-
1Academic Journal
Συγγραφείς: Anjum, V., Kadi, A.M.Y., Potoroko, I.Yu.
Πηγή: Bulletin of the South Ural State University Series Food and Biotechnology. 12:12-21
Θεματικοί όροι: lactic acid bacteria, токсичность, functional additives, berberine, берберин, молочнокислые бактерии, toxicity, функциональные добавки, биодоступность, emulsions, bioavailability, УДК 664.8.038, эмульсии
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://dspace.susu.ru/xmlui/handle/00001.74/62861
-
2Academic Journal
Συγγραφείς: A. S. Dydykin, E. R. Vasilevskaya, M. A. Aslanova, O. K. Derevitskaya, E. K. Polishchuk, N. V. Kupaeva, G. G. Moldovanov, А. С. Дыдыкин, Е. Р. Василевская, М. А. Асланова, О. К. Деревицкая, Е. К. Полищук, Н. В. Купаева, Г. Г. Молдованов
Πηγή: Food systems; Vol 8, No 1 (2025); 114-123 ; Пищевые системы; Vol 8, No 1 (2025); 114-123 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2025-8-1
Θεματικοί όροι: антиоксидантная емкость, iron oxides, nano iron, bioavailability, laboratory animals, antioxidant capacity, оксиды железа, наножелезо, биодоступность, лабораторные животные
Περιγραφή αρχείου: application/pdf
Relation: https://www.fsjour.com/jour/article/view/713/381; Nielsen, O. H., Soendergaard, C., Vikner, M. E., Weiss, G (2018). Rational management of iron-deficiency anemia in inflammatory bowel disease. Nutrients, 10(1), Article 82. https://doi.org/10.3390/nu10010082; Stevens, G. A., Paciorek, C. J., Flores-Urrutia, M. C., Borghi, E., Namaste, S., Wirth, J. P. et al. (2022). National, regional, and global estimates of anaemia by severity in women and children for 2000–19: A pooled analysis of populationrepresentative data. The Lancet Global Health, 10(5), e627-e639. https://doi.org/10.1016/s2214-109x(22)00084-5; Kumar, P., Sharma, H., Sinha, D. (2021). Socio-economic inequality in anaemia among men in India: A study based on cross-sectional data. BMC Public Health, 21(1), Article 1345. https://doi.org/10.1186/s12889-021-11393-5; Редакционная статья. (2020). Отчет о работе Экспертного совета «Актуальные вопросы железодефицита в Российской Федерации». Терапия, 6(5(39)), 10–19.; Ciont, C., Mesaroș, A., Pop, O. L., Vodnar, D. C. (2023). Iron oxide nanoparticles carried by probiotics for iron absorption: A systematic review. Journal of Nanobiotechnology, 21(1), Article 124. https://doi.org/10.1186/s12951-023-01880-9; Kumari, A., Chauhan, A. K. (2022). Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology, 59(9), 3319–3335. https://doi.org/10.1007/s13197-021-05184-4; Shubham, K., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., Anandharamakrishnan, C. (2020). Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science and Technology, 99, 58–75. https://doi.org/10.1016/j.tifs.2020.02.021; Henare, S. J., Singh, N. N., Ellis, A. M., Moughan, P. J., Thompson, A. K., Walczyk, T. (2019). Iron bioavailability of a casein-based iron fortificant compared with that of ferrous sulfate in whole milk: A randomized trial with a crossover design in adult women. The American Journal of Clinical Nutrition, 110(6), 1362–1369. https://doi.org/10.1093/ajcn/nqz237; Hurrell, R. F. (2022). Ensuring the efficacious iron fortification of foods: A tale of two barriers. Nutrients, 14(8), Article 1609. https://doi.org/10.3390/nu14081609; Husmann, F. M., Stierli, L., Bräm, D. S., Zeder, C., Krämer, S. D., Zimmermann, M. B. et al. (2022). Kinetics of iron absorption from ferrous fumarate with and without galacto-oligosaccharides determined from stable isotope appearance curves in women. The American Journal of Clinical Nutrition, 115(3), 949–957. https://doi.org/10.1093/ajcn/nqab361; Ahmad, A. M. R., Ahmed, W., Iqbal, S., Javed, M., Rashid, S. (2021). Prebiotics and iron bioavailability? Unveiling the hidden association-A review. Trends in Food Science and Technology, 110, 584–590. https://doi.org/10.1016/j.tifs.2021.01.085; Коденцова, В. М., Рисник, Д. В., Бессонов, В. В. (2023). Соединения железа для обогащения пищевых продуктов: сравнительный анализ эффективности. Микроэлементы в медицине, 24(1), 10–19.; Blanco-Rojo, R., Vaquero, M. P. (2019). Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science and Emerging Technologies, 51, 126–138. https://doi.org/10.1016/j.ifset.2018.04.015; Askri, D., Ouni, S., Galai, S., Chovelon, B., Arnaud, J., Sturm, N. et al. (2019). Nanoparticles in foods? A multiscale physiopathological investigation of iron oxide nanoparticle effects on rats after an acute oral exposure: Trace element biodistribution and cognitive capacities. Food and Chemical Toxicology, 127, 173–181. https://doi.org/10.1016/j.fct.2019.03.006; Singh, K., Chopra, D. S., Singh, D., Singh, N. (2022). Nano-formulations in treatment of iron deficiency anemia: An overview. Clinical Nutrition ESPEN, 52, 12–19. https://doi.org/10.1016/j.clnesp.2022.08.032; Serov, D. A., Baimler, I. V., Burmistrov, D. E., Baryshev, A. S., Yanykin, D. V., Astashev, M. E. et al. (2022). The development of new nanocomposite Polytetrafluoroethylene/Fe2O3 NPs to prevent bacterial contamination in meat industry. Polymers, 14(22), Article 4880. https://doi.org/10.3390/polym14224880; Gudkov, S. V., Burmistrov, D. E., Lednev, V. N., Simakin, A. V., Uvarov, O. V., Kucherov, R. N. et al. (2022). Biosafety construction composite based on iron oxide nanoparticles and PLGA. Inventions, 7(3), Article 61. https://doi.org/10.3390/inventions7030061; Siddiqui, M. A., Wahab, R., Saquib, Q., Ahmad, J., Farshori, N. N., Al-Sheddi, E. S. et al. (2023). Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. Journal of Trace Elements in Medicine and Biology, 80, Article 127302. https://doi.org/10.1016/j.jtemb.2023.127302; Ince, M., Ince, O. K., Ondrasek, G. (2020). Biochemical toxicology — Heavy metals and nanomaterials. IntechOpen: London, UK, 2020. https://doi.org/10.5772/intechopen.85340; Kheiri, S., Liu, X., Thompson, M. (2019). Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids and Surfaces B: Biointerfaces, 184, Article 110550. https://doi.org/10.1016/j.colsurfb.2019.110550; Sarimov, R. M., Nagaev, E. I., Matveyeva, T. A., Binhi, V. N., Burmistrov, D. E., Serov, D. A. et al. (2022). Investigation of aggregation and disaggregation of selfassembling nano-sized clusters consisting of individual iron oxide nanoparticles upon interaction with HEWL protein molecules. Nanomaterials, 12(22), Article 3960. https://doi.org/10.3390/nano12223960; Sarkar, A., Sil, P. C. (2014). Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food and chemical Toxicology, 71, 106–115. https://doi.org/10.1016/j.fct.2014.06.003; Bardestani, A., Ebrahimpour, S., Esmaeili, A., Esmaeili, A. (2021). Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles. Journal of Nanobiotechnology, 19(1), Article 327. https://doi.org/10.1186/s12951-021-01059-0; Benzie, I. F. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292; Chernukha, I., Fedulova, L., Vasilevskaya, E., Kulikovskii, A., Kupaeva, N., Kotenkova, E. (2021). Antioxidant effect of ethanolic onion (Allium cepa) husk extract in ageing rats. Saudi Journal of Biological Sciences, 28(5), 2877–2885. https://doi.org/10.1016/j.sjbs.2021.02.020; Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77. https://doi.org/10.1016/0003-9861(59)90090-6; Marklund, S., Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x; Величко, А. К., Соловьев, В. Б., Генгин, М. Т. (2009). Методы лабораторного определения общей перекись разрушающей активности ферментов растений. Известия Пензенского государственного педагогического университета им. В. Г. Белинского, 18, 44–48.; Семченко, В. В., Барашкова, С. А., Ноздрин, В. И., Артемьев, В. Н. (2006). Гистологическая техника. Учебное пособие. Омск–Орел: Омская областная типография, 2006.; Pereira, D. I. A., Bruggraber, S. F. A., Faria, N., Poots, L. K., Tagmount, M. A., Aslam, M. F. et al. (2014). Nanoparticulate iron (III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine: Nanotechnology, Biology and Medicine, 10(8), 1877–1886. https://doi.org/10.1016/j.nano.2014.06.012; El-Kady, M. M., Ansari, I., Arora, C., Rai, N., Soni, S., Verma, D. K. et al. (2023). Nanomaterials: A comprehensive review of applications, toxicity, impact, and fate to environment. Journal of Molecular Liquids, 370, Article 121046. https://doi.org/10.1016/j.molliq.2022.121046; Foujdar, R., Chopra, H. K., Bera, M. B., Chauhan, A. K., Mahajan, P. (2021). Effect of probe ultrasonication, microwave and sunlight on biosynthesis, bioactivity and structural morphology of punica granatum peel’s polyphenols-based silver nanoconjugates. Waste and Biomass Valorization, 12, 2283–2302. https://doi.org/10.1007/s12649-020-01175-2; Yuan, S., Dong, P.-Y., Ma, H.-H., Liang, S.-L., Li, L., Zhang, X.-F. (2022). Antioxidant and biological activities of the Lotus root polysaccharide-iron (III) complex. Molecules, 27(20), Article 7106. https://doi.org/10.3390/molecules27207106; Ghosh, R., Arcot, J. (2022). Fortification of foods with nano-iron: Its uptake and potential toxicity: Current evidence, controversies, and research gaps. Nutrition Reviews, 80(9), 1974–1984. https://doi.org/10.1093/nutrit/nuac011; Mahesh, T., Menon, V. P. (2004). Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytotherapy Research, 18(2), 123–127. https://doi.org/10.1002/ptr.1374; Kejík, Z., Kaplánek, R., Masařík, M., Babula, P., Matkowski, A., Filipenský, P. et al. (2021). Iron complexes of flavonoids-antioxidant capacity and beyond. International Journal of Molecular Sciences, 22(2), Article 646. https://doi.org/10.3390/ijms22020646; Li, J., Chang, X., Chen, X., Gu, Z., Zhao, F., Chai, Z. et al. (2014). Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 32(4), 727–743. https://doi.org/10.1016/j.biotechadv.2013.12.009; Fang, S., Zhuo, Z., Yu, X., Wang, H., Feng, J. (2018). Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. Journal of Trace Elements in Medicine and Biology, 47, 12–20. https://doi.org/10.1016/j.jtemb.2018.01.002; Whittaker, P., Hines, F. A., Robl, M. G., Dunkel, V. C. (1996). Histopathological evaluation of liver, pancreas, spleen, and heart from iron-overloaded sprague-dawley rats. Toxicologic Pathology, 24(5), 558–563. https://doi.org/10.1177/019262339602400504; He, H., Huang, Q., Liu, C., Jia, S., Wang, Y., An, F. et al. (2019). Effectiveness of AOS — iron on iron deficiency anemia in rats. RSC Advances, 9(9), 5053–5063. https://doi.org/10.1039/C8RA08451C; Guo, R., Zhang, L., Song, D., Yu, B., Song, C., Chen, H. et al. (2024). Endogenous iron biomineralization in the mouse spleen of metabolic diseases. Fundamental Research. https://doi.org/10.1016/j.fmre.2024.07.004 (In Press, Corrected Proof); Sripetchwandee, J., Kongkaew, A., Kumfu, S., Chattipakorn, N., Chattipakorn, S. C. (2025). Modulating mitochondrial dynamics preserves cognitive performance via ameliorating iron-mediated brain toxicity in iron-overload rats. European Journal of Pharmacology, 593, Article 177379. https://doi.org/10.1016/j.ejphar.2025.177379; Turovsky, E. A., Plotnikov, E. Y., Simakin, A. V., Gudkov, S. V., Varlamova, E. G. (2025). New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemialike conditions. Archives of Biochemistry and Biophysics, 764, Article 110241. https://doi.org/10.1016/j.abb.2024.110241; https://www.fsjour.com/jour/article/view/713
-
3Academic Journal
Συγγραφείς: Tikhonov, S.L., Tikhonova, N.V., Valieva, Sh.S., Shikhalev, S.V.
Θεματικοί όροι: peptide sequence, циклическая сборка, proteolysis, plasmids, 579.255 [УДК 606], expression, плазмиды, cyclic assembly, биодоступность, экспрессия, bioavailability, пептидная последовательность, протеолиз
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://dspace.susu.ru/xmlui/handle/00001.74/62875
-
4Conference
Συνεισφορές: Куксёнок, Вера Юрьевна
Θεματικοί όροι: водорастворимость, водные растворы, лекарственные средства, антипирин, биодоступность, иодантипирин, противовоспалительные препараты
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/76651
-
5Conference
Συγγραφείς: Дешевых, A. A.
Συνεισφορές: Павловский, Виктор Иванович
Θεματικοί όροι: комплексы, синтез, лекарственные средства, адресная доставка, биологически активные вещества, метаболиты, производные, биодоступность, моделирование
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://earchive.tpu.ru/handle/11683/76648
-
6Academic Journal
Συγγραφείς: G. V. Adamov, O. L. Saybel, A. N. Babenko, E. S. Melnikov, A. I. Radimich, O. Yu. Kulyak, L. V. Krepkova, Г. В. Адамов, О. Л. Сайбель, А. Н. Бабенко, Е. С. Мельников, А. И. Радимич, О. Ю. Куляк, Л. В. Крепкова
Συνεισφορές: This work was carried out in accordance with the research plan of the Federal State Budgetary Scientific Institution VILAR on the topic: “Phytochemical substantiation of resource-saving technologies for the processing of medicinal plant raw materials and the rational use of biologically active substances of plant origin” (FGUU-2022-0011)., Данная работа проведена согласно плану научно-исследовательской работы ФГБНУ ВИЛАР по теме: «Фитохимическое обоснование ресурсосберегающих технологий переработки лекарственного растительного сырья и рационального использования биологически активных веществ растительного происхождения» (FGUU-2022-0011).
Πηγή: Drug development & registration; Том 13, № 3 (2024); 126-137 ; Разработка и регистрация лекарственных средств; Том 13, № 3 (2024); 126-137 ; 2658-5049 ; 2305-2066
Θεματικοί όροι: биодоступность, metabolism, flavonoids, bioavailability, метаболизм, флавоноиды
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1894/1306; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1894/2404; Lin L.-C., Pai Y.-F., Tsai T.-H. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. Journal of agricultural and food chemistry. 2015;63(35):7700–7706. DOI:10.1021/jf505848z.; Макарова М. Н. Биодоступность и метаболизм флавоноидов. Экспериментальная и клиническая фармакология. 2011;74(6):33–40. DOI:10.30906/0869-2092-2011-74-6-33-40.; Shimoi K. Okada H., Furugori M., Goda T., Takase S., Suzuki M., Hara Yu., Yamamoto H., Kinae N. Intestinal absorption of luteolin and luteolin 7-O-β-glucoside in rats and humans. FEBS letters. 1998;438(3):220–224. DOI:10.1016/S0014-5793(98)01304-0.; Cui X. X., Yang X., Wang H.-J., Rong X.-Y., Jing S., Xie Y.-H., Huang D.-F., Zhao C. Luteolin-7-O-glucoside present in lettuce extracts inhibits hepatitis B surface antigen production and viral replication by human hepatoma cells in vitro. Frontiers in Microbiology. 2017;8:2425. DOI:10.3389/fmicb.2017.02425.; Caporali S., De Stefano A., Calabrese C., Giovannelli A., Pieri M., Savini I., Tesauro M., Bernardini S., Minieri M., Terrinoni A. Anti-inflammatory and active biological properties of the plant-derived bioactive compounds luteolin and luteolin 7-glucoside. Nutrients. 2022;14(6):1155. DOI:10.3390/nu14061155.; Mabry T. J., Markham K. R., Thomas M. B. The systematic identification of flavonoids. New York: Springer Science & Business Media; 2012. P. 40.; Быков В. А., Дубинская В. А., Ребров Л. Б., Минеева М. Ф., Скуридин С. Г., Евдокимов Ю. М. Комплексный подход к изучению механизмов действия противомикробных и противовирусных средств. Химико-фармацевтический журнал. 2008;42(3):3–8. DOI:10.30906/0023-1134-2008-42-3-3-8.; Миронов А. Н., ред. Руководство по проведению доклинических исследований лекарственных средств. М.: Гриф и К; 2012. С. 843–853.; Theoharides T. C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. BioFactors. 2020;46(3):306–308. DOI:10.1002/biof.1633.; Fan W., Qian S., Qian P., Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Research. 2016;220:112–116. DOI:10.1016/j.virusres.2016.04.021.; Theerawatanasirikul S., Thangthamniyom N., Kuo C.-J., Semkum P., Phecharat N., Chankeeree P., Lekcharoensuk P. Natural phytochemicals, luteolin and isoginkgetin, inhibit 3C protease and infection of FMDV, in silico and in vitro. Viruses. 2021;13(11):2118. DOI:10.3390/v13112118.; Wu S., Wang H.-Q., Guo T.-T., Li Y.-H. Luteolin inhibits CVB3 replication through inhibiting inflammation. Journal of Asian natural products research. 2020;22(8)762–773. DOI:10.1080/10286020.2019.1642329.; Yan H., Ma L., Wang H., Wu S., Huang H., Gu Z., Jiang J., Li Yu. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. Journal of Natural Medicines. 2019;73:487–496. DOI:10.1007/s11418-019-01287-7.; Wang S., Ling Y., Yao Yu., Zheng G., Chen W. Luteolin inhibits respiratory syncytial virus replication by regulating the MiR-155/SOCS1/STAT1 signaling pathway. Virology Journal. 2020;17:187. DOI:10.1186/s12985-020-01451-6.; Men X., Li S., Cai X., Fu L., Shao Y., Zhu Y. Antiviral activity of luteolin against Pseudorabies virus in vitro and in vivo. Animals. 2023;13(4):761. DOI:10.3390/ani13040761.; Jia Q., Huang X., Yao G., Ma W., Shen J., Changm Y., Ouyangm H., He J. Pharmacokinetic Study of Thirteen Ingredients after the Oral Administration of Flos Chrysanthemi Extract in Rats by UPLC-MS/MS. BioMed Research International. 2020;2020(1):8420409. DOI:10.1155/2020/8420409.; Xu Z.-L., Xu M.-Y., Wang H.-T., Xu Q.-X., Liu M.-Y., Jia C.-P., Geng F., Zhang N. Pharmacokinetics of eight flavonoids in rats assayed by UPLC-MS/MS after Oral Administration of Drynariae rhizoma extract. Journal of Analytical Methods in Chemistry. 2018;2018(1):4789196. DOI:10.1155/2018/4789196.; Гуленков А. С., Мизина П. Г., Бахрушина Е. О., Бардаков А. И., Нюдочкин А. В. Фармацевтико-технологическое исследование адсорбированного жидкого растительного экстракта антимикробного действия. Разработка и регистрация лекарственных средств. 2022;11(2):94–101. DOI:10.33380/2305-2066-2022-11-2-94-101.; Гуленков А. С., Мизина П. Г. Сорбция и десорбция жидкого растительного экстракта. Фармация. 2019;68(4):27–31. DOI:10.29296/25419218-2019-04-04.; Rezaei A., Varshosaz J., Fesharaki M., Farhang A., Jafari S. M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. International Journal of Nanomedicine. 2019;14:4589–4599. DOI:10.2147/IJN.S206350.; Deng C., Gao C., Tian X., Chao B., Wang F., Zhang Y., Zou J., Liu D. Pharmacokinetics, tissue distribution and excretion of luteolin and its major metabolites in rats: Metabolites predominate in blood, tissues and are mainly excreted via bile. Journal of Functional Foods. 2017;35:332–340. DOI:10.1016/j.jff.2017.05.056.; https://www.pharmjournal.ru/jour/article/view/1894
-
7Academic Journal
Συγγραφείς: K. M. Tserkovnaya, E. S. Surbeeva, K. A. Gusev, E. V. Vishnyakov, E. V. Flisyuk, I. A. Narkevich, К. М. Церковная, Е. С. Сурбеева, К. А. Гусев, Е. В. Вишняков, Е. В. Флисюк, И. А. Наркевич
Συνεισφορές: The work was carried out on the basis of the Center for Collective Use (CCU) "Analytical Center of Saint-Petersburg State Chemical and Pharmaceutical University"., Работа выполнена на базе Центра коллективного пользования (ЦКП) «Аналитический центр ФГБОУ ВО СПХФУ Минздрава России».
Πηγή: Drug development & registration; Том 14, № 1 (2025); 138-149 ; Разработка и регистрация лекарственных средств; Том 14, № 1 (2025); 138-149 ; 2658-5049 ; 2305-2066
Θεματικοί όροι: артериальная гипертензия, bioavailability, cyclodextrins, solid dispersion, mini-tablets, polypill, arterial hypertension, биодоступность, циклодекстрины, твердая дисперсная система, мини-таблетки, полипилл
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/2004/1360; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2004/2664; Bhalani D. V., Nutan B., Kumar A., Singh Chandel A. K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines. 2022;10(9):2055. DOI:10.3390/biomedicines10092055.; Tran P., Pyo Y.-C., Kim D.-H., Lee S.-E., Kim J.-K., Park J.-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics. 2019;11(3):132. DOI:10.3390/pharmaceutics11030132.; Mahmood T., Sarfraz R. M., Ismail A., Ali M., Khan A. R. Pharmaceutical Methods for Enhancing the Dissolution of Poorly Water-Soluble Drugs. ASSAY and Drug Development Technologies. 2023;21(2):65–79. DOI:10.1089/adt.2022.119.; Гулякин И. Д., Николаева Л. Л., Оборотова Н. А., Дмитриева М. В., Ланцова А. В., Санарова Е. В., Орлова О. Л., Полозкова А. П., Лаврухин Н. И., Бунятян Н. Д. Основные методы повышения растворимости гидрофобных и труднорастворимых веществ. Разработка и регистрация лекарственных средств. 2016;(2):52–59.; Kim D.-H., Lee S.-E., Pyo Y.-C., Tran P., Park J.-S. Solubility enhancement and application of cyclodextrins in local drug delivery. Journal of Pharmaceutical Investigation. 2020;50:17–27. DOI:10.1007/s40005-019-00434-2.; Carneiro S. B., Costa Duarte F. I., Heimfarth L., de Souza Siqueira Quintans J., Quintans-Júnior L. J., da Veiga Júnior V. F., de Lima Á. A. N. Cyclodextrin-Drug Inclusion Complexes: In Vivo and In Vitro Approaches. International Journal of Molecular Sciences. 2019;20(3):642. DOI:10.3390/ijms20030642.; Кедик С. А., Панов А. В., Тюкова В. С., Золотарева М. С. Циклодекстрины и их применение в фармацевтической промышленности (обзор). Разработка и регистрация лекарственных средств. 2016;(3):68–75.; Савельева Е. И. Современные технологии модифицированного высвобождения биологически активных веществ в фармацевтической разработке (обзор). Разработка и регистрация лекарственных средств. 2020;9(2):56–66. DOI:10.33380/2305-2066-2020-9-2-56-66.; Гусев К. А., Маймистов Д. Н., Павловский В. И., Алиев А. Р., Павловский А. В., Иванова О. В., Цыренов Д. О., Флисюк Е. В. Разработка состава и технологии получения твердой дисперсной системы методом экструзии горячего расплава для повышения биодоступности действующего вещества. Разработка и регистрация лекарственных средств. 2022;11(4):108–115. DOI:10.33380/2305-2066-2022-11-4-108-115.; Schittny A., Huwyler J., Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Delivery. 2020;27(1):110–127. DOI:10.1080/10717544.2019.1704940.; Церковная К. М., Флисюк Е. В., Коцур Ю. М., Наркевич И. А., Смехова И. Е., Ивкин Д. Ю., Филимонова Н. В. Разработка мини-таблеток амлодипина как компонента полипилла для персонализированной терапии артериальной гипертензии. Разработка и регистрация лекарственных средств. 2023;12(4):155–164. DOI:10.33380/2305-2066-2023-12-4-1523.; Messerli F. H., Bangalore S., Rimoldi S. F., Gąsowski J., Nussberger J. Are ACE inhibitors acceptable ingredients in polypills? The Lancet. 2017;390(10089):26. DOI:10.1016/S0140-6736(17)31468-X.; Задионченко В. С., Щикота А. М., Ялымов А. А., Шехян Г. Г., Тимофеева Н. Ю., Оганезова Л. Г., Терпигорев С. А., Кабанова Т. Г., Никишенков А. М. Алгоритм выбора препарата для лечения артериальной гипертонии. Русский медицинский журнал. 2017;4:296–301.; Карпов Ю. А., Мелехов А. В. Кандесартан: выход за пределы сердечно-сосудистого континуума. Атмосфера. Новости кардиологии. 2019;2:31–40.; Гусев К. А., Алиев А. Р., Генералова Ю. Э., Аксенова Н. А., Речкалов Г. В., Маймистов Д. Н., Алексеева Г. М., Флисюк Е. В. Разработка состава и технологии получения аморфной твердой дисперсной системы эбастина методом экструзии горячего расплава для увеличения скорости растворения. Разработка и регистрация лекарственных средств. 2023;12(4):126–135. DOI:10.33380/2305-2066-2023-12-4-1577.; Смехова И. Е., Вайнштейн В. А., Ладутько Ю. М., Дружининская О. В., Турецкова Н. Н. Дезинтегранты и их влияние на растворение субстанций разных классов по биофармацевтической классификационной системе. Разработка и регистрация лекарственных средств. 2018;(4):62–72.; Aly U. F., Sarhan H. A., Ali T. F. S., Sharkawy H. A. E. Applying Different Techniques to Improve the Bioavailability of Candesartan Cilexetil Antihypertensive Drug. Drug Design, Development and Therapy. 2020;14:1851–1865. DOI:10.2147/DDDT.S248511.; Salih O. S., Hamoddi Z. M., Taher S. S. Development and Characterization of Controlled Release Tablets of Candesartan Cilexetil/ β-Cyclodextrin Inclusion Complex. International Journal of Drug Delivery Technology. 2020;10(2):273–283. DOI:10.25258/ijddt.10.2.15.; https://www.pharmjournal.ru/jour/article/view/2004
-
8Academic Journal
Συγγραφείς: O. Yu. Kravtsova, D. A. Dvoryaninov, G. B. Kolyvanov, A. A. Litvin, O. G. Gribakina, V. P. Zherdev, О. Ю. Кравцова, Д. А. Дворянинов, Г. Б. Колыванов, А. А. Литвин, О. Г. Грибакина, В. П. Жердев
Πηγή: Pharmacokinetics and Pharmacodynamics; № 1 (2024); 27-31 ; Фармакокинетика и Фармакодинамика; № 1 (2024); 27-31 ; 2686-8830 ; 2587-7836
Θεματικοί όροι: абсолютная биодоступность, preclinical pharmacokinetics, tandem-HPLC-mass spectrometry, absolute bioavailability, противопаркинсоническое средство, высокоэффективная жидкостная хроматография тандемная масс-спектрометрия (ВЭЖХ-МС/МС), доклиническая фармакокинетика
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/408/366; Капица И.Г., Воронина Т.А. Антипаркинсоническая активность адамантильного производного бензмидазола АДК-1113. Экспер. и клин фармакол. 2023;86(11S):68-68.; Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm (Weinheim). 2024 Mar;357(3):e2300595. doi:10.1002/ardp.202300595.; Руководство по проведению доклинических исследований лекарственных средств. Часть первая. Методические рекомендации по проведению доклинических исследований фармакокинетики новых лекарственных средств / Миронов А. Н. (ред.). М.: Гриф и К, 2012. С. 865-880.; Кравцова О.Ю., Дворянинов Д.А., Колыванов Г.Б. и др. Количественное определение нового противопаркинсонического средства АДК-1113 в плазме крови мышей методом высокоэффективной хроматографии с масс-спектрометричским детектированием. Экспер. и клин фармакол. 2024;87(2):6-12.; Основы фармакокинетики / И.И. Мирошниченко. — Москва : ГЭОТАР-МЕД, 2002 (ООО Момент). 185, [3] с.; Прикладная фармакокинетика: основные положения и клиническое применение / Сергиенко В. И., Джеллифф Р., Бондарева И. Б.; Рос. акад. мед. наук. Москва : Изд-во Рос. акад. мед. наук, 2003. 208 с.; Фармакокинетика / Н.Н. Каркищенко, В.В. Хоронько, С.А. Сергеева, В.Н. Каркищенко. Ростов н/Д : Феникс, 2001. 381 с.; Edward H. Kerns and Li Di. Drug-like properties: concepts. structure design and methods: from ADME to toxicity optimization, 1st ed., Elsevir, Amsterdam-Boston-London, 2008.; Литвин Е.А. Биотрансформация и фармакокинетика нового противопаркинсонического препарата гимантана (экспериментальное исследование). Автореф. дис. канд. биол. наук. М.; 2012.; https://www.pharmacokinetica.ru/jour/article/view/408
-
9Academic Journal
Dried Fruits are an Important Component of Diet Therapy ; Сухофрукты — важный компонент диетотерапии
Συγγραφείς: Andrew V. Nalyotov, Anatoly I. Khavkin, Alexander N. Matsynin, А. В. Налетов, А. И. Хавкин, А. Н. Мацынин
Συνεισφορές: Not specified., Отсутствует.
Πηγή: Pediatric pharmacology; Том 21, № 5 (2024); 462-467 ; Педиатрическая фармакология; Том 21, № 5 (2024); 462-467 ; 2500-3089 ; 1727-5776
Θεματικοί όροι: биодоступность, intestinal microbiota, phytochemicals, bioavailability, кишечная микробиота, фитохимические вещества
Περιγραφή αρχείου: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/2530/1642; Alasalvar C, Salas-Salvadó J, Ros E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020;314:126192. doi: https://doi.org/10.1016/j.foodchem.2020.126192; Sullivan VK, Petersen KS, Kris-Etherton PM. Dried fruit consumption and cardiometabolic health: a randomised crossover trial. Br J Nutr. 2020;124(9):912–921. doi: https://doi.org/10.1017/S0007114520002007; Sullivan VK, Na M, Proctor DN, et al. Consumption of dried fruits is associated with greater intakes of underconsumed nutrients, higher total energy intakes, and better diet quality in us adults: a crosssectional analysis of the national health and nutrition examination survey, 2007–2016. J Acad Nutr Diet. 2021;121(7):1258–1272. doi: https://doi.org/10.1016/j.jand.2020.08.085; Sadler MJ, Gibson S, Whelan K, et al. Dried fruit and public health — what does the evidence tell us? Int J Food Sci Nutr. 2019;70(6):675–687. doi: https://doi.org/10.1080/09637486.2019.1568398; Chang SK, Alasalvar C, Shahidi F. Review of dried fruits: phytochemicals, antioxidant efficacies, and health benefits. J Funct Foods. 2016;21:113–132. doi: https://doi.org/10.1016/j.jff.2015.11.034; Bolling BW, Aune D, Noh H, et al. Dried fruits, nuts, and cancer risk and survival: a review of the evidence and future research directions. Nutrients. 2023;15(6):1443. doi: https://doi.org/10.3390/nu15061443; Хавкин А.И., Налетов А.В., Марченко Н.А. Кишечная микробиота и микроРНК при воспалительных заболеваниях кишечника // Вопросы диетологии. — 2023. — Т. 13. — № 4. — С. 55–63. — doi: https://doi.org/10.20953/2224-5448-2023-4-55-63; Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ. 2018;360:j5145. doi: https://doi.org/10.1136/bmj.j5145; Ma ZF, Zhang H, Teh SS, et al. Goji berries as a potential natural antioxidant medicine: an insight into their molecular mechanisms of action. Oxid Med Cell Longev. 2019;2019:2437397. doi: https://doi.org/10.1155/2019/2437397; Vinson JA, Zubik L, Bose P, et al. Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr. 2005;24(1):44–50. doi: https://doi.org/10.1080/07315724.2005.10719442; Silva Caldas AP, Bressan J. Dried fruits as components of health dietary patters. In: Health Benefits of Nuts and Dried Fruits. Alasalvar C, Salas-Salvadó J, Ros E, Sabaté J, eds. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group; 2020. pp. 513–526.; Rababah TM, Ereifej K, Howard L. Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins, and color in fruits. J Agric Food Chem. 2005;53(11):4444–4447. doi: https://doi.org/10.1021/jf0502810; Ma T, Lan T, Geng T, et al. Nutritional properties and biological activities of kiwifruit (actinidia) and kiwifruit products under simulated gastrointestinal in vitro digestion. Food Nutr Res. 2019;63:1674. doi: https://doi.org/10.29219/fnr.v63.1674; Scrob T, Hosu A, Cimpoiu C. The Influence of in vitro gastrointestinal digestion of brassica oleracea florets on the antioxidant activity and chlorophyll, carotenoid and phenolic content. Antioxidants. 2019;8(7):212. doi: https://doi.org/10.3390/antiox8070212; Scrob T, Covaci E, Hosu A, et al. Effect of in vitro simulated gastrointestinal digestion on some nutritional characteristics of several dried fruits. Food Chem. 2022;385:132713. doi: https://doi.org/10.1016/j.foodchem.2022.132713; Kamiloglu S, Pasli AA, Ozcelik B, Capanoglu E. Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT-Food Sci Technol. 2014;56(2):284–289. doi: https://doi.org/10.1016/j.lwt.2013.11.040; Moles L, Otaegui D. The Impact of diet on microbiota evolution and human health. Is diet an adequate tool for microbiota modulation? Nutrients. 2020;12(6):1654. doi: https://doi.org/10.3390/nu12061654; Zhang N, Ju Z, Zuo T. Time for food: the impact of diet on gut microbiota and human health. Nutrition. 2018;51-52:80–85. doi: https://doi.org/10.1016/j.nut.2017.12.005; Хавкин А.И., Налетов А.В., Шумилов П.В., Ситкин С.И. Эффективность пищевых волокон при воспалительных заболеваниях кишечника // Вопросы детской диетологии. — 2024. — Т. 22. — № 2. — С. 74–81. — doi: https://doi.org/10.20953/1727-5784-2024-2-74-81; Nalyotov АV, Marchenko NА, Khavkin АI, Makhmutov RF. Vegetarian diets in children: the modern view. Clinical Practice in Pediatrics. 2024;19(1):101–108. (In Russ). doi: https://doi.org/10.20953/1817-7646-2024-1-101-108; Mandalari G, Chessa S, Bisignano C, et al. The effect of sundried raisins (Vitis vinifera L.) on the in vitro composition of the gut microbiota. Food Funct. 2016;7(9):4048–4060. doi: https://doi.org/10.1039/c6fo01137c; Cremonesi P, Curone G, Biscarini F, et al. Dietary supplementation with goji berries (Lycium barbarum) modulates the microbiota of digestive tract and caecal metabolites in rabbits. Animals. 2022;12(1):121. doi: https://doi.org/10.3390/ani12010121; Tian B, Zhang Z, Zhao J, et al. Dietary whole goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice. Int J Food Sci Technol. 2021;56(1):103–114. doi: https://doi.org/10.1111/ijfs.14606; Kang Y, Yang G, Zhang S, et al. Goji berry modulates gut microbiota and alleviates colitis in IL-10-deficient mice. Mol Nutr Food Res. 2018;62(22):1800535. doi: https://doi.org/10.1002/mnfr.201800535; Cai X, Han Y, Gu M, et al. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct. 2019;10(10):6331–6341. doi: https://doi.org/10.1039/C9FO01537J; Spiller GA, Story JA, Furumoto EJ, et al. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br J Nutr. 2003;90(4):803–807. doi: https://doi.org/10.1079/bjn2003966; Wijayabahu AT, Waugh SG, Ukhanova M, Mai V. Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutr J. 2019;18(1):14. doi: https://doi.org/10.1186/s12937-019-0439-1; Rodríguez-Morató J, Matthan NR, Liu J, et al. Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. J Nutr Biochem. 2018;62:76–86. doi: https://doi.org/10.1016/j.jnutbio.2018.08.019; Bekiares N, Krueger CG, Meudt JJ, et al. Effect of sweetened dried cranberry consumption on urinary proteome and fecal microbiome in healthy human subjects. Omi J Integr Biol. 2017;22(2):145–153. doi: https://doi.org/10.1089/omi.2016.0167; Lever E, Scott SM, Louis P, et al. The effect of prunes on stool output, gut transit time and gastrointestinal microbiota: a randomised controlled trial. Clin Nutr. 2019;38(1):165–173. doi: https://doi.org/10.1016/j.clnu.2018.01.003; Rasouli MA, Dancz CE, Dahl M, et al. Effect of prunes on gastrointestinal function after benign gynecological surgery: a randomized control trial. Langenbecks Arch Surg. 2022;407(8):3803–3810. doi: https://doi.org/10.1007/s00423-022-02584-8; Eid N, Osmanova H, Natchez C, et al. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. Br J Nutr. 2015;114(8):1226–1236. doi: https://doi.org/10.1017/S0007114515002780; https://www.pedpharma.ru/jour/article/view/2530
-
10Academic Journal
Συγγραφείς: I. I. Yaichkov, A. L. Khokhlov, M. K. Korsakov, A. A. Shetnev, N. N. Volkhin, S. S. Petukhov, И. И. Яичков, А. Л. Хохлов, М. К. Корсаков, А. А. Шетнев, Н. Н. Вольхин, С. С. Петухов
Συνεισφορές: Russian Science Foundation grant No. 22-13-20085., Грант Российского научного фонда № 22-13-20085.
Πηγή: Regulatory Research and Medicine Evaluation; Том 14, № 3 (2024); 304-316 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 3 (2024); 304-316 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-3
Θεματικοί όροι: биодоступность, tandem mass spectrometry, blood, validation, pharmacokinetics, carbonic anhydrase II inhibitor, N-hydroxysulfonamide, preclinical studies, assay, excretion period, bioavailability, тандемная масс-спектрометрия, кровь, валидация, фармакокинетика, ингибитор карбоангидразы II, N-гидроксисульфонамид, доклинические исследования, методика определения, период выведения
Περιγραφή αρχείου: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/642/1460; https://www.vedomostincesmp.ru/jour/article/view/642/1392; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/551; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/552; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/553; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/554; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/558; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/561; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/562; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/616; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/640; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/641; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/642/642; Popovic MM, Schlenker MB, Thiruchelvam D, Redelmeier DA. Serious adverse events of oral and topical carbonic anhydrase inhibitors. JAMA Ophthalmol. 2022;140(3):235–42. https://doi.org/10.1001/jamaophthalmol.2021.5977; Курышева НИ. Ингибиторы карбоангидразы в лечении глаукомы. Обзор. Часть 2. Офтальмология. 2020;17(4):676–82. https://doi.org/10.18008/1816-5095-2020-4-676-682; Хохлов АЛ, Шетнев АА, Корсаков МК, Федоров ВН, Тюшина АН, Вольхин НН, Вдовиченко ВП. Фармакологические свойства производных сульфонамидов — новых ингибиторов карбоангидразы. Бюллетень экспериментальной биологии и медицины. 2023;175(2):166–70. https://doi.org/10.47056/0365-9615-2023-175-2-166-170; Madrewar AB, Deshpande AS, Bhattacharya S. Mini-review on bioanalytical estimation of brinzolamide. Curr Pharm Anal. 2022;18(3):265–72. https://doi.org/10.2174/1573412917666210812103414; Lo Faro AF, Tini A, Gottardi M, Pirani F, Sirignano A, Giorgetti R, et al. Development and validation of a fast ultra-high-performance liquid chromatography tandem mass spectrometry method for determining carbonic anhydrase inhibitors and their metabolites in urine and hair. Drug Test Anal. 2021;13(8):1552–60. https://doi.org/10.1002/dta.3055; Khokhlov AL, Yaichkov II, Korsakov MK, Shetnev AA, Volkhin NN, Petukhov SS. Development of quantification methods of a new selective carbonic anhydrase II inhibitor in plasma and blood and study of the pharmacokinetics of its ophthalmic suspension in rats. Res Results Pharmacol. 2023;9(4):53–64. https://doi.org/10.18413/rrpharmacology.9.10056; Yuan Y-S, Liao J-M, Kang C-M, Li B-L, Lei X-R, Yu K-W, et al. A simple and accurate LC–MS/MS method for monitoring cyclosporin A that is suitable for high throughput analysis. Exp Ther Med. 2023;26(1):342. https://doi.org/10.3892/etm.2023.12041; Yu K-W, Li B-L, Yuan Y-S, Liao J-M, Li W-K, Dong H, Ke P-F, et al. A modified LC-MS/MS method for the detection of whole blood tacrolimus and its clinical value in Chinese kidney transplant patients. Heliyon. 2022;8(8):e10214. https://doi.org/10.1016/j.heliyon.2022.e10214; Verheijen RB, Thijssen B, Atrafi F, Schellens JHM, Rosing H, de Vries N, et al. Validation and clinical application of an LC–MS/MS method for the quantification of everolimus using volumetric absorptive microsampling. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1104:234–9. https://doi.org/10.1016/j.jchromb.2018.11.030; Rajput AP, Edlabadkar AP. A coherent analytical review of indapamide. J Pharm Tech Res Manag. 2022;10(1):21–35. https://doi.org/10.15415/jptrm.2022.101004; Gopinath R, Narenderan ST, Kumar M. A sensitive liquid chromatography–tandem mass spectrometry method for quantitative bioanalysis of fingolimod in human blood: application to pharmacokinetic study. Biomed Chromatogr. 2022;34(6):e4822. https://doi.org/10.1002/bmc.4822; Raghuvanshi DS, Verma N. An iodine-mediated new avenue to sulfonylation employing N-hydroxy aryl sulfonamide as a sulfonylating agent. Org Biomol Chem. 2021;19:4760–7. https://doi.org/10.1039/d1ob00036e; Аладышева ЖИ, Беляев ВВ, Береговых ВВ, Бркич ГЭ, Грейбо СВ, Демина НБ и др. Промышленная фармация. Путь создания продукта. М.: Российская академия наук; 2019. EDN: KWJJUK; Гайдай ЕА, Гайдай ДС. Генетическое разнообразие экспериментальных мышей и крыс: история возникновения, способы получения и контроля. Лабораторные животные для научных исследований. 2019;(4). https://doi.org/10.29296/2618723X-2019-04-09; https://www.vedomostincesmp.ru/jour/article/view/642
-
11Academic Journal
Συγγραφείς: E. V. Tuaeva, Е. В. Туаева
Συνεισφορές: the research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of Federal Research Center for Animal Husbandry named after Academy Member L. K. Ernst (theme No. FGGN- 124020200032-4)., работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Федеральный исследовательский центр животноводства – ВИЖ имени академика Л. К. Эрнста» (тема № FGGN-124020200032-4).
Πηγή: Agricultural Science Euro-North-East; Том 25, № 5 (2024); 770–784 ; Аграрная наука Евро-Северо-Востока; Том 25, № 5 (2024); 770–784 ; 2500-1396 ; 2072-9081
Θεματικοί όροι: биодоступность, lactation, reproduction, productivity, metabolism, bioavailability, лактация, воспроизводство, продуктивность, метаболизм
Περιγραφή αρχείου: application/pdf
Relation: https://www.agronauka-sv.ru/jour/article/view/1753/808; Дуборезов В. М. Кормление молочных коров по детализированным нормам. Молочное и мясное скотоводство. 2020;(4):52–54. DOI: https://doi.org/10.33943/MMS.2020.19.15.009 EDN: ZHFBNW; Полищук Т. В., Бондаренко В. В. Изменчивость факториальной зависимости уровня молочной продуктивности коров от лактации. Актуальные вопросы переработки мясного и молочного сырья. 2021;(15):237–245. DOI: https://doi.org/10.47612/2220-8755-2020-15-237-245 EDN: WDMAMD; Шобель П., Сучкова И. Кормовые добавки АПЦ-высокая продуктивность + хорошее здоровье коров. Наше сельское хозяйство. 2020;(24(248)):50–53.; Теребова С. В., Гусаров И. В., Обряева О. Д. Молочное животноводство: проблемы повышения экономической эффективности на основе оптимизации кормления (часть 1). Молочное и мясное скотоводство. 2023;(3):50–56. DOI: https://doi.org/10.33943/MMS.2023.48.98.009 EDN: BKBFNY; Некрасов Р. В., Головин А. В., Махаев Е. А., Аникин А. С., Первов Н. Г., Стрекозов Н. И., [и др.]. Нормы потребностей молочного скота и свиней в питательных веществах: монография. М.: РАН, Федеральный научный центр животноводства – ВИЖ имени академика Л. К. Эрнста, 2018. 290 с. Режим доступа: https://animalration.ru/wp-content/uploads/2019/02/1nekrasova_r_v_golovina_a_v_makhaeva_e_a_red_normy_potrebnost.pdf; Nutrient Requirements of Dairy Cattle. 7 th ed. National Academies Press. Washington, D. C., 2001. 381 p. URL: https://profsite.um.ac.ir/~kalidari/software/NRC/HELP/NRC%202001.pdf; Nutrient Requirements of Dairy Cattle. 8 th ed. National Academies Press, 2021. 484 p. DOI: https://doi.org/10.17226/25806; Steinshamn H., Leiberb F. Department of Revision of Vitamin E recommendations for dairy cows in organic agriculture: a review-based approachhttps. Biological Agriculture & Horticulture. An International Journal for Sustainable Production Systems. 2023;39(4):223–246. DOI: https://doi.org/10.1080/01448765.2023.2200204; Doğru Pekiner B. Vitamin E as an antioxidant. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2003;32(4):243–267. DOI: https://doi.org/10.1501/Eczfak_0000000393; Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radical Biology and Medicine. 2021;176:1–15. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.09.001; Bouwstra R. J., Nielen M., Stegeman J. A., Dobbelaar P., Newbold J. R., Jansen E. H. J. M., van Werven T. Vitamin E supplementation during the dry period in dairy cattle. Part I: adverse effect on incidence of mastitis postpartum in a double-blind randomized field trial. Journal of Dairy Science. 2010;93(12):5684–5695. DOI: https://doi.org/10.3168/jds.2010-3159; Idamokoro E. M., Falowo A. B., Oyeagu C. E., Afolayan A. J. Multifunctional activity of vitamin E in animal and animal products: A review. Journal of Animal Science. 2020;91(1):e13352. DOI: https://doi.org/10.1111/asj.13352; Ralla T., Kluenter A. M., Litta G., Müller M. A., Bonrath W., Schäfer C. Over 100 years of vitamin E: An overview from synthesis and formulation to application in animal nutrition. Journal of Animal Physiology and Animal Nutrition. 2024;108(3):646–663. DOI: https://doi.org/10.1111/jpn.13919; Peh H. Y., Tan W. D., Liao W., Wong W. F. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacology & Therapeutics. 2016;162(6):152–169. DOI: https://doi.org/10.1016/j.pharmthera.2015.12.003; Bonrath W., Wyss A., Litta G., Baldeniu K., von dem Bussche&Hünnefeld L., Hilgemann E., Hoppe P., Stürmer R., Netscher T. Vitamins, 4. Vitamin E (Tocopherols, Tocotrienols). Ullmann’s Encyclopedia of Industrial Chemistry. 2021;1–24. DOI: https://doi.org/10.1002/14356007.o27_o07.pub2; Traber M. G., Head B. Vitamin E: How much is enough, too much and why! Free Radical Biology and Medicine. 2021;177:212–225. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.10.028; McDowell L. R., Williams S. N., Hidiroglou N., Njeru C. A., Hill G. M., Ochoa L., Wilkinson N. S. Vitamin E Supplementation for the Ruminant. Animal Feed Science and Technology. 1996;60(3-4):273–296. DOI: https://doi.org/10.1016/0377-8401(96)00982-0; Azzi A., Stocker A. Vitamin E: non-antioxidant roles. Progress in Lipid Research. 2000;39(3):231–255. DOI: https://doi.org/10.1016/S0163-7827(00)00006-0; Scherf H., Machlin L. J., Frye T. M., Krautmann B. A., Williams S. N. Vitamin E Biopotency: Comparison of Various ‘Natural-Derived’ and Chemically Synthesized Alpha-Tocopherols. Animal Feed Science and Technology. 1996;59(1-3):115–126. DOI: https://doi.org/10.1016/0377-8401(95)00892-6; Leal L. N., Jensen S. K., Bello J. M., Den Hartog L. A., Hendriks W. H., Martín-Tereso J. Bioavailability of αtocopherol stereoisomers in lambs depends on dietary doses of all-rac- or RRR- α-tocopheryl acetate. Animal. 2019;13(9):1874–1882. DOI: https://doi.org/10.1017/S1751731118003373; Schmölz L., Birringer M., Lorkowski S., Wallert M. Complexity of vitamin E metabolism. World Journal of Biological Chemistry. 2016;7(1):14–43. DOI: https://doi.org/10.4331/wjbc.v7.i1.14; Dersjant-Li Y, Peisker M. Utilization of stereoisomers from alpha-tocopherol in livestock animals. Journal of Animal Physiology and Animal Nutrition. 2010;94(4):413–421. DOI: https://doi.org/10.1111/j.1439-0396.2009.00924.x; Vagni S., Saccone F., Pinotti L., Baldi A. Vitamin E Bioavailability: Past and Present Insights. Food and Nutrition Sciences. 2011;2(10):1088–1096. DOI: https://doi.org/10.4236/fns.2011.210146; Havard S., Leiber F. Revision of Vitamin E recommendations for dairy cows in organic agriculture: a reviewbased approach. Biological Agriculture & Horticulture. 2023;39(4):223–246. DOI: https://doi.org/10.1080/01448765.2023.2200204; Quek S. Y., Chu B. S., Baharin B. S. Commercial extraction of vitamin E from food sources. In: Preedy V, Watson R, editors. The encyclopedia of vitamin E. Wallingford: CAB International, 2007. pp. 140–152. URL: https://www.researchgate.net/publication/288516996_Commercial_extraction_of_vitamin_E_from_food_sources; Lashkari S., Jensen S. K., Bernes G. Biodiscrimination of alpha-tocopherol stereoisomers in plasma and tissues of lambs fed different proportions of all-rac-alpha-tocopheryl acetate and RRR-alpha-tocopheryl acetate. Journal of Animal Science. 2019;97(3):1222–1233. DOI: https://doi.org/10.1093/jas/skz011; Jensen S. K., Lauridsen C. α-Tocopherol Stereoisomers. Vitamins & Hormones. 2007;76:281–308. DOI: https://doi.org/10.1016/S0083-6729(07)76010-7; Kidane A., Nesheim I. L., Larsen H. J. S., Thuen E., Jensen S. K., Steinshamn H. Effects of supplementing midlactation dairy cows with seaweed and vitamin E on plasma and milk α -tocopherol and antibody response to immunezation. Journal of Agricultural Sciences. 2015;153(5):929–942. DOI: https://doi.org/10.1017/S0021859615000052; EFSA Panel on Additives and Products or Substances Used in Animal Feed (FEEDAP). Scientific Opinion on the Safety and Efficacy of Vitamin E as a Feed Additive for All Animal Species. EFSA Journal. 2010;8(6):1635. DOI: https://doi.org/10.2903/j.efsa.2010.1635; Bjorneboe A., Bjorneboe G. E., Drevon C. A. Absorption, transport and distribution of vitamin E. Journal of Nutrition. 1990;120(3):233–242. DOI: https://doi.org/10.1093/jn/120.3.233; Wang X., Quinn P. J., Vitamin E and its function in membranes. Progress in Lipid Research. 1999;38(4):309–336. DOI: https://doi.org/10.1016/s0163-7827(99)00008-9; Reboul E. Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants. 2017;6(4):95. DOI: https://doi.org/10.3390/antiox6040095; Brigelius-Flohé R., Kelly F. J., Salonen J. T., Neuzil J., Zingg J. M., Azzi A. The European perspective on vitamin E: current knowledge and future research. The American Journal of Clinical Nutrition. 2002;76(4):703–716. DOI: https://doi.org/10.1093/ajcn/76.4.703; Weiser H., Riss G., Kormann A. W. Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. The Journal of Nutrition. 1996;126(10):2539–2549. DOI: https://doi.org/10.1093/jn/126.10.2539; Burton G. W., Traber M. G., Acuff R. V., Walters D. N., Kayden H., Hughes L., Ingold K. Human plasma and tissue α-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. The American Journal of Clinical Nutrition 1998;67(4):669–684. DOI: https://doi.org/10.1093/ajcn/67.4.669; Cassano R. Vitamin E chemistry, biological activity and benefits on the skin. Handbook of diet, nutrition and the skin. 2012;2(1):144–163. DOI: https://doi.org/10.3920/978-90-8686-729-5_9; Lee G. Y., Han S. N. The Role of Vitamin E in Immunity. Nutrients. 2018;10(11):1614. DOI: https://doi.org/10.3390/nu10111614; Визнер Э. Кормление и плодовитость с.-х. животных. Пер. с нем. О. Н. Преображенского. М.: Колос, 1976. 158 с. Vizner E. Feeding and fertility of farm animals. Per. s nem. O. N. Preobrazhenskogo. Moscow: Kolos, 1976. 158 p.; Blatt D. H., Pryor W. A., Mata J. E., Rodriguez-Proteau R. Re-evaluation of the relative potency of synthetic and natural α-tocopherol: Experimental and clinical observations. The Journal of Nutritional Biochemistry. 2004;15(7):380–395. DOI: https://doi.org/10.1016/j.jnutbio.2003.12.011; Finch J. M., Turner R. J. Effects of selenium and vitamin E on the immune responses of domestic animals. Research in Veterinary Science. 1996;60(2):97–106. DOI: https://doi.org/10.1016/S0034-5288(96)90001-6; Lindqvist H., Nadeau E., Jensen S. K., Søegaard K. α-tocopherol and b-carotene in legume-grass mixtures as influenced by wilting, ensiling and type of silage additive. Grass and Forage Science. 2011;67(1):119–128. DOI: https://doi.org/10.1111/gfs.12058; Shingfield K. J., Salo-Väänänen P., Pahkala E., Toivonen V., Jaakkola S., Piironen V., Huhtanen P. Effect of forage conservation method, concenrate level and propylene glycol on the fatty acid composition and vitamin content of cows’ milk. Journal of Dairy Research. 2005;72(3):349–361. DOI: https://doi.org/10.1017/S0022029905000919; Lindqvist H., Nadeau E., Jensen S. K. Alpha‐tocopherol and β‐carotene in legume–grass mixtures as influenced by wilting, ensiling and type of silage additive. Grass and Forage Science. 2012;67(1);119–128. DOI: https://doi.org/10.1111/j.1365-2494.2011.00827.x; Qamar A., Saeed F., Nadeem M. T., Hussain A. I., Khan M. A., Niaz B. Probing the storage stability and sensorial characteristics of wheat and barley grasses juice. Food Science & Nutrition. 2019;7(3):554–562. DOI: https://doi.org/10.1002/fsn3.841; Mogensen L., Kristensen T., Søegaard K., Jensen S. K., Sehested J. Alfa-tocopherol and beta-carotene in roughages and milk in organic dairy herds. Livestock Science. 2012;145(1-3):44–54. DOI: https://doi.org/10.1016/j.livsci.2011.12.021; Kalač P., Samková E. The effects of feeding various forages on fatty acid composition of bovine milk fat: a review. Czech Journal of Animal Science. 2010;55(12):521–537. DOI: https://doi.org/10.17221/2485-CJAS; Höjer A., Adler S., Martinsson K., Jensen S. K., Steinshamn H., Thuen E., Gustavsson A.-M. Effect of legumegrass silages and α-tocopherol supplementation on fatty acid composition and α-tocopherol, β-carotene and retinol concentrations in organically produced bovine milk. Livestock Science. 2012:148(3);268–281. DOI: https://doi.org/10.3168/jds.2011-5226; Meglia G., Jensen S. K., Lauridsen C., Waller K. P. A-Tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. Journal of Dairy Research. 2006;73(2):227–234. DOI: https://doi.org/10.1017/S0022029906001701; Pekmezci D. Vitamin E and immunity. Vitamins & Hormones. 2011;86:179–215. DOI: https://doi.org/10.1016/B978-0-12-386960-9.00008-3; Bivona III J. J., Patel S., Vajdy M. Induction of cellular and molecular Immunomodulatory pathways by vitamin E and vitamin C. Expert Opinion on Biological Therapy. 2017;17(12):1539–1551. DOI: https://doi.org/10.1080/14712598.2017.1375096; Kuhn M. J., Sordillo L. M. Vitamin E analogs limit in vitro oxidant damage to bovine mammary endothelial cells. Journal of Dairy Science. 2021;104(6):7154–7167. DOI: https://doi.org/10.3168/jds.2020-19675; Hogan J. S., Weiss W. P., Smith K. L. Role of vitamin E and selenium in host defense against mastitis. Journal of Dairy Science. 1993;76(9):2795–2803. DOI: https://doi.org/10.3168/jds.S0022-0302(93)77618-3; Politis I., Hidiroglou N., Cheli F., Baldi A. Effects of vitamin E on urokinase-plasminogen activator receptor expression by bovine neutrophils. American Journal of Veterinary Research. 2001;62(12):1934–1938. DOI: https://doi.org/10.2460/ajvr.2001.62.1934; Bourne N., Wathes D. C., Lawrence K. E., McGowan M., Laven R. A. The effect of parenteral supplementation of vitamin E with selenium on the healthand productivity of dairy cattle in the UK. The Veterinary Journal. 2008;177(3);381–387. DOI: https://doi.org/10.1016/j.tvjl.2007.06.006; Fattah A. A. M., Abd Rabo F. H. R., EL-Dieb S. M., Elkashef H. A. S. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Veterinary Research. 2012;8:19. DOI: https://doi.org/10.1186/1746-6148-8-19; Quigley III J. D., Bernard J. K. Effects of addition of vitamin E to colostrum on serum α-tocopherol and immunoglobulin concentrations in neonatal calves. Food and Agricultural Immunology. 1995:7(3):295–298. DOI: https://doi.org/10.1080/09540109509354887; Schmidt N., Luhmann T., Hüther L., Meyer U., Barth S. A., Geue L., Menge C., Frahm J., Dänicke S. Effect of vitamin E supplementation in milk replacer and Shiga toxoid vaccination on serum α-tocopherol, performance, haematology and blood chemistry in male Holstein calves First published. Journal of Animal Physiology and Animal Nutrition. 2018;102(5):1167–1180. DOI: https://doi.org/10.1111/jpn.12926; Reddy P. G., Morrill J. L., Frey R. A. Vitamin E requirements of dairy calves. Journal of Dairy Science. 1987;70(1):123–129. DOI: https://doi.org/10.3168/jds.S0022-0302(87)79987-1; Nonnecke B. J., Foote M. R., Miller B. L., Beitz D. C., Horst R. L. Short communication: Fat-soluble vitamin and mineral status of milk. replacer-fed dairy calves: Effect of growth rate during the preruminant period. Journal of Dairy Science. 2010;93(6):2684–2690. DOI: https://doi.org/10.3168/jds.2009-2892; Mohri M. H., Seifi A., Khodadadi J. Effects of preweaning parenteral supplementation of vitamin E and selenium on hematology, serum proteins, and weight gain in dairy calves. Comparative Clinical Pathology. 2005;14(3):149–154. DOI: https://doi.org/10.1007/s00580-005-0581-3; Pekmezci D., Cakiroglu D. Investigation of immunomodulatory effects of levamisole and vitamin E on immunity and some blood parameters in newborn Jersey calves. Veterinary Research Communications. 2009;33(7):711–721. DOI: https://doi.org/10.1007/s11259-009-9220-9; Goodier G. E., Williams J. C., O’Reilly K. L., Snider T. G., Stanley C. C., Dolejsiova A. H., Williams C. C. Effects of supplemental vitamin E and lasaocid on growth and immune responses of calves challenged with Eimeriabovis. The Professional Animal Scientist. 2012;28(1):97–107. URL: https://www.researchgate.net/publication/237080842_Effects_of_supplemental_vitamin_E_and_lasalocid_on_growth_and_immune_responses_of_calves_challenged_with_Eimeria_bovis; Higuchi H., Nagahata H. Effects of vitamins A and E on superoxide production and intracellular signaling of neutrophils in Holstein calves. Canadian journal of veterinary research=Revue canadienne de recherche vétérinaire. 2000;64(1):69–75. URL: https://pubmed.ncbi.nlm.nih.gov/10680660/; Otomaru K., Saito Sh., Endo K., Kohiruimaki M., Ohtsuka H. Effect of supplemental vitamin E on the peripheral blood leukocyte population in Japanese black calves. Journal of Veterinary Medical Science. 2015;77(8):985–988. DOI: https://doi.org/10.1292/jvms.15-0060; Otomaru К., Miyahara T., Saita H., Yamauchi Sh., Nochi T. Effects of vitamin E supplementation on serum oxidative stress biomarkers, antibody titer after live bovine respiratory syncytial virus vaccination, as well as serum and fecal immunoglobulin A in weaned Japanese Black calves. Journal of Veterinary Medical Science. 2022;84(8):1128–1133. DOI: https://doi.org/10.1292/jvms.22-0170; Rajaraman V., Nonnecke B. J., Franklin S. T., Hammel D. C., Horst R. L. Effects of vitamin A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer. Journal of Dairy Science. 1999;81(12):3278–3285. DOI: https://doi.org/10.3168/jds.S0022-0302(98)75892-8; Carter J. N., Gill D. R., Krehbiel C. R., Confer A. W., Smith R. A., Lalman D. L., Claypool P. L., McDowell L. R. Vitamin E supplementation of newly arrived feedlot calves. Journal of Animal Science. 2005;83(8):1924–1932. DOI: https://doi.org/10.2527/2005.8381924x; Urban-Chmiel R., Hola P., Lisiecka U., Wernicki A., Puchalski A., Dec M., Wysocka M. An evaluation of the effects of α-tocopherol and ascorbic acid in bovine respiratory disease complex occurring in feedlot calves after transport. Livestock Science. 2011;141(1):53–58. DOI: https://doi.org/10.1016/J.LIVSCI.2011.05.003; Waldner C. L., Uehlinger F. D. Factors associated with serum vitamin A and vitamin E concentrations in beef calves from Alberta and Saskatchewan and the relationship between vitamin concentrations and calf health outcomes. Canadian Journal of Animal Science. 2017;97(1):65–82. DOI: https://doi.org/10.1139/cjas-2016-0055; Wernicki A., Stachura R., Hola P., Puchalski A., Dec M., Stęgierska D., Zurek A., Urban-Chmiel R. Efficacy of florfenicol and flunixin followed with vitamin E and/or C on selected oxidative and inflammatory mechanisms in young cattle under transport and adaptation stress. Medycyna Weterynaryjna. 2018;74(4):266–271.DOI: https://dx.doi.org/10.21521/mw.6090; Sultana J. R., Chandra A. S., Ramana D. B. V., Raghunandan T., Prakash M. G., Venkateswarlu M. Effect of supplemental chromium, vitamin E and selenium on biochemical and physiological parameters of Holstein Friesian calves under heat stress. Indian Journal of Animal Research. 2022;56(8):921–927. DOI: https://doi.org/10.18805/IJAR.B-4525; Cipriano J. E., Morrill J. L., Anderson N. V. Effect of dietary vitamin E on immune responses of calves. Journal of Dairy Science; 1982;65(12):2357–2365. DOI: https://doi.org/10.3168/jds.S0022-0302(82)82509-5; Samanta A. K., Dass R. S., Rawat M., Mishra S. C., Mehra U. R. Effect of dietary vitamin E supplementation on serum α-tocopherol and immune status of crossbred calves. Asian-Australasian Journal of Animal Sciences. 2006;19(4):500–506. DOI: https://doi.org/10.5713/ajas.2006.500; Majlesi A., Yasini S. P., Azimpour S., Mottaghian P. Evaluation of oxidative and antioxidant status in dairy calves before and after weaning. Bulgarian Journal of Veterinary Medicine. 2021;24(2):184–190. DOI: https://doi.org/10.15547/bjvm.2270; Dersjant-Li Y., Jensen S. K., Bos L. W., Peisker M. R. Bio-discrimination of α-tocopherol Stereoisomers in Rearing and Veal Calves Fed Milk Replacer Supplemented with All-rac-α-tocopheryl acetate. International Journal for Vitamin and Nutrition Research. 2009;79(4):199–211. DOI: https://doi.org/10.1024/0300-9831.79.4.199; Lashkari S., Jensen S. K., Vestergaard M. Response to different sources of vitamin E orally injected and to various doses of vitamin E in calf starter on the plasma vitamin E level in calves around weaning. Animal. 2022;16(4):100492. DOI: https://doi.org/10.1016/j.animal.2022.100492; Kalač P. Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review. Journal of Agrobiology. 2012;29(1):1–13. DOI: https://doi.org/10.2478/v10146-012-0001-7; Hemme T., Fagerbeg A., Boelling D., Saha A., Schmeer M., Kühl R., Schier A. Cost component. In IFCN dairy report 2016 (ed. IFCN). IFCN, Kiel, Germany, 2016. pp. 44–45.; Chagas L. M., Bass J. J., Blache D., Burke C. R., Kay J. K., Lindsay D. R., Lucy M. C., Martin G. B., Meier S., Rhodes F. M., Roche J. R., Tchatcher W. W., Webb R. Invited review: New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. Journal of Dairy Science. 2007;90(9):4022–4032. DOI: https://doi.org/10.3168/jds.2006-852; De Bie J., Langbeen A., Verlaet A., Florizoone F., Immig I., Hermans N., Fransen E., Bols P., Leroy J. The effect of a negative energy balance status on β-carotene availability in serum and follicular fluid of nonlactating dairy cows. Journal of Dairy Science. 2016;99(7):5808–5819. DOI: https://doi.org/10.3168/jds.2016-10870; Celi P., Gabai G. Oxidant/antioxidant balance in animal nutrition and health: the role of protein oxidation. Frontiers in Veterinary Science. 2015;2(9):48. DOI: https://doi.org/10.3389/fvets.2015.00048; Politis I., Theodorou G., Lampidonis A. D., Kominakis A., Baldi A. Short communication: Oxidative status and incidence of mastitis relative to blood α-tocopherol concentrations in the postpartum period in dairy cows. Journal of Dairy Science. 2012;95(12):7331–7335. DOI: https://doi.org/10.3168/jds.2012-5866; Baldi A., Savoini G., Pinotti L., Monfardini E., Cheli F., DellOrto V. Effects of vitamin E and different energy sources on vitamin E status, milk quality and reproduction in transition cows. Journal of Veterinary Medicine Series A. 2000;47(10):599–608. DOI: https://doi.org/10.1046/j.1439-0442.2000.00323.x; Chandra G., Aggarwal A., Kumar M. S., Singh A. K., Sharma V. K., Upadhyay R. C. Effect of additional vitamin E and zinc supplementation on immunological changes in péripartum Sahiwal cows. Journal of Animal Physiology and Animal Nutrition. 2014;98(6):1166–1175. DOI: https://doi.org/10.1111/jpn.12190; Bayril T., Yildiz A. S., Akdemir F., Yalcin C., Köse M., Yilmaz O. The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle. Asian-Australasian Journal of Animal Sciences. 2015;28(8):1133–1139. DOI: https://doi.org/10.5713/ajas.14.0960; Politis I. Reevaluation of vitamin E supplementation of dairy cows: bioavailability, animal health and milk quality. Animal. 2012;6(9):1427–1434 DOI: https://doi.org/10.1017/S1751731112000225; Goff J. P., Kimura K., Horst R. L. Effect of mastectomy on milk fever, energy, and vitamins A, E, and betacarotene status at parturition. Journal of Dairy Science. 2002;85(6):1427–1436. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74210-0; Sordillo L. M. Factors affecting mammary gland immunity and mastitis susceptibility. Livestock Production Science. 2005;98(1-2):89–99. DOI: https://doi.org/10.1016/j.livprodsci.2005.10.017; Herdt T. H., Smith J. C. Blood-lipid and lactation-stage factors affecting serum vitamin E concentrations and vitamin E cholesterol ratios in dairy cattle. Journal of Veterinary Diagnostic Investigation. 1996;8(2):228–232. DOI: https://doi.org/10.1177/104063879600800213; Qu Y., Lytle K., Traber M. G., Bobe G. Depleted serum vitamin E concentrations precede left displaced abomasum in early-lactation dairy cows. Journal of Dairy Science. 2013;96(5):3012–3022. DOI: https://doi.org/10.3168/jds.2012-6357; Weiss W. P., Hogan J., Wyatt D. Relative bioavailability of all-rac and RRR vitamin E based on neutrophil function and total a-tocopherol and isomer concentrations in periparturient dairy cows and their calves. Journal of Dairy Science. 2009;92(2):720–731. DOI: https://doi.org/10.3168/jds.2008-1635; Ingvartsen K. L. Feeding-and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feedingrelated diseases. Animal Feed Science and Technology. 2006;126(3-4):175–213. DOI: https://doi.org/10.1016/j.anifeedsci.2005.08.003; LeBlanc S. Monitoring metabolic health of dairy cattle in the transition period. Journal of Reproduction and Development. 2010;56(S):S29–S35. DOI: https://doi.org/10.1262/jrd.1056s29; Leroy J., Rizos D., Sturmey R., Bossaert P., Gutierrez-Adan A., Van Hoeck V., Valckx S., Bols P. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reproduction, Fertility and Development. 2011;24(1):1–12. DOI: https://doi.org/10.1071/RD11901; Spears J. W., Weiss W. P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal 2008;176(1):70–76. DOI: https://doi.org/10.1016/j.tvjl.2007.12.015; Weiss W. P., Hogan J. S., Todhunter D. A., Smith K. L. Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. Journal of Dairy Science. 1997;80(8):1728–1737. DOI: https://doi.org/10.3168/jds.S0022-0302(97)76105-8; Waller P. K., Sandgren H. C., Emanuelson U., Jensen S. K. Supplementation of RRR-alpha-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. Journal of Dairy Science. 2007;90(8):3640–3646. DOI: https://doi.org/10.3168/jds.2006-421; Suwanpanya N., Wongpratoom W., Wanapat M., Aiumlamai S., Wittayakun S., Wachirapakom C. The influence of bovine neutrophils on in vitro phagocytosis and killing of Staphylococcus aureus in heifers supplemented with selenium and vitamin E. Songklanakarin. Journal of Science and Technology. 2007;29(3):697–706. URL: https://www.researchgate.net/publication/26469202; Belanche A., Kingston-Smith A. H., Newbold C. J. An integrated multi-omics approach reveals the effects of supplementing grass or grass hay with vitamin E on the rumen microbiome and its function. Frontiers in Microbiology. 2016;7:905. DOI: https://doi.org/10.3389/fmicb.2016.00905; Koenig K. M., Newbold C. J., McIntosh F. M., Rode L. M. Effects of protozoa on bacterial nitrogen recycling in the rumen1. Journal of Animal Science. 2000;78(9):2431–2445. DOI: https://doi.org/10.2527/2000.7892431x; Naziroğlu M., Güler T., Yüce A. Effect of vitamin E on ruminal fermentation in vitro. Journal of Veterinary Medicine Series A. 2002;49(5):251–255. DOI: https://doi.org/10.1046/j.1439-0442.2002.00418.x; Wu Z., Guo Y., Zhang J., Deng M., Xian Z., Xiong H., Liu D., Sun B. High-Dose Vitamin E Supplementation Can Alleviate the Negative Effect of Subacute Ruminal Acidosis in Dairy Cows. Animals. 2023;13(3):486. DOI: https://doi.org/10.3390/ani13030486; Juárez M., Dugan M. E., Aalhus J. L., Aldai N., Basarab J. A., Baron V. S., McAllister T. A. Effects of vitamin E and flaxseed on rumen-derived fatty acid intermediates in beef intramuscular fat. Meat Science. 2011;88(3):434–440. DOI: https://doi.org/10.1016/j.meatsci.2011.01.023; Hartmann M. S., Mousavi S., Bereswill S., Heimesaat M. M. Vitamin E as promising adjunct treatment option in the combat of infectious diseases caused by bacterial including multi-drug resistant pathogens – Results from a comprehensive literature survey. European Journal of Microbiology and Immunology. 2020;10(4):193–201. DOI: https://doi.org/10.1556/1886.2020.00020; Hosain M. Z., Kabir S. M. L., Kamal M. M. Antimicrobial uses for livestock production in developingcountries. Veterinary World. 2021;14(1):210–221. DOI: https://doi.org/10.14202/vetworld.2021.210-221
-
12Academic Journal
Συγγραφείς: Lyudmila Borisovna Gubanova, Oleg Dmitrievich Gubanov
Πηγή: Современная наука и инновации, Vol 0, Iss 4, Pp 171-174 (2022)
Θεματικοί όροι: критическая концентрация мицеллообразования, биодоступность, натрия диклофенак, critical micelle concentration, bioavailability of diclofenac sodium, International relations, JZ2-6530
Περιγραφή αρχείου: electronic resource
Σύνδεσμος πρόσβασης: https://doaj.org/article/7e058258546440b282d40229c48127f1
-
13Conference
Συγγραφείς: Жук, К. Д., Куксёнок, Вера Юрьевна
Συνεισφορές: Куксёнок, Вера Юрьевна
Θεματικοί όροι: иодантипирин, антипирин, противовоспалительные препараты, биодоступность, водные растворы, водорастворимость, лекарственные средства
Περιγραφή αρχείου: application/pdf
Relation: Химия и химическая технология в XXI веке : материалы XXIV Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, посвященной 85-летию со дня рождения профессора А. В. Кравцова, Томск, 15-19 мая 2023 г. Т. 1; http://earchive.tpu.ru/handle/11683/76651
Διαθεσιμότητα: http://earchive.tpu.ru/handle/11683/76651
-
14Academic Journal
Συγγραφείς: Maloshtan, L. M., Shatalova, O. M., Rukhmakova, O. A., Shakina, L. O.
Πηγή: News of Pharmacy; № 2(100) (2020); 95-100
Вестник фармации; № 2(100) (2020); 95-100
Вісник фармації; № 2(100) (2020); 95-100Θεματικοί όροι: Glycyrrhiza glabra root extract, glycyram, biopharmaceutical classification system, bioavailability, екстракт кореня солодки, гліцирам, біофармацевтична система класифікації, біодоступність, UDC: 615.075:615.035.4:615.015, УДК: 615.075:615.035.4:615.015, экстракт корня солодки, глицирам, биофармацевтическая система классификации, биодоступность, 3. Good health
Περιγραφή αρχείου: application/pdf
-
15Academic Journal
Πηγή: Рецепт. :131-145
Θεματικοί όροι: 0301 basic medicine, бисглицинаты, микроэлементозы, биодоступность хелатов, trace elements, chelate complexes, минералы, minerals, deficiency of minerals in the body, 03 medical and health sciences, 0302 clinical medicine, bisglycinates, дефицит минералов в организме, хелатные комплексы, глицин, bioavailability of chelates, celiac disease, целиакия, glycine
-
16
-
17Academic Journal
Συγγραφείς: A. N. Arevefa, A. R. Dorotenko, S. M. Noskov, I. E. Makarenko, R. V. Drai, T. N. Komarov, O. A. Archakova, N. S. Bagaeva, I. E. Shokhin, А. Н. Арефьева, А. Р. Доротенко, С. М. Носков, И. Е. Макаренко, Р. В. Драй, Т. Н. Комаров, О. А. Арчакова, Н. С. Багаева, И. Е. Шохин
Συνεισφορές: The study was funded by LLC "GEROPHARM"., Исследование финансировалось ООО «ГЕРОФАРМ».
Πηγή: Drug development & registration; Том 12, № 3 (2023); 218-227 ; Разработка и регистрация лекарственных средств; Том 12, № 3 (2023); 218-227 ; 2658-5049 ; 2305-2066
Θεματικοί όροι: безопасность, uridine, bioavailability, adaptive design, safety, уридин, адаптивный дизайн, биодоступность
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1561/1169; https://www.pharmjournal.ru/jour/article/view/1561/1285; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1561/1766; Feigin V. L., Forouzanfar M. H., Krishnamurthi R., Mensah G. A., Connor M., Bennett D. A., Moran A. E., Sacco R. L., Anderson L., Truelsen T., O’Donnell M., Venketasubramanian N., Barker-Collo S., Lawes C. M., Wang W., Shinohara Y., Witt E., Ezzati M., Naghavi M., Murray C. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet. 2014;383(9913):245–254. DOI:10.1016/s0140-6736(13)61953-4.; Potvin D., DiLiberti C., Hauck W., Parr A., Schuirmann D., Smith R. A. Sequential design approaches for bioequivalence studies with crossover designs. Pharmaceutical Statistics. 2008;7(4):245–262. DOI:10.1002/pst.294.; Peters G. J. Re-evaluation of Brequinar sodium, a dihydroorotate dehydrogenase inhibitor. Nucleosides, Nucleotides and Nucleic Acids. 2018;37(12):666–678. DOI:10.1080/15257770.2018.1508692.; Chen K., Liu X., Wei C., Yuan G., Zhang R., Li R., Wang B., Guo R. Determination of Uridine in Human Plasma by HPLC and its Application in Citicoline Sodium Pharmacokinetics and Bioequivalence Studies. Journal of Bioequivalence & Bioavailability. 2011;3(4):072–076. DOI:10.4172/JBB.1000062.; Адонин В. К., Ромодановский Д. П., Ниязов Р. Р. Особенности проведения исследования биоэквивалентности лекарственных препаратов -аналогов эндогенных соединений. Ведомости Научного центра экспертизы средств медицинского применения. 2015;3:3–7.; Миронов А. Н. Руководство по экспертизе лекарственных средств. Том III. М.: ПОЛИГРАФ-ПЛЮС; 2014. 344 с.; Dissanayake S. Assessing the bioequivalence of analogues of endogenous substances (‘endogenous drugs’): considerations to optimize study design. British Journal of Clinical Pharmacology. 2010;69(3):238–244. DOI:10.1111/j.1365-2125.2009.03585.x.; Lopez G-Coviella I., Agut J., Von Borstel R., Wurtman R. J. Metabolism of cytidine (5) – diphosphocholine (cdp-choline) following oral and intravenous administration to the human and the rat. Neurochemistry International. 1987;11(3):293–297. DOI:10.1016/0197-0186(87)90049-0.; Wurtman R. J., Regan M., Ulus I., Yu L. Effect of oral CDP-choline on plasma choline and uridine levels in humans. Biochemical Pharmacology. 2000;60(7):989–992. DOI:10.1016/s0006-2952(00)00436-6.; Бондарева И. Б. Адаптивный дизайн в клинических исследованиях: преимущества и риски. Качественная клиническая практика. 2017;3:23–34. DOI:10.24411/2588-0519-2017-00018.; Pocock S. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64(8):191–199. DOI:10.2307/2335684.; Талибов О. Б. Использование адаптивного дизайна в исследованиях биоэквивалентности (обзор). Вестник Росздравнадзора. 2015;2:31–34.; https://www.pharmjournal.ru/jour/article/view/1561
-
18Academic Journal
Συγγραφείς: O. Yu. Kravtsova, O. G. Gribakina, G. B. Kolyvanov, A. A. Litvin, P. O. Bochkov, P. Yu. Povarnina, V. P. Zherdev, О. Ю. Кравцова, О. Г. Грибакина, Г. Б. Колыванов, А. А. Литвин, П. О. Бочков, П. Ю. Поварнина, В. П. Жердев
Πηγή: Pharmacokinetics and Pharmacodynamics; № 3 (2023); 12-18 ; Фармакокинетика и Фармакодинамика; № 3 (2023); 12-18 ; 2686-8830 ; 2587-7836
Θεματικοί όροι: линейность кинетики, dimeric dipeptide mimetic GK-2, preclinical pharmacokinetics, absolute bioavailability, linearity of kinetics, димерный дипептидный миметик ГК-2, фармакокинетика, абсолютная биодоступность
Περιγραφή αρχείου: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/377/340; Пирадов М.А., Максимова М.Ю., Танашян М.М. Инсульт Пошаговая инструкция. М.: ГЭОТАР-Медиа; 2019. 288 с.; Liaw N, Liebeskind D. Emerging therapies in acute ischemic stroke. F1000Res. 2020 Jun 5;9:F1000 Faculty Rev-546. DOI:10.12688/f1000research.21100.1.; Середенин С.Б., Гудашева Т.А. Патент РФ — RU2410392C2, 2011. https://patentimages.storage.googleapis.com/75/fa/e7/322e854039eb0f/RU2410392C2.pdf; Гудашева Т.А., Логвинов И.О., Николаев С.В. и др. Дипептидные миметики отдельных петель NGF и BDNF активируют PLC-γ1. Доклады Российской академии наук. Науки о жизни. 2020;494(1):486-490. DOI:10.31857/s2686738920050133.; Gudasheva TA, Povarnina PY, Antipova TA, et al. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci. 2015 Dec 8;22:106. DOI:10.1186/s12929-015-0198-z.; Антипова Т.А., Гудашева Т.А., Середенин С.Б. Исследование in vitro нейропротективных свойств нового оригинального миметика фактора роcта нервов ГК-2. Бюлл. эксп. биол. Мед. 2010;150(11):537–540.; Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К; 2012. С. 865-880; Мирошниченко И.И. Основы фармакокинетики. М.: ГЭОТАРМедиа; 2002. 282 c.; Антипова Т.А., Гудашева Т.А., Середенин С.Б. Новые низкомолекулярные миметики фактора роста нервов. Доклады Академии Наук. 2010;434(4):549–552. DOI:10.1134/S160767291005011X.; Литвин А.А., Колыванов Г.Б., Блынская Е.В. и др. Количественное определение гексаметилендиаминдиамид бис-(N-моно-сукцинил-L-глутамил-L-лизина) в плазме крови с использованием ВЭЖХ-МС. Вестн. Моск. Ун-та. Сер. 2. Химия. 2019;60(3):194–197.; Сергиенко В.И., Джеллифф Р., Бондарева И.Б. Прикладная фармакокинетика: основные положения и клиническое применение. М.: Издательство РАМН; 2003. 302 с.; Evans G. A Handbook of Bioanalysis and Drug Metabolism. CRC Press. 2004. 425 p.; https://www.pharmacokinetica.ru/jour/article/view/377
-
19Academic Journal
Συγγραφείς: V. S. Rogovskii, A. D. Kukushkina, A. N. Boyko, В. С. Роговский, А. Д. Кукушкина, А. Н. Бойко
Συνεισφορές: The investigation has not been sponsored.
Πηγή: Neurology, Neuropsychiatry, Psychosomatics; Vol 15 (2023): (Suppl. 1); 65-70 ; Неврология, нейропсихиатрия, психосоматика; Vol 15 (2023): (Suppl. 1); 65-70 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-0
Θεματικοί όροι: нейровоспаление, curcumin, bioavailability, polyphenols, neuroinflammation, куркумин, биодоступность, полифенолы
Περιγραφή αρχείου: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/2081/1577; Vidal-Jordana A, Montalban X. Multiple Sclerosis: Epidemiologic, Clinical, and Therapeutic Aspects. Neuroimaging Clin N Am. 2017 May;27(2):195-204. doi:10.1016/j.nic.2016.12.001; MFIS. Atlas of MS 2020 – Epidemyology report. 2020.; Nourbakhsh B, Mowry EM. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum (Minneap Minn). 2019;25(3):596-610. doi:10.1212/CON.0000000000000725; Alfredsson L, Olsson T. Lifestyle and Environmental Factors in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2019 Apr 1;9(4):a028944. doi:10.1101/cshperspect.a028944; Teter B, Agashivala N, Kavak K, et al. Characteristics influencing therapy switch behavior after suboptimal response to first-line treatment in patients with multiple sclerosis. Mult Scler. 2014;20(7):830-6. doi:10.1177/1352458513513058; Hyun JW, Kim SH, Jeong IH, et al. Utility of the rio score and modified rio score in korean patients with multiple sclerosis. PLoS One. 2015 May 26;10(5):e0129243. doi:10.1371/journal.pone.0129243; Лопатина АВ, Кукушкина АД, Мельников МВ, Роговский ВС. Перспективы применения полифенолов при рассеянном склерозе. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(7-2):36-43. doi:10.17116/jnevro202212207236; Grafeneder J, Derhaschnig U, Eskandary F, et al. Micellar Curcumin: Pharmacokinetics and Effects on Inflammation Markers and PCSK-9 Concentrations in Healthy Subjects in a Double-Blind, Randomized, Active-Controlled, Crossover Trial. Mol Nutr Food Res. 2022 Nov;66(22):e2200139. doi:10.1002/mnfr.202200139. Epub 2022 Sep 13.; Hussain Y, Alam W, Ullah H, et al. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics (Basel). 2022 Feb 28;11(3):322. doi:10.3390/antibiotics11030322; Banerjee S, Ji C, Mayfield JE, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosineregulated kinase 2. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):8155-60. doi:10.1073/pnas.1806797115. Epub 2018 Jul 9.; Lu HC, Kim S, Steelman AJ, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5430-41. doi:10.1073/pnas.1913997117. Epub 2020 Feb 24.; Mohamadian M, Bahrami A, Moradi Binabaj M, et al. Molecular Targets of Curcumin and Its Therapeutic Potential for Ovarian Cancer. Nutr Cancer. 2022;74(8):2713-30. doi:10.1080/01635581.2022.2049321. Epub 2022 Mar 10.; Zhao G, Liu Y, Yi X, et al. Curcumin inhibiting Th17 cell differentiation by regulating the metabotropic glutamate receptor-4 expression on dendritic cells. Int Immunopharmacol. 2017 May;46:80-6. doi:10.1016/j.intimp.2017.02.017; Balasa R, Barcutean L, Balasa A, et al. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol. 2020 May;81(5):237-43. doi:10.1016/j.humimm.2020.02.009. Epub 2020 Feb 28.; Gao Y, Zhuang Z, Lu Y, et al. Curcumin Mitigates Neuro-Inflammation by Modulating Microglia Polarization Through Inhibiting TLR4 Axis Signaling Pathway Following Experimental Subarachnoid Hemorrhage. Front Neurosci. 2019 Nov 15;13:1223. doi:10.3389/fnins.2019.01223. eCollection 2019.; Jin M, Park SY, Shen Q, et al. Anti-neuroinflammatory effect of curcumin on Pam3CSK4-stimulated microglial cells. Int J Mol Med. 2018 Jan;41(1):521-30. doi:10.3892/ijmm.2017.3217. Epub 2017 Oct 27.; Peng Y, Ao M, Dong B, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021 Nov 2;15:4503-25. doi:10.2147/DDDT.S327378. eCollection 2021.; Bernardo A, Plumitallo C, De Nuccio C, et al. Curcumin promotes oligodendrocyte differentiation and their protection against TNFalpha through the activation of the nuclear receptor PPAR-gamma. Sci Rep. 2021 Mar 2;11(1):4952. doi:10.1038/s41598-021-83938-y; Askarizadeh A, Barreto GE, Henney NC, et al. Neuroprotection by curcumin: A review on brain delivery strategies. Int J Pharm. 2020 Jul 30;585:119476. doi:10.1016/j.ijpharm.2020.119476. Epub 2020 May 27.; Qureshi M, Al-Suhaimi EA, Wahid F, et al. Therapeutic potential of curcumin for multiple sclerosis. Neurol Sci. 2018 Feb;39(2):207-14. doi:10.1007/s10072-017-3149-5. Epub 2017 Oct 27.; Stohs SJ, Chen O, Ray SD, et al. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020 Mar 19;25(6):1397. doi:10.3390/molecules25061397; Burapan S, Kim M, Han J. Curcuminoid Demethylation as an Alternative Metabolism by Human Intestinal Microbiota. J Agric Food Chem. 2017 Apr 26;65(16):3305-10. doi:10.1021/acs.jafc.7b00943. Epub 2017 Apr 14.; Dei Cas M, Ghidoni R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients. 2019 Sep 8;11(9):2147. doi:10.3390/nu11092147; Schiborr C, Kocher A, Behnam D, et al. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014 Mar;58(3):516-27. doi:10.1002/mnfr.201300724. Epub 2014 Jan 9.; Ma P, Zeng Q, Tai K, et al. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. J Food Sci Technol. 2018 Sep;55(9):3485-97. doi:10.1007/s13197-018-3273-0. Epub 2018 Jun 19.; Aziz ZAA, Mohd-Nasir H, Ahmad A, et al. Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front Chem. 2019 Nov 13;7:739. doi:10.3389/fchem.2019.00739. eCollection 2019.; Роговский ВС, Мельников МВ, Матюшин АИ, Шимановский НЛ. Влияние полифенолов и стероидов на продукцию интерлейкина-6 опухолевыми клеточными линиями HeLa и K562. Экспериментальная и клиническая фармакология. 2022; 85(11):14-8. doi:10.30906/0869-2092-2022-85-11-14-18; Kocher A, Bohnert L, Schiborr C, Frank J. Highly bioavailable micellar curcuminoids accumulate in blood, are safe and do not reduce blood lipids and inflammation markers in moderately hyperlipidemic individuals. Mol Nutr Food Res. 2016 Jul;60(7):1555-63. doi:10.1002/mnfr.201501034. Epub 2016 May 23.; Sun M, Liu N, Sun J, et al. Curcumin regulates anti-inflammatory responses by AXL/JAK2/STAT3 signaling pathway in experimental autoimmune encephalomyelitis. Neurosci Lett. 2022 Sep 14;787:136821. doi:10.1016/j.neulet.2022.136821. Epub 2022 Jul 28.; ELBini-Dhouib I, Manai M, Neili NE, et al. Dual Mechanism of Action of Curcumin in Experimental Models of Multiple Sclerosis. Int J Mol Sci. 2022 Aug 4;23(15):8658. doi:10.3390/ijms23158658; Torkildsen O, Brunborg LA, Myhr KM, Bo L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72-6. doi:10.1111/j.1600-0404.2008.01036.x; Feng J, Tao T, Yan W, et al. Curcumin inhibits mitochondrial injury and apoptosis from the early stage in EAE mice. Oxid Med Cell Longev. 2014;2014:728751. doi:10.1155/2014/728751. Epub 2014 Apr 27.; Khadka S, Omura S, Sato F, et al. Curcumin beta-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces. Front Cell Infect Microbiol. 2021 Dec 3;11:772962. doi:10.3389/fcimb.2021.772962. eCollection 2021.; Hegde M, Girisa S, BharathwajChetty B, et al. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega. 2023 Mar 13;8(12):10713-46. doi:10.1021/acsomega.2c07326; Dolati S, Ahmadi M, Rikhtegar R, et al. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int Immunopharmacol. 2018 Aug;61:74-81. doi:10.1016/j.intimp.2018.05.018. Epub 2018 May 28.; Dolati S, Babaloo Z, Ayromlou H, et al. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J Neuroimmunol. 2019 Feb 15;327:15-21. doi:10.1016/j.jneuroim.2019.01.007. Epub 2019 Jan 17.; Petracca M, Quarantelli M, Moccia M, et al. ProspeCtive study to evaluate efficacy, safety and tOlerability of dietary supplemeNT of Curcumin (BCM95) in subjects with Active relapsing MultIple Sclerosis treated with subcutaNeous Interferon beta 1a 44 mcg TIW (CONTAIN): A randomized, controlled trial. Mult Scler Relat Disord. 2021 Nov;56:103274. doi:10.1016/j.msard.2021.103274. Epub 2021 Sep 21.
-
20Academic Journal
Συγγραφείς: S. V. Tikhonov, E. N. Kareva, S. Yu. Serebrova, G. F. Vasilenko, M. K. Vasilyeva, S. A. Makhortova, N. V. Pavlova, С. В. Тихонов, Е. Н. Карева, С. Ю. Сереброва, Г. Ф. Василенко, М. К. Васильева, С. А. Махортова, Н. В. Павлова
Πηγή: Meditsinskiy sovet = Medical Council; № 8 (2023); 33-40 ; Медицинский Совет; № 8 (2023); 33-40 ; 2658-5790 ; 2079-701X
Θεματικοί όροι: приверженность, proton pump inhibitors, omeprazole, bioavailability, sodium carboxymethyl starch, compliance, commitment, ингибиторы протонной помпы, омепразол, биодоступность, карбоксиметилкрахмал натрия, комплаентность
Περιγραφή αρχείου: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7543/6724; Eusebi L.H., Ratnakumaran R., Yuan Y., Solaymani-Dodaran M., Bazzoli F., Ford A.C. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis. Gut. 2018;67(3):430–440. https://doi.org/10.1136/gutjnl-2016-313589.; Tack J., Talley N.J., Camilleri M., Holtmann G., Hu P., Malagelada J.R., Stanghellini V. Functional gastroduodenal disorders. Gastroenterology. 2006;130(5):1466–1479. Available at: https://www.gastrojournal.org/article/S0016-5085(06)00508-7/fulltext?referrer=https%3A%2F%2Fpubmed.ncbi.nlm.nih.gov%2F.; Бордин Д.С., Плавник Р.Г., Невмержицкий В.И., Буторова Л.И., Абдулхаков Р.А., Абдулхаков С.Р. и др. Распространенность Helicobacter pylori среди медицинских работников Москвы и Казани по данным ¹³С-уреазного дыхательного теста. Альманах клинической медицины. 2018;46(1):40–49. https://doi.org/10.18786/2072-0505-2018-46-1-40-49.; Hall J.E., Hall M.E. Medical Physiology. Elsevier; 2020. 1150 p. Available at: https://www.elsevierhealth.com.au/guyton-and-hall-textbook-of-medicalphysiology-e-book-9780323640039.html.; Sun D.C., Shay H. Basal gastric secretion in duodenal ulcer patients: its consideration in evaluation of gastric secretory inhibitants or stimulants. J Appl Physiol. 1957;11(2):148–154. https://doi.org/10.1152/jappl.1957.11.2.148.; Кукес В.Г., Стародубцев А.К. Клиническая фармакология и фармакотерапия. М.: ГЭОТАР-Медиа; 2012. 832 с. Режим доступа: https://bmfk-birsk.ru/about/book/klinfarm.pdf.; Zaterka S., Marion S.B., Roveda F., Perrotti M.A., Chinzon D. Historical perspective of gastroesophageal reflux disease clinical treatment. Arq Gastroenterol. 2019;56(2):202–208. https://doi.org/10.1590/S0004-2803.201900000-41.; Иванова О.И., Минушкин О.Н. Антациды в современной терапии кислотозависимых заболеваний. Медицинский совет. 2015;(13):30–37. Режим доступа: https://www.med-sovet.pro/jour/article/view/332?locale=ru_RU.; Salisbury B.H., Terrell J.M. Antacids. Treasure Island (FL): StatPearls Publishing; 2022. Available at: https://pubmed.ncbi.nlm.nih.gov/30252305/.; Meyer W. Antacids--an historical overview. Pharm Unserer Zeit. 2007;36(1):10–20. https://doi.org/10.1002/pauz.200600200.; Ивашкин В.Т., Маев И.В., Трухманов А.С., Лапина Т.Л., Сторонова О.А., Зайратьянц О.В. и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению гастроэзофагеальной рефлюксной болезни. Российский журнал гастроэнтерологии, гепатологии, колопроктологии 2020;30(4):70–97. https://doi.org/10.22416/1382-4376-2020-30-4-70-97.; Симаненков В.И., Бакулина Н.В., Тихонов С.В. Препараты висмута трикалия дицитрата: от фармацевтических характеристик к клинической эффективности. Медицинский алфавит. 2019;1(6):23–28. https://doi.org/10.33667/2078-5631-2019-1-6(381)-23-28.; Симаненков В.И., Тихонов С.В. Ребамипид – новые возможности гастроэнтеропротекции. Терапевтический архив. 2015;(1)2:134–137. https://doi.org/10.17116/terarkh20158712134-137.; Kimura T., Yoshida A., Tabuchi Y., Ikari A., Takeguchi N., Asano S. Stable expression of gastric proton pump activity at the cell surface. J Biochem. 2002;131(6):923–932. https://doi.org/10.1093/oxfordjournals.jbchem.a003183.; Abe K., Irie K., Nakanishi H., Suzuki H., Fujiyoshi Y. Crystal structures of the gastric proton pump. Nature. 2018;556(7700):214–218. https://doi.org/10.1038/s41586-018-0003-8.; Engevik A.C., Kaji I., Goldenring J.R. The Physiology of the Gastric Parietal Cell. Physiol Rev. 2020;100(2):573–602. https://doi.org/10.1152/physrev.00016.2019.; National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox. Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD); 2012. Available at: https://www.ncbi.nlm.nih.gov/books/NBK547852.; Stein J., Rösch W. H2 blockers and antacids in gastrointestinal diseases. Pharm Unserer Zeit. 2007;36(1):38–43. https://doi.org/10.1002/pauz.200600203.; Singh Bansi D., Louis-Auguste J. Oesophagus, stomach and duodenum. In: Bennett P.N., Brown M.J., Sharma P. (eds.). Clinical Pharmacology. 11th ed. Churchill Livingstone; 2012, chapter 32. pp. 528–535. https://doi.org/10.1016/b978-0-7020-4084-9.00071-9.; Бордин Д.С., Плотникова Е.Ю., Сухих А.С. Лечение кислотозависимых заболеваний: история вопроса и актуальные проблемы. Consilium Medicum. 2013;15(8):38–44. Режим доступа: https://consilium.orscience.ru/2075-1753/article/view/93873.; Бельмер С.В. Медикаментозная коррекция кислотозависимых состояний. Доктор.Ру. 2004;(6):6–9. Режим доступа: https://www.gastroscan.ru/literature/authors/1881.; Zhang Y.S., Li Q., He B.S., Liu R., Li Z.J. Proton pump inhibitors therapy vs H2 receptor antagonists’ therapy for upper gastrointestinal bleeding after endoscopy: A meta-analysis. World J Gastroenterol. 2015;21(20):6341–6351. https://doi.org/10.3748/wjg.v21.i20.6341.; Мазова Н.В., Марченко А.Л., Марченко Н.В. Анализ фармацевтического рынка на примере лекарственных препаратов группы ингибиторов протонной помпы. Разработка и регистрация лекарственных средств. 2017;(2):272–277. Режим доступа: https://www.pharmjournal.ru/jour/article/view/441/436.; Oosterhuis B., Jonkman J.H. Omeprazole: pharmacology, pharmacokinetics and interactions. Digestion. 1989;44(Suppl):1:9–17. https://doi.org/10.1159/000200098.; Карева Е.Н. Фармакогенетическое управление эффективностью и безопасностью ингибиторов протонных помп. РМЖ. 2021;29(4):68–73. Режим доступа: https://www.rmj.ru/articles/gastroenterologiya/farmakogeneticheskoeupravlenie-effektivnostyu-i-bezopasnostyu-ingibitorov-protonnykh-pomp/.; Abed M.N., Alassaf F.A., Jasim M.H.M., Alfahad M., Qazzaz M.E. Comparison of Antioxidant Effects of the Proton Pump-Inhibiting Drugs Omeprazole, Esomeprazole, Lansoprazole, Pantoprazole, and Rabeprazole. Pharmacology. 2020;105(11–12):645–651. https://doi.org/10.1159/000506232.; Inatomi N., Matsukawa J., Sakurai Y., Otake K. Potassium-competitive acid blockers: Advanced therapeutic option for acid-related diseases. Pharmacol Ther. 2016;168:12–22. Available at: https://pubmed.ncbi.nlm.nih.gov/27514776/.; Leowattana W., Leowattana T. Potassium-competitive acid blockers and gastroesophageal reflux disease. World J Gastroenterol. 2022;28(28):3608–3619. https://doi.org/10.3748/wjg.v28.i28.3608.; Shaheen N.J., Falk G.W., Iyer P.G., Souza R.F., Yadlapati R.H., Sauer B.G., Wani S. Diagnosis and Management of Barrett’s Esophagus: An Updated ACG Guideline. Am J Gastroenterol. 2022;117(4):559–587. https://doi.org/10.14309/ajg.0000000000001680.; Hirano I., Chan E.S., Rank M.A., Sharaf R.N., Stollman N.H., Stukus D.R. et al. AGA Institute Clinical Guidelines Committee; Joint Task Force on Allergy-Immunology Practice Parameters. AGA institute and the joint task force on allergy-immunology practice parameters clinical guidelines for the management of eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2020;124(5):416–423. https://doi.org/10.1016/j.anai.2020.03.020.; Kilcoyne A., O’Connor D., Ambery P. Bioavailability and bioequivalence. Pharmaceutical Medicine, Oxford Specialist Handbooks. Oxford; 2013. https://doi.org/10.1093/med/9780199609147.003.0052.; Алексеев К.В., Тихонова Н.В., Блынская Е.В., Карбушева Е.Ю., Турчинская К.Г., Михеева А.С. и др. Технология повышения биологической и фармацевтической доступности лекарственных веществ. Вестник новых медицинских технологий. 2012;19(4):43–47. Режим доступа: https://elibrary.ru/item.asp?id=18267132.; Смехова И.Е., Вайнштейн В.А., Ладутько Ю.М., Дружининская О.В., Турецкова Н.Н. Дезинтегранты и их влияние на растворение субстанций разных классов по биофармацевтической классификационной системе. Разработка и регистрация лекарственных средств. 2018;(4):62–72. Режим доступа: https://www.pharmjournal.ru/jour/article/view/634.; Pooresmaeil M., Namazi H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: A review. Carbohydr Polym. 2021;258:117654. https://doi.org/10.1016/j.carbpol.2021.117654.