-
1Academic Journal
Συγγραφείς: Latysheva, A.S., Misharin, A.Yu., Veselovsky, A.V., Morozevich, G.E., Novikov, R.A., Zolottsev, V.A.
Πηγή: Biomedical Chemistry: Research and Methods; Vol. 7 No. 3 (2024); e00241 ; Biomedical Chemistry: Research and Methods; Том 7 № 3 (2024); e00241 ; 2618-7531
Θεματικοί όροι: molecular docking, antiproliferative activity, synthesis of steroid derivatives, CYP17A1 inhibitors, prostate carcinoma cells, nitrogen-containing steroid derivatives, молекулярный докинг, антипролиферативная активность, синтез производных стероидов, ингибиторы СYP17А1, клетки карциномы простаты, азотсодержащие стероидные производные
Περιγραφή αρχείου: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/241/582; http://www.bmc-rm.org/index.php/BMCRM/article/view/241/583; http://www.bmc-rm.org/index.php/BMCRM/article/view/241/584
Διαθεσιμότητα: http://www.bmc-rm.org/index.php/BMCRM/article/view/241
-
2Academic Journal
Συγγραφείς: L. S. Klyushova, Yu. A. Golubeva, V. A. Vavilin, A. Yu. Grishanova, Л. С. Клюшова, Ю. А. Голубева, В. А. Вавилин, А. Ю. Гришанова
Συνεισφορές: Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-34-90129. Работа была поддержана бюджетным финансированием (проект FGMU-2022-0004, регистрационный номер 1021050601082-2-1.6.4, 3.1.6). Работа выполнена при поддержке Российского научного фонда (грант № 20-73-10207).
Πηγή: Acta Biomedica Scientifica; Том 7, № 5-2 (2022); 31-41 ; 2587-9596 ; 2541-9420
Θεματικοί όροι: CYP3A4, MRC-5, HepG2, 3D model, cytotoxicity, antiproliferative activity, CYP2C9, CYP2C19, 3D-модель, цитотоксичность, антипролиферативная активность
Περιγραφή αρχείου: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/3823/2425; Rumgay H, Ferlay J, de Martel C, Georges D, Ibrahim AS, Zheng R, et al. Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer. 2022; 161: 108-118. doi:10.1016/j.ejca.2021.11.023; Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J Hepatol. 2017; 9(21): 907-920. doi:10.4254/wjh.v9.i21.907; Tsvetkova D, Ivanova S. Application of approved cisplatin derivatives in combination therapy against different cancer diseases. Molecules. 2022; 27(8): 2466. doi:10.3390/molecules27082466; Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – An update from drug design perspective. Drug Des Devel Ther. 2017; 11: 599-616. doi:10.2147/DDDT.S119488; Hordyjewska A, Popiolek L, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014; 27(4): 611-621. doi:10.1007/s10534-014-9736-5; Nasulewicz A, Mazur A, Opolski A. Role of copper in tumour angiogenesis – Clinical implications. J Trace Elem Med Biol. 2004; 18(1): 1-8. doi:10.1016/j.jtemb.2004.02.004; Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The multifaceted roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers. 2020; 12(12): 3594. doi:10.3390/cancers12123594; Fang AP, Chen PY, Wang XY, Liu ZY, Zhang DM, Luo Y, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. Int J Cancer. 2019; 144(11): 2823-2832. doi:10.1002/ijc.31991; Baldari S, Di Rocco G, Toietta G. Current biomedical use of copper chelation therapy. Int J Mol Sci. 2020; 21(3): 1069. doi:10.3390/ijms21031069; Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, et al. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010; 16(16): 1813-1825. doi:10.2174/138161210791209009; Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: ‘Copper That Cancer.’ Metallomics. 2015; 7(11): 1459-1476. doi:10.1039/c5mt00149h; Zhang Z, Wang H, Yan M, Wang H, Zhang C. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review). Mol Med Rep. 2017; 15(1): 3-11. doi:10.3892/mmr.2016.6022; Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018; 11: 2063-2073. doi:10.2147/OTT.S161109; Wang X, Yu T, Liao X, Yang C, Han C, Zhu G, et al. The prognostic value of CYP2C subfamily genes in hepatocellular carcinoma. Cancer Med. 2018; 7(4): 966-980. doi:10.1002/cam4.1299; Ashida R, Okamura Y, Ohshima K, Kakuda Y, Uesaka K, Sugiura T, et al. CYP3A4 gene is a novel biomarker for predicting a poor prognosis in hepatocellular carcinoma. Cancer Genomics Proteomics. 2017; 14(6): 445-453. doi:10.21873/cgp.20054; Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007; 76(3): 391-396.; Lu C, Di L. In vitro and in vivo methods to assess pharmacokinetic drug-drug interactions in drug discovery and development. Biopharm Drug Dispos. 2020; 41: 3-31. doi:10.1002/bdd.2212; Choi JM, Oh SJ, Lee SY, Im JH, Oh JM, Ryu CS, et al. HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharm Res. 2015; 38(5): 691-704. doi:10.1007/s12272-014-0502-6; Kyffin JA, Sharma P, Leedale J, Colley HE, Murdoch C, Mistry P, et al. Impact of cell types and culture methods on the functionality of in vitro liver systems – A review of cell systems for hepatotoxicity assessment. Toxicol In Vitro. 2018; 48: 262-275. doi:10.1016/j.tiv.2018.01.023; Eremina JA, Lider EV, Sukhikh TS, Eltsov IV, Kuratieva NV, Zakharov BA, et al. Synthesis, crystal structures, spectroscopic, and cytotoxicity study of Cu(II), Co(II), Ni(II) and Pd(II) complexes with 2-anilinomethylidene-5,5-dimethylcyclohexane-1,3-dione. Polyhedron. 2020; 178. doi:10.1016/j.poly.2019.114325; Eremina JA, Ermakova EA, Smirnova KS, Klyushova LS, Berezin AS, Sukhikh TS, et al. Cu(II), Co(II), Mn(II) complexes with 5-phenyltetrazole and polypyridyl ligands: Synthesis, characterization and evaluation of the cytotoxicity and antimicrobial activity. Polyhedron. 2021; 206. doi:10.1016/j.poly.2021.115352; Eremina JA, Lider EV, Kuratieva NV, Samsonenko DG, Klyushova LS, Sheven’ DG, et al. Synthesis and crystal structures of cytotoxic mixed-ligand copper(II) complexes with alkyl tetrazole and polypyridine derivatives. Inorganica Chim Acta. 2021; 516. doi:10.1016/j.ica.2020.120169; Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol. 2015; 13(7): 402-414. doi:10.1089/adt.2015.655; Mancio-Silva L, Fleming HE, Miller AB, Milstein S, Liebow A, Haslett P, et al. Improving drug discovery by nucleic acid delivery in engineered human microlivers. Cell Metab. 2019; 29(3): 727-735. e3. doi:10.1016/j.cmet.2019.02.003; Bibi Z. Role of cytochrome P450 in drug interactions. Nutr Metab (Lond). 2008; 5: 27. doi:10.1186/1743-7075-5-27; Wang X, Liao X, Yang C, Huang K, Yu T, Yu L, et al. Identification of prognostic biomarkers for patients with hepatocellular carcinoma after hepatectomy. Oncol Rep. 2019; 41(3): 1586-1602. doi:10.3892/or.2019.6953; Ramsden D, Tweedie DJ, Chan TS, Tracy TS. Altered CYP2C9 activity following modulation of CYP3A4 levels in human hepatocytes: an example of protein-protein interactions. Drug Metab Dispos. 2014; 42(11): 1940-1946. doi:10.1124/dmd.114.057901; Subramanian M, Tam H, Zheng H, Tracy TS. CYP2C9-CYP3A4 protein-protein interactions: Role of the hydrophobic N terminus. Drug Metab Dispos. 2010; 38(6): 1003-1009. doi:10.1124/dmd.109.030155; Dilruba S, Kalayda GV. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol. 2016; 77(6): 1103-1124. doi:10.1007/s00280-016-2976-z; Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018; 9(6): 14. doi:10.3389/fphar.2018.00006; https://www.actabiomedica.ru/jour/article/view/3823
-
3Academic Journal
Συγγραφείς: Змеева (Zmeeva), Ольга (Ol'ga) Николаевна (Nikolaevna), Коломиец (Kolomiets), Наталья (Natal'ja) Эдуардовна (Eduardovna), Абрамец (Abramets), Наталья (Natal'ja) Юрьевна (Yur'evna), Бондарчук (Bondarchuk), Руслан (Ruslan) Анатольевич (Anatol'evich)
Πηγή: chemistry of plant raw material; No 4 (2017); 5-14
Химия растительного сырья; № 4 (2017); 5-14Θεματικοί όροι: 2. Zero hunger, antiproliferative activity, 0301 basic medicine, 0303 health sciences, перспективный вид, флавоноиды, 15. Life on land, антраценпроизводные, proteins, 3. Good health, perspective view, изофлавоноиды, антипролиферативная активность, 03 medical and health sciences, Lotus corniculatus, белки, flavonoids, lectin, anthracene derivatives, Lotus corniculatus L, isoflavones, лядвенец рогатый, лектин, horned lamb
Περιγραφή αρχείου: application/pdf
-
4Academic Journal
Συγγραφείς: Квасюк, Е.И., Ханчевский, М.А., Жуковец, Т.Н., Сыса, А.Г., Kvasyuk, E., Khancheuski, M., Zhukovets, T., Sysa, A.
Θεματικοί όροι: неларабин, 8-бромнеларабин, синтез, антипролиферативная активность, опухолевые культуры клеток HepG2, К562 и HK60, nelarabine, 8-bromonelarabine, synthesis, antiproliferative activity, HepG2, K562 and HL60 tumor cells
Περιγραφή αρχείου: application/pdf
Διαθεσιμότητα: https://rep.polessu.by/handle/123456789/33330
-
5Academic Journal
Συγγραφείς: Olesya V. Panibrat, Polina S. Shabunya, Sviatlana A. Fatykhava, Vladimir N. Zhabinskii, Peter A. Kiselev, О. В. Панибрат, П. С. Шабуня, С. А. Фатыхова, В. Н. Жабинский, П. А. Киселев
Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 62, № 1 (2018); 66-72 ; Доклады Национальной академии наук Беларуси; Том 62, № 1 (2018); 66-72 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-1
Θεματικοί όροι: монооксигеназная активность, Hep G2, antiproliferative activity, B[a]P-7, 8-diol, induction of cytochrome P450, monooxygenase activity, антипролиферативная активность, Б[а]П-7, 8-диол, индукция цитохрома Р450
Περιγραφή αρχείου: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/490/492; Khripach, V. A. Brassinosteroids. A new class of plant hormones / V. A. Khripach, V. N. Zhabinskii, A. de Groot. – San Diego: Academic Press, 1999. – 456 p.; Anticancer and antiproliferative activity of natural brassionsteroids / J. Malíková [et al.] // Phytochemistry. – 2008. – Vol. 69, N 2. – P. 418–426. doi.org/10.1016/j.phytochem.2007.07.028; Hoffmannová, L. Anticancer Activities of Brassinosteroids / L. Hoffmannová, J. Steigerová, M. Strnad // Brassinosteroids: Practical Applications in Agriculture and Human Health. – Bentham Science Publishers, 2012. – P. 84–93. doi.org/10.217 4/978160805298111201010084; Flow-cytometric analysis of reactive oxygen species in cancer cells under treatment with brassinosteroids / P. A. Kisselev [et al.] // Steroids. – 2017. – Vol. 117. – P. 11–15. doi.org/10.1016/j.steroids.2016.06.010; Differential metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants / D. Schwarz [et al.] // Carcinogenesis. – 2001. – Vol. 22 (3). – P. 453–459. doi.org/10.1093/carcin/22.3.453; Tompkins, L. M. Mechanisms of cytochrome P450 induction / L. M. Tompkins, A. D. Wallace // J. Biochem. Molecular Toxicology. – 2007. – Vol. 21 (4).– P. 176–181. doi.org/10.1002/jbt.20180; Ляхович, В. В. Индукция ферментов метаболизма ксенобиотиков / В. В. Ляхович, В. В. Цырлов. – Новосибирск: Наука, 1981. – 240 с.; Влияние структуры боковой цепи брассиностеридов на моноксигеназную активность микросом клеток печени / А. Г. Сыса [и др.] // Прикладная биохимия и микробиология. – 2010. – Т. 46, № 1. – С. 29–34.; Van Meerloo, J. Cell sensitivity assays: the MTT assay / J. van Meerloo, G. J. Kaspers, J. Cloos // Methods Mol. Biol. – 2011. – Vol. 731. – P. 237–245. doi.org/10.1007/978-1-61779-080-5_20; Zhabinskii, V. N. Steroid plant hormones: Effects outside plant kingdom / V. N. Zhabinskii, N. B. Khripach, V. A. Khripach // Steroids. – 2015. – Vol. 97. – P. 87–97. doi.org/10.1016/j.steroids.2014.08.025; The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones / Li Zhang [et al.] // Front. Pharmacol. – 2012. – Vol. 3. – P. 1–12. doi.org/10.3389/fphar.2012.00193; Chaudhary, A. Inhibition of human cytochrome CYP 1 enzymes by flavonoids of St. John's wort / A. Chaudhary, K. L. Willett // Toxicology. – 2006. – Vol. 217 (2–3). – P. 194–205. doi.org/10.1016/j.tox.2005.09.010; Inhibition of 17β-estradiol activation by CYP1A1: Genotype- and regioselective inhibition by St. John’s Wort and several natural polyphenols / D. Schwarz [et al.] // BBA-Proteins and Proteomics. – 2011. – Vol. 1814 (1). – P. 168–174. doi. org/10.1016/j.bbapap.2010.09.014; Zanger, U. M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation / U. M. Zanger, M. Schwab // Pharmacol. Ther. – 2013. – Vol. 138 (1). – P. 103–141. doi. org/10.1016/j.pharmthera.2012.12.007; https://doklady.belnauka.by/jour/article/view/490
-
6Academic Journal
Συγγραφείς: Scoferta, P.G., Spinu, C.I., Gostev, I.V., Tagadiuc, O.C., Sardari, V.V., Pirvu, O.I., Spinu, I.C., Cebotari, D.Y., Garbuz, О.S., Gudumac, V.S., Gulea, А.P.
Θεματικοί όροι: antiproliferative activity, антипролиферативная активность, избирательная активность, antioxidant activity, антиоксидантная активность, selective activity, 3. Good health
Σύνδεσμος πρόσβασης: https://research-journal.org/medical/antiproliferative-and-antioxidant-activity-of-nitrato-4-34-dimethylphenyl-2-2-oxo-3-methoxybenzylidene-hydrazinecarbothioamidocopper/
https://research-journal.org/wp-content/uploads/2011/10/2-1-68.pdf#page=19 -
7Academic Journal
Συγγραφείς: V. N. Bubenchicova, Yu. A. Starchak
Πηγή: Кубанский научный медицинский вестник, Iss 5, Pp 25-27 (2015)
Θεματικοί όροι: тимьян палласа, антиэкссудативная активность, антипролиферативная активность, антифлогистическая активность, thymus pallasianus, anti-exudative activity, antiproliferative activity, antiphlogistic activity, Medicine
Περιγραφή αρχείου: electronic resource
Relation: https://ksma.elpub.ru/jour/article/view/383; https://doaj.org/toc/1608-6228; https://doaj.org/toc/2541-9544
Σύνδεσμος πρόσβασης: https://doaj.org/article/a6f96da52ab44d8195124ea24e97d463
-
8Academic Journal
Συγγραφείς: P. A. KISELEV, O. V. PANIBRAT, A. G. SYSA, M. V. ANISOVICH, V. N. ZHABINSKII, V. A. KHRIPACH, П. А. КИСЕЛЕВ, О. В. ПАНИБРАТ, А. Г. СЫСА, М. В. АНИСОВИЧ, В. Н. ЖАБИНСКИЙ, В. А. ХРИПАЧ
Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 60, № 2 (2016); 73-77 ; Доклады Национальной академии наук Беларуси; Том 60, № 2 (2016); 73-77 ; 2524-2431 ; 1561-8323 ; undefined
Θεματικοί όροι: антипролиферативная активность, oxidative stress, intracellular level of reactive oxygen species, antiproliferative activity, окислительный стресс, внутриклеточный уровень активных форм кислорода
Περιγραφή αρχείου: application/pdf
Relation: https://doklady.belnauka.by/jour/article/view/38/39; WHO Cancer: Factsheet N. 297, February 2012.; Siegel, R. Cancer statistics / R. Siegel, D. Naishadham, A. Jemal // Cancer J. Clin. – 2012. – Vol. 62(1). – P. 10–29.; Cardiac side-effects of cancer chemotherapy / J. J. Monsuez [et al.] // Int. J. Cardiol. 2010. Vol. 144. P. 3–15.; Cell Death Pathways in Photodynamic Therapy of Cancer / P. Mroz [et al.] // Cancers. – 2011. – Vol. 3. – P. 2516–2539.; Khripach, V. A. Brassinosteroids. A new class of plant hormones / V. A. Khripach, V. N. Zhabinskii, A. de Groot. – San Diego: Academic Press, 1999.; Zhabinskii, N. Steroid plant hormones: Effects outside plant kingdom /N. Zhabinskii, N. Khripach, V. Khripach // Steroids. – 2015. – Vol. 97. – P. 87–97.; Anticancer and antiproliferative activity of natural brassinosteroids / J. Malikova [et al.] // Phytochemistry. – 2008. – Vol. 69. – P. 418–426.; Toxicity of (22R, 23R)-22,23-dihydroxystigmastane derivatives to cultured cancer cells / A. Misharina [et al.] // Steroids. – 2010. – Vol. 75. – P. 287–294.; Anticancer Activities of Brassinosteroids / L. Hoffmannová [et al.] / Brassinosteroids: Practical Applications in Agriculture and Human Health. – 2012. – P. 84–93.; Взаимосвязь структура-функция при оценке антипролиферативной активности брассиностероидов в отношении раковых клеток молочной железы MCF-7 / A. G. Sysa [et al.] // Vestnik Found Fund Res. – 2011. – Vol. 5. – P. 56–63.; Van Meerloo, J. Cell Sensitivity Assays: The MTT Assay / J. Van Meerloo, G. J. Kaspers, J. Cloos // Methods Mol. Biol. – 2011. – Vol. 731. – P. 237–245.; Новый синтез (22S,23S)-гомобрассинолида / А. А. Ахрем [и др.] // Докл. Академии наук СССР. – 1985. – Т. 283. – С. 130–133.; 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cytochrome P450s alter the formation of reactive oxygen species in liver cells / S. Knerr [et al.] // Mol. Nutr. Food Res. – 2006. – Vol. 50. – P. 378–384.; Eruslanov, E. Identification of ROS using oxidized DCFDA and flow-cytometry / E. Eruslanov, S. Kusmartsev // Methods Mol. Biol. – 2010. – Vol. 594. – P. 57–72.; Reactive Oxygen Species in Vascular Formation and Development / Y. Zhou [et al.] // Oxid. Med. Cell Longev. – 2013. – Vol. 2. – P. 10–25.; https://doklady.belnauka.by/jour/article/view/38; undefined
Διαθεσιμότητα: https://doklady.belnauka.by/jour/article/view/38
-
9Academic Journal
Συγγραφείς: Garbuz, О.S., Graur, V.O., Tagadiuc, O.C., Andronache, L.M., Sardari, V.V., Gulea, А.P., Gudumac, V.S.
Θεματικοί όροι: antiproliferative activity, антипролиферативная активность, cytotoxicity, antioxidant activity, цитотоксичность, антиоксидантная активность, 3. Good health
Σύνδεσμος πρόσβασης: https://research-journal.org/en/medicine/in-vitro-antiproliferative-potential-and-antioxidant-capacity-of-new-coordination-compounds/
http://research-journal.org/medical/in-vitro-antiproliferative-potential-and-antioxidant-capacity-of-new-coordination-compounds/
https://research-journal.org/wp-content/uploads/2011/10/05-2-59.pdf#page=122
https://cyberleninka.ru/article/n/in-vitro-antiproliferative-potential-and-antioxidant-capacity-of-new-coordination-compounds -
10Academic Journal
Συγγραφείς: Аникина, Л., Пухов, С., Дубровская, Е., Афанасьева, С., Клочков, С.
Θεματικοί όροι: ЖИЗНЕСПОСОБНОСТЬ КЛЕТОК, МТТ, РЕСАЗУРИН, СЕСКВИТЕРПЕНОВЫЕ ЛАКТОНЫ, ЭПОКСИАЛАНТОЛАКТОН, АМИНОПРОИЗВОДНЫЕ, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ
Περιγραφή αρχείου: text/html
-
11Academic Journal
Συγγραφείς: Бубенчикова, В., Кондратова, Ю.
Περιγραφή αρχείου: text/html
-
12Academic Journal
Συγγραφείς: A. N. Tevyashova, А. Н. Тевяшова
Πηγή: Fine Chemical Technologies; Vol 9, No 6 (2014); 11-25 ; Тонкие химические технологии; Vol 9, No 6 (2014); 11-25 ; 2686-7575 ; 2410-6593
Θεματικοί όροι: противоопухолевая активность, доксорубицин, даунорубицин, пролекарства, антипролиферативная активность
Περιγραφή αρχείου: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/418/464; Блохин Н.Н. Химиотерапия злокачественных опухолей. М.: Медицина, 1977. 317 c.; Arcamone F. Doxorubicin anticancer antibiotics. New York: Academic Press, 1981. 369 p.; Khadem H.S. El. Anthracycline antibiotics. New York: Academic Press, 1982. 285 p.; Горбунова В.А. Новые цитостатики в лечении злокачественных опухолей. М: Российский онкологический научный центр им. Н. Н. Блохина РАМН, 1998. 128 с.; Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin // Biochem. Pharmac. 1999. V. 57. P. 727-741.; Silverman R. Organic chemistry of drug design and drug action. San Diego: Elsevier Academic Press, 2004. 617 р.; Denny W. Emerging DNA topoisomerase inhibitors as anticancer drugs // Expert Opinion Emerg. Drugs. 2004. V. 9. P. 105-133.; Деженкова Л.Г., Цветков В.Б., Штиль А.А. Ингибиторы топоизомераз I и II: химическая структура, механизмы действия и роль в химиотерапии опухолей // Успехи химии. 2014. Т. 83. С. 82-94.; Garnier-Suillerot A., Marbeuf-Gueye C., Salerno M., Loetchutinat C., Fokt I., Krawczyk M., Kowalczyk T., Priebe W. Analysis of drug transport kinetics in multidrug-resistant cells: Implications for drug action // Curr. Med. Chem. 2001. V. 8. P. 51-64.; Monneret C. Recent developments in the field of antitumor anthracyclines // Eur. J. Med. Chem. 2001. V. 36. P. 483-493.; Preobrazhenskaya M.N. Tevyashova A.N., Olsufyeva E.N., Kuo-Feng Huang, Hsu-Shan Huang. Second generation drugs - derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin // J. Med. Sciences. 2006. V. 26. P. 119-128.; Олсуфьева Е.Н. Синтез и противоопухолевые свойства антрациклиновых антибиотиков, модифицированных по сахарному остатку // Биоорг. химия. 1992. Т. 8. C. 149-180.; Albert A., Selective Toxicity. London: Chapman and Hall, 1951. 597 p.; Arad-Yellin R., Eilat E. Acid labile prodrugs : pat. WO9937634, 1999.; Patel V.F. Acid labile immunoconjugate intermediates : pat. US5612474, 1997.; Damen E., de Groot F., Scheeren H. Novel anthracycline prodrugs // Expert Opinion on Therapeutic Patents. 2001. V. 11. P. 651-666.; Senter P.D. Anti-tumor prodrugs : pat. EP-0317956, 1989.; De Groot F., Damen E., Scheeren H. Anticancer prodrugs for application in monotherapy: Targeting hypoxia, tumor-associated enzymes, and receptors // Curr. Med. Chem. 2001. V. 8. P. 1093-1122.; Fenick D., Taatjes D., Koch T. Doxoform and daunoform: Anthracycline - formaldehyde conjugates toxic to resistant tumor cells // J. Med. Chem. 1997. V. 40. P. 2452-2461.; Taatjes D., Fenick D., Koch T. Epidoxoform: A hydrolytically more stable anthracycline - formaldehyde conjugate toxic to resistant tumor cells // J. Med. Chem. 1998. V. 41. P. 1306-1314.; Taatjes D., Koch T. Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells // Curr. Med. Chem. 2001. V. 8. P. 15-29.; Burke P., Koch T. Doxorubicin - formaldehyde conjugate, doxoform: Induction of apoptosis relative to doxorubicin // Anticancer Res. 2001. V. 21. P. 2753-2760.; Burke P., Koch T. Design, synthesis and biological evaluation of doxorubicin - formaldehyde conjugates targeted to breast cancer cells // J. Med. Chem. 2004. V. 47. P. 1193-1206.; Swift L., Cutts S., Rephaeli A., Nudelman A., Philips D. Activation of adriamycin by the pH-dependent formaldehyde-releasing prodrug hexamethylentetramine // Mol. Cancer Therap. 2003. V. 2. P. 189-198.; Ghosh S., Ellerbroek S., Wu Y., Stack M. Tumor-cell mediated proteolysis: Regulatory mechanisms and functional consequences // Fibrin. Proteol. 2000. V. 14. P. 87-97.; Lijnen H. Molecular interactions between the plasminogen/plasmin and matrix metalloproteinase // Fibrin. Proteol. 2000. V. 14. P. 175-181.; Koblinski J., Ahram M., Sloane B. Unrevealing the role of proteases in cancer // Clin. Chim. Acta. 2000. V. 291. P. 113-135.; Zhong Y.-J., Shao L.-H., Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy // Int. J. Oncol. 2013. V. 42. P. 373-383.; Dubowchik G., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3341-3346.; Dubowchik G., Mosure K., Khipe J., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (TaxolÒ), mitomycin C and doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3347-3352.; Dubowchik G.M., Firestone R.A., Padilla L., Willner D., Hofstead S.J., Mosure K, Knipe J.O., Lasch S.J., Trail P.A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity // Bioconjug. Chem. 2002. V. 13. P. 855-869.; Shao L.H., Liu S.P., Hou J.X., Zhang Y.H., Peng C.W., Zhong Y.J., Liu X., Liu X.L., Hong Y.P., Firestone R.A., Li Y. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study // Cancer. 2012. V. 118. P. 2986-2996.; Wang Q., Zhong I.J., Yuan J.-P., Shao L.-H., Zhang J., Tang L., Liu S.-P., Hong Y.-P., Firestone R. A., Li Y. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: A preclinical study // J. Translational Med. 2013. V. 11. P. 192-203.; Chakrabarty P., Carl P., Weber M., Katzenellenbogen J. Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin // J. Med. Chem. 1983. V. 26. P. 638-644.; Devy L., de Groot F., Blacher S., Hajitou A., Beusker P., Scheeren H., Foidart J., Noel A. Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity // Faser J. 2004. V. 18. P. 565-567.; Garsky V., Lumma P., Feng D., Wai J., Ramljt H., Sardana M., Oliff A., Jones R., DeFeo-Jones D., Freidinger R. The synthesis of a prodrug of doxorubicin design to provide reduced systemic toxicity and greater target efficacy // J. Med. Chem. 2001. V. 44. P. 4216-4224.; Guang X., McLeod X. Strategies for enzyme/prodrug cancer therapy // Clinical Cancer Res. 2001. V. 7. P. 3314-3324.; Tietze L.F., Schmuch K. Prodrugs for targeted tumor therapies: Recent developments in ADEPT, GDEPT and PMT // Curr. Phar. Des. 2011. V. 17. P. 3527-3547.; Vrudhula V., Svensson H., Senter P. Cephalosporin derivatives of doxorubicin as prodrugs for activation by monoclonal antibody-beta-lactamase conjugates // J. Med. Chem. 1995. V. 38. P. 1380-1385.; Papot S., Tranoy I., Tillequin F., Florent J.-C., Gesson J.-P. Design of selectively activated anticancer produgs: Elimination and cyclization strategies // Curr. Med. Chem. 2002. V. 2. P. 155-185.; Leenders R., Damen E., Bijsterveld E., Scheeren H., Houba P., van der Meulen-Muileman I., Boven E., Haisma H. Novel anthracycline-spacer-beta-glucuronide, beta-glucoside, and beta-galactoside prodrugs for application in selective chemotherapy // Biorg. Med. Chem. 1999. V. 7. P. 1597-1560.; Bakina E., Wu Z., Robenblum M., Farquhar D. Intensively cytotoxic anthracycline prodrugs: glucuronides // J. Med. Chem. 1997. V. 40. P. 4013-4018.; Houba P., Leenders R., Boven E., Scheeren J., Pinedo H., Haisma H. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase in antibody-directed enzyme prodrug therapy // Biohem. Pharmacol. 1996. V. 52. P. 455-463.; Haisma H., van Muijen M., Pinedo H., Boven E. Comparison of two anthracycline based prodrugs for activation by monoclonal antibody-beta-glucuronidase conjugate in the specific treatment of cancer // Cell Biophys. 1994. V. 24-25. P. 185-192.; Houba P., Boven E., van der Meulen-MuilemanI., Leenders R., Scheeren J., Pinedo H., Haisma H. Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody beta-glucuronidase conjugate // Int. J. Cancer. 2001. V. 91. P. 550-554.; Houba P., Boven E., Erkelens C., Leenders R., Scheeren J., Pinedo H., Haisma H. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts // Br. J. Cancer. 1998. V. 78. P. 1600-1606.; Shabat D., Rader C., List B., Lerner R., Barbas III C. Multiple event action of a generic prodrug trigger by antibody catalysis // Proc. Natl. Acad. Sci. 1999. V. 96. P. 6925-6930.; Bakina E., Farquhar D. Intensely cytotoxic anthracycline prodrugs: Galactosides // Anticancer Drug Des. 1999. V. 14. P. 507-515.; Lu J., Lowe D., Kennedy M., Low P. Folate-target enzyme prodrug cancer therapy utilizing penicillin-V-amidase and a doxorubicin prodrug // J. Drug Target. 1999. V. 7. P. 43-53.
Διαθεσιμότητα: https://www.finechem-mirea.ru/jour/article/view/418
-
13Academic Journal
Συγγραφείς: Бубенчикова, В., Кондратова, Ю.
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Покровский, Вадим, Анисимова, Наталья, Покровская, Марина, Александрова, Светлана, Соколов, Николай, Трещалина, Елена
Θεματικοί όροι: L-АСПАРАГИНАЗА RHODOSPIRILLUM RUBRUM, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ, ЛИМФАДЕНОЗ ФИШЕРА
Περιγραφή αρχείου: text/html
-
15Academic Journal
Συγγραφείς: Бубенчиков, Р., Покровский, M., Покровская, Т.
Θεματικοί όροι: VIOLA HIRTA L., АНТИЭКССУДАТИВНАЯ АКТИВНОСТЬ, АНТИФЛОГИСТИЧЕСКАЯ АКТИВНОСТЬ, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ, ОТХАРКИВАЮЩАЯ АКТИВНОСТЬ
Περιγραφή αρχείου: text/html
-
16Academic Journal
Πηγή: Международный журнал прикладных и фундаментальных исследований.
Θεματικοί όροι: 0404 agricultural biotechnology, 0402 animal and dairy science, 04 agricultural and veterinary sciences, SALVIA HORMINUM L., SALVIA OFFICINALIS L., ВОДОРАСТВОРИМЫЙ ПОЛИСАХАРИДНЫЙ КОМПЛЕКС, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ, АНТИЭКССУДАТИВНАЯ АКТИВНОСТЬ
Περιγραφή αρχείου: text/html
-
17Academic Journal
Πηγή: Фундаментальные исследования.
Θεματικοί όροι: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, 3. Good health, ЖИЗНЕСПОСОБНОСТЬ КЛЕТОК, МТТ, РЕСАЗУРИН, СЕСКВИТЕРПЕНОВЫЕ ЛАКТОНЫ, ЭПОКСИАЛАНТОЛАКТОН, АМИНОПРОИЗВОДНЫЕ, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ
Περιγραφή αρχείου: text/html
-
18Academic Journal
Πηγή: Медицинский вестник Башкортостана.
Θεματικοί όροι: ВОДОРАСТВОРИМЫЕ ПОЛИСАХАРИДЫ, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ, SALVIA SPLEN-DENS SELLOW EX ROEM. ET SCHULTES, SALVIA SPLENDENS SELLOW EX ROEM. ETSCHULTES, 3. Good health
Περιγραφή αρχείου: text/html
-
19Academic Journal
Πηγή: Современные проблемы науки и образования.
Θεματικοί όροι: ТИОТЕРПЕНОИД, СВОБОДНО-РАДИКАЛЬНОЕ ОКИСЛЕНИЕ, ВОСПАЛЕНИЕ, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ, ДИКЛОФЕНАК, 3. Good health
Περιγραφή αρχείου: text/html
-
20Academic Journal
Πηγή: Вестник РОНЦ им. Н. Н. Блохина РАМН.
Θεματικοί όροι: L-АСПАРАГИНАЗА RHODOSPIRILLUM RUBRUM, АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ, ЛИМФАДЕНОЗ ФИШЕРА, 3. Good health
Περιγραφή αρχείου: text/html