-
1Academic Journal
Subject Terms: ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, BLUETOOTH, БЕСПРОВОДНАЯ СВЯЗЬ, ELECTROMAGNETIC INTERFERENCE, ЭЛЕКТРОМАГНИТНОЕ ВОЗДЕЙСТВИЕ, ELECTROMAGNETIC WAVES, WIRELESS COMMUNICATION, WI-FI
File Description: application/pdf
Access URL: https://elar.usfeu.ru/handle/123456789/13777
-
2Academic Journal
Source: Vestnik of Volga State University of Technology. Series Radio Engineering and Infocommunication Systems. :74-84
Subject Terms: амплитудно-частотная характеристика, инновации в мире слуха, bionic prostheses, innovations in the field of hearing, wireless communication, hearing aid, amplitude-frequency characteristic, digital systems, цифровые системы, слуховой аппарат, беспроводная связь, звук, бионический протез, костная проводимость
-
3Academic Journal
Subject Terms: беспроводная связь, системы сотовой связи 5G, инфраструктура связи, телекоммуникационные системы, широкополосные сети, технологии передачи данных
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/68610
-
4Academic Journal
Subject Terms: конвергенция сетей, беспроводная связь, когнитивные радиосети, инфраструктура связи, телекоммуникации, интеграция сетей IoT, телекоммуникационные системы, широкополосные сети, технологии передачи данных
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/68569
-
5Academic Journal
Source: Современные инновации, системы и технологии, Vol 3, Iss 3 (2023)
Subject Terms: телекоммуникации, скорость передачи данных, гидроакустический канал, подводная оптическая беспроводная связь, режим реального времени, закон Бугера-Ламберта-Бера, лазерные диоды, световой поток, 0103 physical sciences, T1-995, 01 natural sciences, Technology (General), 0104 chemical sciences
-
6Academic Journal
Source: Современные инновации, системы и технологии, Vol 3, Iss 3 (2023)
-
7Academic Journal
Source: МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. 12
Subject Terms: поглощение электромагнитных волн, беспроводная связь, распространение электромагнитных волн, electromagnetic wave propagation, оптимизация, signal strength, затухание сигнала, wireless communication, electromagnetic wave absorption, optimization, мощность сигнала, signal attenuation
-
8Academic Journal
Authors: Suhas R. Kale, Dipak P. Patil, Сухас Р. Кале, Дипак П. Патил
Source: Devices and Methods of Measurements; Том 15, № 4 (2024); 269-286 ; Приборы и методы измерений; Том 15, № 4 (2024); 269-286 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2024-15-4
Subject Terms: беспроводная связь 5G, bending analysis, body-centric wireless communications, 5G wireless communication, анализ изгиба, телоцентрическая беспроводная связь
File Description: application/pdf
Relation: https://pimi.bntu.by/jour/article/view/898/702; Cisco Visual Networking Index (VNI) Mobile Forecast Projects Nearly 10-fold Global Mobile Data Traffic Growth Over Next Five Years, 2015.; Wearable Technology Market Size, Share, Growth, Report 2032.; Paracha KN, Abdul Rahim SK, Soh PJ, and Khalily M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access. Institute of Electrical and Electronics Engineers Inc. 2019;(7):5669456712.; P.S. Hall and Y. Hao. Antennas and propagation for body centric communications. European Space Agency, (Special Publication) ESA SP. 2006. DOI:10.1109/eucap.2006.4584864; P. Thesis, B. Akowuah, K. Panagiotis, and E. Kallos. King’s College London Novel Antenna Designs For Body-Centric Applications, 2017.; K. Ito, C.-H. Lin, and H.-Y. Lin, “Evaluation of Wearable and Implantable Antennas with Human Phantoms,” in Handbook of Antenna Technologies, Springer Singapore, 2015, pp. 1–24. DOI:10.1007/978-981-4560-75-7_83-1; K.S. Nikita, Handbook of Biomedical Telemetry. Wiley, 2014. DOI:10.1002/9781118893715.; N.A. Kamaruddin, S.N. Azemi, S.Z. Ibrahim, A.H. Azremi, and N.F. Kahar. Antenna for In-Body Communications, 2019.; F. Merli, L. Bolomey, E. Meurville, andA.K. Skrivervik. Implanted Antenna for Biomedical Applications. IEEE, 2008.; W.-C. Chen, C.W.L. Lee, A. Kiourti, and J.L. Volakis. A Multi-Channel Passive Brain Implant for Wireless Neuropotential Monitoring. IEEE J Electromagn RF Microw Med Biol. 2018; 2(4):262-269. DOI:10.1109/JERM.2018.2877330; M. Särestöniemi, M. Sonkki, S. Myllymäki, and C. Pomalaza-Raez. Wearable Flexible Antenna for UWB On-Body and Implant Communications. Telecom. 2021;2(3):285-301. DOI:10.3390/t10.3390/elecom2030019; A. Sani, M. Rajab, R. Foster, and Y. Hao. Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proceedings of the IEEE. 2010;98(9):1648-1655. DOI:10.1109/JPROC 2010 .2051010; J. Zhang [et al.]. A Compact Dual-Band Implantable Antenna for Wireless Biotelemetry in Arteriovenous Grafts. IEEE Trans Antennas Propag. 2023;71(6):47594771. DOI:10.1109/TAP.2023.3266786; Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, and Irazoqui PP. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng. 2010;57(6):1487-1496. DOI:10.1109/TBME.2010.2041058; Zeng FG. Challenges in improving cochlear implant performance and accessibility. IEEE Trans Biomed Eng. 2017;64(8):1662-1664. DOI:10.1109/TBME.2017.2718939; D. Reynolds [et al.]. A Leadless Intracardiac Transcatheter Pacing System. New England Journal of Medicine. 2016;374(6):533-541. DOI:10.1056/nejmoa1511643; Amar A. Ben, Kouki AB, and Cao H. Power approaches for implantable medical devices. Sensors (Switzerland). 2015;15(11):28889-28914. DOI:10.3390/s151128889; Agarwal K, Jegadeesan R, Guo YX, and Thakor NV. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Reviews in Biomedical Engineering. Institute of Electrical and Electronics Engineers. 2017;10:136-161. DOI:10.1109/RBME.2017.2683520; R. Kangeyan and M. Karthikeyan. Miniaturized meander-line dual-band implantable antenna for biotelemetry applications. ETRI Journal, 2023. DOI:10.4218/etrij.2023-0050; R. Kangeyan and M. Karthikeyan. A novel wideband fractal‐shaped MIMO antenna for brain and skin implantable biomedical applications. International Journal of Communication Systems. 2023;36(11). DOI:10.1002/dac.5509; Jing D, Li H, Ding X, Shao W, and Xiao S. Compact and Broadband Circularly Polarized Implantab-le Antenna for Wireless Implantable Medical Devices. IEEE Antennas Wirel Propag Lett. 2023;22(6):1236-1240. DOI:10.1109/LAWP.2023.3237558; Feng Y, Li Z, Qi L, Shen W, and Li G. A compact and miniaturized implantable antenna for ISM band in wireless cardiac pacemaker system. Sci Rep. 2022;12(1). DOI:10.1038/s41598-021-04404-3; Kangeyan R, Karthikeyan M. Implantable dual band semi‐circular slotted patch with DGS antenna for biotelemetry applications. Microw Opt Technol Lett. 2023;65(1):225-230. DOI:10.1002/mop.33462; Shah SAA, Yoo H. Scalp-Implantable Antenna Systems for Intracranial Pressure Monitoring. IEEE Trans Antennas Propag. 2018;66(4):2170-2173. DOI:10.1109/TAP.2018.2801346; Iqbal A, Al-Hasan M, Mabrouk I Ben, Nedil M. A Compact Implantable MIMO Antenna for High-Data-Rate Biotelemetry Applications. IEEE Trans Antennas Propag. 2022;70(1):631-640. DOI:10.1109/TAP.2021.3098606; 26. Ahmad S [et al.]. A Metasurface-Based SingleLayered Compact AMC-Backed Dual-Band Antenna for Off-Body IoT Devices. IEEE Access. 2021;9:159598159615. DOI:10.1109/ACCESS.2021.3130425; Roudjane M, Khalil M, Miled A, Messaddeq Y. New generation wearable antenna based on multimaterial fiber for wireless communication and real-time breath detection. Photonics. 2018;5(4). DOI:10.3390/photonics5040033; 28. Shakib MN, Moghavvemi M, Binti Wan Mahadi WNL. Design of a Tri-Band Off-Body Antenna for WBAN Communication. IEEE Antennas Wirel Propag Lett. 2017;16:210-213. DOI:10.1109/LAWP .2016.2569819; Scarpello Maria Lucia [et al.]. High-Gain Textile Antenna Array System for Off-Body Communication. International Journal of Antennas and Propagation, Hindawi Limited, Crossref, 2012, pp. 1–12. DOI:10.1155/2012/573438; Hertleer C, Rogier H, Vallozzi L, Van Langenhove L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antennas Propag. 2009;57(4):919-925. DOI:10.1109/TAP.2009.2014574; Lin CH [et al.]. Dual-Mode Antenna for on-/offBody Communications (10 MHz/2.45 GHz). The 2014 International Workshop on Antenna Technology.; Al-Sehemi A, Al-Ghamdi A, Dishovsky N, Atanasova G, Atanasov N. A Flexible Multiband Antenna for Biomedical Telemetry. IETE J Res. 2023;69(1):189202. DOI:10.1080/03772063.2020.1808536; Sabti HA, Thiel DV. A study of wireless communication links on a body-centric network during running. Procedia Engineering, Elsevier Ltd. 2014, pp. 3–8. DOI:10.1016/j.proeng.2014.06.005; Kumar P, Ali T, SharmaA. Flexible Substrate based Printed Wearable Antennas for Wireless Body Area Networks Medical Applications (Review). Radioelectronics and Communications Systems. 2021;64(7):337-350. DOI:10.3103/S0735272721070013; Scarpello ML, Kazani I, Hertleer C, Rogier H, Ginste D. Vande. Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wirel Propag Lett. 2012;11:838-841. DOI:10.1109/LAWP.2012.2207941; Anbalagan A, Sundarsingh EF, Ramalingam VS, Samdaria A, Gurion D. Ben, Balamurugan K. Realization and Analysis of a Novel Low-Profile Embroidered Textile Antenna for Real-time Pulse Monitoring. IETE J Res. 2022;68(6):4142-4149. DOI:10.1080/03772063.2020.1787877; Chahat N, Zhadobov M, Sauleau R, Ito K. A compact UWB antenna for on-body applications. IEEE Trans Antennas Propag. 2011;59(4):1123-1131. DOI:10.1109/TAP.2011.2109361; Kumar Vivek, Bharat Gupta. On-Body Measurements of SS-UWB Patch Antenna for WBAN Applications. AEU – International Journal of Electronics and Communications, no. 5, Elsevier BV, May 2016, pp. 668– 75. DOI:10.1016/j.aeue.2016.02.003; Hazarika Bidisha [et al.]. A Multi-Layered DualBand on-Body Conformal Integrated Antenna for WBAN Communication. AEU – International Journal of Electronics and Communications, Elsevier BV, Oct. 2018, pp. 226–35. DOI:10.1016/j.aeue.2018.08.021; Qas Elias, Bashar, and Ping Jack Soh. Design of a Wideband Spring Textile Antenna for Wearable 5G and IoT Applications Using Characteristic Mode Analysis. Progress In Electromagnetics Research M, The Electromagnetics Academy, 2022, pp. 177–89. DOI:10.2528/pierm22062909; Gupta Anupma [et al.]. Design of a Patch Antenna with Square Ring-Shaped-Coupled Ground for on-/off Body Communication. International Journal of Electronics, no. 12, Informa UK Limited, June 2019, pp. 1814–28. DOI:10.1080/00207217.2019.1625970; Randall Kirschman. Fabrication of Passive Components for High Temperature Instrumentation. WileyIEEE Press, 1999.; Das Goutam Kumar V[et al.]. Gain‐enhancement Technique for Wearable Patch Antenna Using Grounded Metamaterial. IET Microwaves, Antennas & Propagation, no. 15, Institution of Engineering and Technology (IET), Oct. 2020, pp. 2045–52. DOI:10.1049/iet-map.2020.0083; Potey Pranita Manish and Kushal Tuckley. Design of Wearable Textile Antenna with Various Substrate and Investigation on Fabric Selection. 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, Feb. 2018. DOI:10.1109/icmap.2018.8354539; Bakir Mete. Quartz Fiber Radome And Substrate For Aerospace Applications. Eskişehir Technical University Journal of Science and Technology A Applied Sciences and Engineering, no. 1, Anadolu Universitesi Bilim ve Teknoloji Dergisi-A: Uygulamali Bilimler ve Muhendislik, Mar. 2023, pp. 48–56. DOI:10.18038/estubtda.1247951; Sreelakshmy R. [et al.]. A Wearable Type Embroidered Logo Antenna at ISM Band for Military Applications. Microwave and Optical Technology Letters, no. 9, Wiley, June 2017, pp.2159–63. DOI:10.1002/mop.30697; Jalil Mohd Ezwan Bin [et al.]. Fractal Koch Multiband Textile Antenna Performance With Bending, Wet Conditions And On The Human Body. Progress In Electromagnetics Research, The Electromagnetics Academy, 2013, pp. 633–52. DOI:10.2528/pier13041212; Monirujjaman Khan M [et al.]. Various TextilesBased Comparative Analysis of a Millimeter Wave Miniaturized Novel Antenna Design for Body-Centric Communications. Int J Antennas Propag. 2021;(2021). DOI:10.1155/2021/2360440; Dirk Hohnholz Alan G. MacDiarmid 2001. Line patterning of conducting polymers New horizons for inexpensive, disposable electronic devices.; Y. Tao, Y. Tao, L. Wang, B. Wang, Z. Yang, and Y. Tai. High-reproducibility, flexible conductive patterns fabricated with silver nanowire by drop or fitto-flow method, 2013. [Online]. Available: http://www. nanoscalereslett.com/content/8/1/147; Roshni SB, Jayakrishnan MP, Mohanan P, Surendran KP. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater Struct. 2017;26(10). DOI:10.1088/1361-665X/aa7c40; N. Board, Handbook On Printing Technology, 2nd edition. Offset, Gravure, Flexo,Screen, 2011.; E. Halonen, K. Kaija, M. Mantysalo, A. Kemppainen, A. Kemppainen, and N. Bjorklund. Evaluation of printed electronics manufacturing line with sensor platform application. European Microelectronics and Packaging Conference, Rimini, Italy, 2009, pp. 1–8.; Faddoul R [et al.]. Optimisation of silver paste for flexography printing on LTCC substrate. Microelectronics Reliability. 2012;52(7):1483-1491. DOI:10.1016/j.microrel.2012.03.004; Hasni U, Piper ME, Lundquist J, Topsakal E. Screen-Printed Fabric Antennas for Wearable Applications. IEEE Open Journal of Antennas and Propagation, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 591–598. DOI:10.1109/OJAP.2021.3070919; Hayes GJ, So JH, Qusba A, Dickey MD, Lazzi G. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans Antennas Propag. 2012;60(5):21512156. DOI:10.1109/TAP.2012.2189698; Wang F, Arslan T. Inkjet-printed antenna on a flexible substrate for wearable microwave imaging applications. 2016 Loughborough Antennas & Propagation Conference (LAPC), IEEE, Nov. 2016, pp. 1–4. DOI:10.1109/LAPC.2016.7807499; Joshi JG, Pattnaik SS, Devi S. Metamaterial embedded wearable rectangular microstrip patch antenna. Int J Antennas Propag. 2012;(2012). DOI:10.1155/2012/974315; Desai A, Upadhyaya T, Patel J, Patel R, Palandoken M. Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications. Microw Opt Technol Lett. 2020;62(5,):2090-2103. DOI:10.1002/mop.32287; A. Kumar, A. De, and R.K. Jain. Size Miniaturization and Isolation Enhancement of Two-Element Antenna for Sub-6 GHz Applications. IETE J Res, 2021. DOI:10.1080/03772063.2021.1987994; Tighezza M, Rahim SKA,Islam MT. Flexible wideband antenna for 5G applications.Microw Opt Technol Lett. 2017;60:38-44.; Karad KV, Hendre VS. A flower bud-shaped flexible UWB antenna for healthcare applications. EURASIP J Wirel Commun Netw. 2023;2023(1). DOI:10.1186/s13638-023-02239-2; Usman M [et al.]. The Impact of Bending on Radiation Characteristics of Polymer-Based Flexible Antennas for General IoT Applications, 2021. DOI:10.3390/app; Ali U [et al.]. Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2019;32(6). DOI:10.1002/jnm.2567; Karad Kailash Vaijinath, Vaibhav S. Hendre. A Foam-Based Compact Flexible Wideband Antenna For Healthcare Applications. Progress In Electromagnetics Research C, The Electromagnetics Academy, 2022, pp. 197–212. DOI:10.2528/pierc22061201; H.K. Bhaldar, S.K. Gowre, M.S. Ustad. Design of Circularly Polarized Compact Size Wearable Antenna for UWB and 5G Application. IETE J Res, 2022. DOI:10.1080/03772063.2022.2054868; Aun NFM [et al.]. Revolutionizing Wearables for 5G: 5G Technologies: Recent Developments and Future Perspectives for Wearable Devices and Antennas. IEEE Microw Mag. 2017;18(3):108-124. DOI:10.1109/MMM.2017.2664019; Ericsson Mobility Report November 2020.; R. Azim, R. Aktar, A.K.M.M.H. Siddique, L.C. Paul, and M.T. Islam. Circular patch planar ultrawideband antenna for 5G sub-6 GHz wireless communication applications.; Riaz A, Khan S, Arslan T. Design and Modelling of Graphene-Based Flexible 5G Antenna for Next-Generation Wearable Head Imaging Systems. Micromachines (Basel). 2023;14(3). DOI:10.3390/mi14030610; Shoaib N, Shoaib S, Khattak RY, Shoaib I, Chen X, Perwaiz A. MIMO antennas for smart 5G devices. IEEE Access. 2018;6:77014-77021. DOI:10.1109/ACCESS.2018.2876763; Mahajan RC, Vyas V. Wine Glass Shaped Microstrip Antenna with Woodpile Structure for Wireless Applications. Majlesi Journal of Electrical Engineering. 2019;13(1):37-44.; Sufian MA [et al.]. Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins. IEEE Access. 2021;(9):73533-73543. DOI:10.1109/ACCESS.2021.3079965; Anbarasu M, Nithiyanantham J. Performance Analysis of Highly Efficient Two-Port MIMO Antenna for 5G Wearable Applications. IETE J Res, 2021. DOI:10.1080/03772063.2021.1926345; T. Addepalli, T. Vidyavathi, K. Neelima, M. Sharma, D. Kumar. Asymmetrical fed Calendula flowershaped four-port 5G-NR band (n77, n78, and n79) MIMO antenna with high diversity performance. Int J Microw Wirel Technol, May 2022. DOI:10.1017/S1759078722000800; Peng Xiaoxu, Chengzhu Du. A Flexible CPWFed Tri-Band Four-Port MIMO Antenna for 5G/WIFI 6E Wearable Applications. AEU – International Journal of Electronics and Communications, Elsevier BV, Jan. 2024, p. 155036. DOI:10.1016/j.aeue.2023.155036; Ericsson White Paper. 6G spectrum – enabling the future mobile life beyond 2030. March 2023.; J. Park, B. Kim, and W. Hong. 24‐1: Invited Paper: Optically Invisible Antenna‐on‐Display (AoD) Technologies: Review, Demonstration and Opportunities for Microwave, Millimeter‐Wave and Sub‐THz Wireless Applications. SID Symposium Digest of Technical Papers. 2021;52(1):293-296. DOI:10.1002/sdtp.14672; https://pimi.bntu.by/jour/article/view/898
-
9Academic Journal
Source: Vestnik of Volga State University of Technology. Series Radio Engineering and Infocommunication Systems. :45-55
Subject Terms: амплитудно-частотная характеристика, инновации в мире слуха, wireless communication, hearing aid, 3. Good health, amplitude-frequency characteristic, digital systems, bionic prosthesis, sound, цифровые системы, bone conduction, слуховой аппарат, беспроводная связь, innovation in the world of hearing, звук, бионический протез, костная проводимость
-
10Academic Journal
Source: IEEE Access, Vol 10, Pp 22169-22225 (2022)
IEEE AccessSubject Terms: подводная акустика, internet of underwater things (IoUTs), underwater wireless optical communication (UWOC), сенсорные сети, underwater wireless sensor networks (UWSN), 02 engineering and technology, оптическая связь, Internet of underwater things (IoUTs), TK1-9971, подводная беспроводная связь, underwater wireless electromagnetic (RF) communication (UWRF), 13. Climate action, underwater visible light communication (UVLC), 0202 electrical engineering, electronic engineering, information engineering, Electrical engineering. Electronics. Nuclear engineering, 14. Life underwater, интернет подводных вещей, underwater wireless acoustic communication (UWAC)
File Description: application/pdf
Linked Full TextAccess URL: https://ieeexplore.ieee.org/ielx7/6287639/6514899/09707771.pdf
https://doaj.org/article/f31718155d294a8d91b0efea438a95d0
http://earchive.tpu.ru/handle/11683/72790 -
11Academic Journal
Authors: V. I. Blanutsa, В. И. Блануца
Contributors: The research was carried out at the expense of the state task (subject registration no. АААА-А21-121012190018-2), Исследование выполнено за счет средств государственного задания (№ регистрации темы АААА-А21- 121012190018-2)
Source: Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya; Том 87, № 8 (2023); 1131-1142 ; Известия Российской академии наук. Серия географическая; Том 87, № 8 (2023); 1131-1142 ; 2658-6975 ; 2587-5566
Subject Terms: оптимизация сети, 6G wireless communication, smart urban agglomeration, spatial diffusion, digital inequality, artificial intelligence, geographical expertise, network optimization, беспроводная связь шестого поколения, “умная” городская агломерация, пространственная диффузия, цифровое неравенство, искусственный интеллект, географическая экспертиза
File Description: application/pdf
Relation: https://izvestia.igras.ru/jour/article/view/2380/1449; Блануца В.И. Развертывание информационно-коммуникационной сети как географический процесс (на примере становления сетевой структуры сибирской почты). М.: ИНФРА-М, 2016. 246 с.; Блануца В.И. Информационно-сетевая география. М.: ИНФРА-М, 2019. 243 с.; Блануца В.И. Географическая экспертиза стратегий экономического развития России. М.: ИНФРА-М, 2021. 198 с.; Блануца В.И. Общественная география: цифровые приоритеты XXI века. М.: ИНФРА-М, 2022. 252 с.; Герасимов И.П. Советская конструктивная география: задачи, подходы, результаты. М.: Наука, 1976. 208 с.; Грицай О.В., Иоффе Г.В., Трейвиш А.И. Центр и периферия в региональном развитии. М.: Наука, 1991. 168 с.; Космачев К.П. Пионерное освоение тайги (экономико-географические проблемы). Новосибирск: Наука, 1974. 144 с.; Космачев К.П. Географическая экспертиза (методологические аспекты). Новосибирск: Наука, 1981. 109 с.; Никульников Ю.С. Оценка хозяйственной освоенности территории – анализ, новые принципы конструкции показателя // Доклады Института географии Сибири и Дальнего Востока. Иркутск, 1976. Вып. 50. С. 27–36.; Тархов С.А. Эволюционная морфология транспортных сетей. Смоленск–М.: Изд-во “Универсум”, 2005. 384 с.; Agarwal A., Mohanta C., Misra G. Principle of 6G wireless networks: Vision, challenges and applications // J. Information Technology and Digital World. 2021. Vol. 3 (4). P. 243–258.; Akyildiz I.F., Guo H. Holographic-type communication: A new challenge for the next decade // ITU J. on Future and Evolving Technologies. 2022. Vol. 3 (2). P. 421–442.; Amoore L. Cloud geographies: Computing, data, sovereignty // Progress in Human Geography. 2018. Vol. 42 (1). P. 4–24.; Atkins E. Tracing the “cloud”: Emergent political geographies of global data centers // Political Geography. 2021. Vol. 86. P. 102306.; Barroso J.L.G., Martínez J.P. The geography of the digital divide: Broadband deployment in the Community of Madrid // Universal Access in the Information Society. 2004. Vol. 3 (3). P. 264–271.; Bassoli R., Boche H., Deppe C., Ferrara R., Fitzek F.H.P., Janssen G., Saeedinaeeni S. Quantum Communication Networks. Cham: Springer, 2021. 229 p.; Calabrese A. The periphery in the center: The information age and the “good life” in rural America // Int. Communication Gazette. 1991. Vol. 48 (2). P. 195–128.; Chiwhane J.A., Yadav L.N., Rakhade V.M. A review of future mobile technologies and 4G, 5G, 6G, 7G // Int. J. of Advanced Research in Computer and Communication Engineering. 2022. Vol. 11 (12). P. 84–90.; Dziembała M., Talar S. The role of ICT in smart specialization of EU regions // J. Business Economics and Management. 2021. Vol. 22 (6). P. 1512–1530.; Fard A. Cloudy landscapes: On the extended geography smart urbanism // Telematics and Informatics. 2020. Vol. 55. P. 101450.; Flaherty E., Sturm T., Farries E. The conspiracy of Covid-19 and 5G: Spatial analysis fallacies in the age of data democratization // Social Science & Medicine. 2022. Vol. 293. P. 114546.; Grujić N., Brdar S., Osinga S., Hofstede G.J., Athanasiadis I.N., Pljakić M., Obrenović N., Govedarica M., Crnojević V. Combining telecom data with heterogeneous data sources for traffic and emission assessments – An agent-based approach // Int. J. Geo-Information. 2022. Vol. 11. P. 366.; Hägerstrand T. Innovation Diffusion as a Spatial Process. Chicago: The Univ. of Chicago, 1967. 350 p.; Islam M.M., Ramezani F., Lu H.Y., Naderpour M. Optimal placement of applications in the fog environment: A systematic literature review // J. of Parallel and Distributed Computing. 2023. Vol. 174. P. 46–69.; Kellerman A. Telecommunications and the geography of metropolitan areas // Progress in Human Geography. 1984. Vol. 8 (2). P. 222–246.; Kim H., O’Kelly M.E. Reliable p-hub location problems in telecommunication networks // Geographical Analysis. 2009. Vol. 41 (3). P. 283–306.; Kourtit K., Nijkamp P. Smart cities in smart space: A regional science perspective // Scienze Regionali. Italian J. Regional Science. 2018. Vol. 17 (1). P. 105–114.; Li M., Gao S., Lu F., Liu K., Zhang H., Tu W. Prediction of human activity intensity using the interactions in physical and social spaces through graph convolutional networks // Int. J. Geographical Information Science. 2021. Vol. 35 (12). P. 2489–2516.; Lu Y., Zheng X. 6G: A survey on technologies, scenarios, challenges, and the related issues // J. Industrial Information Integration. 2020. Vol. 19. P. 100158.; Malecki E.J. The economic geography of the internet’s infrastructure // Economic Geography. 2002. Vol. 78 (4). P. 399–424.; Mehta P.L., Kumar A., Mohammad B., Prasad R. A technological and business perspective on connected drones for 6G and beyond mobile wireless communications // Wireless Personal Communications. 2022. Vol. 127. P. 2605–2624.; Morandi C., Rolando A., di Vita S. From Smart City to Smart Region: Digital Services for an Internet of Places. Milan: Springer–Verlag, 2016. 103 p.; Navio-Marco J., Rodrigo-Moya B., Gerli P. The rising importance of the “Smart territory” concept: Definition and implications // Land Use Policy. 2020. Vol. 99 (1). P. 105003.; Oughton E.J., Frias Z. The cost, coverage and rollout implications of 5G infrastructure in Britain // Telecommunications Policy. 2018. Vol. 42 (8). P. 636–652.; Oughton E.J., Russell T. The importance of spatio-temporal infrastructure assessment: Evidence for 5G from the Oxford-Cambridge arc // Computer, Environment and Urban Systems. 2020. Vol. 83. P. 101515.; Saunavaara J., Salminen M. Geography of the global submarine fiber-optic cable network: The case for Arctic Ocean solutions // Geographical Review. 2023. Vol. 113 (1). P. 1–19.; Sawada M., Cossette D., Wellar B., Kurt T. Analysis of the urban/rural broadband divide in Canada: Using GIS in planning terrestrial wireless deployment // Government Information Quarterly. 2006. Vol. 23 (3–4). P. 454–479.; Shoewu O., Akinyemi L.A., Ayangbekun O.J. Insights into the development trends in 7G mobile wireless networks // J. Advancement in Engineering and Technology. 2020. Vol. 8 (1). P. 1–4.; Stewart J., Nickerson C. Costs and benefits of 5G geographical coverage in Europe. Cambridge, UK: Analysis Mason Ltd., 2021. 20 p.; Van Dijk J. The Digital Divide. Cambridge: Polity Press, 2020. 208 p.; Wenzlhuemer R. The dematerialization of telecommunication: Communication centers and peripheries in Europe and the world, 1850–1920 // J. Global History. 2007. Vol. 2 (3). P. 345–372.; Werner P.A., Porczek M. Spatial patterns of development of mobile technologies for 5G networks // Computational Science and Its Applications – ICCSA 2019. Cham: Springer, 2019. P. 448–459.; Ye N., Yu J., Wang A., Zhang R. Help from space: Grant-free massive access for satellite-based IoT in the 6G era // Digital Communications and Networks. 2022. Vol. 8 (2). P. 215–224.; Zhu Y. Tactile communication: Making communication technology warmer and more emotional // Proceedings of the 5th International Conference on Information Science and Systems. Beijing: Association for Computing Machinery, 2022. P. 43–48.; Zong B., Fan C., Wang X., Duan X., Wang B., Wang J. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies // IEEE Vehicular Technology Magazine. 2019. Vol. 14 (3). P. 18–27.; https://izvestia.igras.ru/jour/article/view/2380
-
12Academic Journal
Source: Vestnik of Volga State University of Technology. Series Radio Engineering and Infocommunication Systems. :93-102
Subject Terms: амплитудно-частотная характеристика, инновации в мире слуха, hearing aid, amplitude-frequency characteristic, digital systems, bionic prosthesis, sound, цифровые системы, bone conduction, слуховой аппарат, беспроводная связь, звук, бионический протез, wireless connection, костная проводимость, innovation in the hearing field
-
13Academic Journal
Authors: Kaliaskarov, Nurbol, Ivel, Viktor, Gerasimova, Yulia, Yugay, Vyacheslav, Moldakhmetov, Sayat
Source: Східно-Європейський журнал передових технологій; Том 5, № 9 (107) (2020): Інформаційно-керуючі системи; 36-48
Восточно-Европейский журнал передовых технологий; Том 5, № 9 (107) (2020): Информационно-управляющие системы; 36-48
Eastern-European Journal of Enterprise Technologies; Том 5, № 9 (107) (2020): Information and controlling system; 36-48Subject Terms: wireless communication, remote monitoring, gyroscope, accelerometer, magnetometer, distance sensor, server, UDC 621.396, беспроводная связь, удаленный мониторинг, гироскоп, акселерометр, магнитометр, датчик расстояния, сервер, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 7. Clean energy
File Description: application/pdf
Access URL: http://journals.uran.ua/eejet/article/download/212301/215068
http://journals.uran.ua/eejet/article/view/212301
http://journals.uran.ua/eejet/article/download/212301/215068
https://cyberleninka.ru/article/n/development-of-a-distributed-wireless-wi-fi-system-for-monitoring-the-technical-condition-of-remote-objects/pdf
https://cyberleninka.ru/article/n/development-of-a-distributed-wireless-wi-fi-system-for-monitoring-the-technical-condition-of-remote-objects
http://journals.uran.ua/eejet/article/view/212301 -
14Academic Journal
Authors: Bulashenko, A. V.
Source: Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia; 81; 21-29
Вестник НТУУ" КПИ ". Серия радиотехника Радиоаппаратостроение; 81; 21-29
Вісник НТУУ "КПІ". Серія Радіотехніка, Радіоапаратобудування; 81; 21-29Subject Terms: D2D, 5G, кластеризація, безпровідний зв'язок, зв'язність мережі, D2D, 5G, clustering, wireless, network connectivity, D2D, 5G, кластеризация, беспроводная связь, связность сети, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 621.39
File Description: application/pdf
-
15
Subject Terms: транспортная сеть, пропускная способность, ядро epc, модель COST-231 Hata, transport network, traffic model, качество обслуживания, wireless communication, cost-231 hata model, радиопланирование, epc core, private lte, трафиковая модель, radio planning, беспроводная связь, quality of service, throughput
-
16
-
17
-
18Report
ПРИМЕНЕНИЕ КОДОВ ХЭММИНГА В КАНАЛЕ СВЯЗИ С ДИНАМИЧЕСКОЙ СМЕНОЙ КЛЮЧЕЙ ДЛЯ БЕЗЭКИПАЖНОГО СУДОВОЖДЕНИЯ
Subject Terms: crewless vessel control, гаммирование, избыточное кодирование, Hamming algorithm, linear pseudorandom sequence genera-tor, modified El Gamal algorithm, wireless communication, gamming, модифицированный алгоритм Эль-Гамаля, беспроводная связь, redundant coding, управление безэкипажным судном, автоматизация, линейный генератор псевдослучайной последовательности, алгоритм Хэмминга, automation
-
19
-
20Academic Journal
Authors: Yermolov, P. P., Papulovskaya, N. V.
Subject Terms: TERAHERTZ GYROTRON, MULTIPATH KLYSTRON, RECTANGULAR DIRECT CHAOTIC COMMUNICATION SYSTEMS, MEDICAL MICROWAVE DIAGNOSTIC EQUIPMENT, WIRELESS COMMUNICATION, ФОТОННЫЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ, PHASE ARRAY, EARTH SURFACE TEMPERATURE, БЕСПРОВОДНАЯ СВЯЗЬ, УСИЛИТЕЛЬ СВЧ МОЩНОСТИ, КОЛЬЦЕВОЙ РЕЗОНАТОР, MICROWAVE RADIOMETRY, HISTORY OF RADIO ENGINEERING, QUANTUM EFFICIENCY, ИСТОРИЯ РАДИОТЕХНИКИ, PHOTONIC INTEGRATED CIRCUITS, АНТЕННАЯ РЕШЕТКА, ВОЛНОВОД, КРУГЛЫЙ ВОЛНОВОД, DECIMETER RANGE, МИКРОВОЛНОВАЯ РАДИТЕРМОМЕТРИЯ, ULTRA-WIDEBAND SIGNAL, ANTENNA ARRAY, THERMAL VACUUM SPUTTERING, MICROWAVE RESONATOR, КРЫМИКО, РАДИОТЕРМОМЕТРИЯ, ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ЗЕМЛИ, РЕЗОНАНСНЫЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ, WIRELESS POWER TRANSMISSION, ТЕРМИЧЕСКОЕ ВАКУУМНОЕ РАСПЫЛЕНИЕ, ТЕМПЕРАТУРА ПОВЕРХНОСТИ ЗЕМЛИ, ТЕРАГЕРЦОВЫЙ ГИРОТРОН, SOLAR INSOLATION, КВАНТОВАЯ ЭФФЕКТИВНОСТЬ, WAVEGUIDE, SPACECRAFT, NONLINEAR MODEL OF A FIELD-EFFECT TRANSISTOR, ELECTROMAGNETIC COMMUNICATION, ДЕЦИМЕТРОВЫЙ ДИАПАЗОН, RESONANT MEASURING CONVERTER, RADIOTHERMOMETRY, ГЕНЕРАТОР, СОЛНЕЧНАЯ ИНСОЛЯЦИЯ, СВЕРХШИРОКОПОЛОСНЫЙ СИГНАЛ, ARTIFICIAL NEURAL NETWORKS, ROUND WAVEGUIDE, ИСКУССТВЕННЫЕ НЕЙРОННЫЕ СЕТИ, СВЧ РЕЗОНАТОР, ЗАМЕДЛЯЮЩАЯ ВОЛНОВАЯ СИСТЕМА, НЕЛИНЕЙНАЯ МОДЕЛЬ ПОЛЕВОГО ТРАНЗИСТОРА, GENERATOR, MICROWAVE POWER AMPLIFIER, METAMATERIAL, CRIMICO, DECELERATING WAVE SYSTEM, МЕТАМАТЕРИАЛ, МЕДИЦИНСКАЯ СВЧ-ДИАГНОСТИЧЕСКАЯ АППАРАТУРА, ЭЛЕКТРОМАГНИТНАЯ СВЯЗЬ, КОСМИЧЕСКИЙ АППАРАТ, МНОГОЛУЧЕВОЙ КЛИСТРОН, ПРЯМОУГОЛЬНЫЙ ПРЯМОХАОТИЧЕСКИЕ СИСТЕМЫ СВЯЗИ, REMOTE SENSING OF THE EARTH, RING RESONATOR, БЕСПРОВОДНАЯ ПЕРЕДАЧА ЭНЕРГИИ, ФАЗОВАЯ РЕШЕТКА
Access URL: http://elar.urfu.ru/handle/10995/120880