Showing 1 - 20 results of 24 for search '"БЕССИМПТОМНОЕ ТЕЧЕНИЕ"', query time: 0.95s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: Problems of Particularly Dangerous Infections; № 2 (2024); 188-192 ; Проблемы особо опасных инфекций; № 2 (2024); 188-192 ; 2658-719X ; 0370-1069

    File Description: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/2013/1490; Chourasia M.K., Raghavendra K., Bhatt R.M., Swain D.K., Valecha N., Kleinschmidt I. Burden of asymptomatic malaria among a tribal population in a forested village of central India: a hidden challenge for malaria control in India. Public Health. 2017; 147:92–7. DOI:10.1016/j.puhe.2017.02.010.; Anam L.S., Badi M.M., Assada M.A., Al Serouri A.A. Evaluation of two malaria surveillance systems in Yemen using updated CDC guidelines: lessons learned and future perspectives. Inquiry. 2019; 56.46958019880736. DOI:10.1177/0046958019880736.; Nawa M., Hangoma P., Morse A.P., Michelo C. Investigating the upsurge of malaria prevalence in Zambia between 2010 and 2015: a decomposition of determinants. Malar. J. 2019; 18(1):61. DOI:10.1186/s12936-019-2698-x.; Beri D., Balan B., Tatu U. Commit, hide and escape: the story of Plasmodium gametocytes. Parasitology. 2018; 145(13):1772–82. DOI:10.1017/S0031182018000926.; Prusty D., Gupta N., Upadhyay A., Dar A., Naik B., Kumar N., Prajapati V.K. Asymptomatic malaria infection prevailing risks for human health and malaria elimination. Infect. Genet. Evol. 2021; 93:104987. DOI:10.1016/j.meegid.2021.104987.; Chipoya M.N., Shimaponda-Mataa N.M. Prevalence, characteristics and risk factors of imported and local malaria cases in North-Western Province, Zambia: a cross-sectional study. Malar. J. 2020; 19(1):430. DOI:10.1186/s12936-020-03504-1.; Zimmerman P.A., Howes R.E. Malaria diagnosis for malaria elimination. Curr. Opin. Infect. Dis. 2015; 28(5):446–54. DOI:10.1097/QCO.0000000000000191.; Roberds A., Ferraro E., Luckhart S., Stewart V.A. HIV-1 impact on malaria transmission: a complex and relevant global health concern. Front. Cell. Infect. Microbiol. 2021; 11: 656938. DOI:10.3389/fcimb.2021.656938.; Obeagu E.I., Chijioke U.O., Ekelozie I.S. Malaria Rapid Diagnostic Test (RDTs). Ann. Clin. Lab. Res. 2018; 6(4):275. DOI:10.21767/2386-5180.100275.; Memeu D.M., Kaduki K.A., Mjomba A.C.K., Muriuki N.S., Gitonga L. Detection of plasmodium parasites from images of thin blood smears. Open J. Clin. Diagn. 2013; 3:183–94. DOI:10.4236/ojcd.2013.34034.; Tamiru A., Tolossa T., Regasa B., Mosisa G. Prevalence of asymptomatic malaria and associated factors in Ethiopia: Systematic review and meta-analysis. SAGE Open Med. 2022; 10:20503121221088085. DOI:10.1177/20503121221088085.; Tilaye T., Tessema B., Alemu K. High asymptomatic malaria among seasonal migrant workers departing to home from malaria endemic areas in northwest Ethiopia. Malar. J. 2022; 21(1):1843. DOI:10.1186/s12936-022-04211-9.; Falade C.O, Ajayi I.O., Nsungwa-Sabiiti J, Siribié M, Diarra A, Sermé L, Afonne C., Yusuf O.B., Gansane Z., Jegede A.S., Singlovic J., Gomes M. Malaria rapid diagnostic tests and malaria microscopy for guiding malaria treatment of uncomplicated fevers in Nigeria and prereferral cases in 3 African countries. Clin. Infect. Dis. 2016; 63(suppl. 5):S290-S297. DOI:10.1093/cid/ciw628.; Garba B.I., Muhammad A.S., Musa A., Edem B., Yusuf I., Bello N.K., Adeniji A.O., Kolawole T. Diagnosis of malaria: A comparison between microscopy and Rapid Diagnostic Test among under-five children at Gusau, Nigeria. Sub-Saharan Afr. J. Med. 2016; 3:96–101.; Mwenda M.C., Fola A.A., Ciubotariu I.I., Mulube C., Mambwe B., Kasaro R., Hawela M.B., Hamainza B., Miller J.M., Carpi J., Bridges D.J. [Performance evaluation of RDT, light microscopy, and PET-PCR for detecting Plasmodium falciparum malaria infections in the 2018 Zambia National Malaria Indicator Survey]. Malar J. 2021; 20(1):1–21.; Fekadu M, Yenit M.K, Lakew A.M. [The prevalence of asymptomatic malaria parasitemia and associated factors among adults in Dembia district, northwest Ethiopia, 2017]. Arch Public Health. 2018;76(1):1–6.; https://journal.microbe.ru/jour/article/view/2013

  4. 4
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 16, No 4 (2022); 365-380 ; Акушерство, Гинекология и Репродукция; Vol 16, No 4 (2022); 365-380 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1416/1038; Беженарь В.Ф., Зазерская И.Е., Беттихер О.А. и др. Спорные вопросы акушерской тактики при ведении беременности и родоразрешении пациенток с новой коронавирусной инфекцией COVID-19. Акушерство и гинекология. 2020;(5):13–21. https://doi.org/10.18565/aig.2020.5.13-21.; Wei S.Q., Bilodeau-Bertrand M., Liu S., Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ. 2021;193(16):E540–E548. https://doi.org/10.1503/cmaj.202604.; Villar J., Ariff S., Gunier R.B. et al. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection: the INTERCOVID multinational cohort study. JAMA Pediatr. 2021;175(8):817–26. https://doi.org/10.1001/jamapediatrics.2021.1050.; Jamieson D.J., Rasmussen S.A. An update on COVID-19 and pregnancy. Am J Obstet Gynecol. 2022;226(2):177–86. https://doi.org/10.1016/j.ajog.2021.08.054.; Gurol-Urganci I., Jardine J.E., Carroll F. et al. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection at the time of birth in England: national cohort study. Am J Obstet Gynecol. 2021;225(5):522.e1–522.e11. https://doi.org/10.1016/j.ajog.2021.05.016.; Cosma S., Carosso A.R., Cusato J. et al. Coronavirus disease 2019 and first-trimester spontaneous abortion: a case-control study of 225 pregnant patients. Am J Obstet Gynecol. 2021;224(4):391.e1–391.e7. https://doi.org/10.1016/j.ajog.2020.10.005.; Shende P., Gaikwad P., Gandhewar M. et al. Persistence of SARS-CoV-2 in the first trimester placenta leading to transplacental transmission and fetal demise from an asymptomatic mother. Hum Reprod. 2021;36(4):899–906. https://doi.org/10.1093/humrep/deaa367.; Colson A., Depoix C.L., Dessilly G. et al. Coronavirus disease 2019 during pregnancy: clinical and in vitro evidence against placenta infection at term by severe acute respiratory syndrome coronavirus 2. Am J Pathol. 2021;191(9):1610–23. https://doi.org/10.1016/j.ajpath.2021.05.009.; Roberts D.J., Edlow A.G., Romero R.J. et al. A standardized definition of placental infection by SARS-CoV-2, a consensus statement from the National Institutes of Health/Eunice Kennedy Shriver National Institute of Child Health and Human Development SARS-CoV-2 Placental Infection Workshop. Am J Obstet Gynecol. 2021;225(6):593–599.e2. https://doi.org/10.1016/j.ajog.2021.07.029.; Посисеева Л.В., Киселева О.Ю., Глик М.В. Задержка роста плода: причины и факторы риска. Акушерство и гинекология. Новости. Мнения. Обучение. 2021;9(2):92–9. https://doi.org/10.33029/2303-9698-2021-9-2-99.; Lu-Culligan A., Chavan A.R., Vijayakumar P. et al. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at the maternal-fetal interface. Med (N Y). 2021;2(5):591–610e.10. https://doi.org/10.1016/j.medj.2021.04.016.; Реанимация и стабилизация состояния новорожденных детей в родильном зале. Методическое письмо №15/4/и/2-2570. Под ред. проф. Е.Н. Байбариной. М.: Министерство здравоохранения Российской Федерации, 2020. 55 с.; Методические рекомендации. Организация оказания медицинской помощи беременным, роженицам, родильницам и новорожденным при новой коронавирусной инфекции COVID-19. Версия 4 (05.07.2021). М.: Министерство здравоохранения Российской Федерации, 2021. 131 с. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/057/333/original/05072021_MR_Preg_v4.pdf. [Дата доступа: 31.03.2022].; Беженарь В.Ф., Добровольская И.А., Нестеров И.М., Жейц И. Исходы беременности при среднетяжелых и тяжелых формах COVID-19. Эффективная фармакотерапия. 2022;18(7):12–8. https://doi.org/10.33978/2307-3586-2022-18-7-12-18.; Rasmussen S.A., Smulian J.C., Lednicky J.A. et al. Coronavirus disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol. 2020;222(5):415–26. https://doi.org/10.1016/j.ajog.2020.02.017.; Liu W., Wang Q., Zhang Q. et al. Coronavirus disease 2019 (COVID-19) during pregnancy: A case series. Virology Articles. Preprints 2020;2020020373. Режим доступа: https://www.preprints.org/manuscript/202002.0373/v1. [Дата доступа: 31.03.2022].; Schwartz D.A. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARSCoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med. 2020;144(7):799–805. https://doi.org/10.5858/arpa.2020-0901-SA.; Zhu H., Wang L., Fang C. et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51–60. https://doi.org/10.21037/tp.2020.02.06.; Wang X., Zhou Z., Zhang J. et al. A case of 2019 Novel Coronavirus in a pregnant woman with preterm delivery. Clin Infect Dis. 2020;71(15):844–6. https://doi.org/10.1093/cid/ciaa200.; Lu Z., Yan J., Min W. et al. Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province. Zhonghua Fu Chan Ke Za Zhi. 2020;55(3):166–71. https://doi.org/10.3760/cma.j.cn112141-20200218-00111. [Article in Chinese].; Zeng H., Xu C., Fan J. et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020;323(18):1848–9. https://doi.org/10.1001/jama.2020.4861.; Юпатов Е.Ю., Мальцева Л.И., Замалеева Р.С. и др. Новая коронавирусная инфекция COVID-19 в практике акушера-гинеколога: обзор современных данных и рекомендаций. Акушерство, Гинекология и Репродукция. 2020;14(2):148–58. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2020.142.; Outpatient assessment and management for pregnant women with suspected or confirmed novel coronavirus (COVID-19). American College of Obstetricians and Gynecologists, 2020. 1 р. Режим доступа: https://s3.amazonaws.com/cdn.smfm.org/media/2466/algo.pdf. [Дата доступа: 31.03.2022].; https://www.gynecology.su/jour/article/view/1416

  5. 5
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 12, № 5 (2022); 389-393 ; Архивъ внутренней медицины; Том 12, № 5 (2022); 389-393 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1511/1160; https://www.medarhive.ru/jour/article/view/1511/1169; Goldberg H, Glenn F, Dotter C et al. Myxoma of the left atrium: Diagnosis made during life with operative and postmortem findings. Circulation. 1952; 6: 762–767. doi:10.1161/01.cir.6.5.762.; Crafoord C. Discussion of: Glover RP. Late results of mitral commissurotomy. In: Lam CR, ed. Henry Ford Hospital international symposium on cardiovascular surgery: studies in physiology, diagnosis and techniques: proceedings of the symposium; March 1955; Henry Ford Hospital, Detroit (Michigan). Philadelphia: W.B. Saunders, 1955: 202-11.; Effert S, Domanig E. Diagnostik intraaurikularer tumoren and groBer thromben mit dem ultraschall-echoverfahren. Dtsch Med Wochenschr. 1959; 84: 6–8.; Namana V, Sarasam R, Balasubramanian R et al. Left atrial myxoma. QJM: monthly journal of the Association of Physicians. 2016;109(9):623–624. doi:10.1093/qjmed/hcw106.; Reynen K. Cardiac myxomas. N Engl J Med. 1995; 333: 1610-1617. doi:10.1056/NEJM199512143332407.; Li Y, Pan Z, Ji Y, et al. Herpes simplex virus type 1 infection associated with atrial myxoma. Am J Pathol. 2003;163(6):2407-2412. doi:10.1016/S0002-9440(10)63595-X; Орлова Е.М., Карева М.А. Карни-комплекс — синдром множественных эндокринных неоплазий. Проблемы эндокринологии. 2012; 58(3): 22-30. doi:10.14341/probl201258322-30.; Lie J.T. The identity and histogenesis of cardiac myxomas: a controversy put to rest. Arch Pathol Lab Med 1989; 113: 724-6.; Oliveira R, Branco L, Galrinho A, et al. Cardiac myxoma: a 13-year experience in echocardiographic diagnosis. Rev Port Cardiol. 2010; 29(7-8): 1087-1100.; Burke A., Jeudy J., Jr. Virmani R. Cardiac tumours: an update: Cardiac tumours. Heart. 2008; 94(1): 117–123. doi:10.1136/hrt.2005.078576.; https://www.medarhive.ru/jour/article/view/1511

  6. 6
  7. 7
  8. 8
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: Материалы VI Международной научно-практической конференции молодых учёных и студентов, посвященной году науки и технологий, (Екатеринбург, 8-9 апреля 2021): в 3-х т.; http://elib.usma.ru/handle/usma/5405

  9. 9
    Academic Journal

    Contributors: The work was financed from the state budgets of Belarus and Russia.

    Source: Russian Journal of Infection and Immunity; Vol 11, No 5 (2021); 887-904 ; Инфекция и иммунитет; Vol 11, No 5 (2021); 887-904 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  10. 10
    Academic Journal

    Source: Epidemiology and Vaccinal Prevention; Том 20, № 3 (2021); 8-18 ; Эпидемиология и Вакцинопрофилактика; Том 20, № 3 (2021); 8-18 ; 2619-0494 ; 2073-3046

    File Description: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/1283/743; Novel Coronavirus(2019-nCoV) Situation Report – 11. Доступно на: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_2.; WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Доступно на: https://www.who.int/director-general/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.; Morens, D.M., Fauci, A.S. Emerging Pandemic Diseases: How We Got To COVID-19. Cell. 2020. Vol. 183. N3. P. 837. doi:10.1016j.cell.2020.10.022.; Xu X., Chen, P., Wang, J., et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. China Life Sci. 2020. № 63. P. 457–460. doi. 10.1007/s11427-020-1637-5.; Bchetnia M., Girard C., Duchaine C., Laprise C. The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A review of the current global status. J. Inf. Public Health. 2020. Vol. 13., N 11. P. 1601–1610. doi:10.1016/j.jiph.2020.07.011.; Clemente-Suárez V.J., Hormeño-Holgado A., Jiménez M., et al. Dynamics of population immunity due to the herd effect in the COVID-19 pandemic. Vaccines (Basel). 2020. Vol. 8, N 2. С. E236. doi:10.3390/vaccines8020236.; Liu L., Wei Q., Lin Q., et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 201. Vol. 4, N 4. P. e123158. doi:10.1172/jci.insight.123158.; El-Sayed A., Aleya L., Kamel M. COVID-19: a new emerging respiratory disease from the neurological perspective Environ Sci Pollut Res Int. 2021. P. 1–15. doi:10.1007/s11356-021-12969-9.; Ortiz-Prado E., Simbaña-Rivera K., Gómez- Barreno L., et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis. 2020. Vol. 98, N 1. P. 115094. doi:10.1016j.diagmicrobio.2020.115094.; Попова А.Ю., Ежлова Е.Б., Мельникова А.А. и др. Распределение серопревалентности к SARS-CоV-2 среди жителей Тюменской области в эпидемическом периоде COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 5. С. 392–400. doi:10.36233/0372-9311-2020-97-5-1.; Попова А.Ю., Ежлова Е.Б., Мельникова А.А. и др. Популяционный иммунитет к SARS-CoV-2 среди населения Санкт-Петербурга в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020. № 3. С.124–130. doi:10.21055/0370-1069-2020-3-124-130.; Попова А.Ю., Ежлова Е.Б., Мельникова А.А. и др. Оценкa популяционого иммунитета к SARS-CoV-2 среди населения Ленинградской области в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020. № 3. С. 114–123. doi:10.21055/0370-1069-2020-3-114-123.; Newcombe R.G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 1998, vol. 17. Р. 857–887. doi:10.1002/(sici)1097-0258(19980430)17:83.0.co;2-e.; Попова А.Ю., Андреева Е.Е., Бабура Е.А. и др. Особенности формирования cеропревалентности населения Российской Федерации к нуклеокапсиду SARS-CoV-2 в первую волну эпидемии COVID-19. Инфекция и иммунитет. 2021. Т. 11, № 2. С. 297–323. doi:10.15789/2220-7619-FOD-1684.; Rocklöv J, Sjödin H High population densities catalyze the spread of COVID-19.J Travel Med. 2020; 27, N 3. P. taaa038. doi:10.1016/j.jinf.2020.06.067.; Sanche S., Lin Y.T., Xu C., et al High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis. 2020. Vol.26, N7. P. 1470–1477. doi:10.3201/eid2607.200282.; Walsh K.A., Jordan K., Clyne B., et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J Infect. 2020. Vol.81, N3. P.357–371. doi:10.1016/j.jinf.2020.06.067.; Mason R.J. Pathogenesis of COVID-19 from a cell biologic perspective Eur Respir J. 2020. Vol.55, N4. P. 2000607. doi:10.1183/13993003.00607-2020.; Chou R., Dana T., Jungbauer R., et al. Masks for Prevention of Respiratory Virus Infections, Including SARS-CoV-2, in Health Care and Community Settings: A Living Rapid Review. Ann Intern Med. 2020. Vol.173, N7. P. 542–555. doi:10.7326/M20-3213; Li Y., Liang M., Gao L., et al. Face masks to prevent transmission of COVID-19: A systematic review and meta-analysis. Am J Infect Control. 2020. (in press) doi: 1016/j.ajic.2020.12.007.; Mizumoto K., Kagaya K., Zarebski A., Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020 Euro Surveill. 2020; Vol.25, N10. P. 2000180. doi:10.2807/1560-7917.ES.2020.25.10.2000180.; Zhao D., Wang M., Wang M., et al Asymptomatic infection by SARS-CoV-2 in healthcare workers: A study in a large teaching hospital in Wuhan, China. Int J Infect Dis. 2020. N 99. P. 219–225. doi:10.1016/j.ijid.2020.07.082.; Loos C., Atyeo C., Fischinger S., et al. Evolution of Early SARS-CoV-2 and Cross-Coronavirus Immunity. mSphere. 2020. Vol. 5, N5. P. e00622-20. doi:10.1128/mSphere.00622-20.; Buitrago-Garcia D., Egli-Gany D., Counotte M.J., et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020. Vol.17, N9.P. e1003346. doi:10.1371/journal.pmed.1003346.; Oran D.P., Topol E.J. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann Intern Med. 2020. Vol. 173, N5. P. 362–367. doi:10.7326/M20-3012.; Lee S., Meyler P., Mozel M., et al. Asymptomatic carriage and transmission of SARS-CoV-2: What do we know? Can J Anaesth. 2020. Vol.: 67, N10. P.1424–1430. doi:10.1007/s12630-020-01729-x.; Yu X. Modeling return of the epidemic: Impact of population structure, asymptomatic infection, case importation and personal contacts/ Travel Med Infect Dis. 2020. N37. P. 101858. doi:10.1016/j.tmaid.2020.101858.; Randolph H. E., Barreiro L. B. Herd Immunity: Understanding COVID-19 Immunity. 2020. Vol.52, N5. P. 737–741. doi:10.1016j.immuni.2020.04.012.; https://www.epidemvac.ru/jour/article/view/1283

  11. 11
    Academic Journal

    Contributors: Авторы выражают благодарность сотрудникам ФБУЗ «Центра гигиены и эпидемиологии в Приморском крае» В.М. Слоновой, П.В. Сухоруковой, Н.М. Христич и Ю.А. Титовой за техническую помощь при проведении исследований, медицинским работникам ФБУЗ «Центра гигиены и эпидемиологии в Амурской области», организаций Министерства здравоохранения Правительства Амурской области и специалистам учреждений Роспотребнадзора Хабаровского края – за участие в проекте.

    Source: Acta Biomedica Scientifica; Том 6, № 5 (2021); 253-273 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3060/2241; WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. URL: https://www.who.int/ru/dg/speeches/detail/who-director-general-s-remarks-at-themedia-briefing-on-2019-ncov-on-11-february-2020 [date of access: 08.07.2021].; Raboisson D, Lhermie G. Living with COVID-19: A systemic and multi-criteria approach to enact evidence-based health policy. Front Public Health. 2020; 8: 294. doi:10.3389/fpubh.2020.00294; Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet. 2020; 395(10242): 1973-1987. doi:10.1016/S0140-6736(20)31142-9; Greiner J, Naik H, Johnson MR, Liu D, Silvestre B, Ballouk H, et al. Learning from the first wave: Lessons about managing patient flow and resource utilization on medical wards at providence health during the COVID-19 pandemic. Healthc (Amst). 2021; 9(2): 00530. doi:10.1016/j.hjdsi.2021.100530; Заболеваемость коронавирусом. URL: https://coronavirus-monitor.ru [дата доступа: 09.07.2021].; Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Степанова Т.Ф., Шарухо Г.В., Летюшев А.Н., и др. Распределение серопревалентности к SARS-CоV-2 среди жителей Тюменской области в эпидемическом периоде COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97(5): 392- 400. doi:10.36233/0372-9311-2020-97-5-1; Sharma A, Farouk IA, Lal SK. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses. 2021; 13(2): 202. doi:10.3390/v13020202; Wolff F, Dahma H, Duterme C, Van den Wijngaert S, Vandenberg O, Cotton F, et al. Monitoring antibody response following SARS-CoV-2 infection: Diagnostic efficiency of 4 automated immunoassays. Diagn Microbiol Infect Dis. 2020; 98(3): 115140. doi:10.1016/j.diagmicrobio.2020.115140; Rostami A, Sepidarkish M, Leeflang MMG, Riahi SM, Shiadeh MN, Esfandyari S, et al. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin Microbiol Infect. 2020; 27(3): 331-340. doi:10.1016/j.cmi.2020.10.020; World Health Organization. Public health surveillance for COVID-19: Interim guidance. URL: https://www.who.int/publications-detail/global-surveillance-for-human-infection-with-novelcoronavirus-(2019-ncov) [date of access: 09.07.2021].; Vabret N, Britton GJ, Gruber C, Hegd S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current state of the science. Immunity. 2020; 52(6): 910-941. doi:10.1016/j.immuni.2020.05.002; Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity. 2020; 52(5): 737-741. doi:10.1016/j.immuni.2020.04.012; Beeraka NM, Tulimilli SRV, Karnik M, Sadhu SP, Pragada RR, Aliev G, et al. The current status and challenges in the development of vaccines and drugs against Severe Acute Respiratory SyndromeCorona Virus-2 (SARS-CoV-2). Biomed Res Int. 2021; 2021: 8160860. doi:10.1155/2021/8160860; Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397(10275): 671-681. doi:10.1016/S0140-6736(21)00234-8; Stamatatos L, Czartoski J, Wan Y-H, Homad LJ, Rubin V, Glantz H, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science. 2021; eabg9175. doi:10.1126/science.abg9175; Balicer RD, Ohana R. Israel’s COVID-19 endgame. Science. 2021; 372(6543): 663. doi:10.1126/science.abj3858; Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA, et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vac cine: An immunological study. Lancet. 2021; 2(10): e527-e535. doi:10.1016/S2666-5247(21)00129-4; Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet. 2021; 397(10292): 2331-2333. doi:10.1016/S0140-6736(21)01290-3; Vignesh R, Shankar EM, Velu V, Thyagarajan SP. Is herd immunity against SARS-CoV-2 a silver lining? Front Immunol. 2020; 11: 586781. doi:10.3389/fimmu.2020.586781; Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. 2020; 369(6505): 846-849. doi:10.1126/science.abc6810; Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Башкетова Н.С., Фридман Р.К., Лялина Л.В., и др. Популяционный иммунитет к SARS-CoV-2 среди населения Санкт-Петербурга в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020; (3): 124-130. doi:10.21055/0370-1069-2020-3-124-130; Population-based age-stratified seroepidemiological investigation protocol for COVID-19 infection. URL: https://www.who.int/ publications/i/item/WHO-2019-nCoV-Seroepidemiology-2020.2 [date of access: 10.07.2021].; Хельсинкская декларация Всемирной медицинской ассоциации. URL: http://acto-russia.org/index.php?option=com_content&task=view&id=21 [дата доступа: 10.07.2021].; Расчёт необходимой численности выборки. URL: https://bstudy.net/672834/sotsiologiya/raschet_neobhodimoy_chislennosti_vyborki [дата доступа: 15.07.2021].; Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Историк О.А, Мосевич О.С., Лялина Л.В., и др. Опыт оценки популяционного иммунитета к SARS-CoV-2 среди населения Ленинградской области в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020; (3): 114-123. doi:10.21055/0370-1069-2020-3-114-123; Стандартная ошибка доли. URL: https://statanaliz.info/statistica/opisaniedannyx/dispersiya-i-standartnaya-oshibka-doli [дата доступа: 10.07.2021].; Wald A, Wolfowitz J. Confidence limits for continuous distribution functions. Ann Math Statist. 1939; 10(2): 105-118. URL: www.jstor.org/stable/2235689. [Date of access: 10.07. 2021]; Agresti A, Coull BA. Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat. 1998; 52(2): 119-126. doi:10.2307/2685469; Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993; 2(1): 23-41. doi:10.1177/096228029300200103; Калькулятор значимых различий (z-тест). URL: https://radar-research.ru/software/z-test_calculator [дата доступа: 10.07.2021].; Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Троценко О.Е., Зайцева Т.А., Лялина Л.В., и др. Уровень серопревалентности к SARS-CoV-2 среди жителей Хабаровского края на фоне эпидемии COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(1): 7-17. doi:10.36233/0372-9311-92; Википедия – свободная энциклопедия. URL: https://ru.wikipedia.org/ [дата доступа: 10.07.2021].; Statdata.ru – сайт о странах и городах. URL: http://www.statdata.ru [дата доступа: 10.07.2021].; Siff EJ, Aghagoli G, Gallo Marin B, Tobin-Tyler E, Poitevien P. SARS-CoV-2 transmission: A sociological review. Epidemiol Infect. 2020; 148: e242. doi:10.1017/S095026882000240X; Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo C-G, Ma W, et al. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health. 2020; 5(9): e475-e483. doi:10.1016/S2468-2667(20)30164-X; Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection. PLoS One. 2020; 15(4): e0232452. doi:10.1371/journal.pone.0232452; Harris OO, Leblanc N, McGee K, Randolph S, Wharton MJ, Relf M. Alarm at the gate-health and social inequalities are comorbid conditions of HIV and COVID-19. J Assoc Nurses AIDS Care. 2020; 31(4): 367-375. doi:10.1097/JNC.0000000000000190; Попова А.Ю., Андреева Е.Е., Бабура Е.А., Балахонов С.В., Башкетова Н.С., Буланов М.В., и др. Особенности формирования серопревалентности населения Российской Федерации к нуклеокапсиду SARS-CoV-2 в первую волну эпидемии COVID-19. Инфекция и иммунитет. 2021; 11(2): 297-323. doi:10.15789/2220-7619-FOD-1684; Fialkowski A, Gernez Y, Arya P, Weinacht KG, Kinane TB, Yonker LM. Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection. Pediatr Pulmonol. 2020; 55(10): 2556-2564. doi:10.1002/ppul.24981; Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARSCoV-2 infections. Nat Med. 2020; 26(8): 1200-1204. doi:10.1038/s41591-020-0965-6; Han D, Li R, Han Y, Zhang R, Li J. COVID-19: Insight into the asymptomatic SARS-COV-2 infection and transmission. Int J Biol Sci. 2020: 16(15): 2803-2811. doi:10.7150/ijbs.48991; Oran DP, Topol E.J. Prevalence of asymptomatic SARSCoV-2 infection: A narrative review. Ann Intern Med. 2020; 173(5): 362-367. doi:10.7326/M20-3012; Khoshchehreh M, Wald-Dickler N, Holtom P, Butler-Wu SM. A needle in the haystack? Assessing the significance of envelope (E) gene-negative, nucleocapsid (N2) gene-positive SARS-CoV-2 detection by the Cepheid Xpert Xpress SARS-CoV-2 assay. J Clin Virol. 2020; 133: 104683. doi:10.1016/j.jcv.2020.104683; Estudio ene-covid: Informe final estudio nacional de seroepidemiología de la infección por SARS-CoV-2 en España/Ministerio de Sanidad, Consumo y Bienestar Social. URL: https://www.mscbs.gob.es/ciudadanos/ene-covid/docs/ESTUDIO_ENE-COVID19_INFORME_FINAL.pdf [date of access: 10.07.2021].; Lai C-C, Wang J-H, Hsueh P-R. Population-based seroprevalence surveys of anti-SARS-CoV-2 antibody: An up-to-date review. Int J Inf Dis. 2020; 101: 314-322. doi:10.1016/j.ijid.2020.10.011; Iversen K, Bundgaard H, Hasselbalch RB, Kristensen JH, Nielsen PB, Pries-Heje M, et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect. Dis. 2020; 20(12): 1401-1408. doi:10.1016/S1473-3099(20)30589-2; Hunter BR, Dbeibo L, Weaver CS, Beeler C, Saysana M, Zimmerman MK, et al. Seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies among healthcare workers with differing levels of coronavirus disease 2019 (COVID-19) patient exposure. Infect Control Hosp Epidemiol. 2020; 41(12): 1441-1442. doi:10.1017/ice.2020.390 4; Chen Y, Tong X, Wang J, Huang W, Yin S, Huang R, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J Infect. 2020; 81(3): 420-426. doi:10.1016/j.jinf.2020.05.067; Anderson RM, May RM. Vaccination and herd immunity to infectious diseases. Nature. 1985; 318(6044): 323-329. doi:10.1038/318323a0; https://www.actabiomedica.ru/jour/article/view/3060

  12. 12
    Academic Journal

    Source: Russian Journal of Pediatric Hematology and Oncology; Том 2, № 4 (2015); 108-110 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 2, № 4 (2015); 108-110 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2015-2-4

    File Description: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/168/163; Aldrighetti L., Cetta F., Ferla G. Benign Tumors of the Liver. Springer International Publishing, 2015.; Chung E.B. Multiple bile-duct hamartomas. Cancer 1970;26(2):287–96.; Thommesen N. Biliary hamartomas (von Meyenburg complexes) in liver needle biopsies. Acta Pathol Microbiol Scand A 1978;86(2):93–9.; von Meyenburg H. Über die Zyztenleber. Beiträge zur pathologischen Anatomie und zur allgemeinen Pathologie. Jena 1918;64:477–532.; Song J.S., Noh S.J., Cho B.H., Moon W.S. Multicystic biliary hamartoma of the liver. Korean J Pathol 2013;47(3):275–8.; Ioannidis O., Iordanidis F., Paraskevas G. et al. Incidentally discovered white subcupsular liver nodules during laparoscopic surgery: biliary hamartoma and peribiliary gland hamartoma. Klin Onkol 2012;25(6):468–70.; Gil-Bello D., Ballesteros E., Sanfeliu E., Andreu F.J. Calcification in biliary hamartomatosis. Br J Radiol 2012;85(1012):e99–101.; Tröltzsch M., Borte G., Kahn T. et al. Non-invasive diagnosis of von Meyenburg complexes. J Hepatol 2003;39(1):129.; Horton K.M., Bluemke D.A., Hruban R.H. et al. CT and MR imaging of benign hepatic and biliary tumors. Radiographics 1999;19(2):431–51.; Makhneva A., Bekisheva A., Bulegenova M., Adamova G. Child's von meyenburg complexes. J Histol Histopathol 2015;2(15):1–3.; Cholangiocarcinoma arising from preexisting biliary hamartoma of liver – report of a case. Hepatogastroenterology 2003;50(50):333–6.; https://journal.nodgo.org/jour/article/view/168

  13. 13
    Academic Journal

    Source: Surgery and Oncology; Том 5, № 3 (2015); 9-14 ; Хирургия и онкология; Том 5, № 3 (2015); 9-14 ; 2949-5857 ; 10.17650/2220-3478-2015-5-3

    File Description: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/138/119; Manfredi S., Lepage C., Hatem C. et al. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 2006;244(2):254–9.; Sarela A. I., Guthrie J. A., Seymour M. T. et al. Non-operative management of the primary tumour in patients with incurable stage IV colorectal cancer. Br J Surg 2001;88(10):1352–6.; Tebbutt N. C., Norman A. R., Cunningham D. et al. Intestinal complications after chemotherapy for patients with unresected primary colorectal cancer and synchronous metastases. Gut 2003; 52(4):568–73.; Costi R., di Mauro D., Veronesi L. et al. Elective palliative resection of incurable stage IV colorectal cancer: who really benefits from it? Surg Today 2011;41(2):222–9.; Venderbosch S., de Wilt J. H., Teerenstra S. et al. Prognostic value of resection of primary tumor in patients with stage IV colorectal cancer: retrospective analysis of two randomized studies and a review of the literature. Ann Surg Oncol 2011;18(12): 3252–60.; Ferrand F., Malka D., Bourredjem A. et al. Impact of primary tumour resection on survival of patients with colorectal cancer and synchronous metastases treated by chemotherapy: results from the multicenter, randomized trial Federation Francophone de Cancerologie Digestive 9601. Eur J Cancer 2013;49(1):90–7.; Temple L. K., Hsieh L., Wong W. D. et al. Use of surgery among elderly patients with stage IV colorectal cancer. J Clin Oncol 2004;22(17):3475–84.; Cambien B., Richard-Fiardo P., Karimdjee B. F. et al. CCL5 neutralization restricts cancer rowth and potentiates the targeting of PDGFRb in colorectal carcinoma. PLoS One 2011;6: e28842.; Chen H. J., Edwards R., Tucci S. et al. Chemokine 25-induced signalling suppresses colon cancer invasion and metastasis. J Clin Invest 2012;122(9):3184–96.; van der Wal G. E., Gouw A. S., Kamps J. A. et al. Angiogenesis in synchronous and metachronous colorectal liver metastases: the liver as a permissive soil. Ann Surg 2012;255(1):86–94.; Peeters C. F., de Waal R. M., Wobbes T., Ruers T. J. Metastatic dormancy imposed by the primary tumor: does it exist in humans? Ann Surg Oncol 2008;15(11):3308–15.; Peeters C. F., de Waal R. M., Wobbes T. et al. Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 2006;119(6): 1249–53.; Peeters C. F., Westphal J. R., de Waal R. M. et al. Vascular density in colorectal liver metastases increases after removal of the primary tumor in human cancer patients. Int J Cancer 2004;112(4):554–9.; Scheer M. G., Stollman T. H., Vogel W. V. et al. Increased metabolic activity of indolent liver metastases after resection of a primary colorectal tumor. J Nucl Med 2008;49(6): 887–91.; Naumov G. N., Folkman J., Straume O., Akslen L. A. Tumor-vascular interactions and tumor dormancy. APMIS 2008; 116(7–8):569–85.; Foxtrot Collaborative Group. Feasibility of preoperative chemotherapy for locally advanced, operable colon cancer: the pilot phase of a randomised controlled trial. Lancet Oncol 2012;13(11):1152–60.; Chan G., Hassanain M., Chaudhury P. et al. Pathological response grade of colorectal liver metastases treated with neoadjuvant chemotherapy. HPB (Oxford) 2010;12(4): 277–84.; Schrag D., Weiser M. R., Goodman K. A. et al. Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin Oncol 2014;32(6):513–8.; Deng Y., Chi P., Lan P. et al. A multi-center randomized controlled trial of mFOLFOX6 with or without radiation in neoadjuvant treatment of local advanced rectal cancer (FOWARC study): Preliminary results. J Clin Oncol 2015;33 (suppl; abstr 3500).; Scheer M. G., Sloots C. E., van der Wilt G. J., Ruers T. J. Management of patients with asymptomatic colorectal cancer and synchronous irresectable metastases. Ann Oncol 2008;19(11):1829–35.; Poultsides G. A., Servais E. L., Saltz L. B. et al. Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J Clin Oncol 2009;27(10):3379–84.; Miyamoto Y., Watanabe M., Sakamoto Y. et al. Evaluation of the necessity of primary tumor resection for synchronous metastatic colorectal cancer. Surg Today 2014;44(12):2287–92.; Ballian N., Mahvi D. M., ennedy G. D. Colonoscopic findings and tumor site do not predict bowel obstruction during medical treatment of stage IV colorectal cancer. Oncologist 2009;14(6):580–5.; Faron M., Bourredjem A., Pignon J. P. et al. Impact on survival of primary tumor resection in patients with colorectal cancer and unresectable metastasis: Pooled analysis of individual patients ,data from four randomized trials. J Clin Oncol 2012;30 (suppl; abstr 3507).; Ahmed S., Leis A., Fields A. et al. Survival impact of surgical resection of primary tumor in patients with stage IV colorectal cancer: results from a large population-based cohort study. Cancer 2014;120(5):683–91.; Ishihara S., Nishikawa T., Tanaka T. et al. Benefit of primary tumor resection in stage IV colorectal cancer with unresectable metastasis: a multicenter retrospective study using a propensity score analysis. Int J Colorectal Dis. 2015;30(6):807–12.; Hu C.Y., Bailey C.E., You Y.N. et al. Time trend analysis of primary tumor resection for stage IV colorectal cancer: less surgery, improved survival. JAMA Surg 2015;150(3):245–51.; Cirocchi R., Trastulli S., Abraha I. et al. Non-resection versus resection for an asymptomatic primary tumour in patients with unresectable stage IV colorectal cancer. Cochrane Database Syst Rev 2012;8:CD008997.; Clancy C., Burke J. P., Barry M. et al. A meta-analysis to determine the effect of primary tumor resection for stage IV colorectal cancer with unresectable metastases on patient survival. Ann Surg Oncol 2014;21(12):3900–8.; Watanabe A., Yamazaki K., Kinugasa Y. et al. Influence of primary tumor resection on survival in asymptomatic patients with incurable stage IV colorectal cancer. Int J Clin Oncol 2014;19(6):1037–42.; Ghiringhelli F., Bichard D., Limat S. et al. Bevacizumab efficacy in metastatic colorectal cancer is dependent on primary tumor resection. Ann Surg Oncol 2014;21(5):1632–40.; Cetin B., Kaplan M. A., Berk V. et al. Bevacizumab-containing chemotherapy is safe in patients with unresectable metastatic colorectal cancer and a synchronous asymptomatic primary tumor. Jpn J Clin Oncol 2013;43(1):28–32.

  14. 14
  15. 15
  16. 16
    Academic Journal
  17. 17
  18. 18
  19. 19
  20. 20