-
1Academic Journal
Authors: M. N. Repkova, V. F. Zarytova, O. Yu. Mazurkov, N. A. Mazurkova, E. V. Makarevich, E. I. Filippova, M. D. Nekrasov, M. S. Kupryushkin, A. S. Levina, М. Н. Репкова, В. Ф. Зарытова, О. Ю. Мазурков, Н. А. Мазуркова, Е. В. Макаревич, Е. И. Филиппова, М. Д. Некрасов, М. С. Купрюшкин, А. С. Левина
Contributors: The research was funded by the Russian Science Foundation, project number 23-24-00184., Исследование выполнено при финансовой поддержке Российского научного фонда (проект №23-24-00184).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 338-345 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 338-345 ; 0137-0952
Subject Terms: вирус простого герпеса, antisense oligonucleotides, TiO2 nanoparticles (anatase), antiviral effect, herpes simplex virus, антисмысловые олигонуклеотиды, TiO2-наночастицы (анатаз), противовирусный эффект
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1442/707; Belikova A.M., Zarytova V.F., Grineva N.I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 1967;8(37):3557–3562.; Zamecnik P., Stephenson M. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 1978;75(1):280–284.; Amado D.A., Davidson B.L. Gene therapy for ALS: A review. Mol. Ther. 2021;29(12):3345–3358.; Kulkarni J.A., Witzigmann D., Chen S., Cullis P.R., van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 2019;52(9):2435–2444.; Draper K.G., Ecker D.J., Mirabelli C.K., Crooke S.T. Oligonucleotide therapies for modulating the effects of herpesviruses. Patent US 6310044 B1, 2001;30.10.2001.; Eide K., Moerdyk-Schauwecker M., Stein D.A., Bildfell R., Koelle D.M., Jin L. Reduction of herpes simplex virus type-2 replication in cell cultures and in rodent models with peptide-conjugated morpholino oligomers. Antivir. Ther. 2010;15(8):1141–1149.; Moerdyk-Schauwecker M., Stein D.A., Eide K., Blouch R.E., Bildfell R., Iversen P., Jin L. Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27. Antiviral Res. 2009;84(2):131–141.; Weng Y., Huang Q., Li C., Yang Y., Wang X., Yu J., Huang Y., Liang X.J. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol. Ther. Nucleic Acids 2020;19(1):581–601.; Haghighi F.H., Mercurio M., Cerra S., Salamone T.A., Bianymotlagh R., Palocci C., Spica V.R., Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J. Mater. Chem. B. 2023;11(11):2334–2366.; Chelobanov B.P., Repkova M.N., Bayborodin S.I., Ryabchikova E.I., Stetsenko D.A. Nuclear delivery of oligonucleotides via nanocomposites based on TiO2 nanoparticles and polylysine. Mol. Biol. (Mosс.). 2017;51(5):797–808.; Levina A.S., Repkova M.N., Shatskaya N.V., Zarytova V.F., Ismagilov Z.R., Shikina N.V., Zagrebelnyi S.N., Baiborodin S.I. Design of TiO2~DNA nanocomposites for penetration into cells. Russ. J. Bioorg. Chem. 2013;39(1):77–86.; Zharkov T.D., Markov O.V., Zhukov S.A., Khodyreva S.N., Kupryushkin M.S. Influence of combinations of lipophilic and phosphate backbone modifications on cellular uptake of modified oligonucleotides. Molecules. 2024;29(2):452.; Osano E., Kishi J., Takahashi Y. Phagocytosis of titanium particles and necrosis in TNF-alpha-resistant mouse sarcoma L929 cells. Toxicol. In Vitro. 2003;17(1):41–47.; Smee D.F., Morrison A.C., Barnard D.L., Sidwell R.W. Comparison of colorimetric and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. J. Virol. Methods. 2002;106(1):71–79.; Levina A.S., Repkova M.N., Bessudnova E.V., Filippova E.I., Zarytova V.F. High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (-)RNA and (+)RNA of influenza A virus in cell culture. Beilstein J. Nanotechnol. 2016;7(4):1166–1173.; Levina A., Repkova M., Shikina N., Ismagilov Z., Kupryushkin M., Pavlova A., Mazurkova N., Pyshnyi D., Zarytova V. Pronounced therapeutic potential of oligonucleotides fixed on inorganic nanoparticles against highly pathogenic H5N1 influenza A virus in vivo. Eur. J. Pharm. Biopharm. 2021;162:92–98.; Repkova M.N., Levina A.S., Ismagilov Z R., Mazurkova N.A., Mazurkov O.Ju., Zarytova V.F. Effective inhibition of newly emerged A/H7N9 virus with oligonucleotides targeted to conserved regions of the virus genome. Nucleic Acid Ther. 2021;31(6):436–442.; Repkova M.N., Levina A.S., Seryapina A.A., Shikina N.V., Bessudnova E.V., Zarytova V.F., Markel A.L. Toward gene therapy of hypertension: experimental study on hypertensive ISIAH rats. Biochemistry (Mosc.). 2017;82(4):454–457.; Shen X., Corey D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–1600.; Levina A.S., Repkova M.N., Zarytova V.F. Therapeutic nucleic acids against Herpes simplex viruses (a review). Russ. J. Bioorg. Chem. 2023;49(6):1243–1262.; Shoji Y., Norimatsu M., Shimada J., Mizushima Y. Limited use of cationic liposomes as tools to enhance the antiherpetic activities of oligonucleotides in Vero cells infected with herpes simplex virus Type 1. Antisense Nucleic Acid Drug Dev. 1998;8(4):255–263.; Birch-Hirschfeld E., Knorre C.M., Stelzner A., Schmidtke M. Antiviral activity of antisense oligonucleotides against various targets of herpes simplex virus 1 (Hsv1) and Coxsackievirus B3 (Cvb3) genome. Nucleos. Nucleot. 1997;16(5–6):623–628.; Blumenfeld M., Meguenni S., Poddevin B., Vasseur M. Antisense oligonucleotides against herpes simplex virus types 1 and 2. Patent WO1995004141A1, 1995;09.02.1995.; Hoke G.D., Draper K., Freier S.M., Gonzalez C., Driver V.B., Zounes M.C., Ecker D.J. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res. 1991;19(20):5743–5748.; Shoji Y., Ishige H., Tamura N., Iwatani W., Norimatsu M., Shimada J., Mizushima Y. Enhancement of anti-Herpetic activity of antisense phosphorothioate oligonucleotides 5’-end modified with geraniol. J. Drug Target. 1998;5(4):261–273.; Vinogradov S.V., Suzdaltseva Y., Alakhov V.Y., Kabanov A.V. Inhibition of herpes simplex virus 1 reproduction with hydrophobized antisense oligonucleotides. Biochem. Biophys. Res. Commun. 1994;203(2):959–966.; Miroshnichenko S.K., Patutina O.A., Burakova E.A., Chelobanov B.P., Fokina A.A., Vlassov V.V., Altman S., Zenkova M.A., Stetsenko D.A. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc. Natl. Acad. Sci. U.S.A. 2019;116(4):1229–1234.; Kandasamy P., McClorey G., Shimizu M., et al. Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Res. 2022;50(10):5443–5466.
-
2Academic Journal
Authors: V. M. Suslov, D. I. Rudenko, В. М. Суслов, Д. И. Руденко
Source: Russian Journal of Child Neurology; Том 19, № 3 (2024); 38-50 ; Русский журнал детской неврологии; Том 19, № 3 (2024); 38-50 ; 2412-9178 ; 2073-8803
Subject Terms: вилтоларсен, exon skipping, antisense oligonucleotides, Viltepso®, viltolarsen, экзон-скиппинг, антисмысловые олигонуклеотиды, Вилтепсо®
File Description: application/pdf
Relation: https://rjdn.abvpress.ru/jour/article/view/485/329; Мышечная дистрофия Дюшенна. Мышечная дистрофия Беккера. Клинические рекомендации. М.: Минздрав России, 2023.; Поляков А.В. Современные возможности диагностики мышечной дистрофии Дюшенна. VI Всероссийский научно-практический конгресс с международным участием «Орфанные болезни», 2024.; Angulski A.B.B, Hosny N., Cohe H. et al. Duchenne muscular dystrophy: Disease mechanism and therapeutic strategies. Front Physiol 2023;14:1183101. DOI:10.3389/fphys.2023.1183101; Birnkrant D.J., Bushby K., Bann C.M. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018;17(3):251–67. DOI:10.1016/S1474-4422(18)30024-3; Clemens P.R., Rao V.K., Connolly A.M. et al. Efficacy and safety of viltolarsen in boys with Duchenne muscular dystrophy: Results from the phase 2, open-label, 4-year extension study. J Neuromuscul Dis 2023;10(3):439–47. DOI:10.3233/JND-221656; Clemens P.R., Rao V.K., ConnollyA.M. et al. Long-term functional efficacy and safety of viltolarsen in patients with Duchenne muscular dystrophy. J Neuromuscular Dis 2022;9:493–501. DOI:10.3233/JND-220811; Clemens P.R., Rao V.K., Connolly A.M. et al. Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: A phase 2 randomized clinical trial. JAMA Neurol 2020;77(8):982–91. DOI:10.1001/jamaneurol.2020.1264; FDA Approves Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation. Available at: https://www.fda.gov/newsevents/press-announcements/fda-approves-targeted-treatmentrare-duchenne-muscular-dystrophy-mutation.; Gissel H. The role of Ca2+ in muscle cell damage. Ann NY Acad Sci 2005;1066:166–80. DOI:10.1196/annals.1363.013; Hoffman E.P., Fischbeck K.H., Brown R.H. et al. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N Engl J Med 1988;318(21):1363–8. DOI:10.1056/NEJM198805263182104; Iwata Y., Katanosaka Y., Shijun Z. et al. Protective effects of Ca2+ handling drugs against abnormal Ca2+ homeostasis and cell damage in myopathic skeletal muscle cells. Biochem Pharmacol 2005;70(5):740–51. DOI:10.1016/j.bcp.2005.05.034; Flanigan K.M. Duchenne and Becker muscular dystrophies. Neurol Clin 2014;32:671–88. DOI:10.1016/j.ncl.2014.05.002; Komaki H., Nagata T., Saito T. et al. Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med 2018;10(437):eaan0713. DOI:10.1126/scitranslmed.aan0713; Researcher View. Safety and Dose Finding Study of NS-065/NCNP-01 in Boys With Duchenne Muscular Dystrophy (DMD). Available at: https://clinicaltrials.gov/study/NCT02740972?tab=table.; Roshmi R.R., Yokota T. Viltolarsen for the treatment of Duchenne muscular dystrophy. Drugs Today (Barc) 2019;55(10):627–39. DOI:10.1358/dot.2019.55.10.3045038; Study Details. Exploratory Study of NS-065/NCNP-01 in DMD. Available at: https://clinicaltrials.gov/study/NCT02081625?intr=NS-065%2FNCNP-01&rank=2.; Study Details. Extension Study of NS-065/NCNP-01 in Boys with Duchenne Muscular Dystrophy (DMD). Available at: https://clinicaltrials.gov/study/NCT03167255?term=NCT03167255&rank=1.; Van den Bergen J.C., Wokke B.H., Janson A.A. et al. Dystrophin levels and clinical severity in Becker muscular dystrophy patients. J Neurol Neurosurg Psychiatry 2014;85(7):747–53. DOI:10.1136/jnnp-2013-306350; https://rjdn.abvpress.ru/jour/article/view/485
-
3Academic Journal
Authors: S. B. Artemyeva, E. D. Belousova, D. V. Vlodavets, L. M. Kuzenkova, S. V. Mikhailova, T. V. Podkletnova, S. G. Popovich, E. V. Uvakina, E. L. Usacheva, С. Б. Артемьева, Е. Д. Белоусова, Д. В. Влодавец, Л. М. Кузенкова, С. В. Михайлова, Т. В. Подклетнова, С. Г. Попович, Е. В. Увакина, Е. Л. Усачева
Contributors: The study was performed without external funding, Исследование проведено без спонсорской поддержки
Source: Medical Genetics; Том 23, № 1 (2024); 19-25 ; Медицинская генетика; Том 23, № 1 (2024); 19-25 ; 2073-7998
Subject Terms: антисмысловые олигонуклеотиды, muscular dystrophy, Duchenne muscular dystrophy, exon skipping, casimersen, antisense oligonucleotides, мышечная дистрофия, ПМД Дюшенна, экзон-скиппинг, касимерсен
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2407/1764; Drousiotou A., Ioannou P., Georgiou T., et al. Neonatal screening for Duchenne muscular dystrophy: a novel semiquantitative application of the bioluminescence test for creatine kinase in a pilot national program in Cyprus. Genet Test 1998; 2: 55–60.; Emery A.E. Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1991; 1: 19–29.; Duan D., Goemans N., Takeda S., Mercuri E., Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):13. doi:10.1038/s41572-021-00248-3.; Happi Mbakam C., Lamothe G., Tremblay J.P. Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Front Med (Lausanne). 2022;9:859930. doi:10.3389/fmed.2022.859930; Hoffman E.P., Brown R.H. Jr, Kunkel L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51: 919–28.; Клинические рекомендации «Прогрессирующая мышечная дистрофия Дюшенна. Прогрессирующая мышечная дистрофия Беккера». https://cr.minzdrav.gov.ru/schema/773.; Poysky J., Behavior in DMD Study Group. Behavior patterns in Duchenne muscular dystrophy: report on the Parent Project Muscular Dystrophy behavior workshop 8–9 of December 2006, Philadelphia, USA. Neuromuscul Disord 2007; 17: 986–94.; Ryder S., Leadley R.M., Armstrong N., et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis. 2017;12(1):79.; Coratti G., Pane M., Brogna C., et al. North Star Ambulatory Assessment changes in ambulant Duchenne boys amenable to skip exons 44, 45, 51, and 53: A 3 year follow up. PLoS One. 2021;16(6):e0253882. doi:10.1371/journal.pone.0253882; de Feraudy Y., Ben Yaou R., Wahbi K., et al.Very Low Residual Dystrophin Quantity Is Associated with Milder Dystrophinopathy. Ann Neurol. 2021;89(2):280-292. doi:10.1002/ana.25951.; Shirley M. Casimersen: First Approval. Drugs. 2021;81(7):875-879. doi:10.1007/s40265-021-01512-2.; Iannaccone S. et al. Casimersen in Patients With Duchenne Muscular Dystrophy Amenable to Exon 45 Skipping: Interim Results From the Phase 3 ESSENCE Trial. World Muscle Society Congress 2022. Neuromuscular Disorders 32 (2022) S42–S136. doi:10.1016/j.nmd.2022.07.248.; Iannaccone S. et al. Casimersen in Patients With Duchenne Muscular Dystrophy Amenable to Exon 45 Skipping: Interim Results From the Phase 3 ESSENCE Trial. Presented at the Muscular Dystrophy Association Clinical & Scientific Conference, March 13–16, 2022, Nashville, TN. https://investorrelations.sarepta.com/static-files/d6ad5b34-752b-4d8b-ba15-bfa88394296f Access date 18. 12. 2023; Iannaccone S. et al. Casimersen in Patients With Duchenne Muscular Dystrophy Amenable to Exon 45 Skipping: Interim Results From the Phase 3 ESSENCE Trial. Presented at the 27 th International Hybrid Annual Congress of the World Muscle Society; October 11–15, 2021; Halifax, Nova Scotia, Canada. Neuromuscular Disorders 31 (2021) S47–S162. doi:10.1016/j.nmd.2021.07.175; Iannaccone S. et al. Casimersen in Patients With Duchenne Muscular Dystrophy Amenable to Exon 45 Skipping: Interim Results From the Phase 3 ESSENCE Trial. Presented at the Muscular Dystrophy Association Clinical & Scientific Conference, March 12–22, 2023, Dallas, TX & Virtual. https://www.mdaconference.org/abstract-library/casimersen-in-patients-with-duchenne-muscular-dystrophy-amenable-to-exon-45-skipping-interim-results-from-the-phase-3-essence-trial/ Access date 18. 12. 2023; Wagner K. et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: A randomized, double-blind, placebo-controlled, dose-titration trial. Muscle and Nerve. 2021;64(3):285-292.; NCT02500381. https://clinicaltrials.gov/ct2/show/NCT02500381.; NCT02530905. https://clinicaltrials.gov/ct2/show/NCT02530905.; NCT03532542. An Extension Study to Evaluate Casimersen or Golodirsen in Patients With Duchenne Muscular Dystrophy. https://www.clinicaltrials.gov/study/NCT03532542.
-
4Academic Journal
Authors: S. K. Miroshnichenko, O. A. Patutina, M. A. Zenkova, С. К. Мирошниченко, О. А. Патутина, М. А. Зенкова
Contributors: The study reported in this publication was funded by the Russian Science Foundation, Project No. 19-74-30011., Работа выполнена при финансовой поддержке Российского научного фонда в рамках гранта № 19-74-30011.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 140-156 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 140-156 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2
Subject Terms: миРНКазы, miRNA-targeted oligonucleotide constructs, carcinogenesis, small non-coding RNA, malignant neoplasms, miRNA-masking oligonucleotides, CRISPR/Cas, miRNA sponges, antisense oligonucleotides, miRNases, микроРНК-направленные олигонуклеотидные конструкции, канцерогенез, малые некодирующие РНК, злокачественные неоплазии, микроРНК-маскирующие олигонуклеотиды, микроРНК-спонжи, антисмысловые олигонуклеотиды
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/578/859; https://www.biopreparations.ru/jour/article/view/578/841; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/864; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/950; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/951; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/952; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/953; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/974; Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://doi.org/10.1126/SCIENCE.1064921; Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50. https://doi.org/10.1016/J.DEVCEL.2006.09.009; Ilieva M, Panella R, Uchida S. MicroRNAs in cancer and cardiovascular disease. Cells. 2022;11(22):3551. https://doi.org/10.3390/cells11223551; Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, et al. Transitional insight into the RNA-based oligonucleotides in cancer treatment. Appl Biochem Biotechnol. 2024;196(3):1685–711. https://doi.org/10.1007/s12010-023-04597-5; Raue R, Frank AC, Syed SN, Brüne B. Therapeutic targeting of microRNAs in the tumor microenvironment. Int J Mol Sci. 2021;22(4):2210. https://doi.org/10.3390/ijms22042210; Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel). 2021;13(11):2680. https://doi.org/10.3390/cancers13112680; Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–64. https://doi.org/10.1093/NAR/GKZ097; Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/GR.082701.108; Dexheimer PJ, Cochella L. MicroRNAs: from mechanism to organism. Front Сell Dev Biol. 2020;8:409. https://doi.org/10.3389/FCELL.2020.00409; Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol. 2024;21(1):1–8. https://doi.org/10.1080/15476286.2023.2288741; Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019; 20(1):5–20. https://doi.org/10.1038/S41580-018-0059-1; Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006; Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37. https://doi.org/10.1038/S41580-018-0045-7; Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res. 2022;50(12):6618–38. https://doi.org/10.1093/nar/gkac519; Chen CYA, Shyu A. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA. 2011;2(2):167–83. https://doi.org/10.1002/WRNA.40; Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57. https://doi.org/10.1093/NAR/GKAD1142; Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol. 2023;14:1097491. https://doi.org/10.3389/FIMMU.2023.1097491; Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018;17(1):64. https://doi.org/10.1186/S12943-018-0765-5; Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, et al. Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 2022;132(6):126155. https://doi.org/10.1172/JCI126155; Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10:665. https://doi.org/10.3389/FPHAR.2019.00665; Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol. 2023;39(1):53–83. https://doi.org/10.1007/s10565-022-09761-x; Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, et al. MicroRNAs in cardiovascular disease. Hell J Cardiol. 2020;61(3):165–73. https://doi.org/10.1016/j.hjc.2020.03.003; Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https://doi.org/10.1038/SIGTRANS.2015.4; Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. https://doi.org/10.1016/J.YDBIO.2006.08.028; Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76(13):3666–70. https://doi.org/10.1158/0008-5472.CAN-16-0359; Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–84. https://doi.org/10.1002/JCP.28058; Ragan C, Zuker M, Ragan MA. Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput Biol. 2011;7(2):1001090. https://doi.org/10.1371/journal.pcbi.1001090; Kingston ER, Bartel DP. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 2019;29(11):1777–90. https://doi.org/10.1101/gr.251421.119; Zlotorynski E. Insights into the kinetics of microRNA biogenesis and turnover. Nat Rev Mol Cell Biol. 2019;20(9):511. https://doi.org/10.1038/S41580-019-0164-9; Sultan S, Rozzi A, Gasparello J, Manicardi A, Corradini R, Papi C, et al. A peptide nucleic acid (PNA) masking the miR-145-5p binding site of the 3’UTR of the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA enhances CFTR expression in Calu-3 cells. Molecules. 2020;25(7):1677. https://doi.org/10.3390/molecules25071677; Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7(2):2108. https://doi.org/10.1038/cddis.2016.29; Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, et al. Downregulation of miR-522 suppresses proliferation and metastasis of nonsmall cell lung cancer cells by directly targeting DENN/ MADD domain containing 2D. Sci Rep. 2016;6(1):19346. https://doi.org/10.1038/srep19346; Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063–72. https://doi.org/10.1182/blood-2012-04-423004; Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190–201. https://doi.org/10.18632/oncotarget.2778; Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096; Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023;10(1):32. https://doi.org/10.1186/S40779-023-00468-6; Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(1):22312. https://doi.org/10.1038/srep22312; Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62. https://doi.org/10.1038/NM.3802; Jiang Q, Meng X, Meng L, Chang N, Xiong J, Cao H, et al. Small indels induced by CRISPR/Cas9 in the 5’ region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol. 2014;11(10):1243–9. https://doi.org/10.1080/15476286.2014.996067; Kurata JS, Lin RJ. MicroRNA-focused CRISPRCas9 library screen reveals fitness-associated miRNAs. RNA. 2018;24(7):966–81. https://doi.org/10.1261/rna.066282.118; Wu Q, Michaels YS, Fulga TA. Interrogation of functional miRNA-target interactions by CRISPR/Cas9 genome engineering. Methods Mol Biol. 2023;2630:243–64. https://doi.org/10.1007/978-1-0716-2982-6_16; Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–7. https://doi.org/10.1158/0008-5472.CAN-17-2142; Nieland L, van Solinge TS, Cheah PS, Morsett LM, El Khoury J, Rissman JI, et al. CRISPR-Cas knockout of miR21 reduces glioma growth. Mol Ther Oncolytics. 2022;25:121–36. https://doi.org/10.1016/j.omto.2022.04.001; Ahi Y, Bangari D, Mittal S. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–20. https://doi.org/10.2174/156652311796150372; Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6. https://doi.org/10.1038/nmeth1079; Jie J, Liu D, Wang Y, Wu Q, Wu T, Fang R. Generation of MiRNA sponge constructs targeting multiple MiRNAs. J Clin Lab Anal. 2022;36(7):24527. https://doi.org/10.1002/jcla.24527; Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41. https://doi.org/10.1126/science.1102513; Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A. Generation of miRNA sponge constructs. Methods. 2012;58(2):113–7. https://doi.org/10.1016/j.ymeth.2012.07.019; Rama AR, Quiñonero F, Mesas C, Melguizo C, Prados J. Synthetic circular miR-21 sponge as tool for lung cancer treatment. Int J Mol Sci. 2022;23(6):2963. https://doi.org/10.3390/ijms23062963; Gao S, Tian H, Guo Y, Li Y, Guo Z, Zhu X, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–193. https://doi.org/10.1016/j.actbio.2015.07.020; Liang AL, Zhang TT, Zhou N, Wu CY, Lin MH, Liu YJ. miRNA-10b sponge: an anti-breast cancer study in vitro. Oncol Rep. 2016;35(4):1950–8. https://doi.org/10.3892/or.2016.4596; Mignacca L, Saint-Germain E, Benoit A, Bourdeau V, Moro A, Ferbeyre G. Sponges against miR-19 and miR-155 reactivate the p53-Socs1 axis in hematopoietic cancers. Cytokine. 2016;82:80–6. https://doi.org/10.1016/j.cyto.2016.01.015; Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, et al. A microRNA 221– and 222–mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells. Gastroenterology. 2014;147(4):847–59. https://doi.org/10.1053/j.gastro.2014.06.006; Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37(3):24. https://doi.org/10.1093/nar/gkn1053; Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43(9):854–9. https://doi.org/10.1038/ng.905; Alkan AH, Akgül B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91–104. https://doi.org/10.1007/978-1-0716-1170-8_5; Olesen MT, Kristensen L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65(4):685–96. https://doi.org/10.1042/EBC20200060; Meng L, Liu C, Lü J, Zhao Q, Deng S, Wang G, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964. https://doi.org/10.1038/ncomms13964; Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27Kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–60. https://doi.org/10.3892/ijo_00000296; Quan J, Jin L, Pan X, He T, Lai Y, Chen P, et al. Oncogenic miR-23a-5p is associated with cellular function in RCC. Mol Med Rep. 2017;16(2):2309–17. https://doi.org/10.3892/mmr.2017.6829; Zhang R, Li F, Wang W, Wang X, Li S, Liu J. The effect of antisense inhibitor of miRNA 106b~25 on the proliferation, invasion, migration, and apoptosis of gastric cancer cell. Tumor Biol. 2016;37(8):10507–15. https://doi.org/10.1007/s13277-016-4937-x; Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Mol Med. 2016;8(3):268–87. https://doi.org/10.15252/emmm.201505495; Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Darvishian F, Chiriboga L, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2011;30(12):1481–8. https://doi.org/10.1038/onc.2010.523; Patutina OA, Gaponova (Miroshnichenko) SK, Sen’kova AV, Savin IA, Gladkikh DV, Burakova EA, et al. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc Natl Acad Sci. 2020;117(51):32370–9. https://doi.org/10.1073/pnas.2016158117; Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, Vlassov VV, et al. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci USA. 2019;116(4):1229–34. https://doi.org/10.1073/pnas.1813376116; Gaponova S, Patutina O, Sen’kova A, Burakova E, Savin I, Markov A, et al. Single shot vs. cocktail: a comparison of mono- and combinative application of miRNA-targeted mesyl oligonucleotides for efficient antitumor therapy. Cancers (Basel). 2022;14(18):4396. https://doi.org/10.3390/cancers14184396; Costa PM, Cardoso AL, Custódia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9. https://doi.org/10.1016/j.jconrel.2015.04.002; Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017;108(7):1493–503. https://doi.org/10.1111/cas.13267; Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 2023;16(1):68. https://doi.org/10.1186/s13045-023-01468-8; Gaglione M, Milano G, Chambery A, Moggio L, Romanelli A, Messere A. PNA-based artificial nucleases as antisense and anti-miRNA oligonucleotide agents. Mol Biosyst. 2011;7(8):2490–9. https://doi.org/10.1039/c1mb05131h; Dogandzhiyski P, Ghidini A, Danneberg F, Strömberg R, Göbel MW. Studies on tris(2-aminobenzimidazole)-PNA based artificial nucleases: a comparison of two analytical techniques. Bioconjug Chem. 2015;26(12):2514–9. https://doi.org/10.1021/acs.bioconjchem.5b00534; Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, et al. miRNases: novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials. 2017;122:163–78. https://doi.org/10.1016/j.biomaterials.2017.01.018; Patutina O, Chiglintseva D, Bichenkova E, Gaponova S, Mironova N, Vlassov V, et al. Dual miRNases for triple incision of miRNA target: design concept and catalytic performance. Molecules. 2020;25(10):2459. https://doi.org/10.3390/MOLECULES25102459; Patutina O, Chiglintseva D, Amirloo B, Clarke D, Gaponova S, Vlassov V, et al. Bulge-forming miRNases cleave oncogenic miRNAs at the central loop region in a sequence-specific manner. Int J Mol Sci. 2022;23(12):6562. https://doi.org/10.3390/ijms23126562; Patutina OA, Miroshnichenko SK, Mironova NL, Sen’kova AV, Bichenkova EV, Clarke DJ, et al. Catalytic knockdown of MIR-21 by artificial ribonuclease: biological performance in tumor model. Front Pharmacol. 2019;10:879. https://doi.org/10.3389/fphar.2019.00879; https://www.biopreparations.ru/jour/article/view/578
-
5Academic Journal
Authors: O. B. Kondakova, S. V. Demyanov, A. V. Krasivskaya, G. V. Demyanov, D. I. Grebenkin, Yu. I. Davydova, A. A. Lyalina, E. R. Radkevich, K. V. Savostyanov, О. Б. Кондакова, С. В. Демьянов, А. В. Красивская, Г. В. Демьянов, Д. И. Гребенкин, Ю. И. Давыдова, А. А. Лялина, Е. Р. Радкевич, К. В. Савостьянов
Source: Neuromuscular Diseases; Том 13, № 1 (2023); 22-32 ; Нервно-мышечные болезни; Том 13, № 1 (2023); 22-32 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-1
Subject Terms: FAN1, genome editing, SNP, antisense oligonucleotides, RNA interference, PROTAC, stem cells, генное редактирование, антисмысловые олигонуклеотиды, РНК-интерференция, стволовые клетки
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/523/339; Bakels H.S., Roos R.A.C., van Roon-Mom W.M.C. et al. Juvenileonset huntington disease pathophysiology and neurodevelopment: a review. Mov Disord 2022;37(1):16–24. DOI:10.1002/mds.28823; Клюшников С.А. Болезнь Гентингтона. Неврологический журнал им. Л.О. Бадаляна 2020;1(3):139–58. DOI:10.17816/2686-8997-2020-1-3-139-158 Klyushnikov S.A. Huntington’s disease. Mevrologicheskiy zhurnal im. L.O. Badalyana = L.O. Badalyan Neurological Journal 2020;1(3):139–58. (In Russ.). DOI:10.17816/2686-8997-2020-1-3-139-158; Jarosińska O.D., Rüdiger S.G.D. Molecular strategies to target protein aggregation in Huntington’s disease. Front Mol Biosci 2021;8:769184. DOI:10.3389/fmolb.2021.769184; Sharon I., Sharon R., Wilkens J.P. et al. Huntington disease dementia. Available at: https://emedicine.medscape.com/article/289706overview?reg=1&icd=login_success_email_match_norm#a6.; Caron N.S., Wright G.E.B., Hayden M.R. Huntington disease. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1305/.; Tabrizi S.J., Ghosh R., Leavitt B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 2019;101(5):801–19. DOI:10.1016/j.neuron.2019.01.039; Fields E., Vaughan E., Tripu D. et al. Gene targeting techniques for Huntington's disease. Ageing Res Rev 2021;70:101385. DOI:10.1016/j.arr.2021.101385; Shannon K.M. Recent Advances in the treatment of Huntington’s disease: targeting DNA and RNA. CNS Drugs 2020;34(3):219–28. DOI:10.1007/s40263-019-00695-3; Świtońska-Kurkowska K., Krist B., Delimata J. et al. Juvenile Huntington’s disease and other PolyQ diseases, update on neurodevelopmental character and comparative bioinformatic review of transcriptomic and proteomic data. Front Cell Dev Biol 2021;9:642773. DOI:10.3389/fcell.2021.642773; Beatriz M., Lopes C., Ribeiro A.C.S. et al. Revisiting cell and gene therapies in Huntington’s disease. J Neurosci Res 2021;99(7):1744–62. DOI:10.1002/jnr.24845; Kumar A., Kumar V., Singh K. et al. Therapeutic advances for Huntington’s disease. Brain Sci 2020;10(1):43. DOI:10.3390/brainsci10010043; Frank W., Lindenberg K.S., Mühlbäck A. et al. Krankheitsmodifizierende Therapieansätze bei der Huntington-Krankheit: Blicke zurück und Blicke voraus [Disease-modifying treatment approaches in Huntington disease : Past and future]. Nervenarzt 2022;93(2):179–90. DOI:10.1007/s00115-021-01224-8; Vachey G., Déglon N. CRISPR/Cas9-Mediated genome editing for Huntington’s disease. Methods Mol Biol 2018;1780:463–81. DOI:10.1007/978-1-4939-7825-0_21; Marxreiter F., Stemick J., Kohl Z. Huntington lowering strategies. Int J Mol Sci 2020;21(6):2146. DOI:10.3390/ijms21062146; Dabrowska M., Juzwa W., Krzyzosiak W.J. et al. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases. Front Neurosci 2018;12:75. DOI:10.3389/fnins.2018.00075; Kolli N., Lu M., Maiti P. et al. CRISPR-Cas9 mediated genesilencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci 2017;18(4):754. DOI:10.3390/ijms18040754; Pfister E.L., Kennington L., Straubhaar J. et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 2009;19(9):774–8. DOI:10.1016/j.cub.2009.03.030; Vigont V.A., Grekhnev D.A., Lebedeva O.S. et al. STIM2 mediates excessive store-operated calcium entry in patient-specific iPSCderived neurons modeling a juvenile form of Huntington’s disease. Front Cell Dev Biol 2021;9:625231. DOI:10.3389/fcell.2021.625231; Harding R.J., Tong Y.F. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018;39(5):754–69. DOI:10.1038/aps.2018.11; Monk R., Connor B. Cell Replacement therapy for Huntington’s disease. Adv Exp Med Biol 2020;1266:57–69. DOI:10.1007/978-981-15-4370-8_5; Goold R., Hamilton J., Menneteau T. et al. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington’s disease. Cell Rep 2021;36(9):109649. DOI:10.1016/j.celrep.2021.109649; Wheeler V.C., Dion V. Modifiers of CAG/CTG repeat instability: insights from mammalian models. J Huntingtons Dis 2021;10(1):123–48. DOI:10.3233/JHD-200426; Fjodorova M., Louessard M., Li Z. et al. CTIP2-regulated reduction in PKA-dependent DARPP32 phosphorylation in human medium spiny neurons: implications for Huntington disease. Stem Cell Rep 2019;13(3):448–57. DOI:10.1016/j.stemcr.2019.07.015; Paulsen J.S. Early detection of Huntington disease. Future Neurol 2010;5(1):10.2217/fnl.09.78. DOI:10.2217/fnl.09.78; Иллариошкин С.Н. Болезнь Гентингтона как модель для изучения нейродегенеративных заболеваний. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений 2016;(1):3–11.; Akrich M., Paterson F., Rabeharisoa V. Social and ethical issues regarding presymptomatic diagnosis: a literature review. Available at: https://hal-mines-paristech.archives-ouvertes.fr/hal-03040870/ document.; https://nmb.abvpress.ru/jour/article/view/523
-
6Academic Journal
Authors: A. S. Galushkin, A. Yu. Nekrasov, А. С. Галушкин, А. Ю. Некрасов
Contributors: The study was supported by the state task of the Ministry of Science and Higher Education of the Russian Federation, Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ»
Source: Medical Genetics; Том 22, № 2 (2023); 3-17 ; Медицинская генетика; Том 22, № 2 (2023); 3-17 ; 2073-7998
Subject Terms: мяРНК, gene therapy, antisense oligonucleotides, snRNA, генная терапия, антисмысловые олигонуклеотиды
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2244/1693; Gao D., Morini E., Salani M., Krauson A. J. et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nature Communications. 2021: 12 (1).; Wang Z., Burge C. B. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA, 2008; 14 (5): 802–813.; Wang G. S., Cooper T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Reviews Genetics, 2007; (10): 749-761; Tellier M., Maudlin I., Murphy S. Transcription and splicing: A twoway street. Wiley Interdisciplinary Reviews: RNA, 2020; 11 (5): e1593; Stenson P. D., Mort M., Ball E. V. et al. The Human Gene Mutation Database: 2008 update. Genome Medicine, 2009; 1 (1).; Havens M. A., Duelli D. M., Hastings M. L. Targeting RNA splicing for disease therapy. Wiley Interdisciplinary Reviews: RNA, 2013; 4 (3): 247–266.; Wally V., Murauer E. M., Bauer J. W. Spliceosome-Mediated Trans-Splicing: The Therapeutic Cut and Paste. Journal of Investigative Dermatology, 2012; 132 (8): 1959–1966.; Rigo F., Seth P. P., Bennett C. F. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Systems Biology of RNA Binding Proteins 2014: 303-352.; https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=summary&ligandId=9416; Gidaro T., Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Developmental Medicine & Child Neurology. 2019; 61. 1: 19-24.; https://www.fda.gov/files/advisory%20committees/published/Sarepta-Briefing-Information-for-the-April-25--2016-Meeting-of-the-Peripheral-and-Central-Nervous-System-Drugs-Advisory-Committee.pdf; Mendell J. R., Rodino-Klapac L. R., Sahenk Z. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of neurology 2013; Nov; 74 (5): 637-47.; Kim J., Hu C., Moufawad El Achkar C., Black L. E. et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. New England Journal of Medicine 2019; 381.17: 1644-1652.; Matera A. G., Terns R. M., Terns M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology. 2007; 8 (3): 209–220.; Preedagasamzin S., Nualkaew T., Pongrujikorn T. et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia / HbE patients. Biochemical and Biophysical Research Communications, 2018; 499 (1): 86–92.; Malcher J., Heidt L., Goyenvalle A. et al. Exon Skipping in a Dysf-Missense Mutant Mouse Model. Molecular therapy. Nucleic acids, 2018; 13: 198–207.; Mowry K., Steitz J. Identification of the human U7 snRNP as one of several factors involved in the 3’ end maturation of histone premessenger RNA’s. Science, 1987; 238 (4834): 1682–1687.; Lesman D., Rodriguez Y., Rajakumar D., Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Human Gene Therapy 2021; 32.21-22: 1317-1329.; Schaufele F., Gilmartin G. M., Bannwarth W., Birnstiel M. L. Compensatory mutations suggest that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature, 1986; 323 (6091): 777–781.; Suter D., Tomasini R., Reber U., et al. Double-Target Antisense U7 snRNAs Promote Efficient Skipping of an Aberrant Exon in Three Human -Thalassemic Mutations. Human Molecular Genetics, 1999: 8 (13), 2415–2423.; Meyer K., Schümperli D. Antisense Derivatives of U7 Small Nuclear RNA as Modulators of Pre-mRNA Splicing. Alternative Pre-mRNA Splicing, 2021: 481–494.; Verhaart I. E., Aartsma-Rus A. AON-Mediated Exon Skipping for Duchenne Muscular Dystrophy. In Zaher A., ed. Neuromuscular Disorders. InTech, Aug. 2012. Crossref, doi:10.5772/1668.; https://clinicaltrials.gov/ct2/show/NCT04240314?term=U7&draw=2&rank=1; Preedagasamzin S., Nualkaew T., Pongrujikorn T. et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia/HbE patients. Biochemical and Biophysical Research Communications, 2018; 499 (1): 86–92.; Nualkaew T., Jearawiriyapaisarn N., Hongeng S. et al. Restoration of correct βIVS2-654-globin mRNA splicing and HbA production by engineered U7 snRNA in β-thalassaemia/HbE erythroid cells. Scientific Reports, 2019: 9 (1): 1-8; Van der Wal E., Bergsma A. J., Pijnenburg J. M. et al. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease. Molecular Therapy - Nucleic Acids, 2017; 7: 90–100.; Rendu J., Brocard J., Denarier E., et al. Exon Skipping as a Therapeutic Strategy Applied to an RYR1 Mutation with Pseudo-Exon Inclusion Causing a Severe Core Myopathy. Human Gene Therapy, 2013; 24 (7): 702–713.; Bychkov I., Kuznetsova A., Baydakova G. et al. Processed pseudogene insertion in GLB1 causes Morquio B disease by altering intronic splicing regulatory landscape. npj Genomic Medicine, 2022; 7 (1): 1-6.; Pomeranz Krummel D. A., Oubridge C., Leung A. K. et al. Crystal structure of human spliceosomal U1 snRNP at 5.5 a resolution, Nature 2009; 458: 475–480.; Kaida D., Berg M. G., Younis I., et al. U1 snRNP protects pre-mR-NAs from premature cleavage and polyadenylation, Nature 2010; 468: 664–668.; Chiu A. C., Suzuki H. I., Wu X. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP, Molecular cell. 2018; 69. 4:648-663.; Zhuang Y., Weiner A. M. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell, 1986; 46 (6): 827–835.; Pinotti M., Balestra D., Rizzotto L. et al. Rescue of coagulation factor VII function by the U1+5A snRNA, Blood 2009; 113 (25): 6461–6464; Susani L., Pangrazio A., Sobacchi C. et al. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA, Human Mutation 2004; 24 (3): 225–235; Crehalet H., Latour P., Bonnet V. et al. U1 snRNA mis-binding: a new cause of CMT1B, Neurogenetics, 2009; 11 (1): 13–19.; Sánchez-Alcudia R., Pérez B., Pérez-Cerdá C., et al. Overexpression of adapted U1snRNA in patients’ cells to correct a 5′ splice site mutation in propionic acidemia. Molecular Genetics and Metabolism, 2011; 102 (2): 134–138.; Carmel I., Tal S., Vig I. et al. Comparative analysis detects dependencies among the 5ʹ splice-site positions. Rna. 2004; 10 (5): 828–840.; Balestra D., Faella A., Margaritis P. et al. An engineered U1 small nuclear RNA rescues splicing-defective coagulation F7 gene expression in mice. Journal of Thrombosis and Haemostasis, 2014; 12 (2): 177–185. doi:10.1111/jth.12471; Fernandez Alanis E., Pinotti M., Dal Mas A. et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Human Molecular Genetics, 2012; 21 (11): 2389–2398.; Rogalska M. E., Tajnik M., Licastro D. et al. Therapeutic activity of modified U1 core spliceosomal particles. Nature communications. 2016; 7: 11-13; Balestra D., Scalet D., Ferrarese M. et al. A Compensatory U1snR-NA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I. International Journal of Molecular Sciences, 2020; 21 (6): 2136.; Donadon I., Bussani E., Riccardi F. et al. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Research. 2019; 47.14: 7618-7632; Lei Q., Li C., Zuo Z. et al. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biology and Evolution, 2016; 8 (3): 562–577.; Riedmayr L. M. SMaRT for Therapeutic Purposes. Chimeric RNA. Humana, 2020; 219-232.; Puttaraju M., Jamison S. F., Mansfield S. G. et al. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nature biotechnology. 1999; 17: 246–52.; Liu X., Jiang Q., Mansfield S. G. et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nature biotechnology. 2002; 20: 47–52.; De Boeck K., Zolin A., Cuppens H. et al. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis, Journal of Cystic Fibrosis, 2014; 13 (4): 403-409.; Dallinger G., Puttaraju M., Mitchell L. G. et al. Development of spliceosome-mediated RNA trans- splicing (SMaRT) for the correction of inherited skin diseases. Experimental dermatology. 2003; 12: 37–46.; Philippi S., Lorain S., Beley C. et al. Dysferlin rescue by spliceosome-mediated pre-mRNA trans- splicing targeting introns harbouring weakly defined 3′ splice sites. Human Molecular Genetics 2015; 24: 4049–60.; Uchida N., Washington K. N., Mozer B., et al. RNA trans-splicing targeting endogenous β-globin pre-messenger RNA in human erythroid cells. Human gene therapy methods. 2017; 28.2: 91-99.; Azibani F., Brull A., Arandel L. et al. Gene Therapy via Trans-Splicing for LMNA-Related Congenital Muscular Dystrophy, Molecular Therapy - Nucleic Acids, 2018; 10: 376-386.; Peking P., Breitenbach J. S., Ablinger M. et al. (2019). An ex vivo RNA trans-splicing strategy to correct human generalized severe epidermolysis bullosa simplex. British Journal of Dermatology, 2019; 180 (1): 141-148.; Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672; Benskey M. J., Sandoval I. M., Miller K. et al. Basic concepts in viral vector-mediated gene therapy. In Viral Vectors for Gene Therapy. Humana Press, 2019; 3-26.; Meyer K., Marquis J., Trub J. et al. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Human Molecular Genetics 2008; 18: 546–555.; Broekhoff T. F., Sweegers C. C. G., Krijkamp E. M. et al. Early Cost-Effectiveness of Onasemnogene Abeparvovec-xioi (Zolgensma) and Nusinersen (Spinraza) Treatment for Spinal Muscular Atrophy I in The Netherlands With Relapse Scenarios. Value in Health. 2021; 24 (6): 759-769.; Au H. K. E., Isalan M., Mielcarek M. Gene therapy advances: a meta-analysis of AAV usage in clinical settings. Frontiers in medicine, 2021; 8.; Sehara Y., Fujimoto K. I., Ikeguchi K. et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson’s disease. Human gene therapy Clinical development. 2017; 28: 74–79.; Pillay S., Meyer N. L., Puschnik A. S. et al. An essential receptor for adeno-associated virus infection. Nature. 2016; 530 (7588): 108-112.
-
7Academic Journal
Source: ВЕСТНИК ОБРАЗОВАНИЯ И РАЗВИТИЯ НАУКИ РОССИЙСКОЙ АКАДЕМИИ ЕСТЕСТВЕННЫХ НАУК. :57-62
Subject Terms: рибозимы, short interfering RNA, онкология, RNA-interference, ген-ориентированная фармакотерапия, ribozymes, 3. Good health, DNAzymes, micro RNA, короткие интерферирующие РНК, gene-oriented pharmacotherapy, oncology, микроРНК, ДНКзимы, antisense oligonucleotides, антисмысловые олигонуклеотиды, РНК-интерференция
-
8Academic Journal
Authors: I. S. Tebieva, A. F. Murtazina, S. B. Artemieva, Yu. V. Gabisova, R. A. Zinchenko, И. С. Тебиева, А. Ф. Муртазина, С. Б. Артемьева, Ю. В. Габисова, Р. А. Зинченко
Source: Neuromuscular Diseases; Том 12, № 2 (2022); 28-36 ; Нервно-мышечные болезни; Том 12, № 2 (2022); 28-36 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2022-12-2
Subject Terms: спинальная мышечная атрофия, антисмысловые олигонуклеотиды, генозаместительная терапия, antisense oligonucleotide therapy, gene replacement therapy
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/486/320; D’Amico A., Mercuri E., Tiziano F.D. et al. Spinal muscular atrophy. Orphanet J Rare Dis 2011;6(71). DOI:10.1186/1750-1172-6-71.; Cure SMA.org. Voice of the Patient Report. Available at: http://www.curesma.org/documents/advocacy-documents/sma-voice-of-the-patient.pdf.; Проксимальная спинальная мышечная атрофия 5q. Клинические рекомендации. 2020. Доступно по: https://cr.minzdrav.gov.ru/recomend/593_2.; Verhaart I.E.C., Robertson A., Wilson I.J. et al. Prevalence, incidence and carrier frequency of 5q linked spinal muscular atrophy: a literature review. Orphanet J Rare Dis 2017;12(1):124. DOI:10.1186/s13023-017-0671-8.; Забненкова В.В., Дадали Е.Л., Поляков А.В. Проксимальная спинальная мышечная атрофия типов I–IV: особенности молекулярногенетической диагностики. Нервномышечные болезни 2013;(3):27–31. DOI:10.17650/2222-8721-2013-03-27-31.; Prior T.W., Leach M.E., Finanger E. Spinal Muscular Atrophy. 2000. In: GeneReviews®. Seattle: University of Washington, 1993–2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1352/.; Lefebvre S., Bürglen L., Reboullet S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80(1):155–65. DOI:10.1016/0092-8674(95)90460-3.; Farrar M.A., Kiernan M.C. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics 2015;12(2):290–302. DOI:10.1007/s13311-014-0314-x.; Инструкция по медицинскому применению препарата Спинраза (МНН: нусинерсен) ЛП-005730 от 28.02.2020.; Инструкция по медицинскому применению препарата Эврисди (МНН: рисдиплин) ЛП-006602 от 26.11.2020.; Инструкция по медицинскому применению препарата Золгенсма.; Glanzman A.M., Mazzone E., Mainet M. et al. The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromusc Disord 2010;20(3):155–61. DOI:10.1016/j.nmd.2009.11.014.; De Sanctis R., Coratti G., Amy Pasternak A. et al. Developmental milestones in type I spinal muscular atrophy. Neuromusc Disord 2016;26(11):754–9. DOI:10.1016/j.nmd.2016.10.002.; Артемьева С.Б., Белоусова Е.Д., Влодавец Д.В. и др. Консенсус в отношении генозаместительной терапии для лечения спинальной мышечной атрофии. Неврологический журнал им. Л.О. Бадаляна 2021;2(1):7–9. DOI:10.46563/2686-8997-2021-2-1-7-9.; Артемьева С.Б., Кузенкова Л.М., Ильина Е.С. и др. Эффективность и безопасность препарата нусинерсен в рамках программы расширенного доступа в России. Нервно-мышечные болезни 2020;10(3):35–41. DOI:10.17650/2222-8721-2020-10-3-35-41.; https://nmb.abvpress.ru/jour/article/view/486
-
9Academic Journal
Authors: O. I. Afanasieva, S. N. Pokrovsky
Source: Рациональная фармакотерапия в кардиологии, Vol 9, Iss 5, Pp 532-541 (2015)
Subject Terms: антисенс-терапия, антисмысловые олигонуклеотиды, нарушение липидного обмена, сердечно-сосудистые заболевания, Therapeutics. Pharmacology, RM1-950, Diseases of the circulatory (Cardiovascular) system, RC666-701
File Description: electronic resource
-
10Academic Journal
Authors: O. I. Afanasieva, S. N. Pokrovsky
Source: Рациональная фармакотерапия в кардиологии, Vol 9, Iss 5, Pp 532-541 (2015)
Subject Terms: lipid metabolism disturbances, нарушение липидного обмена, RM1-950, antisense therapy, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, cardiovascular disease, RC666-701, Diseases of the circulatory (Cardiovascular) system, Therapeutics. Pharmacology, антисенс-терапия, сердечно-сосудистые заболевания, antisense oligonucleotides, антисмысловые олигонуклеотиды
Access URL: http://www.rpcardio.com/jour/article/download/229/239
https://doaj.org/article/c6369ef43e3b42ce8e267593413927fd
https://doaj.org/article/5852c4fa547b4997bde3daf1b751df4c
https://core.ac.uk/display/87816652
https://www.rpcardio.com/jour/article/download/229/239
https://www.rpcardio.com/jour/article/view/229 -
11Academic Journal
Authors: M. R. Khaitov, V. V. Smirnov
Source: Фармакокинетика и Фармакодинамика, Vol 0, Iss 1, Pp 3-13 (2013)
Subject Terms: антисмысловые олигонуклеотиды, фосфотиоатные олигодеоксинуклеотиды, фармакокинетика, antisense oligonucleotides, phosphorothioate oligodeoxynucleotides, pharmacokinetics, Pharmacy and materia medica, RS1-441
File Description: electronic resource
-
12Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: олигонуклеотид-пептидные конъюгаты, miR-17, микроРНК, модификация, опухолевый рост, miR-21, искусственные рибонуклеазы, антисмысловые олигонуклеотиды, miR-155
Access URL: https://openrepository.ru/article?id=190725
-
13Academic Journal
Authors: ВЛАСОВ ВАЛЕНТИН ВИКТОРОВИЧ, ПЫШНЫЙ ДМИТРИЙ ВЛАДИМИРОВИЧ, ЗЕНКОВА МАРИНА АРКАДЬЕВНА, ВОРОБЬЕВ ПАВЕЛ ЕВГЕНЬЕВИЧ
Subject Terms: АНТИСМЫСЛОВЫЕ ОЛИГОНУКЛЕОТИДЫ, АНТИСМЫСЛОВЫЕ ТЕХНОЛОГИИ, ТЕРАПЕВТИЧЕСКИЕ НУКЛЕИНОВЫЕ КИСЛОТЫ
File Description: text/html
-
14Academic Journal
Authors: ХАИТОВ М.Р., СМИРНОВ В.В.
File Description: text/html
-
15Academic Journal
Authors: Афанасьева, Ольга, Покровский, Сергей
Subject Terms: АНТИСЕНС-ТЕРАПИЯ, АНТИСМЫСЛОВЫЕ ОЛИГОНУКЛЕОТИДЫ, НАРУШЕНИЕ ЛИПИДНОГО ОБМЕНА, СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ
File Description: text/html
-
16Academic Journal
Source: Наука из первых рук.
Subject Terms: АНТИСМЫСЛОВЫЕ ОЛИГОНУКЛЕОТИДЫ, АНТИСМЫСЛОВЫЕ ТЕХНОЛОГИИ, ТЕРАПЕВТИЧЕСКИЕ НУКЛЕИНОВЫЕ КИСЛОТЫ
File Description: text/html
-
17Academic Journal
Source: Фармакокинетика и фармакодинамика.
File Description: text/html
-
18Academic Journal
Source: Рациональная фармакотерапия в кардиологии.
Subject Terms: АНТИСЕНС-ТЕРАПИЯ, АНТИСМЫСЛОВЫЕ ОЛИГОНУКЛЕОТИДЫ, НАРУШЕНИЕ ЛИПИДНОГО ОБМЕНА, СЕРДЕЧНО-СОСУДИСТЫЕ ЗАБОЛЕВАНИЯ, 3. Good health
File Description: text/html
-
19Academic Journal
Source: Наука из первых рук.
File Description: text/html
-
20Academic Journal
Contributors: Казанский (Приволжский) федеральный университет
Subject Terms: микроРНК, антисмысловые олигонуклеотиды, модификация, олигонуклеотид-пептидные конъюгаты, опухолевый рост, miR-21, miR-17, miR-155, искусственные рибонуклеазы
Relation: В поисках моделей персонализированной медицины; http://rour.neicon.ru:80/xmlui/bitstream/rour/190725/1/nora.pdf; 577.218:616.006.04; https://openrepository.ru/article?id=190725
Availability: https://openrepository.ru/article?id=190725