-
1Academic Journal
Authors: Polișciuk, V.N., Polischuk, V.N., Şvorov, S.A., Shvorov, S.A., Voitiuk, V., Hmelevskii, V., Khmelovskyi, V., Titova, L.L., Ereomenko, A., Yeremenko, O., Zubok, T., Valiev, T.O.
Source: Problemele Energeticii Regionale 66 (2) 105-120
Subject Terms: cow manure, Biogas, crude glycerol, glicerol brut, метаногены, сырой глицерин, methane digestion, коровий навоз, digestia metanului, methanogens, straw pellets, biogas plant, fermentator, метан, метановое сбраживание, instalație de biogaz, metanogene, биогаз, гранулы соломы, biogaz, fermenter, биогазовая установка, pelete de paie, ферментер, gunoi de grajd de vaca, Methane, metan
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/227885
-
2Academic Journal
Authors: V. A. Panchenko, A. A. Kovalev, S. Chakraborty Чакраборти, В. А. Панченко, А. А. Ковалёв, С. Чакраборти
Contributors: Исследование выполнено за счет средств гранта Российского научного фонда № 22-49-02002, https://rscf.ru/project/22-49-02002/
Source: Alternative Energy and Ecology (ISJAEE); № 10 (2024); 19-44 ; Альтернативная энергетика и экология (ISJAEE); № 10 (2024); 19-44 ; 1608-8298
Subject Terms: робот, agriculture, agrivoltaics, green hydrogen, biohydrogen, biogas plant, photovoltaic module, energy supply, greenhouse, robot, сельское хозяйство, агривольтаика, зелёный водород, биоводород, биогазовая установка, фотоэлектрический модуль, энергоснабжение, теплица
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2522/2046; Michael Child, Otto Koskinen, Lassi Linnanen, Christian Breyer (2018). Sustainability guardrails for energy scenarios of the global energy transition // Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079.; Lowe R. J., Drummond P. (2022). Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications // Renewable and Sustainable Energy Reviews, 153, 111720. https://doi.org/10.1016/j.rser.2021.111628.; Maestre V. M., Ortiz A., Ortiz I. (2021). Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications // Renewable and Sustainable Energy Reviews, 152, 111628. https://doi.org/10.1016/j.rser.2021.111628.; Meiling Yue, Hugo Lambert, Elodie Pahon, Robin Roche, Samir Jemei, Daniel Hissel (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges // Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.; Arsad A. Z., Hannan M. A., Al-Shetwi Ali Q., Mansur M., Muttaqi K. M., Dong Z. Y., Blaabjerg F. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions // International Journal of Hydrogen Energy, 47(39), 17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.; Torbjørn Egeland-Eriksen, Amin Hajizadeh, SabrinaSartori (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives // International Journal of Hydrogen Energy, 46(63), 31963-31983. https://doi.org/10.1016/j.ijhydene.2021.06.218.; Tahir F., Ajjur S. B., Serdar M. Z., Al-Humaiqani M., Kim D., Al-Thani S. K., Sami G., Al-Ghamdi S. G. (2021). Qatar climate change conference 2021. A platform for addressing key climate change topics facing Qatar and the world. Doha, Qatar: Hamad bin Khalifa University Press (HBKU Press). https://doi.org/10.5339/conf_proceed_qccc2021.; Salimi M., Al-Ghamdi S.G. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East // Sustainable Cities and Society, 54, 101948. https://doi.org/10.1016/j.scs.2019.101948.; Zhijie Chen, Wei Wei, Lan Song, Bing-Jie Ni (2022). Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production // Sustainable Horizons, 1, 100002. https://doi.org/10.1016/j.horiz.2021.100002.; Fei-Yue Gao, Peng-Cheng Yu, Min-Rui Gao (2022). Seawater electrolysis technologies for green hydrogen production: challenges and opportunities // Current Opinion in Chemical Engineering, 36, 100827. https://doi.org/10.1016/j.coche.2022.100827.; Elnaz Asghari, Muhammad Imran Abdullah, Faranak Foroughi, Jacob J. Lamb, Bruno G. Pollet (2022). Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective // Current Opinion in Electrochemistry, 31, 100879. https://doi.org/10.1016/j.coelec.2021.100879.; Ernesto Amores, Margarita Sánchez-Molina, MónicaSánchez (2021). Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production // Results in Engineering, 10, 100235. https://doi.org/10.1016/j.rineng.2021.100235.; Shams Anwar, Faisal Khan, Yahui Zhang, Abdoulaye Djire (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis // International Journal of Hydrogen Energy, 46(63), 3228432317. https://doi.org/10.1016/j.ijhydene.2021.06.191.; Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown (2022). Green hydrogen investments: Investigating the option to wait // Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.; Ying Zhou, Ruiying Li, ZexuanLv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society // Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.; Paolo Giuseppe Mura, Roberto Baccoli, Roberto Innamorati, Stefano Mariotti (2015). Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality // Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.; Piyali Chatterjee, Mounika Sai Krishna Ambati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review // Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.; Lei Zheng, Shikun Cheng, Yanzhao Han, Min Wang, Yue Xiang, Jiali Guo, Di Cai, Heinz-Peter Mang, Taili Dong, Zifu Li, Zhengxu Yan, Yu Men (2020). Bio-natural gas industry in China: Current status and development // Renewable and Sustainable Energy Reviews, 128, 109925. https://doi.org/10.1016/j.rser.2020.109925.; Hailin Tian, Xiaonan Wang, Ee Yang Lim, Jonathan T. E. Lee, Alvin W. L. Ee, Jingxin Zhang, Yen Wah Tong (2021). Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization // Renewable and Sustainable Energy Reviews, 150, 111489. https://doi.org/10.1016/j.rser.2021.111489.; Marius Neuwirth, Tobias Fleiter, Pia Manz, René Hofmann (2022). The future potential hydrogen demand in energy-intensive industries - a site-specific approach applied to Germany // Energy Conversion and Management, 252, 115052. https://doi.org/10.1016/j.enconman.2021.115052.; Wenguo Liu, Haibin Zuo, Jingsong Wang, Qingguo Xue, Binglang Ren, Fan Yang (2021). The production and application of hydrogen in steel industry // International Journal of Hydrogen Energy, 46(17), 1054810569. https://doi.org/10.1016/j.ijhydene.2020.12.123.; Oliver Posdziech, Konstantin Schwarze, Jörg Brabandt (2019). Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis // International Journal of Hydrogen Energy, 44(35), 19089-19101. https://doi.org/10.1016/j.ijhydene.2018.05.16.; Chonnawee Likkasit, Azadeh Maroufmashat, Ali Elkamel, Hong-ming Ku, Michael Fowler (2018). Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries // Energy Conversion and Management, 168, 395-406. https://doi.org/10.1016/j.enconman.2018.04.057.; NREL. Transforming energy. Photovoltaic Research. Best Research-Cell Efficiency Chart. Accessed: May 18, 2024. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html.; Shiva Gorjian, Hossein Ebadi, Max Trommsdorff, H. Sharon, Matthias Demant, Stephan Schindele (2021). The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations // Journal of Cleaner Production, 292, 126030. https://doi.org/10.1016/j.jclepro.2021.126030.; Gul M., Kotak Y., Muneer T. (2106). Review on recent trend of solar photovoltaic technology // Energy Exploration & Exploitation, 34(4), 485-526. doi:10.1177/0144598716650552.; FAO. 2017. The future of food and agriculture – Trends and challenges. Rome. Accessed: May 18, 2024. [Online]. Available: https://www.iau-hesd.net/sites/default/files/documents/fao.pdf.; World Population Prospects - Population Division - United Nations. Accessed: May 18, 2024. [Online]. Available: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900.; Tahir F., Al-Ghamdi S. G. (2023). Climatic change impacts on the energy requirements for the built environment sector // Energy Reports, 9(1), 670-676. https://doi.org/10.1016/j.egyr.2022.11.033.; Ritchie H., Rosado P., Roser M. Energy // Production and Consumption. Accessed: May 18, 2024. [Online]. Available: https://ourworldindata.org/energy-production-consumption.; International energy agency // Electricity Market Report Update. Outlook for 2023 and 2024. Accessed: May 18, 2024. [Online]. Available: https://iea.blob.core.windows.net/assets/15172a8d-a515-42d7-88a4-edc27c3696d3/ElectricityMarketReport_Update2023.pdf.; Our World in Data. Agricultural output, 1961 to 2019. Accessed: May 18, 2024. [Online]. Available: https://ourworldindata.org/grapher/agricultural-output-dollars?country=OWID_WRL~RUS~OWID_EUR~OWID_ASI~CHN~IDN~IND~Latin+America+and+the+Caribbean~USA.; Dariusz Pyza, Paweł Gołda, Ewelina Sendek-Matysiak (2022). Use of hydrogen in public transport systems // Journal of Cleaner Production, 335, 130247. https://doi.org/10.1016/j.jclepro.2021.130247.; Yanfei Li, Farhad Taghizadeh-Hesary (2022). The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China // Energy Policy, 160, 112703. https://doi.org/10.1016/j.enpol.2021.112703.; Panchenko V. A., Daus Yu. V., Kovalev A. A., Yudaev I. V., Litti Yu. V. (2023). Prospects for the production of green hydrogen: Review of countries with high potential // International Journal of Hydrogen Energy, 48(12), 4551-4571. https://doi.org/10.1016/j.ijhydene.2022.10.084.; International Renewable Energy Agency (IRENA). Green hydrogen. Collaborate framework on Green Hydrogen. Accessed: May 18, 2024. [Online]. Available: https://www.irena.org/How-we-work/Collaborative-frameworks/Green-Hydrogen.; Ufa R. A., Malkova Y. Y., Gusev A. L., Ruban N. Y., Vasilev A. S. (2021). Algorithm for optimal pairing of res and hydrogen energy storage systems // International Journal of Hydrogen Energy, 46(68), 33659-33669. https://doi.org/10.1016/j.ijhydene.2021.07.094.; Paolo Marocco, Domenico Ferrero, Andrea Lanzini, Massimo Santarelli (2021). Optimal design of stand-alone solutions based on RES + hydrogen storage feeding off-grid communities // Energy Conversion and Management, 238, 114147. https://doi.org/10.1016/j.enconman.2021.114147.; Paolo Marocco, Domenico Ferrero, Andrea Lanzini, Massimo Santarelli (2022). The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems // Journal of Energy Storage, 46, 103893. https://doi.org/10.1016/j.est.2021.103893.; Bei Li, Jiangchen Li (2022). Sizing and operation of a pure renewable energy based electric system through hydrogen // Energy Reports, 8(1), 1391-1403. https://doi.org/10.1016/j.egyr.2021.11.276.; Lijun Wang, Chen Hong, Xiangyang Li, Zhenzhong Yang, Shuman Guo, Quancai Li (2022). Review on blended hydrogen-fuel internal combustion engines: A case study for China // Energy Reports, 8, 6480-6498. https://doi.org/10.1016/j.egyr.2022.04.079.; Rafig Babayev, Hong G. Im, Arne Andersson, Bengt Johansson (2022). Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP // Energy Conversion and Management, 264, 115698. https://doi.org/10.1016/j.enconman.2022.115698.; Norhidayah Mat Taib, Mohd Radzi Abu Mansor, Wan Mohd Faizal Wan Mahmood (2021). Combustion characteristics of hydrogen in a noble gas compression ignition engine // Energy Reports, 7, 200-218. https://doi.org/10.1016/j.egyr.2021.07.133.; Balu Jalindar, Shinde, Karunamurthy K. (2022). Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – A comprehensive outlook // Materials today: Proceedings, 51(3), 1568-1579. https://doi.org/10.1016/j.matpr.2021.10.378.; Changeun Park, Sesil Lim, Jungwoo Shin, Chul-Yong Lee (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea // Technological Forecasting and Social Change, 181, 121750. https://doi.org/10.1016/j.techfore.2022.121750.; Leonard E. Klebanoff, Sean A. M. Caughlan, Robert T. Madsen, Cody J. Conard, Timothy S. Leach, T. Bruce Appelgate Jr. (2021). Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells // International Journal of Hydrogen Energy, 46(76), 3805138072. https://doi.org/10.1016/j.ijhydene.2021.09.047.; Sebastian Nicolay, Stanislav Karpuk, Yaolong Liu, Ali Elhama (2021). Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen // International Journal of Hydrogen Energy, 46(64), 32676-32694. https://doi.org/10.1016/j.ijhydene.2021.07.127.; Seyed Ehsan Hosseini (2022). Hydrogen and Fuel Cells in Transport Road, Rail, Air, and Sea // Comprehensive Renewable Energy (Second Edition), 4, 317-342. https://doi.org/10.1016/B978-0-12-8197271.00005-4.; Minnan Ye, Phil Sharp, Nigel Brandon, Anthony Kucernak (2022). System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping // International Journal of Hydrogen Energy, 47(13), 8565-8584. https://doi.org/10.1016/j.ijhydene.2021.12.164.; Marian Tomasov, Martina Kajanova, Peter Bracinik, David Motyka (2019). Overview of Battery Models for Sustainable Power and Transport Applications // Transportation Research Procedia, 40, 548-555. https://doi.org/10.1016/j.trpro.2019.07.079.; Mohammad Shahjalal, Probir Kumar Roy, Tamanna Shams, Ashley Fly, Jahedul Islam Chowdhury, Md. Rishad Ahmed, Kailong Liu (2022). A review on second-life of Li-ion batteries: prospects, challenges, and issues // Energy, 241, 122881. https://doi.org/10.1016/j.energy.2021.122881.; Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen // International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.; Hermesmann M., Müller T. E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems // Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.; Gibson T. L., Kelly N. A. (2008). Optimization of solar powered hydrogen production using photovoltaic electrolysis devices // International Journal of Hydrogen Energy, 33(21), 5931-5940. https://doi.org/10.1016/j.ijhydene.2008.05.106.; Dincer I., Acar C. (2015). Review and evaluation of hydrogen production methods for better sustainability // International Journal of Hydrogen Energy, 40(34), 11094-11111. https://doi.org/10.1016/j.ijhydene.2014.12.035.; Fereidooni M., Mostafaeipour A., Kalantar V., Goudarzi H. (2018). A comprehensive evaluation of hydrogen production from photovoltaic power station // Renewable and Sustainable Energy Reviews, 82(1), 415–423. https://doi.org/10.1016/j.rser.2017.09.060.; Khelfaoui N., Djafour A., Ghenai C., Laib I., Danoune M. B., Gougui A. (2021). Experimental investigation of solar hydrogen production PV/PEM electrolyser performance in the Algerian Sahara regions // International Journal of Hydrogen Energy, 46(59), 30524-30538. https://doi.org/10.1016/j.ijhydene.2020.11.193.; Hassan Q., Abbas M., Tabar V., Tohidi S., Jaszczur M., Abdulrahman I., Salman, H. (2023). Modelling and analysis of green hydrogen production by solar energy. Energy Harvesting and Systems, 10(2), 229-245. https://doi.org/10.1515/ehs-2022-0093.; Muthia R., Pramudya A.S.P., Maulana M.R., Purwanto W.W. (2024). Techno-economic analysis of green hydrogen production by a floating solar photovoltaic system for industrial decarbonization // Clean Energy, 8(4), 1–14. https://doi.org/10.1093/ce/zkae032.; Dahbi S., Aziz A., Messaoudi A., Mazozi I., Kassmi K., Benazzi N. (2018). Management of excess energy in a photovoltaic/grid system by production of clean hydrogen // International Journal of Hydrogen Energy, 43(10), 5283-5299. https://doi.org/10.1016/j.ijhydene.2017.11.022.; Temiz M., Javani N. (2020). Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production // International Journal of Hydrogen Energy, 45(5), 3457–3469. https://doi.org/10.1016/j.ijhydene.2018.12.226.; Ogbonnaya C., Abeykoon C., Nasser A., Turan A., Ume C.S. (2021). Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review // Energies, 14(20), 6827. https://doi.org/10.3390/en14206827.; Elamri Y., Cheviron B., Mange A., Dejean C., Liron F., Belaud, G. (2018). Rain concentration and sheltering effect of solar panels on cultivated plotsи // Hydrology and Earth System Sciences, 22, 1285-1298. https://doi.org/10.5194/hess-22-1285-2018.; Salvatore Vattiata. Production of green hydrogen by electrolyzer from a large-scale agrovoltaic power plant. Accessed: May 18, 2024. [Online]. Available: https://webthesis.biblio.polito.it/secure/27430/1/tesi.pdf; Sarr A., Soro Y. M., Tossa A. K., Diop L. (2023). Agrivoltaic, A Synergistic Co-Location of Agricultural and Energy Production in Perpetual Mutation: A Comprehensive Review // Processes, 11(3), 948. https://doi.org/10.3390/pr11030948.; Maynard I., Abdulla A. (2023). Assessing benefits and costs of expanded green hydrogen production to facilitate fossil fuel exit in a net-zero transition // Renewable Energy Focus, 44, 85-97. https://doi.org/10.1016/j.ref.2022.12.002.; Rey J., Segura F., Andújar J. (2023). Green hydrogen: resources consumption, technological maturity, and regulatory framework. Energies, 16(17), 6222. https://doi.org/10.3390/en16176222.; Gilbert N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature, https://doi.org/10.1038/nature.2012.11708.; Platis D. P., Anagnostopoulos C. D., Tsaboula A. D., Menexes G. C., Kalburtji K. L., Mamolos A. P. (2019). Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry // Sustainability, 11(6), 1664. https://doi.org/10.3390/su11061664.; Jaiswal B., Agrawa M. (2020). Carbon Footprints of Agriculture Sector. Carbon Footprints. Environmental Footprints and Eco-design of Products and Processes. https://doi.org/10.1007/978-981-13-7916-1_4.; Calvert K., Mabee W. (2015). More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada // Applied Geography, 56, 209–221. https://doi.org/10.1016/j.apgeog.2014.11.028.; Dinesh H., Pearce J. (2016). The potential of agrivoltaic systems // Renewable and Sustainable Energy Reviews, 54, 299-308. https://doi.org/10.1016/j.rser.2015.10.024.; Goetzberger A., Zastrow A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation // International Journal of Solar Energy, 1(1), 55-69. https://doi.org/10.1080/01425918208909875.; United Nations. Climate actions. Accessed: May 18, 2024. [Online]. Available: https://www.un.org/climatechange?gclid=CjwKCAiArNOeBhAHEiwAze_nKNAnsQSS6WXfWQus4xZuy6p8hFCQoERS1PdcTAU_QabXiJWPA2XesxoC8xMQAvD_BwE.; Kim S.K, Park S. (2023). Impacts of renewable energy on climate vulnerability: A global perspective for energy transition in a climate adaptation framework // Science of The Total Environment, 859(1), 160175. https://doi.org/10.1016/j.scitotenv.2022.160175.; Klokov A. V.; Loktionov E. Y.; Loktionov Y. V.; Panchenko V. A.; Sharaborova E. S. (2023). A Mini-Review of Current Activities and Future Trends in Agrivoltaics // Energies, 16(7), 3009. https://doi.org/10.3390/en16073009.; Pestisha A., Gabnai Z., Chalgynbayeva A., Lengyel P., Bai A. (2023). On-Farm Renewable Energy Systems: A Systematic Review // Energies, 16(2), 862. https://doi.org/10.3390/en16020862.; Matulić D., Željko Andabaka, Radman S., Goran Fruk, Leto J., Jakša Rošin, Rastija M., Varga I., Tea Tomljanović, Hrvoje Čeprnja, Marko Karoglan. (2023). Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia // Agriculture, 13(7), 1447. https://doi.org/10.3390/agriculture13071447.; Pouran H. M., Padilha Campos Lopes M., Nogueira T., Alves Castelo Branco D., Sheng Y. (2022). Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology // iScience, 25(11), 105253. DOI:10.1016/j.isci.2022.105253.; Hydrogen Overview. Ministry of New and Renewable Energy. India. Accessed: May 18, 2024. [Online]. Available: https://mnre.gov.in/hydrogenoverview/#:~:text=Green%20Hydrogen%20is%20expected%20to,solar,%20wind,%20or%20hydropower.; Weselek A., Ehmann A., Zikeli S., Lewandowski I., Schindele S., Högy P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review // Agronomy for Sustainable Development, 39(4), 35. https://doi.org/10.1007/s13593-019-0581-3.; Asa’a S., Reher T., Rongé J., Diels J., Poortmans J., Radhakrishnan H.S., A. van der Heide, B. Van de Poel, Daenen M. (2024). A multidisciplinary view on agrivoltaics: Future of energy and agriculture // Renewable and Sustainable Energy Reviews, 200, 114515. https://doi.org/10.1016/j.rser.2024.114515.; Shiva Gorjian, Erion Bousi, Özal Emre Özdemir, Max Trommsdorff, Nallapaneni Manoj Kumar, Abhishek Anand, Karunesh Kant, Shauhrat S. Chopra (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology // Renewable and Sustainable Energy Reviews, 158, 112126. https://doi.org/10.1016/j.rser.2022.112126.; Trommsdorff M. et al. Agrivoltaics: Opportunities for Agriculture and the Energy Transition, Accessed: May 18, 2024. [Online]. Available: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/APV-Guideline.pdf.; International Technology Roadmap for Photovoltaic (ITRPV). Accessed: May 18, 2024. [Online]. Available: https://www.vdma.org/international-technology-roadmap-photovoltaic.; References Agri-PV Solar Parks and Solar Fence Projects. Next2Sun. Accessed: May 18, 2024. [Online]. Available: https://next2sun.com/en/testimonials/.; Sunstream Energy – Cleaner, Greener, Better Energy Solutions. Accessed: May 18, 2024. [Online]. Available: https://sunstreamenergy.ie/.; Dimitrij Chudinzow, Sylvio Nagel, Joshua Güsewell, Ludger Eltrop (2020). Vertical bifacial photovoltaics – A complementary technology for the European electricity supply? // Applied Energy, 264, 114782. https://doi.org/10.1016/j.apenergy.2020.114782.; Muhammad Hussnain Riaz, Hassan Imran, Rehan Younas, Nauman Zafar Butt (2021). The optimization of vertical bifacial photovoltaic farms for efficient agrivoltaic systems // Solar Energy, 230, 1004-1012. https://doi.org/10.1016/j.solener.2021.10.051.; Pietro Elia Campana, Bengt Stridh, Stefano Amaducci, Michele Colauzzi (2021). Optimisation of vertically mounted agrivoltaic systems // Journal of Cleaner Production, 325, 129091. https://doi.org/10.1016/j.jclepro.2021.129091.; Odysseas Alexandros Katsikogiannis, Hesan Ziar, Olindo Isabella (2022). Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach // Applied Energy, 309, 118475. https://doi.org/10.1016/j.apenergy.2021.118475.; Gulhane S. G., Phadke A. R (2023). Design of Agro-photovoltaic System for Optimized Energy Generation and Crop Yield using Fuzzy Framework. 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 2023, 1-6. DOI:10.1109/INOCON57975.2023.10101340.; Riaz M. H., Imran H., Alam H., Alam M. A., Butt N. Z. (2022). Crop-Specific Optimization of Bifacial PV Arrays for Agrivoltaic Food-Energy Production: The Light-Productivity-Factor Approach // IEEE Journal of Photovoltaics, 12(2), 572-580. doi:10.1109/JPHOTOV.2021.3136158.; Bolinger M., Bolinger G. (2022). Land Requirements for Utility-Scale PV: An Empirical Update on Power and Energy Density // IEEE Journal of Photovoltaics, 12(2), 589-594. doi:10.1109/JPHOTOV.2021.3136805.; Patel U. R., Gadhiya G.A., Chauhan P.M. (2024). Techno-economic analysis of agrivoltaic system for affordable and clean energy with food production in India // Clean Technologies and Environmental Policy, 26, 2117-2135. https://doi.org/10.1007/s10098-023-02690-1.; Insolagrin. Dynamic Agrivoltaic Solution. Solar panels for Farmers. Accessed: May 18, 2024. [Online]. Available: https://insolight.ch/solution/.; Malu P., Sharma U., Pearce J. (2017). Agrivoltaic potential on grape farms in India // Sustainable Energy Technologies and Assessments, 23, 104-110. https://doi.org/10.1016/j.seta.2017.08.004.; Leiping Duan, Ashraf Uddin. (2020). Progress in Stability of Organic Solar Cells // Advanced Science, 7(11), 1903259. https://doi.org/10.1002/advs.201903259.; Marrou H., Wery J., Dufour L., Dupraz C. (2013). Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels // European Journal of Agronomy, 44, 54-66. https://doi.org/10.1016/j.eja.2012.08.003.; Sekiyama T., Nagashima A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop // Environments, 6(6), 65. https://doi.org/10.3390/environments6060065.; Elamri Y., Cheviron B., Lopez J. -M., Dejean C., Belaud G. (2018). Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces // Agricultural Water Management, 208, 440-453, https://doi.org/10.1016/j.agwat.2018.07.001.; Henry J. Williams, Khaled Hashad, Haomiao Wang, K. Max Zhang. (2023). The potential for agrivoltaics to enhance solar farm cooling // Applied Energy, 332, 120478. https://doi.org/10.1016/j.apenergy.2022.120478.; Adeh E. H., Good S. P., Calaf M., Higgins C. W. (2019). Solar PV Power Potential is Greatest Over Croplands // Scientific Reports, 9, 11442. https://doi.org/10.1038/s41598-019-47803-3.; Marrou H., Guilioni L., Dufour L., Dupraz C., Wery J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? // Agricultural and Forest Meteorology, 177, 117132. https://doi.org/10.1016/j.agrformet.2013.04.012.; Barron-Gafford G. A., Pavao-Zuckerman M. A., Minor R. L. et al. (2019). Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands // Nature Sustainability, 2, 848-855. https://doi.org/10.1038/s41893-019-0364-5.; Dupraz C., Marrou H., Talbot G., Dufour L., Nogier A., Ferard Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes // Renewable Energy, 36(10), 2725-2732. https://doi.org/10.1016/j.renene.2011.03.005.; Harshavardhan Dinesh, Joshua M. Pearce. (2016). The potential of agrivoltaic systems // Renewable and Sustainable Energy Reviews, 54, 299-308. https://doi.org/10.1016/j.rser.2015.10.024.; Valle B., Simonneau T., Sourd F., Pechier P., Hamard P., Frisson T., Ryckewaert M., Christophe A. (2017). Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops // Applied Energy, 206, 1495-1507. https://doi.org/10.1016/j.apenergy.2017.09.113.; Elinor P. Thompson, Emilio L. Bombelli, Simon Shubham, Hamish Watson, Aldous Everard, Vincenzo D’Ardes, Andrea Schievano, Stefano Bocchi, Nazanin Zand, Christopher J. Howe, Paolo Bombell. (2020). Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland // Advanced Energy Materials, 10(35), 2001189. https://doi.org/10.1002/aenm.202001189.; Aira J-R., Gallardo-Saavedra S., Eugenio-Gozalbo M., Alonso-Gómez V., Muñoz-García M-Á., Hernández-Callejo L. (2021). Analysis of the Viability of a Photovoltaic Greenhouse with Semi-Transparent Amorphous Silicon (a-Si) Glass // Agronomy, 11(6), 1097. https://doi.org/10.3390/agronomy1106109.; Esther Magadley, Ragheb Kabha, Mohamad Dakka, Meir Teitel, Maayan Friman-Peretz, Murat Kacira, Rebekah Waller, Ibrahim Yehia (2022). Organic photovoltaic modules integrated inside and outside a polytunnel roof // Renewable Energy, 182, 163-171. https://doi.org/10.1016/j.renene.2021.10.012.; Shahriyar Safat Dipta, Jean Schoenlaub, Md Habibur Rahaman, Ashraf Uddin (2022). Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses // Applied Energy. 2022, 328, 120208. https://doi.org/10.1016/j.apenergy.2022.120208.; Jeum-Jong Kim, Mangu Kang, Ock Keum Kwak, Yong-Jin Yoon, Kil Sik Min, Moo-Jung Chu (2014). Fabrication and Characterization of Dye-Sensitized Solar Cells for Greenhouse Application // Hindawi Publishing Corporation International Journal of Photoenergy, 2014(1), 376315. http://dx.doi.org/10.1155/2014/376315.; Othmane Essahili, Mouad Ouafi, Omar Moudam (2022). Recent progress in organic luminescent solar concentrators for agrivoltaics: Opportunities for rare-earth complexes // Solar Energy, 245, 58-66. https://doi.org/10.1016/j.solener.2022.08.054.; Michael E. Loik, Sue A. Carter, Glenn Alers, Catherine E. Wade, David Shugar, Carley Corrado, Devin Jokerst, Carol Kitayama (2017). Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus // Earth’s Future, 5(10), 1044-1053. https://doi.org/10.1002/2016EF000531.; Nayak P. K., Mahesh S., Snaith H. J., Cahen D. (2019). Photovoltaic solar cell technologies: analysing the state of the art // Nature Reviews Materials, 4, 269285. https://doi.org/10.1038/s41578-019-0097-0.; Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya. (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply // International Journal of Energy Optimization and Engineering, 9(2), 74-94. DOI:10.4018/IJEOE.2020040106.; Reda Hassanien Emam Hassanien, Li Ming (2017). Influences of greenhouse-integrated semi-transparentphotovoltaics on microclimate and lettuce growth // International Journal of Agricultural and Biological Engineering, 10(6), 11-22. DOI:10.25165/j.ijabe.20171006.3407.; Panchenko V. A., Kovalev A. A., Kovalev D. A., Litty Yu. V. (2023). Review of modern methods and technologies for using of solar energy in the operation of anaerobic digestion systems // International Journal of Hydrogen Energy, 48(53), 20264-20278. https://doi.org/10.1016/j.ijhydene.2023.02.109.; Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries // Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.; Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh // Energy Procedia, 160, 277284. https://doi.org/10.1016/j.egypro.2019.02.147.; Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viableoption in rural areas of developing countries // Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.; Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas // International Journal of Hydrogen Energy, 45, 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.; Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system // Applied Energy, 169, 138-149.https://doi.org/10.1016/j.apenergy.2016.02.037.; International Renewable Energy Agency (IRENA) (2020). Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52. Accessed: May 18, 2024. [Online]. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf; Friedman S. J., Fan Z., Tang K. (2019). «Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today». New York: Columbia University, Center on Global Energy Policy. Accessed: May 18, 2024. [Online]. Available: https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LowCarbonHeat-CGEP_Report_100219-2_0.pdf.; Wood Mackenzie Power & Renewables (2019). «Green Hydrogen Production: Landscape, Projects and Costs». Accessed: May 18, 2024. [Online]. Available: https://www.woodmac.com/our-expertise/focus/transition/green-hydrogen-production-2019/.; Chun-Yu Lai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions // Water Research, 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.; Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives // Biotechnology Advances, 36(2), 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.; Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading // Journal of Cleaner Production, 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.; https://www.isjaee.com/jour/article/view/2522
-
3Academic Journal
Subject Terms: биогаз, загрузка биогазовой установки, биогазовые технологии, биогазовая установка
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/68018
-
4Academic Journal
Authors: Galina S. Chebotareva, Artyom A. Dvinayninov
Source: R-Economy. 9:5-18
Subject Terms: 私人能源消费, 主气源供应, 情景分析, 沼气厂, REMOTE AREAS, ГАЗИФИКАЦИЯ, 7. Clean energy, ЧАСТНОЕ ЭНЕРГОПОТРЕБЛЕНИЕ, REGION, 12. Responsible consumption, ОТДАЛЕННЫЕ ТЕРРИТОРИИ, GAS SUPPLY SYSTEM, SCENARIO ANALYSIS, СТОИМОСТНАЯ ОЦЕНКА, 11. Sustainability, ЭКОНОМИЧЕСКАЯ ЦЕЛЕСООБРАЗНОСТЬ, 气化, 经 济可行性, СЦЕНАРНЫЙ АНАЛИЗ, 2. Zero hunger, ECONOMIC FEASIBILITY, 区域, РЕГИОН, 1. No poverty, GASIFICATION, 16. Peace & justice, МАГИСТРАЛЬНОЕ ГАЗОСНАБЖЕНИЕ, 13. Climate action, 8. Economic growth, BIOGAS PLANT, ENERGY CONSUMPTION IN HOUSEHOLDS, COST EVALUATION, БИОГАЗОВАЯ УСТАНОВКА, 偏远地区, 成本估算
Access URL: http://elar.urfu.ru/handle/10995/122228
-
5Academic Journal
Authors: Polișciuk, V.N., Polischuk, V.N., Şvorov, S.A., Shvorov, S.A., Titova, L.L., Zubok, T., Evtușenko, V., Dvornîk, E.A., Dvornyk, Y.O., Valiev, T.O.
Source: Problemele Energeticii Regionale 62 (2) 148-163
Subject Terms: instalație de biogaz, metanogene, математическая модель, Nutrienţi, биогаз, methane thank, Biogas, modeling, substrate, Nutrients, biogaz, моделирование, питательные вещества, биогазовая установка, метаногены, model matematic, ферментер, methanogens, substrat, субстрат, biogas plant, fermentator, mathematical model, modelare
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/203688
-
6Academic Journal
Authors: POLISHCHUK, V., SHVOROV, S., ITOVA, L., ZUBOK, T., YEVTUSHENKO, V., DVORNYK, YE., VALIEV, T.
Subject Terms: biogas plant, methane thank, mathematical model, modeling, substrate, nutrients, methanogens, instalație de biogaz, fermentator, model matematic, modelare, substrat, nutrienți, metanogene, биогазовая установка, ферментер, математическая модель, моделирование, субстрат, питательные вещества, метаногены
File Description: application/pdf
Relation: Problemele Energeticii Regionale, Nr. 2(62), 2024; http://repository.utm.md/handle/5014/28559
-
7Academic Journal
Authors: V. A. Panchenko, S. P. Chirsky, A. A. Kovalev, Yu. V. Litti, Yu. V. Karaeva, I. V. Katraeva, В. А. Панченко, С. П. Чирский, А. А. Ковалёв, Ю. В. Литти, Ю. В. Караева, И. В. Катраева
Contributors: Исследование выполнено за счёт средств гранта Российского научного фонда № 22-49-02002, https://rscf.ru/project/22-49-02002/
Source: Alternative Energy and Ecology (ISJAEE); № 2 (2024); 12-36 ; Альтернативная энергетика и экология (ISJAEE); № 2 (2024); 12-36 ; 1608-8298
Subject Terms: метод конечных элементов, biogas plant, green hydrogen, biohydrogen, biomethane, anaerobic bioconversion, energy supply, photovoltaic module, solar collector, photovoltaic thermal module, modeling, finite element method, биогазовая установка, зелёный водород, биоводород, биометан, анаэробное сбраживание, энергоснабжение, фотоэлектрический модуль, солнечный коллектор, теплофотоэлектрический модуль, моделирование
File Description: application/pdf
Relation: https://www.isjaee.com/jour/article/view/2351/1902; Michael Child, Otto Koskinen, Lassi Linnanen, Christian Breyer (2018). Sustainability guardrails for energy scenarios of the global energy transition. Renewable and Sustainable Energy Reviews, 91, 321-334. https://doi.org/10.1016/j.rser.2018.03.079.; Lowe, R. J., Drummond, P. (2022). Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications. Renewable and Sustainable Energy Reviews, 153, 111720. https://doi.org/10.1016/j.rser.2021.111628.; Maestre V. M., Ortiz, A., Ortiz I. (2021). Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renewable and Sustainable Energy Reviews, 152, 111628. https://doi.org/10.1016/j.rser.2021.111628.; Meiling Yue, Hugo Lambert, Elodie Pahon, Robin Roche, Samir Jemei, Daniel Hissel (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. https://doi.org/10.1016/j.rser.2021.111180.; Arsad, A. Z., Hannan M. A., Al-Shetwi, Ali Q., Mansur, M., Muttaqi, K. M., Dong, Z. Y., Blaabjerg, F. (2022). Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. International Journal of Hydrogen Energy, 47(39), 17285-17312. https://doi.org/10.1016/j.ijhydene.2022.03.208.; Torbjørn Egeland-Eriksen, Amin Hajizadeh, SabrinaSartori (2021). Hydrogen-based systems for integration of renewable energy in power systems: Achievements and perspectives. International Journal of Hydrogen Energy, 46(63), 31963-31983. https://doi.org/10.1016/j.ijhydene.2021.06.218.; Zhijie Chen, Wei Wei, Lan Song, Bing-Jie Ni (2022). Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production. Sustainable Horizons, 1, 100002. https://doi.org/10.1016/j.horiz.2021.100002.; Fei-Yue Gao, Peng-Cheng Yu, Min-Rui Gao (2022). Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Current Opinion in Chemical Engineering, 36, 100827. https://doi.org/10.1016/j.coche.2022.100827.; Elnaz Asghari, Muhammad Imran Abdullah, Faranak Foroughi, Jacob J. Lamb, Bruno G. Pollet (2022). Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective. Current Opinion in Electrochemistry, 31, 100879. https://doi.org/10.1016/ j.coelec.2021.100879.; Ernesto Amores, Margarita Sánchez-Molina, MónicaSánchez (2021). Effects of the marine atmosphere on the components of an alkaline water electrolysis cell for hydrogen production. Results in Engineering, 10, 100235. https://doi.org/10.1016/j.rineng.2021.100235.; Shams Anwar, Faisal Khan, Yahui Zhang, Abdoulaye Djire (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 46(63), 32284-32317. https://doi.org/10.1016/ j.ijhydene.2021.06.191.; Flora Biggins, Mohit Kataria, Diarmid Roberts, Dr Solomon Brown. Green hydrogen investments: Investigating the option to wait. Energy, 241, 122842. https://doi.org/10.1016/j.energy.2021.122842.; Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu (2022). Green hydrogen: A promising way to the carbon-free society. Chinese Journal of Chemical Engineering, 43, 2-13. https://doi.org/10.1016/j.cjche.2022.02.001.; Paolo Giuseppe Mura, Roberto Baccoli, Roberto Innamorati, Stefano Mariotti (2015). Solar Energy System in A Small Town Constituted of A Network of Photovoltaic Collectors to Produce Electricity for Homes and Hydrogen for Transport Services of Municipality. Energy Procedia, 78, 824-829. https://doi.org/10.1016/j.egypro.2015.11.002.; Piyali Chatterjee, Mounika Sai KrishnaAmbati, Amit K. Chakraborty, Sabyasachi Chakrabortty, Sajal Biring, Seeram Ramakrishna, Terence Kin Shun Wong, Avishek Kumar, Raghavendra Lawaniya, Goutam Kumar Dalapati (2022). Photovoltaic/photo-electrocatalysis integration for green hydrogen: A review. Energy Conversion and Management, 261, 115648. https://doi.org/10.1016/j.enconman.2022.115648.; International Renewable Energy Agency (IRENA) (2020). Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf; Friedman, S. J., Fan, Z., Tang, K. (2019). «Low-Carbon Heat Solutions for Heavy Industry: Sources, Options, and Costs Today». New York: Columbia University, Center on Global Energy Policy. https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LowCarbonHeat-CGEP_Report_100219-2_0.pdf.; Wood Mackenzie Power & Renewables (2019). «Green Hydrogen Production: Landscape, Projects and Costs». https://www.woodmac.com/our-expertise/focus/ transition/green-hydrogen-production-2019/.; Lijun Wang, Chen Hong, Xiangyang Li, Zhenzhong Yang, Shuman Guo, Quancai Li (2022). Review on blended hydrogen-fuel internal combustion engines: A case study for China. Energy Reports, 8, 6480-6498. https://doi.org/10.1016/j.egyr.2022.04.079.; Rafig Babayev, Hong G. Im, Arne Andersson, Bengt Johansson (2022). Hydrogen double compressionexpansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Conversion and Management, 264, 115698. https://doi.org/10.1016/j.enconman.2022.115698.; Norhidayah Mat Taib, Mohd Radzi Abu Mansor, Wan Mohd Faizal Wan Mahmood (2021). Combustion characteristics of hydrogen in a noble gas compression ignition engine. Energy Reports, 7, 200-218. https://doi.org/10.1016/j.egyr.2021.07.133.; Balu Jalindar, Shinde, Karunamurthy K. (2022). Recent progress in hydrogen fuelled internal combustion engine (H2ICE) – A comprehensive outlook. Materials today: Proceedings, 51(3), 1568-1579. https://doi.org/10.1016/j.matpr.2021.10.378.; Changeun Park, Sesil Lim, Jungwoo Shin, Chul-Yong Lee (2022). How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea: Hydrogen demand and fuel cell vehicles in South Korea. Technological Forecasting and Social Change, 181, 121750. https://doi.org/10.1016/j.techfore.2022.121750.; Leonard E. Klebanoff, Sean A. M. Caughlan, Robert T. Madsen, Cody J. Conard, Timothy S. Leach, T. Bruce Appelgate Jr. (2021). Comparative study of a hybrid research vessel utilizing batteries or hydrogen fuel cells. International Journal of Hydrogen Energy, 46(76), 38051-38072. https://doi.org/10.1016/ j.ijhydene.2021.09.047.; Sebastian Nicolay, Stanislav Karpuk, Yaolong Liu, Ali Elhama (2021). Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen. International Journal of Hydrogen Energy, 46(64), 32676-32694. https://doi.org/10.1016/ j.ijhydene.2021.07.127.; Seyed Ehsan Hosseini (2022). Hydrogen and Fuel Cells in Transport Road, Rail, Air, and Sea. Comprehensive Renewable Energy (Second Edition), 4, 317-342. https://doi.org/10.1016/B978-0-12-819727-1.00005-4.; Minnan Ye, Phil Sharp, Nigel Brandon, Anthony Kucernak (2022). System-level comparison of ammonia, compressed and liquid hydrogen as fuels for polymer electrolyte fuel cell powered shipping. International Journal of Hydrogen Energy, 47(13), 8565- 8584. https://doi.org/10.1016/j.ijhydene.2021.12.164.; Lei Zheng, Shikun Cheng, Yanzhao Han, Min Wang, Yue Xiang, Jiali Guo, Di Cai, Heinz-Peter Mang, Taili Dong, Zifu Li, Zhengxu Yan, Yu Men (2020). Bio-natural gas industry in China: Current status and development. Renewable and Sustainable Energy Reviews, 128, 109925. https://doi.org/10.1016/j.rser.2020.109925.; Hailin Tian, Xiaonan Wang, Ee Yang Lim, Jonathan T. E. Lee, Alvin W. L. Ee, Jingxin Zhang, Yen Wah Tong (2021). Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renewable and Sustainable Energy Reviews, 150, 111489. https://doi.org/10.1016/j.rser.2021.111489.; Kovalev A. A., Kovalev D. A., Panchenko V., Kharchenko V. (2021). Intellectualized Control System for Anaerobic Bioconversion of Liquid Organic Waste. International Journal of Energy Optimization and Engineering, Volume 10, Issue 1, 56-81, DOI:10.4018/IJEOE.2021010104.; Andrey A. Kovalev, Dmitriy A. Kovalev, Victor S. Grigoriev, Vladimir Panchenko (2022). Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates. International Journal of Energy Optimization and Engineering. Volume 11 Issue 1, 1-17, DOI:10.4018/IJEOE.298693.; Md. M. Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.; Md. Yeamin Ali, Mehadi Hassan, Md. Atiqur Rahman, Abdulla-AI Kafy, Iffat Ara, Akib Javed, Md. Redwanur Rahman (2019). Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh. Energy Procedia, V. 160, 277-284. https://doi.org/10.1016/j.egypro.2019.02.147.; Md. Mizanur Rahman, Mohammad Mahmodul Hasan, Jukka V. Paatero, Risto Lahdelma (2014). Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries. Renewable Energy, V. 68, 35-45. https://doi.org/10.1016/j.renene.2014.01.030.; Muhammad Tamoor, M. Suleman Tahir, Muhammad Sagir, Muhammad Bilal Tahir, Shahid Iqbal, Tasmia Nawaz (2020). Design of 3 kW integrated power generation system from solar and biogas. International Journal of Hydrogen Energy, V. 45, I. 23, 12711-12720. https://doi.org/10.1016/j.ijhydene.2020.02.207.; Wiesław Gazda, Wojciech Stanek (2016). Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system. Applied Energy, V. 169, 138-149. https://doi.org/10.1016/j.apenergy.2016.02.037. [37]. P. Axaopoulos, P. Panagakis, A. Tsavdaris, D. Georgakakis (2001). Simulation and experimental performance of a solar-heated anaerobic digester. Solar Energy, V. 70, I. 2, 2001, 155-164. https://doi.org/10.1016/S0038-092X(00)00130-4.; Hamed M. El-Mashad, Wilko K. P. van Loon, Grietje Zeeman, Gerard P. A. Bot, Gatze Lettinga (2004). Design of A Solar Thermophilic Anaerobic Reactor for Small Farms. Biosystems Engineering, V. 87, I. 3, 345-353.https://doi.org/10.1016/j.biosystemseng.2003.11.013.; Badr Ouhammou, Aggour Mohammed, Smouh Sliman, Abdelmajid Jamil, Bakraoui Mohammed, Fadoua Karouach, Hassan El Bari, Tarik Kousksou (2022). Experimental conception and thermo-energetic analysis of a solar biogas production system. Case Studies in Thermal Engineering, V. 30, 101740. https://doi.org/10.1016/j.csite.2021.101740.; M. R. Darwesh, M. S. Ghoname (2021). Experimental studies on the contribution of solar energy as a source for heating biogas digestion units. Energy Reports, V. 7, 1657-1671. https://doi.org/10.1016/j.egyr.2021.03.014. [41]. B. Ouhammou, M. Naciri, M. Aggour, M. Bakraoui, F. Karouach, H. El Bari (2017). Design and Analysis of Integrating the Solar Thermal energy in Anaerobic Digester using TRNSYS: Application kenitra-Morocco. Energy Procedia, V. 141, 13-17. https://doi.org/10.1016/j.egypro.2017.11.004.; Rong Feng, Jinping Li, Ti Dong, Xiuzhen Li (2016). Performance of a novel household solar heating thermostatic biogas system. Applied Thermal Engineering, V. 96, 519-526. https://doi.org/10.1016/j.applthermaleng.2015.12.003.; Yong Lu, Ye Tian, Haowei Lu, Lei Wu, Xianlin Li (2015). Study of solar heated biogas fermentation system with a phase change thermal storage device. Applied Thermal Engineering, V. 88, 418-424. https://doi.org/10.1016/j.applthermaleng.2014.12.065.; Jinping Li, Shirong Jin, Dandan Wan, Hui Li, Shuyuan Gong, Vojislav Novakovic (2022). Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. Journal of Environmental Management, V. 318, 115626. https://doi.org/10.1016/j.jenvman.2022.115626.; Yuan Zhong, Mauricio Bustamante Roman, Yingkui Zhong, Steve Archer, Rui Chen, Lauren Deitz, Dave Hochhalter, Katie Balaze, Miranda Sperry, Eric Werner, Dana Kirk, Wei Liao (2015). Using anaerobic digestion of organic wastes to biochemically store solar thermal energy. Energy, V. 83, 638-646. https://doi.org/10.1016/j.energy.2015.02.070.; Eid S. Gaballah, Tarek Kh Abdelkader, Shuai Luo, Qiaoxia Yuan, Abd El-Fatah Abomohra (2020). Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester. Energy, V. 193, 116758. https://doi.org/10.1016/j.energy.2019.116758.; Vikram P. Rathod, Jotiprasad Shete, Purnanand V. Bhale (2016). Experimental investigation on biogas reforming to hydrogen rich syngas production using solar energy. International Journal of Hydrogen Energy, V. 41, I. 1, 132-138. https://doi.org/10.1016/j.ijhydene.2015.09.158.; Bosheng Su, Wei Han, Hongguang Jin (2017). Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy. Applied Energy, V. 206, 1-11. https://doi.org/10.1016/j.apenergy.2017.08.028.; Bosheng Su, Wei Han, Xiaosong Zhang, Yi Chen, Zefeng Wang, Hongguang Jin (2018) Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy. Applied Energy, V. 229, 922-935. https://doi.org/10.1016/j.apenergy.2018.08.037.; A. S. Mehr, M. Gandiglio, M. Mosaye Nezhad, A. Lanzini, S.M.S. Mahmoudi, M. Yari, M. Santarelli (2017). Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis. Applied Energy, V. 191, 620-638. https://doi.org/10.1016/j.apenergy.2017.01.070.; G. Zhang, Y. Li, Y. J. Dai, R. Z. Wang (2016). Design and analysis of a biogas production system utilizing residual energy for a hybrid CSP and biogas power plant. Applied Thermal Engineering, V. 109, Part A, 423-431. https://doi.org/10.1016/j.applthermaleng.2016.08.092.; Minli Yu, Ke Wang, Harrie Vredenburg (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41). https://doi.org/10.1016/j.ijhydene.2021.04.016.; Hermesmann M., Müller T. E. (2022). Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Progress in Energy and Combustion Science, 90, 100996. https://doi.org/10.1016/j.pecs.2022.100996.; Chun-Yu Lai, Linjie Zhou, Zhiguo Yuan, Jianhua Guo (2021). Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Research, V. 197, 117120. https://doi.org/10.1016/j.watres.2021.117120.; Irini Angelidaki, Laura Treu, Panagiotis Tsapekos, Gang Luo, Stefano Campanaro, Henrik Wenzel, Panagiotis G. Kougias (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, V. 36, I. 2, 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011.; Diego Curto, Mariano Martín (2019). Renewable based biogas upgrading. Journal of Cleaner Production, V. 224, 50-59. https://doi.org/10.1016/j.jclepro.2019.03.176.; Shanfei Fu, Irini Angelidaki, Yifeng Zhang (2021). In situ Biogas Upgrading by CO2-to-CH4 Bioconversion. Trends in Biotechnology, V. 39, I. 4, 336-347. https://doi.org/10.1016/j.tibtech.2020.08.006.; Ansys. Engineering Simulation Software. https://www.ansys.com/; Panchenko V., Chirskiy S., KharchenkoV. V. Application of the Software System of Finite Element Analysis for the Simulation and Design Optimization of Solar Photovoltaic Thermal Modules. Handbook of Research on Smart Computing for Renewable Energy and Agro-Engineering, 2019, 106-131, DOI:10.4018/978-1-7998-1216-6.ch005.; Panchenko V., Izmailov A., Kharchenko V., Lobachevskiy Ya (2020). Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. International Journal of Energy Optimization and Engineering, Volume 9, Issue 2, 74-94. DOI:10.4018/IJEOE.2020040106.; Panchenko V. A., Daus Yu. V., Kovalev A. A., Litty Yu. V., Katraeva I. V. Modeling the energy supply of a biogas plant based on solar modules of various designs. International Journal of Hydrogen Energy, Volume 51, Part D, 2023, 119-129. https://doi.org/10.1016/j. ijhydene.2023.09.320.; Wong H. Y. Handbook of essential formulae and data for Heat Transfer for Engineers (1977). London, New York: Longman, 236 pp.; https://www.isjaee.com/jour/article/view/2351
-
8Academic Journal
Authors: Polișciuk, V.N., Polischuk, V.N., Şvorov, S.A., Shvorov, S.A., Pasicinik, N.A., Davidenko, T.S., Valiev, T.O., Dvornîk, E.A., Dvornyk, Y.O.
Source: Problemele Energeticii Regionale 60 (4) 86-97
Subject Terms: instalație de biogaz, methane fermentation, Deşeuri organice, биогаз, метантенк, метановое брожение, digester, cattle manure, Biogas, substrate, materie organică uscată, biogaz, сухое органическое вещество, digestor, биогазовая установка, навоз крупного рогатого скота, gunoi de grajd bovin, substrat, органические отходы, субстрат, fermentație metan, dry organic matter, biogas plant, organic waste
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/190126
-
9Academic Journal
Source: Приборы и системы. Управление, контроль, диагностика.
Subject Terms: PULSE WIDTH MODULATOR, PID CONTROLLER, СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕМПЕРАТУРНЫМ РЕЖИМОМ, BIOGAS PLANT, AUTOMATIC TEMPERATURE CONTROL SYSTEM, БИОГАЗОВАЯ УСТАНОВКА, ПИД-РЕГУЛЯТОР, ШИРОТНО-ИМПУЛЬСНЫЙ МОДУЛЯТОР
-
10Academic Journal
Authors: Chebotareva, G. S., Dvinayninov, A. A.
Subject Terms: FEASIBILITY, COST-BASED APPROACH, CITIES, ЦЕНТРАЛИЗОВАННОЕ ГАЗОСНАБЖЕНИЕ, ЦЕНА НА ГАЗ, ЦЕЛЕСООБРАЗНОСТЬ, BIOGAS FACILITY, COMPARATIVE ASSESSMENT, ЭКОНОМИЧЕСКИЙ ЭФФЕКТ, GAS PRICE, ГОРОДА, РОССИЯ, CENTRALIZED GAS SUPPLY, ПРИРОДНЫЕ ОСОБЕННОСТИ, NATURAL FEATURES, БИОГАЗ, ЗАТРАТНЫЙ ПОДХОД, BIOGAS, БИОГАЗОВАЯ УСТАНОВКА, RUSSIA, СРАВНИТЕЛЬНАЯ ОЦЕНКА, ECONOMIC EFFECT
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/122373
https://journalaer.ru/ru/arkhiv/journal/276/article/2521/ -
11Academic Journal
Development of Smart Grid technology for maintaining the functioning of a biogas cogeneration system
Authors: Chaikovskaya, Eugene
Source: Східно-Європейський журнал передових технологій; Том 3, № 8 (105) (2020): Енергозберігаючі технології та обладнання; 56-68
Восточно-Европейский журнал передовых технологий; Том 3, № 8 (105) (2020): Энергосберегающие технологии и оборудование; 56-68
Eastern-European Journal of Enterprise Technologies; Том 3, № 8 (105) (2020): Energy-saving technologies and equipment; 56-68Subject Terms: UDC 621.31, когенерационная система, коэффициент мощности, биогазовая установка, тепловой насос, преобразователь частоты, 9. Industry and infrastructure, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 0210 nano-technology, 7. Clean energy, 6. Clean water, cogeneration system, power factor, biogas plant, heat pump, frequency converter
File Description: application/pdf
-
12Conference
Authors: Shkurpit, S. D.
Subject Terms: ФЕРМЕНТЕР, БИОГАЗОВОЕ ТОПЛИВО, FERMENTER, BIOGAS FUEL, BIOGAS PLANT, МЕТАНТАНК, БИОГАЗОВАЯ УСТАНОВКА, БИОТОПЛИВО, BIOFUEL, METHANE TANK
File Description: application/pdf
Access URL: https://elar.rsvpu.ru/handle/123456789/40914
-
13Academic Journal
-
14Academic Journal
-
15Conference
Authors: Шкурпит, С. Д., Shkurpit, S. D.
Subject Terms: БИОГАЗОВАЯ УСТАНОВКА, БИОГАЗОВОЕ ТОПЛИВО, ФЕРМЕНТЕР, МЕТАНТАНК, БИОТОПЛИВО, BIOGAS PLANT, BIOGAS FUEL, FERMENTER, METHANE TANK, BIOFUEL
Subject Geographic: RSVPU
File Description: application/pdf
Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Пятой Международной научно-практической конференции преподавателей, молодых ученых и студентов. - Екатеринбург, 2022
Availability: https://elar.uspu.ru/handle/ru-uspu/40914
-
16Academic Journal
Authors: Polișciuk, V.N., Polischuk, V.N., Полищук, В.Н., Şvorov, S.A., Shvorov, S.A., Шворов, С.А., Krusir, G.V., Krussir, G.V., Крусир, Г.В., Didur, V.V., Дидур, В.В., Vitașek, K., Witaszek, К., Виташек, К., Pasicinik, N.A., Пасичник, Н.А., Dvornîk, E.A., Dvornyk, Y.O., Дворник, Е.А., Davidenko, T.S., Давиденко, Т.С.
Source: Problemele Energeticii Regionale 53 (1) 98-108
Subject Terms: Biogas, substrate, cattle manure, soap stock, dry matter, digester, biogas plant, methane fermentation, biogaz, substrat, gunoi de grajd, deșeuri de săpun, Materie uscată, fermentator, instalație de biogaz, fermentare a metanului, биогаз, субстрат, навоз крупного рогатого скота, соапсток, Сухое вещество, метантенк, биогазовая установка, метановое брожение
File Description: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/151227; urn:issn:18570070
-
17Academic Journal
Authors: Yushko, А., Boltianska, Natalia Ivanovna
Subject Terms: сельское хозяйство, agricultural machinery, механизация технологических процессов, machine and tractor park, сельскохозяйственная техника, машинно-тракторный парк, mechanization of technological processes, biogas plant, agriculture, биогазовая установка
File Description: application/pdf
Access URL: https://rep.bsatu.by/handle/doc/16864
-
18Conference
Subject Terms: BIRD DROPPINGS, WASTE OF THE THIRD HAZARD CLASS, UTILIZATION, BIOGAS PLANT, ANAEROBIC METHOD, ПТИЧИЙ ПОМЕТ, ОТХОДЫ ТРЕТЬЕГО КЛАССА ОПАСНОСТИ, УТИЛИЗАЦИЯ, БИОГАЗОВАЯ УСТАНОВКА, АНАЭРОБНЫЙ СПОСОБ
Subject Geographic: RSVPU
File Description: application/pdf
Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Третьей Международной научно-практической конференции преподавателей, молодых ученых и студентов. - Екатеринбург, 2020; student
Availability: https://elar.uspu.ru/handle/ru-uspu/31620
-
19Conference
Authors: Mustafina, G. R., Kondratev, A. E.
Subject Terms: WASTE OF THE THIRD HAZARD CLASS, УТИЛИЗАЦИЯ, АНАЭРОБНЫЙ СПОСОБ, BIOGAS PLANT, ANAEROBIC METHOD, БИОГАЗОВАЯ УСТАНОВКА, UTILIZATION, BIRD DROPPINGS, ПТИЧИЙ ПОМЕТ, ОТХОДЫ ТРЕТЬЕГО КЛАССА ОПАСНОСТИ
File Description: application/pdf
Access URL: https://elar.rsvpu.ru/handle/123456789/31620
-
20Academic Journal
Authors: Гера, А. Н.
Subject Terms: биогазовая установка, измельчение субстрата, гомогенизирование, аэробное предварительное компостирование, гидролиз, дезинтеграция
File Description: application/pdf
Relation: Перспективная техника и технологии в АПК : материалы Международной научной конференции студентов, магистрантов и аспирантов (Минск, 18–26 мая 2020 г.);(С. 240-244); http://elar.tsatu.edu.ua/handle/123456789/11786
Availability: http://elar.tsatu.edu.ua/handle/123456789/11786