor. Appl. Genet. 2012a; 124:637-652. DOI 10.1007/s00122-011-1736-z.; Berger J., Buirchell B., Luckett D., Palta J., Ludwig C., Liu D. How has narrow-leafed lupin changed in its 1st 40 years as an industrial, broadacre crop? A G×E-based characterization of yield-related traits in Australian cultivars. Field Crop. Res. 2012b;126:152-164. DOI 10.1016/j.fcr.2011.10.006.; Berger J.D., Clements J.C., Nelson M.N., Kamphuis L.G., Singh K.B., Buirchell B. The essential role of genetic resources in narrowleafed lupin improvement. Crop Pasture Sci. 2013;64:361-373. DOI 10.1071/CP13092.; Berger J., Shrestha D., Ludwig C. Reproductive strategies in Mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front. Plant Sci. 2017;8:548. DOI 10.3389/fpls.2017.00548.; Buirchell B., Cowling W. Genetic resources in lupins. In: Lupins as Crop Plants. Biology, Production and Utilization. Ch. 2. CAB International, 1998. Chen Y., Dunbabin V., Postma J., Diggle A., Palta J., Lynch J., Siddique K., Rengel Z. Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes. Plant Soil. 2011; 348:345-364. DOI 10.1007/s11104-011-0939-z.; Clements J.C., Cowling W.A. Patterns of morphological diversity in relation to geographical origins of wild Lupinus angustifolius from the Aegean region. Genet. Resour. Crop Evol. 1994;41:109-122. DOI 10.1007/BF00053055.; Cowling W. Collection of wild Lupinus in Greece. FAO/IBPGR Plant Genetic Resources Newsletter. Rome, 1986;65:20-22.; Cowling W.A. Genetic diversity in narrow-leafed lupin breeding after the domestication bottleneck. In: Singh K., Kamphuis L., Nelson M. (Eds.). The Lupin Genome. Compendium of Plant Genomes. Springer, 2020. DOI 10.1007/978-3-030-21270-4_1.; Ermakov A.I., Arasimovich V.V., Yarosh N.P., Peruanski Y.V., Lukovnikova G.A., Ikonnikova M.I. Methods of Biochemical Study of Plants. Leningrad, 1987. (in Russian); French R., Buirchell B. Lupin: the largest grain legume crop in Western Australia, its adaptation and improvement through plant breeding. Austral. J. Agric. Res. 2005;56(11):1169-1180. DOI 10.1071/AR05088.; Gladstones J. Lupins as crop plants. Field Crop Abstr. 1970;23(2):123- 148.; Gladstones J., Atkins C., Hamblin J. (Eds.). Lupins as Crop Plants: Biology, Production, and Utilization. N.Y.: CAB International, 1998; 1-39.; Glencross B.D. Feeding lupins to fish: a review of the nutritional and biological value of lupins in aquaculture feeds. Department of Fisheries – Research Division Government of Western Australia. https://citeseerx.ist.psu.edu//viewdoc/download?doi=10.1.1.68.1305&rep=rep1&type (Access date 01.02.2021).; Golovin S.E., Vlasova E.V. Monitoring of the species composition of spotting and root rot agents on Lupinus angustifolius L. VIR collection. Obrazovanie, Nauka i Proizvodstvo = Education, Science, and Production. 2015;3(12):23-24. (in Russian); Gresta F., Wink M., Prins U., Abberton M., Capraro J., Scarafoni A., Hill G. Lupins in European cropping systems. In: Legumes in Cropping Systems. Wallingford, 2017;88-108. DOI 10.1079/9781780644981.0088.; Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965-1978. DOI 10.1002/joc.1276.; Kamel K.A., Święcicki W., Kaczmarek Z., Barzyk P. Quantitative and qualitative content of alkaloids in seeds of a narrow-leafed lupin (Lupinus angustifolius L.) collection. Genet. Resour. Crop Evol. 2016;63:711-719. DOI 10.1007/s10722-015-0278-7.; Kiselev I.I., Kurlovich B.S., Kartuzova L.T., Korneychuk N.S. Lupine: Evaluation of accessions for resistance to fusarium against infectious backgrounds. In: VIR World Collection Catalog. Iss. 638. St. Petersburg, 1993. (in Russian); Kiselev I.I., Kurlovich B.S., Stepanova S.I. Lupine: Evaluation of accessions for resistance to fusarium. In: VIR World Collection Catalog. Iss. 447. St. Petersburg, 1988. (in Russian); Kiselev I.I., Stepanova S.I., Dukhanina I.A. Resistance of lupine species to fusarium. In: VIR World Collection Catalog. Iss. 298. Leningrad, 1981. (in Russian); Kuptsov N.S. Strategy and tactics of lupin breeding. Kormoproizvodstvo = Fodder Production. 2001;1:8-12. (in Russian); Kuptsov N.S., Takunov I.P. Lupin: Genetics, breeding, heterogeneous cultivation. Bryansk, 2006. (in Russian); Kurlovich B.S. Lupins. Geography, Classification, Genetic Researches and Breeding. St. Petersburg: Intan, 2002.; Kurlovich B.S., Kartuzova L.T., Korneychuk N.S., Kiselev I.I., Nazarova N.S., Pilipenko S.I. Lupine: Evaluation of accessions for resistance to fusarium against infectious backgrounds. In: VIR World Collection Catalog. Iss. 537. Leningrad, 1990. (in Russian); Kurlovich B.S., Repiev S.I., Shchelko L.G., Budanova V.I., Petrova M.V., Buravtseva T.V., Stankevich A.K., Leokenе L.V., Benken I.I., Rybnikova V.A., Kartuzova L.T., Zolotov S.V., Alexandrova T.G., Debely G.A., Taranuho G.I., Teplyakova T.E., Malysh L.K. The Gene Pool and Breeding of Grain Legumes (lupins, vetch, soy, and beans). St. Petersburg, 1995;9-116. (in Russian); Kurlovich B.S., Stankevich A.K. Intraspecific diversity of three annual species of lupin (Lupinus L.). Sbornik Trudov po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1990;135:19-34. (in Russian); Kurlovich B.S., Voluzneva T.A., Petrova M.V. The significance of Vavilov expeditions for the breeding of grain legumes. Sbornik Trudov po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. Leningrad, 1991;140:84-89. (in Russian); Kushnareva A.V., Shelengа T.V., Perchuk I.N., Egorova G.P., Malyshev L.L., Kerv Yu.A., Shavarda A.L., Vishnyakova M.A. Selection of an optimal method for screening the collection of narrowleafed lupine held by the Vavilov Institute for the qualitative and quantitative composition of seed alkaloids. Vavilov J. Genet. Breed. 2020;24(8):829-835. DOI 10.18699/VJ20.680.; Maysuryan N.A., Atabekova A.I. Lupin. Moscow, 1974. (in Russian); Mousavi-Derazmahalleh M., Bayer P.E., Nevado B., Hurgobin B., Filatov D., Kilian A., Kamphuis L.G., Singh K.B., Berger J.D., Hane J.K., Edwards D., Erskine W., Nelson M.N. Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor. Appl. Genet. 2018a;131:887-901. DOI 10.1007/s00122-017-3045-7.; Mousavi-Derazmahalleh M., Nevado B., Bayer P.E., Filatov D.A., Hane J.K., Edwards D., Erskine W., Nelson M.N. The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theor. Appl. Genet. 2018b;131(12):2543-2554. DOI 10.1007/s00122-018-3171-x.; Oram R.N. Two reduced branching mutants in Lupinus angustifolius L. SABRAO J. Breed. Genet. 2002;34:27-33.; Privalov F.I., Grib S.I., Matys I.S. Genetic resources of the national bank of seeds, a basis of crop breeding in Belarus. Zemledelie i Selektsiya v Belarusi = Agriculture and Breeding in Belarus. 2020; 56:276-283. (in Russian); Sauk I.B., Anokhina V.S., Timoshenko M.K., Tsibulskaya I.Yu., Bryl E.A. Morphogenetic and biochemical studies of the collection of yellow and narrow-leafed lupine. In: Molecules and Applied Genetics. 2008;8:133-137. (in Russian); Sengbusch R. Bitterstoffarme Lupinen. Zuchter. 1931;4:93-109.; Święcicki W., Kroc M., Kamel K.A. Lupins. Ch. 6. In: Grain Legumes. Handbook of Plant Breeding. Springer, 2015;10:179-218.; https://vavilov.elpub.ru/jour/article/view/3134

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20