-
1Conference
Συγγραφείς: Ofitserova, N. Yu., Bazhukova, I. N.
Θεματικοί όροι: MIXED VALENCE STATES, ДОПИРОВАНИЕ, MULTI-ENZYMATIC ACTIVITY, КИСЛОРОДНЫЕ ВАКАНСИИ, CERIUM DIOXIDE NANOPARTICLES, OXYGEN VACANCIES, РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ, DOPING, НАНОЧАСТИЦЫ ДИОКСИДА ЦЕРИЯ, RARE-EARTH ELEMENTS, СМЕШАННЫЕ ВАЛЕНТНЫЕ СОСТОЯНИЯ, МУЛЬТИФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://elar.urfu.ru/handle/10995/119892
-
2Report
Θεματικοί όροι: МЕССБАУЭРОВСКИЕ ИССЛЕДОВАНИЯ, ВАЛЕНТНЫЕ СОСТОЯНИЯ, КИСЛОРОДНЫЕ ВАКАНСИИ, 0.7, 1.0), 0.3, Са-ЗАМЕЩЕННЫЙ ОРТОФЕРРИТ La1-xCaxFeO3- (x = 0, 0.5, Fe
-
3Academic Journal
Συγγραφείς: A. A. Ischenko, M. A. Lazov, E. V. Mironova, A. Yu. Putin, A. M. Ionov, P. A. Storozhenko, А. А. Ищенко, М. А. Лазов, Е. В. Миронова, А. Ю. Путин, А. М. Ионов, П. А. Стороженко
Συνεισφορές: The work was supported by the Russian Foundation for Basic Research grant No. 20-02-00146 A., Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований № 20-02-00146 А.
Πηγή: Fine Chemical Technologies; Vol 18, No 2 (2023); 135-167 ; Тонкие химические технологии; Vol 18, No 2 (2023); 135-167 ; 2686-7575 ; 2410-6593
Θεματικοί όροι: спектральные методы, nanoparticles, nanomaterials, valence states of elements, surface, interfaces, diffraction methods, spectral methods, наночастицы, наноматериалы, валентные состояния элементов, поверхность, границы раздела, дифракционные методы
Περιγραφή αρχείου: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/1955/1925; https://www.finechem-mirea.ru/jour/article/view/1955/1926; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1955/940; Елисеев А.А., Лукашин А.В. Функциональные наноматериалы; под ред. Ю.Д. Третьякова. М.: ФИЗМАТЛИТ; 2010. 456 c. ISBN 978-5-9221-1120-1; Chaudhuri R.G., Paria S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012;112(4):2373-2433. https://doi.org/10.1021/cr100449n; Ищенко А.А., Фетисов Г.В., Асланов Л.А. Нанокремний: свойства, получение, применение, методы исследования и контроля. М.: ФИЗМАТЛИТ; 2013. 614 с. ISBN 978-5-9221-1369-4; Борисенко В.Е. Наноэлектроника – основа информационных систем XXI века. Соросовский образовательный журнал. 1997;(5):100-104. URL: http://www.pereplet.ru/nauka/Soros/pdf/9705_100.pdf; Осетров А.Ю., Вигдорович В.И. Современные нанотехнологии. Состояние, проблемы и перспективы. Вестник Тамбовского университета. Серия: Естественные и технические науки. 2013;18(5):2371-2374.; Демиховский В.Я. Квантовые ямы, нити, точки. Что это такое? Соросовский образовательный журнал. 1997;(5):80-86. URL: http://window.edu.ru/resource/993/20993/files/9705_080.pdf; Шик А.Я. Квантовые нити. Соросовский образовательный журнал. 1997;(5):87-92. URL: http://pereplet.ru/nauka/Soros/pdf/9705_087.pdf; Питер Ю., Кардона Ю.М. Основы физики полупроводников: пер. с англ. М.: ФИЗМАТЛИТ; 2002. 560 с. ISBN 5-9221-0268-0; Peter Y., Cardona Yu.M. Fundamentals of semiconductors: Physics and materials properties (Graduate texts in physics). 4th ed. Berlin-Heidelberg: Springer-Verlag; 2010. 775 p. ISBN 978-364-200-709-5; Hamaguchi C. Basic semiconductors physics. 2nd ed. Berlin Heidelberg: Springer-Verlag; 2010. 570 p. ISBN 978-3-642-03302-5; Baer D.R., Amonette J.E., Engelhard M.H., Gaspar D.J., Karakoti A.S., Kuchibhatla S., Nachimuthu P., Nurmi J.T., Qiang Y., Sarathy V., Seal S., Sharma A., Tratnyek P.G., Wang C.-M. Characterization challenges for nanomaterials. Surf. Interface Anal. 2008;40(3-4):529-537. https://doi.org/10.1002/sia.2726; Koole R., Groeneveld E., Vanmaekelbergh D., Meijerink A., de Mello Donega C. Size Effects on Semiconductor Nanoparticles. In: de Mello Donega C. (Ed.) Nanoparticles. Berlin, Heidelberg: Springer; 2014. 299 p. https://doi.org/10.1007/978-3-662-44823-6_2; Sun C.Q. Relaxation of the Chemical Bond. Skin Chemisorption Size Matter ZTP Mechanics H2O Myths. Singapore: Springer Science & Business Media; 2014. 807 p. https://doi.org/10.1007/978-981-4585-21-7; Attia Y., Samer M. Metal clusters: New era of hydrogen production. Renew. Sust. Energ. Rev. 2017;79:878-892. https://doi.org/10.1016/j.rser.2017.05.113; Jin R., Li G., Sharma S., Li Y., Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem. Rev. 2021;121(2):567-648. https://doi.org/10.1021/acs.chemrev.0c00495; Liu L., Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018;118(10):4981-5079. https://doi.org/10.1021/acs.chemrev.7b00776; Cuenya B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518(12):3127-3150. https://doi.org/10.1016/j.tsf.2010.01.018; Wang H., Wang L., Lin D., Feng X., Niu Y., Zhang B., Xiao F.S. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier's principle. Nat. Catal. 2021;4(5):418-424. https://doi.org/10.1038/s41929-021-00611-3; Chen M.S., Goodman D.W. Structure-activity relationships in supported Au catalysts. Catal. Today. 2006;111(1-2):22-33. https://doi.org/10.1016/j.cattod.2005.10.007; Cheng N., Zhang L., Doyle-Davis K., Sun X. Single-Atom Catalysts: From Design to Application. Electrochem. Energ. Rev. 2019;2(4):539-573. https://doi.org/10.1007/s41918-019-00050-6; Rong H., Ji S., Zhang J., Wang D., Li Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020;11:5884(14 p.). https://doi.org/10.1038/s41467-020-19571-6; Zhang Y., Yang J., Ge R., Zhang J., Cairney J.M., Li Y., Zhu M., Li S., Li W. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 2022;461:214493(48 p.). https://doi.org/10.1016/j.ccr.2022.214493; Sankar M., He Q., Engel R.V., Sainna M.A., Logsdail A.J., Roldan A., Willock D.J., Agarwal N., Kiely C.J., Hutchings G.J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020;120(8):3890-3938. https://doi.org/10.1021/acs.chemrev.9b00662; Jiang Zh., Zhang W., Jin L., Yang X., Xu F., Zhu J., Huang W. Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2(110) Surface to Au Clusters. J. Phys. Chem. C. 2007;111(33): 12434-12439. https://doi.org/10.1021/jp073446b; Haruta M. Size- and support-dependency in the catalysis of gold. Catal. Today. 1997;36(1):153-166. https://doi.org/10.1016/S0920-5861(96)00208-8; Kung M.C., Lee J.H., Chu-Kang A., Kung H.H. Selective reduction of NO* by propene over Au/y-Al2O3 catalysts. Stud. Surf. Sci. Catal. A. 1996;101:701-707. https://doi.org/10.1016/s0167-2991(96)80281-3; Ueda A., Oshima T., Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B. 1997;12(2-3):81-93. https://doi.org/10.1016/s0926-3373(96)00069-0; Sanchez R.M.T., Ueda A., Tanaka K., Haruta M. Selective oxidation of CO in hydrogen over gold supported on manganese oxide. J. Catal. 1997;168(1):125-127. https://doi.org/10.1006/jcat.1997.1636; Смоленцева Е.В., Богданчикова Н.Е., Симаков А.В., Пестряков А.Н., Тузовская И.В., Авалос M., Фариас М., Диаз А. Влияние модифицирующей добавки железа на физико-химические и каталитические свойства нанесенных золотых цеолитных катализаторов. Известия ТПУ. 2005;308(4):93-98.; Shubhashish S., Karasik S.J., Posada L.F., Amin A.S., Achola L.A., Nisly N., Willis W.S., Suib S.L. Syntheses of gold supported on metal oxides and their application in organic transformations. Microporous Mesoporous Mater. 2022;336:111888(p.). https://doi.org/10.1016/j.micromeso.2022.111888; Lin J.N., Chen J.H., Hsiao C.Y., Kang Y.-M., Wan B. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO-oxidation. Appl. Catal. B. 2002;36(1):19-29. https://doi.org/10.1016/s0926-3373(01)00276-4; Espinos J.P., Morales J., Barranco A., Caballero A., Holgado J.P., Gonzalez-Elipe A. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2 and Cu/ZrO2 Catalysts. J. Phys. Chem. B. 2002;106(27):62921-6929. 2https://doi.org/10.1021/jp014618m; Мазалова В.Н., Кравцова А.Н., Солдатов А.В. Нанокластеры. Рентгеноспектральные исследования и компьютерное моделирование. М.: ФИЗМАТЛИТ; 2013. 184 с.; Sacher E. Asymmetries in Transition Metal XPS Spectra: Metal Nanoparticle Structure, and Interaction with the Graphene-Structured Substrate Surface. Langmuir. 2010;26(6):3807-3814. https://doi.org/10.1021/la902678x; Алов Н.В., Куцко Д.М., Бордо К.В. Ионно-лучевое восстановление поверхности высших оксидов молибдена и вольфрама. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2008;(3):17-22.; Алов Н. В., Куцко Д. М. Изменение состава поверхности высшего оксида вольфрама при бомбар-дировке ионами He+. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2012;(3):38-41.; Alov N., Kutsko D., Spirovova I., Bastl Z. XPS study of vanadium surface oxidation by oxygen ion bombardment. Surf. Sci. 2006;600(8):1628-1631. https://doi.org/10.1016/j.susc.2005.12.052; Алов Н.В., Куцко Д.М. Ионно-лучевое восстановление поверхности высшего оксида ниобия. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2010;(3):66-70.; Khanuja M., Sharma H., Mehta B.R., Shivaprasad S.M. XPS depth-profile of suboxide distribution at the native oxide/Ta interface. J. Electron. Spectrosc. Relat. Phenom. 2009;169(1):41-45. https://doi.org/10.1016/j.elspec.2008.10.004; Алов Н.В., Куцко Д.М. Ионно-лучевое восстановление поверхности высшего оксида тантала. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2011;(3):59-62.; Pradeep T., Anshup. Noble metal nanoparticles for water purification: A critical review. Thin Solid Films. 2009;517(24):6441-6478. https://doi.org/10.1016/j.tsf.2009.03.195; Кузьмичёва Г.М. Наноразмерные системы с оксидами TUTaHa(IV). Получение. Характеризация. Свойства. Тонкие химические технологии. 2015;10(6):5-36.; Siciliano P. Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method. Sens. Actuat. B: chem. 2000;70(1-3):153-164. https://doi.org/10.1016/s0925-4005(00)00585-2; Антипин И.С., Алфимов М.В., Арсланов В.В., Бурилов В.А., Вацадзе С.З., Волошин Я.З., Волчо К.П., Горбачук В.В., Горбунова Ю.Г., Громов С.П., Дудкин С.В., Зайцев С.Ю., Захарова Л.Я., Зиганшин М.А., Золотухина А.В., Калинина М.А., Караханов Э.А., Кашапов Р.Р., Койфман О.И., Коновалов А.И., Коренев В.С., Максимов А.Л., Мамардашвили Н.Ж., Мамардашвили Г.М., Мартынов А.Г., Мустафина А.Р, Нугманов Р.И., Овсянников А.С., Падня П.Л., Потапов А.С., Селектор С.Л., Соколов М.Н., Соловьева С.Е., Стойков И.И., Стужин П.А., Суслов Е.В., Ушаков Е.Н., Федин В.П., Федоренко С.В., Федорова О.А., Федоров Ю.В., Чвалун С.Н., Цивадзе А.Ю., Штыков С.Н., Шурпик Д.Н., Щербина М.А., Якимова Л.С. Функциональные супрамолекулярные системы: дизайн и области применения. Успехи химии. 2021;90(8):895-1107. https://doi.org/10.1070/RCR5011; Ding P., Chen L., Wei C., Zhou W., Li C., Wang J., Wang M., Guo X., Stuart M.A.C., Wang J. Efficient Synthesis of Stable Polyelectrolyte Complex Nanoparticles by Electrostatic Assembly Directed Polymerization. Macromol. Rapid Comm. 2021;42(4):2000635(1-9). https://doi.org/10.1002/marc.202000635; Stuart M.A.C. Supramolecular perspectives in colloid science. Colloid Polym, Sci. 2008;286(8-9):855-864. https://doi.org/10.1007/s00396-008-1861-7; Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-12934. https://doi.org/10.1039/C8NR02278J; Grainger D.W., Castner D.G. Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv. Mater. 2008;20(5):867-877. https://doi.org/10.1002/adma.200701760; Montano M.D., Ranville J., Lowry G.V., Blue J., Hiremath N., Koenig S., Tuccillo M.E., Gardner S.P. Detection and Characterization of Engineered Nanomaterials in the Environment: Current State-of-the-Art and Future Directions. Washington, DC: U.S. Environmental Protection Agency Office of Research and Development. 2020.186 p. URL: https://clu-in.org/download/techfocus/nano/Nano-Gardner-600-r-14-244.pdf; Baer D.R., Engelhard M.H. XPS analysis of nanostructured materials and biological surfaces. J. Electron Spectrosc. 2010;178-179:415-432. https://doi.org/10.1016Zj.elspec.2009.09.003; Королева М.Ю., Юртов Е.В. Оствальдово созревание в макро- и наноэмульсиях. Успехи химии. 2021;90(3):293-323. https://doi.org/10.1070/RCR4962; Neoh K.G., Li M., Kang E.-T. Characterization of Nanomaterials/Nanoparticles. In: Kishen A. (Ed.). Nanotechnology on Endodontics: Current and Potential Clinical Applications. Switzerland: Springer International Publishing; 2015. P 23-44. https://doi.org/10.1007/978-3-319-13575-5_3; Ischenko А.А., Weber P.M., Miller R.J.D. Transient structures and chemical reaction dynamics. Russ. Chem. Rev. 2017;86(12):1173-1253. https://doi.org/10.1070/RCR4754; Ищенко А.А., Фетисов Г.В., Асеев С.А. Структурная динамика: в 2-х т. М.: ФИЗМАТЛИТ; 2021. Т. 1. 486 с. ISBN 978-5-9221-1936-9. Т. 2. 467 с. ISBN 978-5-9221-1937-5; Нгуен М.Т., Нефедов В.И., Чекалкин Н.С., Козловский И.В., Малафеев А.В., Миролюбова Н.А., Назаренко М.А. Об интеграции методов формирования и исследования изображений объектов на фоне шумов и помех. Российский технологический журнал. 2020;8(2):33-42. https://doi.org/10.32362/2500-316X-2020-8-2-33-42; Aseyev S.A., Ischenko A.A., Kompanets V.O., Kochikov I.V., Malinovskii A.L., Mironov B.N., Poydashev D.G., Chekalin S.V., Ryabov E.A. Study of the Processes Induced by Femtosecond Laser Radiation in Thin Films and Molecular- Cluster Beams Using Ultrafast Electron Diffraction. Crystallogr. Rep. 2021;66(6):1031-1037. https://doi.org/10.1134/S106377452106002X; Baer D.R. Guide to making XPS measurements on nanoparticles. J. Vac. Sci. Technol. A. 2020;38(3):031201. https://doi.org/10.1116/1.5141419; Krishna D.N.G., Philip J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surface Sci. Adv. 2022;12:100332(30 p). https://doi.org/10.1016/j.apsadv.2022.100332; Baer D.R., Gaspar D.J., Nachimuthu P., Techane S., Castner D. Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem. 2010;396(3):983-1002. https://doi.org/10.1007/s00216-009-3360-1; Saveleva V.A., Savinova E.R. Insights into electrocatalysis from ambient pressure photoelectron spectroscopy. Curr. Opin. Electrochem. 2019;17:79-89. https://doi.org/10.1016/j.coelec.2019.03.016; Arble C., Jia M., Newberg J.T. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present. Surf. Sci. Rep. 2018;7(2):37-57. https://doi.org/10.1016/j.sur-frep.2018.02.002; Вудраф Д., Делчар Т. Современные методы исследования поверхности: пер. с англ. М.: Мир; 1989. 564 с.; Алов Н.В., Лазов М.А., Ищенко А.А. Рентгеновская фотоэлектронная спектроскопия. В кн.: Аналитическая химия: учебник: в 3-х т. Т. 2. Инструментальные методы анализа. Часть 1; под ред. А.А. Ищенко. Глава 3. С. 191-229. М.: ФИЗМАТЛИТ; 2019. 472 с. ISBN 978-5-9221-1866-8; Штыков С.Н. Химический анализ в нанореакторах: основные понятия и применение. Журн. аналит. химии. 2002;57(10):1018-1028.; Троян В.И., Пушкин М.А., Борман В.Д., Тронин В.Н. Физические основы методов исследования наноструктур и поверхности твёрдого тела; под ред. В.Д. Бормана. М.: МИФИ; 2008. 260 с. ISBN 978-5-7262-1020-3; Shtykov S.N. Nanoanalytics: definitions, classification, history and primary advances. In: Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry. Pt. I: Nanoanalytics: Concepts, Elements, and Peculiarities. Shtykov S.N. (Ed.). Berlin: De Gruyter; 2018. P. 3-52. https://doi.org/10.1515/9783110542011-001; Штыков С.Н. Наноаналитика. В кн.: Аналитическая химия: учебник: в 3-х т. Т. 3. Инструментальные методы анализа. Часть 2.; под ред. А.А. Ищенко. Глава 2. С. 96-128. М.: ФИЗМАТЛИТ; 2020. 504 с. ISBN 978-5-9221-1867-5; Oswald S. X-ray Photoelectron Spectroscopy in Analysis of Surfaces. In: Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. John Wiley & Sons; 2013. P. 1-49. https://doi.org/10.1002/9780470027318.a2517; Crist B.V. XPS in industry - Problems with binding energies in journals and binding energy databases. J. Electron Spectrosc. 2019;231:75-87. https://doi.org/10.1016/j.elspec.2018.02.005; Greczynski G., Hultman L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020;107:100591(46 p.). https://doi.org/10.1016/j.pmatsci.2019.100591; Bolli E., Kaciulis S., Mezzi A. ESCA as a Tool for Exploration of Metals' Surface. Coatings. 2020;10(12):1182(27 p.). https://doi.org/10.3390/coatings10121182; Hofmann S. Auger- and X-ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer-Verlag; 2013. 527 p. https://doi.org/10.1007/978-3-642-27381-0; Hufner S. Photoelectron Spectroscopy: Principles and Applications. Berlin Heidelberg: Springer-Verlag; 2003. 661 p.; Baer D.R., Artyushkova K., Brundle C.R., Castle J., Engelhard M., Gaskell K., Grant J., Haasch R., Linford M.R., Powell C., Shard A., Sherwood P., Smentkowski V. Practical guides for X-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. J. Vac. Sci. Technol. A. 2019;37(3):031401. https://doi.org/10.1116/1.5065501; Schalm O., Patelli A., Storme P., Crabbe A., Voltolina S., Feyer V., Terryn H. A dataset of high-resolution synchrotron X-ray photoelectron spectra of tarnished silver-copper surfaces before and after reduction with a remote helium plasma at atmospheric pressure. Elsevier, Data in Brief. 2021;35:106872. https://doi.org/10.1016/j.dib.2021.106872; Bagus P., Ilton E., Nelin C. The interpretation of XPS spectra: Insights into materials properties. Surf. Sci. Rep. 2013;68(2):273-304. https://doi.org/10.1016/j.surfrep.2013.03.001; Powell C.J. Improvements in the reliability of X-ray photoelectron spectroscopy for surface analysis. J. Chem. Educ. 2004;81(12):1734-1741. https://doi.org/10.1021/ed081p1734; Powell C.J., Jablonski A. Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Meth. A. 2009;601(1-2):54-65. https://doi.org/10.1016/j.nima.2008.12.103; Shard A.G. Detection limits in XPS for more than 6000 binary systems using Al and Mg Ka X-rays. Surf. Interface Anal. 2014;46(3):175-185. https://doi.org/10.1002/sia.5406; Jo M. Direct, simultaneous determination of XPS background and inelastic differential cross section using Tougaard's algorithm. Surf. Sci. 1994;320(1-2):191-200. https://doi.org/10.1016/0039-6028(94)91270-X; Seah M.P. Background subtraction: I. General behaviour of Tougaard-style backgrounds in AES and XPS. Surf. Sci. 1999;420(2-3):285-294. https://doi.org/10.1016/S0039-6028(98)00852-8; Vegh J. The Shirley background revised. J. Electron Spectrosc. 2006;151(3):159-164. https://doi.org/10.1016/j.elspec.2005.12.002; Briggs D., Grant J.T. Surface analysis by Auger and X-ray photoelectron spectroscopy. Chichester: IM Publications; 2003. 899 p.; Powell C.J. New Data Resources and Applications for AES and XPS (Papers from 6th International Symposium on Practical Surface Analysis (PSA-13)). J. Surf. Anal. 2014;20(3):155-160. https://doi.org/10.1384/jsa.20.155; Powell C.J., Jablonski A. Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J. Electron Spectrosc. 2010;178-179:331-346. https://doi.org/10.1016/j.elspec.2009.05.004; Powell C.J., Tougaard S., Werner W.S.M., Smekal W. Sample-morphology effects on X-ray photoelectron peak intensities. J. Vac. Sci. Technol. A. 2013;31(2):021402(7 p.). https://doi.org/10.1116/1.4774214; Powell C.J., Werner W.S.M., Smekal W. Sample-morphology effects on X-ray photoelectron peak intensities. II. Estimation of detection limits for thin-film materials. J. Vac. Sci. Technol. A. 2014;32(5):050603(6 p.). https://doi.org/10.1116/1.4891628; Leckey R. Ultraviolet Photoelectron Spectroscopy of Solids. In: O'Connor D.J., Sexton B.A., Smart R.S.C. (Eds.). Surface Analysis Methods in Materials Science. Springer Series in Surface Sciences. Berlin Heidelberg: Springer; 1993. V. 23. P. 291-300. https://doi.org/10.1007/978-3-662-02767-7_14; Doh W. H., Papaefthimiou V., Dintzer T., Dupuis V., Zafeiratos S. Synchrotron Radiation X-ray Photoelectron Spectroscopy as a Tool to Resolve the Dimensions of Spherical Core/Shell Nanoparticles. J. Phys. Chem. C. 2014;118(46):26621-26628. https://doi.org/10.1021/jp508895u; Fitch A.N. 2.10 - Synchrotron Methods. In: Constable E.C., Parkin G., Que Jr.L. (Eds.). Comprehensive Coordination Chemistry III. Elsevier; 2021. P. 160-182. ISBN 9780081026892. https://doi.org/10.1016/B978-0-12-409547-2.14660-8; Nemsak S., Shavorskiy A., Karslioglu O., Zegkinoglou I., Rattanachata A., Conlon C.S., Keqi A., Greene P.K., Burks E.C., Salmassi F., Gullikson E.M., Yang S.-H., Liu K., Bluhm H., Fadley C.S. Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission. Nat. Commun. 2014;5:5441-5447. https://doi.org/10.1038/ncomms6441; Фетисов Г.В. Рентгеновские дифракционные методы структурной диагностики материалов: прогресс и достижения. УФН. 2020;190(1):2-36. https://doi.org/10.3367/UFNr.2018.10.038435; Karslioglu O., Nemsak S., Zegkinoglou I., Shavorskiy A., Hartl M., Salmassi F., Gullikson E.M., Ng M.L., Rameshan Ch., Rude B., Bianculli D., Cordones A.A., Axnanda S., Crumlin E.J., Ross P.N., Schneider C.M., Hussain Z., Liu Z., Fadley C.S., Bluhm H. Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discuss. 2015;180:35-53. https://doi.org/10.1039/c5fd00003c; Kjcrvik M., Hermanns A., Dietrich P, Thissen A., Bahr S., Ritter B., Kemnitz E., Unger W.E.S. Detection of suspended nanoparticles with near-ambient pressure X-ray photoelectron spectroscopy. J. Phys.: Condens. Matter. 2017;29(47):474002(9 p.). https://doi.org/10.1088/1361-648x/aa8b9d; Corcoran C.J., Tavassol H., Rigsby M.A., Bagus P., Wieckowski A. Application of XPS to study electrocatalysts for fuel cells. J. Power Sources. 2010;195(24):7856-7879. https://doi.org/10.1016/j.jpowsour.2010.06.018; Brown M. A., Redondo A. B., Sterrer M., Winter B., Pacchioni G., Abbas Z., van Bokhoven J.A. Measure of Surface Potential at the Aqueous-Oxide Nanoparticle Interface by XPS from a Liquid Microjet. Nano Lett. 2013;13(11):5403-5407. https://doi.org/10.1021/nl402957y; Baer D.R., Engelhard M.H., Johnson J.E., Laskin J., Lai J., Mueller K., Munusamy P., Thevuthasan S., Wang H., Washton N. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J. Vac. Sci. Technol. A. 2013;31(5):050820-050854. https://doi.org/10.1116/1.4818423; Liu X., Zhang X., Bo V., Li L., Tian H., Nie Y., Sun Y., Xu S., Wang Y, Zheng W., Sun C.Q. Coordination-Resolved Electron Spectrometrics. Chem. Rev. 2015;115(14):6746-6810. https://doi.org/10.1021/cr500651m; Sublemontier O., Nicolas C., Aureau D., Patanen M., Kintz H., Liu X., Gaveau M.-A., Le Garrec J.-L., Robert E., Barreda F.-A., Etcheberry A., Reynaud C., Mitchell J.B., Miron C. X-ray Photoelectron Spectroscopy of Isolated Nanoparticles. J. Phys. Chem. Lett. 2014;5(19):3399-3403. https://doi.org/10.1021/jz501532c; Jiang Z.X., Alkemade P.F.A. The surface transient in Si for SIMS with oblique low-energy O2+ beams. Surf. Interface Anal. 1999;27(3):125-131. https://doi.org/10.1002/(SICI)1096-9918(199903)27:33.0.CO;2-8; Hajati S., Tougaard S. XPS for non-destructive depth profiling and 3D imaging of surface nanostructures. Anal. Bioanal. Chem. 2010;396(8):2741-2755. https://doi.org/10.1007/s00216-009-3401-9; Sostarecz A.G., McQuaw C.M., Wucher A., Winograd N. Depth Profiling of Langmuir-Blodgett Films with a Buckminsterfullerene Probe. Anal. Chem. 2004;76(22):6651-6658. https://doi.org/10.1021/ac0492665; Kozole J., Szakal C., Kurczy M., Winograd N. Model multilayer structures for three-dimensional cell imaging. Appl. Surf. Sci. 2006;252(19):6789-6792. https://doi.org/10.1016/j.apsusc.2006.02.209; Conlan X.A., Gilmore I.S., Henderson A., Lockyer N., Vickerman J. Polyethylene terephthalate (PET) bulk film analysis using C60+, Au3+, and Au+ primary ion beams. Appl. Surf. Sci. 2006;252(19):6562-6565. https://doi.org/10.1016/j.apsusc.2006.02.068; Sakai Y., Iijima Y., Takaishi R., Asakawa D., Hiraoka K. Depth Profiling of Polystyrene Using Charged Water Droplet Impact. J. Surf. Anal. 2009;15(3):283-286. https://doi.org/10.1384/jsa.15.283; Galindo R.E., Gago R., Albella J., Lousa A. Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques. TrAC Trends Anal. Chem. 2009;28(4):494-505. https://doi.org/10.1016/j.trac.2009.01.004; Бакалейников Л.А., Домрачева Я.В., Заморянская М.В., Колесникова Е.В., Попова Т.Б., Флегонтова Е.Ю. Послойный рентгеноспектральный микроанализ полупроводниковых структур методом вариации энергии электронного зонда. Физика и техника полупроводников. 2009;43(4):568-576.; Jablonski A., Powell C.J. Practical expressions for the mean escape depth, the information depth, and the effective attenuation length in Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 2009;27(2):253-261. https://doi.org/10.1116/1.3071947; Hesse R., WeiB M., Szargan R., Streubel P, Denecke R. Comparative study of the modelling of the spectral background of photoelectron spectra with the Shirley and improved Tougaard methods. J. Electron. Spectros. Relat. Phenomena. 2013;186:44-53. https://doi.org/10.1016/j.elspec.2013.01.020; Tougaard S. Practical guide to the use of backgrounds in quantitative XPS. J. Vac. Sci. Technol. A. 2021;39(1):011201(22 p.). https://doi.org/10.1116/6.0000661; Engelhard M.H., Baer D.R., Herrera-Gomez A., Sherwood P. Introductory guide to backgrounds in XPS spectra and their impact on determining peak intensities. J. Vac. Sci. Technol. A. 2020;38(6):063203(24 p.). https://doi.org/10.1116/6.0000359; Jain V., Biesinger M.C., Linford M.R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Appl. Surf. Sci. 2018;447:548-553. https://doi.org/10.1016/j.apsusc.2018.03.190; Hesse R., WeiB M., Szargan R., Streubel P., Denecke R. Improved peak-fit procedure for XPS measurements of inhomogeneous samples—Development of the advanced Tougaard background method. J. Electron Spectros. Relat. Phenomena. 2015;205:29-51. https://doi.org/10.1016/j.elspec.2015.06.013; Zborowski C., Vanleenhove A., Conard T. Comparison and complementarity of QUASES-Tougaard and SESSA software. Appl. Sur. Sci. 2022;585:152758(8 p.). https://doi.org/10.1016/j.apsusc.2022.152758; Briggs D., Seah P. (Eds.). Practical surface analysis: Auger and X-ray photoelectron spectroscopy. Chichester: John Wiley & Sons; 1996. V. 1. 674 p.; Sun C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Ch. 2007;35(1):1-159. https://doi.org/10.1016/j.progsolidst-chem.2006.03.001; Hill J., Royce D.G., Fadley C.S., Wagner L.F., Grunthaner F.J. Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy. Chem. Phys. Lett. 1976;44(2):225-231. https://doi.org/10.1016/0009-2614(76)80496-4; Seah M.P. Intercomparison of silicon dioxide thickness measurements made by multiple techniques: The route to accuracy. J. Vac. Sci. Technol. A. 2004;22(4):1564-1571. https://doi.org/10.1116/1.1705594; Tougaard S. Energy loss in XPS: Fundamental processes and applications for quantification, non-destructive depth profiling and 3D imaging. J. Electron. Spectrosc. Relat. Phenom. 2010;178-179:128-153. https://doi.org/10.1016/j.elspec.2009.08.005; Tougaard S. Universality Classes of Inelastic Electron Scattering Cross-sections. Surf. Interface Anal. 1997;25(3):137-154. https://doi.org/10.1002/(SICI)1096-9918(199703)25:33.0.CO;2-L; Tougaard S. Quantification of Nanostructures by Electron Spectroscopy. In: Briggs D., Grant J.T. (Eds.). Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. IM Publications; 2003. P. 295-343.; Iwai H., Hammond J.S., Tanuma S. Recent status of thin film analyses by XPS. J. Surf. Anal. 2009;15(3):264-270. https://doi.org/10.1384/jsa.15.264; Gunter P.L.J., Dejong A.M., Niemantsverdriet J.W., Rheiter H.J.H. Evaluation of take-off angle-dependent XPS for determining the thickness of passivation layers on aluminum and silicon. Surf. Interface Anal. 1992;19(1-12):161-164. https://doi.org/10.1002/sia.740190131; Cole D.A., Shallenberger J.R., Novak S.W., Moore R.L. SiO2 thickness determination by X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry. J. Vac. Sci. Technol. B. 2000;18(1):440-444. https://doi.org/10.1116/1.591208; Alexander M.R., Thompson G.E., Zhou X., Beamson G., Fairley N. Quantification of oxide film thickness at the surface of aluminum using XPS. Surf. Interface Anal. 2002;34(1):485-489. https://doi.org/10.1002/sia.1344; Olsson C.-O.A., Landolt D. Atmospheric oxidation of a Nb-Zr alloy studied with XPS. Corros. Sci. 2004;46(1):213-224. https://doi.org/10.1016/S0010-938X(03)00139-2; Kappen P., Reihs K., Seidel C., Voetz M., Fuchs H. Overlayer thickness determination by angular dependent X-ray photoelectron spectroscopy (ADXPS) of rough surfaces with a spherical topography. Surf. Sci. 2000;465(1-2):40-50. https://doi.org/10.1016/S0039-6028(00)00653-1; Martin-Concepcion A.I., Yubero F., Espinos J.P., Tougaard S. Surface roughness and island formation effects in ARXPS quantification. Surf. Interface Anal. 2004;36(8):788-792. https://doi.org/10.1002/sia.1765; Cumpson P.J. Thickogram: A method for easy film thickness measurement in XPS. Surf. Interface Anal. 2000;29(6):403-406. https://doi.org/10.1002/1096-9918(200006)29:63.0.CO;2-8; Cui Yi-T., Tougaard S., Oji H., Son J.-Y., Sakamoto Y., Matsumoto T., Yang A., Sakata O., Song H., Hirosawa I. Thickness and structure of thin films determined by background analysis in hard X-ray photoelectron spectroscopy. J. Appl. Phys. 2017;121(22):225307-1-10. https://doi.org/10.1063/1.4985176; Tougaard S. Novel Applications of Inelastic Background XPS Analysis: 3D Imaging and HAXPES. J. Surf. Anal. 2017;24(2):107-114. https://doi.org/10.1384/jsa.24.107; Paynter R.W. An ARXPS primer. J. Electron. Spectrosc. Relat. Phenom. 2009;169(1):1-9. https://doi.org/10.1016/j.elspec.2008.09.005; Cumpson P.J. Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron. Spectrosc. Relat. Phenom. 1995;73(1):25-52. https://doi.org/10.1016/0368-2048(94)02270-4; Oswald S., Oswald F. Computer simulation of angle-resolved X-ray photoelectron spectroscopy measurements for the study of surface and interface roughnesses. J. Appl. Phys. 2006;100(10):104504(9 p.). https://doi.org/10.1063/1.2386938; Oswald S., Oswald F. A promising concept for using near-surface measuring angles in angle-resolved X-ray photoelectron spectroscopy considering elastic scattering effects. J. Appl. Phys. 2011;109(3):034305(11 p.). https://doi.org/10.1063/1.3544002; Herrera-Gomez A., Grant J. T., Cumpson P., Jenko M., Aguirre-Tostado F.S., Brundle C.R., Conard T., Conti G., Fadley C.S., Fulghum J., Kobayashi K., Kover L., Nohira H., Opila R.L., Oswald S., Paynter R.W., Wallace R.M., Werner W.S.M., Wolstenholme J. Report on the 47th IUVSTA Workshop “Angle-Resolved XPS: The current status and future prospects for angle-resolved XPS of nano and subnano films.” Surf. Interface Anal. 2009;41(11):840-857. https://doi.org/10.1002/sia.3105; Liu Y., Hofmann S., Wang J.Y. An analytical depth resolution function for the MRI model. Surf. Interface Anal. 2013;45(11-12):1659-1660. https://doi.org/10.1002/sia.5319; Yang J., Li W., Wang D., Li Y. Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis. Adv. Mater. 2020;32(49):2003300(29 p.). https://doi.org/10.1002/adma.202003300; Moretti G. Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron. Spectrosc. Relat. Phenom. 1998;95(2-3):95-144. https://doi.org/10.1016/S0368-2048(98)00249-7; Moretti G. The Wagner plot and the Auger parameter as tools to separate initial- and final-state contributions in X-ray photoemission spectroscopy. Surf. Sci. 2013;618:3-11. https://doi.org/10.1016/j.susc.2013.09.009; Zafeiratos S., Kennou A.A study of gold ultrathin film growth on yttria-stabilized ZrO2(100). Surf. Sci. 1999;443(3):238-244. https://doi.org/10.21016/S0039-6028(99)01014-6; Fu Q., Wagner T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 2007;62(11):431-498. https://doi.org/10.1016Zj.sur-frep.2007.07.001; Fulghum J.E., Linton R.W. Quantitation of coverages on rough surfaces by XPS: an overview. Surf. Interface Anal. 1988;13(4):186—192. https://doi.org/10.1002/sia.740130404; Werner W.S.M., Chudzicki M., Smekal W., Powell C. Interpretation of nanoparticle X-ray photoelectron intensities. Appl. Phys. Lett. 2014;104(24):243106(3 p.). https://doi.org/10.1063/1.4884065; Frydman A., Castner D.G., Schmal M., Campbell C. A method for accurate quantitative XPS analysis of multimetallic or multiphase catalysts on support particles. J. Catal. 1995;157(1):133-144. https://doi.org/10.1006/jcat.1995.1274; Martin J.E., Herzing A.A., Yan W., Li X.-Q., Koel B.E., Kiely C.J., Zhang W.-X. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir. 2008;24(8):4329-4334. https://doi.org/10.1021/la703689k; Tunc I., Suzer S., Correa-Duarte M.A., Liz-Marzan L. XPS Characterization of Au(Core)/SiO2 (Shell) Nanoparticles. J. Phys. Chem. B. 2005;109(16):7597-7600. https://doi.org/10.1021/jp050767j; Diebold U., Pan J.-M., Madey T.E. Growth mode of ultrathin copper overlayers on TiO2(110). Phys. Rev. B. 1993;47(7):3868-3876. https://doi.org/10.1103/PhysRevB.47.3868; Sharp J.C., Campbell C.T. Quantitative modeling of electron spectroscopy intensities for supported nanoparticles: The hemispherical cap model for non-normal detection. Surf. Sci. 2015;632:L5-L8. https://doi.org/10.1016/j.susc.2014.08.010; Yang D.Q., Gillet J.N., Meunier M., Sacher E. Room temperature oxidation kinetics of Si nanoparticles in air, determined by X-ray photoelectron spectroscopy. J. Appl. Phys. 2005;97(2):24303(6 p.). https://doi.org/10.1063/1.1835566; Vazquez-Pufleau M.A. Simple Model for the High Temperature Oxidation Kinetics of Silicon Nanoparticle Aggregates. Silicon. 2021;13(3):189-200. https://doi.org/10.1007/s12633-020-00415-3; Gillet J.N., Meunier M. General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. J. Phys. Chem. B. 2005;109(18):8733-8737. https://doi.org/10.1021/jp044322r; Shard A.G., Wang J., Spencer S.J. XPS Topofactors: Determining Overlayer Thickness on Particles and Fibres. Surf. Interface Anal. 2009;41(7):541-548. https://doi.org/10.1002/sia.3044; Patrone L., Nelson D., Safarov V.I., Sentis M., Marine W. Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J. Appl. Phys. 2000;87(8):3829-3837. https://doi.org/10.1063/1.372421; Hofmeister H., Huisken F., Kohn B. Lattice contraction in nanosized silicon particles produced by laser pyrolysis of silane. Eur. Phys. J. D. 1999;9(1-4):137-140. https://doi.org/10.1007/s100530050413; Werner W.S.M., Smekal W., Powell C.J. Simulation of Electron Spectra for Surface Analysis. Version 2.1 User's Guide. 2017. 134 р. https://doi.org/10.6028/NIST.NSRDS.100-2017. Accessed April 01, 2023.; Risterucci P., Renault O., Zborowski C., Bertrand D., Torres A., Rueff J.-P., Ceolin D.,Grenet G., Tougaard S. Effective inelastic scattering cross-sections for background analysis in HAXPES of deeply buried layers. Appl. Surf. Sci. 2017;402:78-85. https://doi.org/10.1016/j.apsusc.2017.01.046; Baer D.R., Wang Y.-C., Castner D.J. Use of XPS to Quantify Thickness of Coatings on Nanoparticles. Micros. Today. 2016;24(2):40-45. https://doi.org/10.1017/S1551929516000109; Pauly N., Tougaard S., Yubero F. Modeling of X-ray photoelectron spectra: surface and core hole effects. Surf. Interface Anal. 2014;46(10-11):920-923. https://doi.org/10.1002/sia.5372; Hajati S., Zaporojtchenko V., Faupel F., Tougaard S. Characterization of Au nano-cluster formation on and diffusion in polystyrene using XPS peak shape analysis. Surf. Sci. 2007;601(15):3261-3267. https://doi.org/10.1016/j.susc.2007.06.001; Mansilla C., Gracia F., Martin-Concepcion A.I., Espinos J.P, Holgado J.P., Yubero F., Gonzalez-Elipe A.R. Study of the first nucleation steps of thin films by XPS inelastic peak shape analysis. Surf. Interface Anal. 2007;39(4):331-336. https://doi.org/10.1002/sia.2509; Kjcrvik M., Hermanns A., Dietrich P., Thissen A., Bahr S., Ritter B., Kemnitz E., Unger W.E.S. Detection of suspended nanoparticles with near-ambient pressure X-ray photoelectron spectroscopy. J. Phys.: Condens. Matter. 2017;29(47):474002(9 p.). https://doi.org/10.1088/1361-648x/aa8b9d
-
4Academic Journal
Συγγραφείς: Valiev, Rashid R., Feifel, Raimund, Agren, Hans, Eland, John H. D.
Πηγή: Molecular physics. 2017. Vol. 115, № 1/2. P. 252-259
Θεματικοί όροι: 0103 physical sciences, валентные состояния, 01 natural sciences, молекулы
-
5Conference
Συγγραφείς: Офицерова, Н. Ю., Бажукова, И. Н., Ofitserova, N. Yu., Bazhukova, I. N.
Θεματικοί όροι: НАНОЧАСТИЦЫ ДИОКСИДА ЦЕРИЯ, МУЛЬТИФЕРМЕНТАТИВНАЯ АКТИВНОСТЬ, КИСЛОРОДНЫЕ ВАКАНСИИ, СМЕШАННЫЕ ВАЛЕНТНЫЕ СОСТОЯНИЯ, ДОПИРОВАНИЕ, РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ, CERIUM DIOXIDE NANOPARTICLES, MULTI-ENZYMATIC ACTIVITY, OXYGEN VACANCIES, MIXED VALENCE STATES, DOPING, RARE-EARTH ELEMENTS
Περιγραφή αρχείου: application/pdf
Relation: Актуальные проблемы развития естественных наук : сборник статей участников XXV Областного конкурса научно-исследовательских работ «Научный Олимп» по направлению «Естественные науки». — Екатеринбург, 2022; http://elar.urfu.ru/handle/10995/119892
Διαθεσιμότητα: http://elar.urfu.ru/handle/10995/119892