Εμφανίζονται 1 - 20 Αποτελέσματα από 24 για την αναζήτηση '"БИОТЕХНОЛОГИЧЕСКИЙ ПОТЕНЦИАЛ"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The research was funded by Russian Science Foundation, project number 24-16-00163., Работа выполнена при финансовой поддержке Российского научного фонда (проект №24-16-00163).

    Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 3 (2024); 193-201 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 3 (2024); 193-201 ; 0137-0952

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1407/691; Blasio M., Balzano S. Fatty acids derivatives from eukaryotic microalgae, pathways and potential applications. Front. Microbiol. 2021;12:718933.; Maltsev Y., Maltseva K. Fatty acids of microalgae: diversity and applications. Rev. Environ. Sci. Biotechnol. 2021;20(2):515–547.; Gao B., Xia S., Lei X., Zhang C. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem. J. Appl. Phycol. 2018;30(1):215–229.; Sinetova M.A., Sidorov R.A., Starikov A.Y., Voronkov A.S., Medvedeva A.S., Krivova Z.V., Pakholkova M.S., Bachin D.V., Bedbenov V.S., Gabrielyan D.A., Zayadan B.K., Bolatkhan K., Los D.A. Assessment of biotechnological potential of cyanobacteria and microalgae strains from the IPPAS culture collection. Appl. Biochem. Microbiol. 2020;56(7):794–808.; Sidorov R.A., Starikov A.Y., Sinetova M.A., Guilmisarian E.V., Los D.A. Identification of conjugated dienes of fatty acids in Vischeria sp. IPPAS C-70 under oxidative stress. Int. J. Mol. Sci. 2024;25(6):323.; Lenihan-Geels G., Bishop K., Ferguson L. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 2013;5(4):1301.; Coniglio S., Shumskaya M., Vassiliou E. Unsaturated fatty acids and their immunomodulatory properties. Biology. 2023;12(2):279.; Jack A., Adegbeye M., Ekanem D., Faniyi T., Fajemisin A.N., Elghandour M.M., Salem A.Z.M., Rivas-Caceres R.R., Adewumi K., Edoh O. Microalgae application in feed for ruminants. Handbook of Food and Feed from Microalgae. Eds. E. Jacob-Lopez, M.I. Queiroz, M.M. Maroneze, and L.Q. Zepka. Academic Press; 2023:397–409.; De Souza J., Lock A.L. Milk production and nutrient digestibility responses to triglyceride or fatty acid supplements enriched in palmitic acid. J. Dairy Sci. 2019;102(5):4155–4164.; Staples C.R., Burke J.M., Thatcher W.W. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy. Sci. 1998;81(3):856–871.; Kholif A.E., Gouda A.G., Hatem A.H. Performance and milk composition of nubian goats as affected by increasing level of Nannochloropsis oculata microalgae. Animals. 2020;10(12):2453.; Wu Y., Li R., Hildebrand D.F. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog. Lipid Res. 2012;51(4):340–349.; Kolouchová I., Sigler K., Schreiberová O., Masák J., Řezanka T. New yeast-based approaches in production of palmitoleic acid. Bioresour. 2015;192:726–734.; Okullo A.A., Temu A.K., Ogwok P., Ntalikwa J.W. Physico-chemical properties of biodiesel from jatropha and castor oils. Int. J. Renew. Energy Res. 2012;2(1):47–52.; Shinde S., Kale A., Kulaga T., Licamele J.D., Tonkovich A.L. Omega 7 rich compositions and methods of isolating omega 7 fatty acids. US20130129775 A1. 2013.; Yang B.R., Kallio H.P. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. J. Agric. Food. Chem. 2001;49(4):1939–1947.; Knothe G. Biodiesel derived from a model oil enriched in palmitoleic acid macadamia nut oil. Energy Fuels. 2010;24(3):2098–2103.; Abdelhamid A.S., Brown T.J., Brainard J.S., Biswas P., Thorpe G.C., Moore H.J., Deane K.H., AlAbdulghafoor F.K., Summerbell C.D., Worthington H.V., Song F., Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018;7(7):CD003177.; Forbes S.C., Holroyd-Leduc J.M., Poulin M.J., Hogan D.B. Effect of тutrients, вietary ыupplements and мitamins on сognition: a systematic review and metaanalysis of randomized controlled trials. Can. Geriatr. J. 2015;18(4):231–245.; Alex A., Abbott K.A., McEvoy M., Schofield P.W., Garg M.L. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: a systematic review and meta-analysis. Nutr. Rev. 2020;78(7):563–578.; Lands B. A critique of paradoxes in current advice on dietary lipids. Prog. Lipid Res. 2008;47(2):77–106.; Зайцева Л.В., Нечаев А.П. Полиненасыщенные жирные кислоты в питании: современный взгляд. Пищевая промышленность. 2014;4:14–19.; Krivina E., Portnov A., Temraleeva A. A description of Aliichlorella ignota gen. et sp. nov. and a comparison of the efficiency of species delimitation methods in the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Phycol. Res. 2024;72(3):180–190.; Procházková K. Diverzita a druhový koncept u komplexu Vischeria/Eustigmatos (Eustigmatophyceae). Praha: Karlova univerzita; 2012. 79 pp.; Темралеева А.Д., Портная Е.А. Морфологический и молекулярно-генетический анализ рода Vischeria (Eustigmataceae, Ochrophyta) в альгологической коллекции ACSSI. Бот. журн. 2022;107(2):132–148.; Kryvenda A., Rybalka N., Wolf M., Friedl T. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur. J. Phycol. 2018;53(4):471–491.; Xu J., Li T., Li C.L., Zhu S.N., Wang Z.M., Zeng E.Y. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01 (Eustigmatophyceae). Algal Res. 2020;48:101910.; Wang F., Gao B., Huang L., Su M., Dai C., Zhang C. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. Bioresour Technol. 2018;270:30–37.; Sinetova M.A., Sidorov R.A., Medvedeva A.A., Starikov A.Y., Markelova A.G., Allakhverdiev S.I., Los D.A. Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J. Biotechnol. 2021;331:63–73.; Gao B., Yang J., Lei X., Xia S., Li A., Zhang C. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. J. Appl. Phycol. 2016;28(2):821–830.; Krzemińska I., Nosalewicz A., Reszczyńska E., Pawlik-Skowrońska B. Enhanced light-induced biosynthesis of fatty acids suitable for biodiesel production by the yellowgreen alga Eustigmatos magnus. Energies. 2020;13(22):6098.; Kaijser A., Dutta P.C., Savage. G.P. Oxidative stability and lipid composition of macadamia nuts grown in New Zealand. Food Chem. 2020;71(1):67–70.

  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 5 (2022); 449-457 ; Вавиловский журнал генетики и селекции; Том 26, № 5 (2022); 449-457 ; 2500-3259 ; 10.18699/VJGB-22-50

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3437/1633; Anderson E.L., Jang J., Venterea R.T., Feyereisen G.W., Ishii S. Isolation and characterization of denitrifiers from woodchip bioreactors for bioaugmentation application. J. Appl. Microbiol. 2020;129(3):590-600. DOI 10.1111/jam.14655.; Araya R., Tani K., Takagi T., Yamaguchi N., Nasu M. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 2003;43(1):111-119. DOI 10.1111/j.15746941.2003.tb01050.x.; Barathi S., Vasudevan N. Utilization of petroleum hydrocarbons by Pseudomonas f luorescens isolated from petroleum contaminated soil. Environ. Int. 2001;26:413-416. DOI 10.1016/S0160-4120(01)00021-6.; Bender J., Flieger A. Lipases as pathogenicity factors of bacterial pathogens of humans. In: Timmis K.N. (Ed.) Handbook of Hydrocarbon and Lipid Microbiology. Berlin; Heidelberg: Springer-Verlag, 2010:3241-3258. DOI 10.1007/978-3-540-77587-4_246.; Bofill C., Prim N., Mormeneo M., Manresa A., Pastor F.I.J., Diaz P. Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie. 2010;92(3):307-316. DOI 10.1016/j.biochi.2009.11.005.; Bouchez T., Patureau D., Delgenès J.P., Moletta R. Successful bacterial incorporation into activated sludge flocs using alginate. Bioresour. Technol. 2009;100(2):1031-1032. DOI 10.1016/j.biortech.2008.07.028.; Brown B.L., Swan C.M., Auerbach D., Campbell Grant E.H., Hitt N.P., Maloney K.O., Patrick C. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J. North Am. Benthol. Soc. 2011;30(1):310-327. DOI 10.1899/10-129.1.; Cai X., Chen S., Yang H., Wang W., Lin L., Shen Y., Wei D. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1. Can. J. Microbiol. 2016;62(7):588-599. DOI 10.1139/cjm-2015-0641.; Cea M., Sangaletti-Gerhard N., Acuña P., Fuentes I., Jorquera M., Godoy K., Osses F., Navia R. Screening transesterifiable lipid accumulating bacteria from sewage sludge for biodiesel production. Biotechnol. Rep. 2015;8:116-123. DOI 10.1016/j.btre.2015.10.008.; Chen J., Wang P.F., Wang C., Wang X., Miao L.Z., Liu S., Yuan Q.S. Bacterial communities in riparian sediments: a large-scale longitudinal distribution pattern and response to dam construction. Front. Microbiol. 2018;9:999. DOI 10.3389/fmicb.2018.00999.; Cleenwerck I., De Wachter M., Hoste B., Janssens D., Swings J. Aquaspirillum dispar Hylemon et al. 1973 and Microvirgula aerodenitrificans Patureau et al. 1998 are subjective synonyms. Int. J. Syst. Evol. Microbiol. 2003;53(5):1457-1459. DOI 10.1099/ijs.0.02675-0.; Cyriaque V., Géron A., Billon G., Nesme J., Werner J., Gillan D.C., Wattiez R. Metal-induced bacterial interactions promote diversity in river-sediment microbiomes. FEMS Microbiol. Ecol. 2020;96(6):5826176. DOI 10.1093/femsec/fiaa076.; Dai Y., Yang Y.Y., Wu Z., Feng Q.Y., Xie S.G., Liu Y. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Appl. Microbiol. Biotechnol. 2016;100(9):4161-4175. DOI 10.1007/s00253-015-7253-2.; DeLong E.F. Archaea in costal marine environments. Proc. Natl. Acad. Sci. USA. 1992;89:5685-5689. DOI 10.1073/pnas.89.12.5685.; Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.M., Gardan L. Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int. J. Syst. Evol. Microbiol. 2002;52(2):513-523. DOI 10.1099/00207713-52-2-513.; de Oliveira L.F.V., Margis R. The source of the river as a nursery for microbial diversity. PLoS One. 2015;10(3):e0120608. DOI 10.1371/journal.pone.0120608.; De Vrieze M., Pandey P., Bucheli T.D., Varadarajan A.R., Ahrens C.H., Weisskopf L., Bailly A. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front. Microbiol. 2015;6:1295. DOI 10.3389/fmicb.2015.01295.; Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J. Syst. Bacteriol. 1996;46(4):1138-1144. DOI 10.1099/00207713-46-4-1138.; Fendri I., Chaari A., Dhouib A., Jlassi B., Abousalham A., Carrière F., Sayadi S., Abdelkafi S. Isolation, identification and characterization of a new lipolytic Pseudomonas sp., from Tunisian soil. Environ. Technol. 2010;31(1):87-95. DOI 10.1080/09593330903369994.; Fischer H., Wanner S.C., Pusch M. Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry. 2002;61:37-55. DOI 10.1023/A:1020298907014.; Frank Y.A., Nikitchuk K.L., Sapega A.A., Lukjanova E.A., Ivasenko D.A., Kosov A.V., Gerasimchuk A.L., Evseeva N.S. Improvement of the efficiency of oil-contaminated soils remediation in the natural conditions of the north Tomsk region and the nearby regions by indigenous microorganisms application. Izvestiya Tomskogo Polytehnicheskogo Universita. Inzhiniring Georesursov = Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2020;331(9):130-139. DOI 10.18799/24131830/2020/9/2815. (in Russian); Frank Y.A., Vorobiev E.D., Vorobiev D.S., Trifonov A.A., Antsiferov D.V., Soliman Hunter T., Wilson S.P., Strezov V. Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom rivers in Siberia, Russia. Sustainability. 2021;13(1):80. DOI 10.3390/su13010080.; Gerasimchuk A.L., Ivasenko D.A., Bukhtiyarova P.A., Antsiferov D.V., Frank Y.A. Search for new cultured lipophilic bacteria in industrial fat-containing wastes. BIO Web Conf. II Int. Sci. Conf. “Plants and Microbes: The Future of Biotechnology” (PLAMIC2020). 2020;23:02012. DOI 10.1051/bioconf/20202302012.; Gerasimchuk A.L., Shatalov A.A., Novikov A.L., Butorova O.P., Pimenov N.V., Lein A.Y., Yanenko A.S., Karnachuk O.V. The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology. 2010;79(1):96-105. DOI 10.1134/S0026261710010133.; Iyer R., Iken B., Damania A. Genome of Pseudomonas nitroreducens DF05 from dioxin contaminated sediment downstream of the San Jacinto River waste pits reveals a broad array of aromatic degradation gene determinants. Genom. Data. 2017;17(14):40-43. DOI 10.1016/j.gdata.2017.07.011.; Kopylov A.I., Kosolapov D.B. The structure of the planktic microbial community in the lower reaches of the Ob river near Salekhard. Contemp. Probl. Ecol. 2011;4(1):1-7. DOI 10.1134/; S1995425511010012. Koronkevich N.I., Barabanova E.A., Georgiadi A.G., Zaitseva I.S., Shaporenko S.I. Anthropogenic impacts on the water resources of the Russian Arctic basin rivers. Geogr. Nat. Resour. 2019;40(1):22-29. DOI 10.1134/S1875372819010049.; Kovacic F., Babić N., Krauss U., Jaeger K.-E. Classification of lipolytic enzymes from bacteria. In: Rojo F. (Ed.) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of hydrocarbon and lipid microbiology. Cham: Springer, 2019;255-289. DOI 10.1007/978-3-319-50418-6_39.; Lee S.Y., Rhee J.S. Hydrolysis of triglyceride by the whole cell of Pseudomonas putida 3SK in two-phase batch and continuous reactors systems. Biotechnol. Bioeng. 2008;44:437-443. DOI 10.1002/bit.260440406.; Li J., Wang L.-H., Xiang F.-G., Ding W.-L., Xi L.-J., Wang M.-Q., Xiao Z.-J., Liu J.-G. Pseudomonas phragmitis sp. nov., isolated from petroleum polluted river sediment. Int. J. Syst. Evol. Microbiol. 2020;70(1):364-372. DOI 10.1099/ijsem.0.003763.; López J.R., Diéguez A.L., Doce A., De la Roca E., De la Herran R., Navas J.I., Toranzo A.E., Romalde J.L. Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). Int. J. Syst. Evol. Microbiol. 2012;62(4):874-882. DOI 10.1099/ijs.0.030601-0.; Mansour I., Heppell C.M., Ryo M., Rillig M.C. Application of the microbial community coalescence concept to riverine networks. Biol. Rev. 2018;93(4):1832-1845. DOI 10.1111/brv.12422.; Mourey A., Kilbertus G. Simple media containing stabilized tributyrin for demonstrating lipolytic bacteria in foods and soils. J. Appl. Bacteriol. 1976;40:47-51. DOI 10.1111/j.1365-2672.1976.tb00589.x.; Mulet M., Gomila M., Lemaitre B., Lalucat J., García-Valdés E. Taxonomic characterization of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst. Appl. Microbiol. 2012;35:145-149. DOI 10.1016/j.syapm.2011.12.003.; Muriel-Millán L.F., Rodríguez-Mejía J.L., Godoy-Lozano E.E., Rivera-Gómez N., Gutierrez-Rios R.-M., Morales-Guzmán D., Trejo-Hernández M.R., Estradas-Romero A., Pardo-López L. Functional and genomic characterization of a Pseudomonas aeruginosa strain isolated from the southwestern gulf of Mexico reveals an enhanced adaptation for long-chain alkane degradation. Front. Mar. Sci. 2019;6:572. DOI 10.3389/fmars.2019.00572.; Muyzer G., de Waal E.C., Uitterlinden U.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993;59(3):695-700. DOI 10.1128/aem.59.3.695-700.1993.; Pabai F., Kermasha S., Morin A. Use of continuous culture to screen for lipase-producing microorganisms and interesterification of butterfat by lipase isolates. Can. J. Microbiol. 1996;42:446-452. DOI 10.1139/m96-061.; Parte A. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014;42:D613-D616. DOI 10.1093/nar/gkt1111.; Patureau D., Godon J.J., Dabert P., Bouchez T., Bernet N., Delgenes J.P., Moletta R. Microvirgula aerodenitrificans gen. nov., sp. nov., a new gram-negative bacterium exhibiting corespiration of oxygen and nitrogen oxides up to oxygen-saturated conditions. Int. J. Syst. Bacteriol. 1998;48:775-782. DOI 10.1099/00207713-48-3-775.; Patureau D., Helloin E., Rustrian E., Bouchez T., Delgene J., Moletta R. Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula aerodenitrificans. Water Res. 2001;35(1):189-197. DOI 10.1016/s0043-1354(00)00244.; Peix A., Ramírez-Bahena M.-H., Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 2009;9(6):1132-1147. DOI 10.1016/j.meegid.2009.08.001.; Pellett S., Bigley V.D., Grimes D.J. Distribution of Pseudomonas aeruginosa in a riverine ecosystemt. Appl. Environ. Microbiol. 1983;45(1):328-332. DOI 10.1128/aem.45.1.328-332.1983.; Pirnay J.-P., Matthijs S., Colak H., Chablain P., Bilocq F., Van Eldere J., De Vos D., Zizi M., Triest L., Cornelis P. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ. Microbiol. 2005;7(7):969-980. DOI 10.1111/j.1462-2920.2005.00776.x.; Psenner R., Alfreider A., Schwarz A. Aquatic microbial ecology: water desert, microcosm, ecosystem. What’s тext? Internat. Rev. Hydrobiol. 2008;93(4-5):606-623. DOI 10.1002/IROH.200711044.; Ramette A., Frapolli M., Saux M.F.-L., Gruffaz C., Meyer J.-M., Défago G., Sutra L., Moënne-Loccoz Y. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 2011;34(3):180-188. DOI 10.1016/j.syapm.2010.10.005.; Ramnath L., Sithole B., Govinden R. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. Biotechnol. Rep. 2017;15:114-124. DOI 10.1016/j.btre.2017.07.004.; Reetz M.T., Jaeger K.E. Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem. Phys. Lipids. 1998;93(1-2):3-14. DOI 10.1016/s0009-3084(98)00033-4.; Sagova-Mareckova M., Boenigk J., Bouchez A., Cermakova K., Chonova T., Cordier T., Eisendle U., Elersek T., Fazi S., Fleituch T., Frühe L., Gajdosova M., Graupner N., Haegerbaeumer A., Kelly A.-M., Kopecky J., Leese F., Nõges P., Orlic S., Panksep K., Pawlowski J., Petrusek A., Piggott J.J., Rusch J.C., Salis R., Schenk J., Simek K., Stovicek A., Strand D.A., Vasquez M.I., Vrålstad T., Zlatkovic S., Zupancic M., Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Res. 2021;191:116767. DOI 10.1016/j.watres.2020.116767.; Sarkar P., Roy A., Pal S., Mohapatra B., Kazy S.K., Maiti M.K., Sar P. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour. Technol. 2017;242:15-27. DOI 10.1016/j.biortech.2017.05.010.; Savichev O.G., Tokarenko O.G., Pasechnik E.Yu., Nalivaiko N.G., Ivanova Е.A., Nadeina L.V. Microbiological composition of river waters in the Ob’ basin (West Siberia) and its associations with hydrochemical indices. IOP Conf. Series: Earth Environ. Sci. 2015;27:012035. DOI 10.1088/1755-1315/27/1/012035.; Shornikova E.A. Microbiological indication of river ecosystem conditions at the oil fields in the Middle Ob’ area. Contemp. Probl. Ecol. 2008;1(3):328-334. DOI 10.1134/S1995425508030077.; Shornikova E., Arslanova M. The experience of application of microbiological indicators in monitoring procedures of aquatic ecosystems in the Middle Ob basin. E3S Web Conf. 2020;210:07013. DOI 10.1051/e3sconf/202021007013.; Subhash Y., Park M.J., Lee S.S. Microvirgula curvata sp. nov., isolated from hydrocarbon-contaminated soil, and emended description of the genus Microvirgula. Int. J. Syst. Evol. Microbiol. 2016;66:5309-5313. DOI 10.1099/ijsem.0.001512.; Sudan S.K., Pal D., Bisht B., Kumar N., Chaudhry V., Patil P., Sahni G., Mayilraj S., Krishnamurthi S. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India. Int. J. Syst. Evol. Microbiol. 2018;68(1):402-408. DOI 10.1099/ijsem.0.002520.; Wang J., Li Y., Wang P., Niu L., Zhang W., Wang C. Response of bacterial community compositions to different sources of pollutants in sediments of a tributary of Taihu Lake, China. Environ. Sci. Pollut. Res. Int. 2016;23(14):13886-13894. DOI 10.1007/s11356-016-6573-9.; Wang L., Zhang J., Li H., Yang Н., Peng C., Peng Z., Lu L. Shift in the microbial community composition of surface water and sediment along an urban river. Sci. Total. Environ. 2018;627:600- 612. DOI 10.1016/j.scitotenv.2018.01.203.; Wei C.L., Bao S., Zhu X.Y., Huang X.X. Spatio-temporal variations of the bacterioplankton community composition in Chaohu Lake, China. Prog. Nat. Sci. 2008;18(9):1115-1122. DOI 10.1016/j.pnsc.2008.04.005.; Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697-703. DOI 10.1128/jb.173.2.697-703.1991.; Yang J., Zhang B., Yan Y. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl. Biochem. Biotechnol. 2009;159:355-365. DOI 10.1007/s12010-008-8419-5.; Yang W., Cao H., Xu L., Zhang H., Yan Y. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC Biotechnol. 2015;15:94. DOI 10.1186/s12896-015-0214-0.; Zhang L., Zhao T., Wang Q., Li L., Shen T., Gao G. Bacterial community composition in aquatic and sediment samples with spatiotemporal dynamics in large, shallow, eutrophic Lake Chaohu, China. J. Freshw. Ecol. 2019;34(1):575-589. DOI 10.1080/02705060.2019.1635536.; https://vavilov.elpub.ru/jour/article/view/3437

  7. 7
    Academic Journal

    Συνεισφορές: The work of N.A. Chernykh carried out with the partial financial support of the Ministry of Science and Higher Education of the Russian Federation.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 25, № 2 (2021); 224-233 ; Вавиловский журнал генетики и селекции; Том 25, № 2 (2021); 224-233 ; 2500-3259 ; 10.18699/VJ21.016

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2981/1500; Banciu H.L., Enach M., Rodriguez R.M., Oren A., Ventosa A. Ecology and physiology of halophilic microorganisms – Thematic issue based on papers presented at Halophiles 2019 – 12th International Conference on Halophilic Microorganisms, Cluj-Napoca, Romania, 24–28 June, 2019. FEMS Microbiol. Lett. 2020;366(23):1-4. DOI 10.1093/femsle/fnz250.; Вaumann P., Baumann L. The marine gram-negative Eubacteria. In: Starr M.P., Stolp H., Trüper H.G., Balows A., Schlegel H.G. (Eds.). The Prokaryotes. A handbook on habitats, isolation nd identification of bacteria. Berlin: Springer-Verlag, 1986;2:1302-1331.; Begmatov Sh.A., Selitskaya O.V., Vasileva L.V., Berestovskaja Yu.Yu., Manucharova N.A., Drenova N.V. Morphophysiological features of some cultivable bacteria from saline soils of the Aral Sea region. Eur. J. Soil Sci. 2020;53(1):90-96. DOI 10.1134/S1064229320010044.; Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979; 7(6):1513-1523.; Bonch-Osmolovskaya E.A., Atomi H. Editorial overview: Extremophiles: from extreme environments to highly stable catalysts. Curr. Opin. Microbiol. 2015;25:88-96.; Bulygina E.S., Kuznetsov B.B., Marusina A.I., Kravchenko I.K., Bykova S.A., Kolganova T.V., Galchenko V.F. Study of nucleotide sequences of nif H genes in methanotrophic bacteria. Mikrobiologiya = Microbiology. 2002;71(4):425-432.; Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinform. 2009;10(421):1-9. DOI 10.1186/1471-2105-10-421.; Chernousova E.Yu., Akimov V.N., Gridneva E.V., Dubinina G.A., Grabovich M.Yu. Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide spring in the North Caucasus. Mikrobiologiya = Microbiology. 2008;77(2):219-223. DOI 10.1134/S002626170802015X.; Cira-Chávez L.A., Guevara-Luna J., Soto-Padilla M.Y., RománPonce B., Vásquez-Murrieta M.S., Estrada-Alvarado M.I. Kinetics of halophilic enzymes. In: Rajendran L., Fernandez C. (Eds.). Kinetics of Enzymatic Synthesis. IntOpen, 2018;1-25. DOI 10.5772/intechopen.81100.; Corral P., Amoozegar M.A., Ventosa A. Halophiles and their biomolecules: recent advances and future applications in biomedicine. Marine Drugs. 2020;18:2-33. DOI 10.3390/md18010033.; Delgado-García M., Valdivia-Urdiales B., Aguilar-Gonzalez C.N., Contreras-Esquivel J.C., Rodriguez-Herrera R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 2012;92(13):2575-2580. DOI 10.1002/jsfa.5860.; De Lourdes Moreno M., Pérez D., García M.T., Mellado E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life. 2013;3(1): 38-51. DOI 10.3390/life3010038.; Di Donato P., Buono A., Poli A., Finore I., Abbamondi R.G., Nicolaus B., Lama L. Exploring marine environments for the identification of extremophiles and their enzymes for sustainable and green bioprocesses. Sustainability. 2019;11:149-169. DOI 10.3390/su11010149.; Franzmann P.D., Wehmeyer U., Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol. 1988;11: 16-19.; Ghosh S., Kumar S., Kumar Khare S. Microbial diversity of saline habitats: an overview of biotechnological applications. In: Giri B., Varma A. (Eds.). Microorganisms in Saline Environments: Strategies and Functions (Ser. Soil Biology. 56). Cham: Springer, 2019;65-92. DOI 10.1007/978-3-030-18975-4_4.; Gordon R.E., Smith M.M. Rapidly growing, acid fast bacteria. I. Species descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J. Bacteriol. 1953;66(1):41-48.; Gridneva E.V., Grabovich M.Yu., Dubinina G.A., Chernousova E.Yu., Akimov V.N. Ecophysiology of lithotrophic sulfur-oxidizing Sphaerotilus species from sulfide springs in the Northern Caucasus. Mikrobiologiya = Microbiology. 2009;78(1):76-83.; Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N.A. Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int. J. Syst. Bacteriol. 1998;48(1):99-106. DOI 10.1099/00207713-48-1-99.; Heyrman J., Logan N.A., Busse H.-J., Balcaen A., Lebbe L., RodriguezDiaz M., Swings J., De Vos P. Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int. J. Syst. Evol. Microbiol. 2003;53(2):501-511. DOI 10.1099/ijs.0.02371-0.; Holt J.R., Corey D.P., Eatock R.A. Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J. Neurosci. 1997;17:8739-8748.; Hua N.P., Hamza-Chaffai A., Vreeland R.H., Isoda H., Naganuma T. Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan salt lake. Int. J. Syst. Evol. Microbiol. 2008;58:2409-2414. DOI 10.1099/ijs.0.65693-0.; Kaitouni L.B.D., Anissi J., Sendide K., Hassouni M.E. Diversity of hydrolase-producing halophilic bacteria and evaluation of their enzymatic activities in submerged cultures. Annals Microbiol. 2020; 70:33. DOI 10.1186/s13213-020-01570-z.; Khalilova E.A., Kotenko S.Ts., Islammagomedova E.A., Hasanov R.Z., Abakarova A.A., Aliverdiyeva D.A. Extremophilic microbial communities of saline soils and their diversity in the regions of the Caspian depression. Aridnye Ekosistemy = Arid Ecosystems. 2017;7(2): 116-120. DOI 10.1134/S2079096117020068.; Khalilova E.A., Kotenko S.Ts., Islammagomedova E.A., Hasanov R.Z., Abakarova A.A., Aliverdiyeva D.A. Halophilic microbial communities and their biodiversity in the arid regions of the Caspian Lowland. Aridnye Ekosistemy = Arid Ecosystems. 2020;10(1):79-85. DOI 10.1134/S2079096120010084.; Khalilova E.A., Nuratinov R.A., Kotenko S.Ts., Islammagomedova E.A. Hydrocarbon-oxidizing microorganisms of hot springs and their significance in the assessment of the biodiversity of microbial communities. Aridnye Ekosistemy = Arid Ecosystems. 2014;4(1): 25-30. DOI 10.1134/S2079096114010028.; Kindzierski V., Raschke S., Knabe N., Siedler F., Scheffer B., Grau K.P., Pfeiffer F., Oesterhelt D., Marin-Sanguino A., Kunte H.J. Osmoregulation in the halophilic bacterium Halomonas elongata: a case study for integrative systems biology. PLoS One. 2017;12(1):1-22. DOI 10.1371/journal.pone.0168818.; Kolganova T.V., Kuznetsov B.B., Turova T.P. Designing and testing of oligonucleotide primers for amplification and sequencing of 16S rRNA genes of archaea. Mikrobiologiya = Microbiology. 2002; 71(2):243-246.; Kushner D.J., Kamekura M. Physiology of halophilic eubacteria. In: Rodríguez-Varela F. (Ed.). Halophilic Bacteria. Boca Raton, FL, USA: CRC Press, 1988;1:109-138.; Kuznetsov A.E., Kalenov S.V. Russian Federation Patent RU 2323226. Method for preparing halophilic bacterium biomass. Bull. No. 12. 2008;6. (in Russian); Lalov V.V., Osokina N.V., Piorunskij D.A., Chizhikov M.A. Russian Federation Patent RU 2115722 C1. Method of halophilic microorganism culturing. 1998;5 (in Russian); Lane D.J. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. In: Stackebrandt E., Goodfellow M. (Eds.). New York: John Wiley & Sons, 1991;115-175.; Lee S.-Y., Kang C.-H., Oh T.K., Yoon J.H. Virgibacillus campisalis sp. nov., from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 2012;62:347-351. DOI 10.1099/ijs.0.033084-0.; Liu C., Baffoe D.K., Zhang M. Halophile, an essential platform for bioproduction. J. Microbiol. Methods. 2019;166:105704. DOI 10.1016/j.mimet.2019.105704.; Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 1961;3:208-218. DOI 10.1016/S0022-2836(61)80047-8.; Namsaraev Z.B., Babasanova O.B., Dunaevsky Y.E., Akimov V.N., Barkhutova D.D., Gorlenko V.M., Namsaraev B.B. Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, Central Mongolia. Microbiology. 2010;79(4):491-499.; Netrusov A.I., Egorova M.A., Zakharchuk L.M. Laboratory Manual on Microbiology for college students. Moscow: Akademiya Publ., 2005. (in Russian); Owen R.J., Hill L.R., Lapage S.P. Determination of DNA base composition from melting profiles in dilute buffers. Biopolimers. 1969; 7:503-516.; Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chainterminating inhibitors. Proс. Natl. Acad. Sci. USA. 1977;84:5463-5467.; Schwibbert K., Marin-Sanguino A., Bagyan I., Heidrich G., Lentzen G., Seitz H., Rampp M., Schuster S.C., Klenk H.P., Pfeiffer F., Oesterhelt D., Kunte H.J. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ. Microbiol. 2011;13:1973-1994. DOI 10.1111/j.1462-2920.2010.02336.; Steel K.J. The oxidase reaction as a taxonomic tool. J. Gen. Microbiol. 1961;25:297-306.; Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512-526.; Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725-2729.; Thomas J.C., Khour R., Neeley C.K., Akroush A.M., Davies E.C. A fast CTAB method of human DNA isolation for polymerase chain reaction applications. Biochem. Educ. 1997;25(4):233-235. DOI 10.1016/S0307-4412(97)00122-2.; Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 1994; 10:569-570. DOI 10.1093/bioinformatics/10.5.569.; Varrella S., Tangherlini M., Corinaldesi C. Deep hypersaline anoxic basins as untapped reservoir of polyextremophilic prokaryotes of biotechnological interest. Mar. Drugs. 2020;18(2):91. DOI 10.3390/md18020091.; Vreeland R.H., Litchfield C.D., Martin E.L., Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 1980;3(2):485-495. DOI 10.1099/00207713-30-2-485.; Wang T., Zhang L., Bo L., Zhu Y., Tang X., Liu W. Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl by Halomonas nacteria. IOP Conf. Ser: Earth. Environ. Sci. 2019;237(5):052033. DOI 10.1088/1755-1315/237/5/052033.; Zavarzin G.A. Microbial diversity studies at the Winogradsky Institute of Microbiology. Mikrobiologiya = Microbiology. 2004;73(5):509-522. DOI 10.1023/B:MICI.0000044242.93603.00.; https://vavilov.elpub.ru/jour/article/view/2981

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета.

    Περιγραφή αρχείου: text/html

  19. 19
  20. 20