Εμφανίζονται 1 - 20 Αποτελέσματα από 30 για την αναζήτηση '"АНТИПРОЛИФЕРАТИВНАЯ АКТИВНОСТЬ"', χρόνος αναζήτησης: 0,67δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal
  2. 2
    Academic Journal

    Συνεισφορές: Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-34-90129. Работа была поддержана бюджетным финансированием (проект FGMU-2022-0004, регистрационный номер 1021050601082-2-1.6.4, 3.1.6). Работа выполнена при поддержке Российского научного фонда (грант № 20-73-10207).

    Πηγή: Acta Biomedica Scientifica; Том 7, № 5-2 (2022); 31-41 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3823/2425; Rumgay H, Ferlay J, de Martel C, Georges D, Ibrahim AS, Zheng R, et al. Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer. 2022; 161: 108-118. doi:10.1016/j.ejca.2021.11.023; Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J Hepatol. 2017; 9(21): 907-920. doi:10.4254/wjh.v9.i21.907; Tsvetkova D, Ivanova S. Application of approved cisplatin derivatives in combination therapy against different cancer diseases. Molecules. 2022; 27(8): 2466. doi:10.3390/molecules27082466; Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – An update from drug design perspective. Drug Des Devel Ther. 2017; 11: 599-616. doi:10.2147/DDDT.S119488; Hordyjewska A, Popiolek L, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014; 27(4): 611-621. doi:10.1007/s10534-014-9736-5; Nasulewicz A, Mazur A, Opolski A. Role of copper in tumour angiogenesis – Clinical implications. J Trace Elem Med Biol. 2004; 18(1): 1-8. doi:10.1016/j.jtemb.2004.02.004; Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The multifaceted roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers. 2020; 12(12): 3594. doi:10.3390/cancers12123594; Fang AP, Chen PY, Wang XY, Liu ZY, Zhang DM, Luo Y, et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. Int J Cancer. 2019; 144(11): 2823-2832. doi:10.1002/ijc.31991; Baldari S, Di Rocco G, Toietta G. Current biomedical use of copper chelation therapy. Int J Mol Sci. 2020; 21(3): 1069. doi:10.3390/ijms21031069; Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, et al. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010; 16(16): 1813-1825. doi:10.2174/138161210791209009; Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: ‘Copper That Cancer.’ Metallomics. 2015; 7(11): 1459-1476. doi:10.1039/c5mt00149h; Zhang Z, Wang H, Yan M, Wang H, Zhang C. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review). Mol Med Rep. 2017; 15(1): 3-11. doi:10.3892/mmr.2016.6022; Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018; 11: 2063-2073. doi:10.2147/OTT.S161109; Wang X, Yu T, Liao X, Yang C, Han C, Zhu G, et al. The prognostic value of CYP2C subfamily genes in hepatocellular carcinoma. Cancer Med. 2018; 7(4): 966-980. doi:10.1002/cam4.1299; Ashida R, Okamura Y, Ohshima K, Kakuda Y, Uesaka K, Sugiura T, et al. CYP3A4 gene is a novel biomarker for predicting a poor prognosis in hepatocellular carcinoma. Cancer Genomics Proteomics. 2017; 14(6): 445-453. doi:10.21873/cgp.20054; Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007; 76(3): 391-396.; Lu C, Di L. In vitro and in vivo methods to assess pharmacokinetic drug-drug interactions in drug discovery and development. Biopharm Drug Dispos. 2020; 41: 3-31. doi:10.1002/bdd.2212; Choi JM, Oh SJ, Lee SY, Im JH, Oh JM, Ryu CS, et al. HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharm Res. 2015; 38(5): 691-704. doi:10.1007/s12272-014-0502-6; Kyffin JA, Sharma P, Leedale J, Colley HE, Murdoch C, Mistry P, et al. Impact of cell types and culture methods on the functionality of in vitro liver systems – A review of cell systems for hepatotoxicity assessment. Toxicol In Vitro. 2018; 48: 262-275. doi:10.1016/j.tiv.2018.01.023; Eremina JA, Lider EV, Sukhikh TS, Eltsov IV, Kuratieva NV, Zakharov BA, et al. Synthesis, crystal structures, spectroscopic, and cytotoxicity study of Cu(II), Co(II), Ni(II) and Pd(II) complexes with 2-anilinomethylidene-5,5-dimethylcyclohexane-1,3-dione. Polyhedron. 2020; 178. doi:10.1016/j.poly.2019.114325; Eremina JA, Ermakova EA, Smirnova KS, Klyushova LS, Berezin AS, Sukhikh TS, et al. Cu(II), Co(II), Mn(II) complexes with 5-phenyltetrazole and polypyridyl ligands: Synthesis, characterization and evaluation of the cytotoxicity and antimicrobial activity. Polyhedron. 2021; 206. doi:10.1016/j.poly.2021.115352; Eremina JA, Lider EV, Kuratieva NV, Samsonenko DG, Klyushova LS, Sheven’ DG, et al. Synthesis and crystal structures of cytotoxic mixed-ligand copper(II) complexes with alkyl tetrazole and polypyridine derivatives. Inorganica Chim Acta. 2021; 516. doi:10.1016/j.ica.2020.120169; Sirenko O, Mitlo T, Hesley J, Luke S, Owens W, Cromwell EF. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev Technol. 2015; 13(7): 402-414. doi:10.1089/adt.2015.655; Mancio-Silva L, Fleming HE, Miller AB, Milstein S, Liebow A, Haslett P, et al. Improving drug discovery by nucleic acid delivery in engineered human microlivers. Cell Metab. 2019; 29(3): 727-735. e3. doi:10.1016/j.cmet.2019.02.003; Bibi Z. Role of cytochrome P450 in drug interactions. Nutr Metab (Lond). 2008; 5: 27. doi:10.1186/1743-7075-5-27; Wang X, Liao X, Yang C, Huang K, Yu T, Yu L, et al. Identification of prognostic biomarkers for patients with hepatocellular carcinoma after hepatectomy. Oncol Rep. 2019; 41(3): 1586-1602. doi:10.3892/or.2019.6953; Ramsden D, Tweedie DJ, Chan TS, Tracy TS. Altered CYP2C9 activity following modulation of CYP3A4 levels in human hepatocytes: an example of protein-protein interactions. Drug Metab Dispos. 2014; 42(11): 1940-1946. doi:10.1124/dmd.114.057901; Subramanian M, Tam H, Zheng H, Tracy TS. CYP2C9-CYP3A4 protein-protein interactions: Role of the hydrophobic N terminus. Drug Metab Dispos. 2010; 38(6): 1003-1009. doi:10.1124/dmd.109.030155; Dilruba S, Kalayda GV. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol. 2016; 77(6): 1103-1124. doi:10.1007/s00280-016-2976-z; Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018; 9(6): 14. doi:10.3389/fphar.2018.00006; https://www.actabiomedica.ru/jour/article/view/3823

  3. 3
    Academic Journal
  4. 4
  5. 5
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 62, № 1 (2018); 66-72 ; Доклады Национальной академии наук Беларуси; Том 62, № 1 (2018); 66-72 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2018-62-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/490/492; Khripach, V. A. Brassinosteroids. A new class of plant hormones / V. A. Khripach, V. N. Zhabinskii, A. de Groot. – San Diego: Academic Press, 1999. – 456 p.; Anticancer and antiproliferative activity of natural brassionsteroids / J. Malíková [et al.] // Phytochemistry. – 2008. – Vol. 69, N 2. – P. 418–426. doi.org/10.1016/j.phytochem.2007.07.028; Hoffmannová, L. Anticancer Activities of Brassinosteroids / L. Hoffmannová, J. Steigerová, M. Strnad // Brassinosteroids: Practical Applications in Agriculture and Human Health. – Bentham Science Publishers, 2012. – P. 84–93. doi.org/10.217 4/978160805298111201010084; Flow-cytometric analysis of reactive oxygen species in cancer cells under treatment with brassinosteroids / P. A. Kisselev [et al.] // Steroids. – 2017. – Vol. 117. – P. 11–15. doi.org/10.1016/j.steroids.2016.06.010; Differential metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 variants / D. Schwarz [et al.] // Carcinogenesis. – 2001. – Vol. 22 (3). – P. 453–459. doi.org/10.1093/carcin/22.3.453; Tompkins, L. M. Mechanisms of cytochrome P450 induction / L. M. Tompkins, A. D. Wallace // J. Biochem. Molecular Toxicology. – 2007. – Vol. 21 (4).– P. 176–181. doi.org/10.1002/jbt.20180; Ляхович, В. В. Индукция ферментов метаболизма ксенобиотиков / В. В. Ляхович, В. В. Цырлов. – Новосибирск: Наука, 1981. – 240 с.; Влияние структуры боковой цепи брассиностеридов на моноксигеназную активность микросом клеток печени / А. Г. Сыса [и др.] // Прикладная биохимия и микробиология. – 2010. – Т. 46, № 1. – С. 29–34.; Van Meerloo, J. Cell sensitivity assays: the MTT assay / J. van Meerloo, G. J. Kaspers, J. Cloos // Methods Mol. Biol. – 2011. – Vol. 731. – P. 237–245. doi.org/10.1007/978-1-61779-080-5_20; Zhabinskii, V. N. Steroid plant hormones: Effects outside plant kingdom / V. N. Zhabinskii, N. B. Khripach, V. A. Khripach // Steroids. – 2015. – Vol. 97. – P. 87–97. doi.org/10.1016/j.steroids.2014.08.025; The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones / Li Zhang [et al.] // Front. Pharmacol. – 2012. – Vol. 3. – P. 1–12. doi.org/10.3389/fphar.2012.00193; Chaudhary, A. Inhibition of human cytochrome CYP 1 enzymes by flavonoids of St. John's wort / A. Chaudhary, K. L. Willett // Toxicology. – 2006. – Vol. 217 (2–3). – P. 194–205. doi.org/10.1016/j.tox.2005.09.010; Inhibition of 17β-estradiol activation by CYP1A1: Genotype- and regioselective inhibition by St. John’s Wort and several natural polyphenols / D. Schwarz [et al.] // BBA-Proteins and Proteomics. – 2011. – Vol. 1814 (1). – P. 168–174. doi. org/10.1016/j.bbapap.2010.09.014; Zanger, U. M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation / U. M. Zanger, M. Schwab // Pharmacol. Ther. – 2013. – Vol. 138 (1). – P. 103–141. doi. org/10.1016/j.pharmthera.2012.12.007; https://doklady.belnauka.by/jour/article/view/490

  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 60, № 2 (2016); 73-77 ; Доклады Национальной академии наук Беларуси; Том 60, № 2 (2016); 73-77 ; 2524-2431 ; 1561-8323 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/38/39; WHO Cancer: Factsheet N. 297, February 2012.; Siegel, R. Cancer statistics / R. Siegel, D. Naishadham, A. Jemal // Cancer J. Clin. – 2012. – Vol. 62(1). – P. 10–29.; Cardiac side-effects of cancer chemotherapy / J. J. Monsuez [et al.] // Int. J. Cardiol. 2010. Vol. 144. P. 3–15.; Cell Death Pathways in Photodynamic Therapy of Cancer / P. Mroz [et al.] // Cancers. – 2011. – Vol. 3. – P. 2516–2539.; Khripach, V. A. Brassinosteroids. A new class of plant hormones / V. A. Khripach, V. N. Zhabinskii, A. de Groot. – San Diego: Academic Press, 1999.; Zhabinskii, N. Steroid plant hormones: Effects outside plant kingdom /N. Zhabinskii, N. Khripach, V. Khripach // Steroids. – 2015. – Vol. 97. – P. 87–97.; Anticancer and antiproliferative activity of natural brassinosteroids / J. Malikova [et al.] // Phytochemistry. – 2008. – Vol. 69. – P. 418–426.; Toxicity of (22R, 23R)-22,23-dihydroxystigmastane derivatives to cultured cancer cells / A. Misharina [et al.] // Steroids. – 2010. – Vol. 75. – P. 287–294.; Anticancer Activities of Brassinosteroids / L. Hoffmannová [et al.] / Brassinosteroids: Practical Applications in Agriculture and Human Health. – 2012. – P. 84–93.; Взаимосвязь структура-функция при оценке антипролиферативной активности брассиностероидов в отношении раковых клеток молочной железы MCF-7 / A. G. Sysa [et al.] // Vestnik Found Fund Res. – 2011. – Vol. 5. – P. 56–63.; Van Meerloo, J. Cell Sensitivity Assays: The MTT Assay / J. Van Meerloo, G. J. Kaspers, J. Cloos // Methods Mol. Biol. – 2011. – Vol. 731. – P. 237–245.; Новый синтез (22S,23S)-гомобрассинолида / А. А. Ахрем [и др.] // Докл. Академии наук СССР. – 1985. – Т. 283. – С. 130–133.; 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cytochrome P450s alter the formation of reactive oxygen species in liver cells / S. Knerr [et al.] // Mol. Nutr. Food Res. – 2006. – Vol. 50. – P. 378–384.; Eruslanov, E. Identification of ROS using oxidized DCFDA and flow-cytometry / E. Eruslanov, S. Kusmartsev // Methods Mol. Biol. – 2010. – Vol. 594. – P. 57–72.; Reactive Oxygen Species in Vascular Formation and Development / Y. Zhou [et al.] // Oxid. Med. Cell Longev. – 2013. – Vol. 2. – P. 10–25.; https://doklady.belnauka.by/jour/article/view/38; undefined

  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 9, No 6 (2014); 11-25 ; Тонкие химические технологии; Vol 9, No 6 (2014); 11-25 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/418/464; Блохин Н.Н. Химиотерапия злокачественных опухолей. М.: Медицина, 1977. 317 c.; Arcamone F. Doxorubicin anticancer antibiotics. New York: Academic Press, 1981. 369 p.; Khadem H.S. El. Anthracycline antibiotics. New York: Academic Press, 1982. 285 p.; Горбунова В.А. Новые цитостатики в лечении злокачественных опухолей. М: Российский онкологический научный центр им. Н. Н. Блохина РАМН, 1998. 128 с.; Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin // Biochem. Pharmac. 1999. V. 57. P. 727-741.; Silverman R. Organic chemistry of drug design and drug action. San Diego: Elsevier Academic Press, 2004. 617 р.; Denny W. Emerging DNA topoisomerase inhibitors as anticancer drugs // Expert Opinion Emerg. Drugs. 2004. V. 9. P. 105-133.; Деженкова Л.Г., Цветков В.Б., Штиль А.А. Ингибиторы топоизомераз I и II: химическая структура, механизмы действия и роль в химиотерапии опухолей // Успехи химии. 2014. Т. 83. С. 82-94.; Garnier-Suillerot A., Marbeuf-Gueye C., Salerno M., Loetchutinat C., Fokt I., Krawczyk M., Kowalczyk T., Priebe W. Analysis of drug transport kinetics in multidrug-resistant cells: Implications for drug action // Curr. Med. Chem. 2001. V. 8. P. 51-64.; Monneret C. Recent developments in the field of antitumor anthracyclines // Eur. J. Med. Chem. 2001. V. 36. P. 483-493.; Preobrazhenskaya M.N. Tevyashova A.N., Olsufyeva E.N., Kuo-Feng Huang, Hsu-Shan Huang. Second generation drugs - derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin // J. Med. Sciences. 2006. V. 26. P. 119-128.; Олсуфьева Е.Н. Синтез и противоопухолевые свойства антрациклиновых антибиотиков, модифицированных по сахарному остатку // Биоорг. химия. 1992. Т. 8. C. 149-180.; Albert A., Selective Toxicity. London: Chapman and Hall, 1951. 597 p.; Arad-Yellin R., Eilat E. Acid labile prodrugs : pat. WO9937634, 1999.; Patel V.F. Acid labile immunoconjugate intermediates : pat. US5612474, 1997.; Damen E., de Groot F., Scheeren H. Novel anthracycline prodrugs // Expert Opinion on Therapeutic Patents. 2001. V. 11. P. 651-666.; Senter P.D. Anti-tumor prodrugs : pat. EP-0317956, 1989.; De Groot F., Damen E., Scheeren H. Anticancer prodrugs for application in monotherapy: Targeting hypoxia, tumor-associated enzymes, and receptors // Curr. Med. Chem. 2001. V. 8. P. 1093-1122.; Fenick D., Taatjes D., Koch T. Doxoform and daunoform: Anthracycline - formaldehyde conjugates toxic to resistant tumor cells // J. Med. Chem. 1997. V. 40. P. 2452-2461.; Taatjes D., Fenick D., Koch T. Epidoxoform: A hydrolytically more stable anthracycline - formaldehyde conjugate toxic to resistant tumor cells // J. Med. Chem. 1998. V. 41. P. 1306-1314.; Taatjes D., Koch T. Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells // Curr. Med. Chem. 2001. V. 8. P. 15-29.; Burke P., Koch T. Doxorubicin - formaldehyde conjugate, doxoform: Induction of apoptosis relative to doxorubicin // Anticancer Res. 2001. V. 21. P. 2753-2760.; Burke P., Koch T. Design, synthesis and biological evaluation of doxorubicin - formaldehyde conjugates targeted to breast cancer cells // J. Med. Chem. 2004. V. 47. P. 1193-1206.; Swift L., Cutts S., Rephaeli A., Nudelman A., Philips D. Activation of adriamycin by the pH-dependent formaldehyde-releasing prodrug hexamethylentetramine // Mol. Cancer Therap. 2003. V. 2. P. 189-198.; Ghosh S., Ellerbroek S., Wu Y., Stack M. Tumor-cell mediated proteolysis: Regulatory mechanisms and functional consequences // Fibrin. Proteol. 2000. V. 14. P. 87-97.; Lijnen H. Molecular interactions between the plasminogen/plasmin and matrix metalloproteinase // Fibrin. Proteol. 2000. V. 14. P. 175-181.; Koblinski J., Ahram M., Sloane B. Unrevealing the role of proteases in cancer // Clin. Chim. Acta. 2000. V. 291. P. 113-135.; Zhong Y.-J., Shao L.-H., Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy // Int. J. Oncol. 2013. V. 42. P. 373-383.; Dubowchik G., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3341-3346.; Dubowchik G., Mosure K., Khipe J., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (TaxolÒ), mitomycin C and doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3347-3352.; Dubowchik G.M., Firestone R.A., Padilla L., Willner D., Hofstead S.J., Mosure K, Knipe J.O., Lasch S.J., Trail P.A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity // Bioconjug. Chem. 2002. V. 13. P. 855-869.; Shao L.H., Liu S.P., Hou J.X., Zhang Y.H., Peng C.W., Zhong Y.J., Liu X., Liu X.L., Hong Y.P., Firestone R.A., Li Y. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study // Cancer. 2012. V. 118. P. 2986-2996.; Wang Q., Zhong I.J., Yuan J.-P., Shao L.-H., Zhang J., Tang L., Liu S.-P., Hong Y.-P., Firestone R. A., Li Y. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: A preclinical study // J. Translational Med. 2013. V. 11. P. 192-203.; Chakrabarty P., Carl P., Weber M., Katzenellenbogen J. Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin // J. Med. Chem. 1983. V. 26. P. 638-644.; Devy L., de Groot F., Blacher S., Hajitou A., Beusker P., Scheeren H., Foidart J., Noel A. Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity // Faser J. 2004. V. 18. P. 565-567.; Garsky V., Lumma P., Feng D., Wai J., Ramljt H., Sardana M., Oliff A., Jones R., DeFeo-Jones D., Freidinger R. The synthesis of a prodrug of doxorubicin design to provide reduced systemic toxicity and greater target efficacy // J. Med. Chem. 2001. V. 44. P. 4216-4224.; Guang X., McLeod X. Strategies for enzyme/prodrug cancer therapy // Clinical Cancer Res. 2001. V. 7. P. 3314-3324.; Tietze L.F., Schmuch K. Prodrugs for targeted tumor therapies: Recent developments in ADEPT, GDEPT and PMT // Curr. Phar. Des. 2011. V. 17. P. 3527-3547.; Vrudhula V., Svensson H., Senter P. Cephalosporin derivatives of doxorubicin as prodrugs for activation by monoclonal antibody-beta-lactamase conjugates // J. Med. Chem. 1995. V. 38. P. 1380-1385.; Papot S., Tranoy I., Tillequin F., Florent J.-C., Gesson J.-P. Design of selectively activated anticancer produgs: Elimination and cyclization strategies // Curr. Med. Chem. 2002. V. 2. P. 155-185.; Leenders R., Damen E., Bijsterveld E., Scheeren H., Houba P., van der Meulen-Muileman I., Boven E., Haisma H. Novel anthracycline-spacer-beta-glucuronide, beta-glucoside, and beta-galactoside prodrugs for application in selective chemotherapy // Biorg. Med. Chem. 1999. V. 7. P. 1597-1560.; Bakina E., Wu Z., Robenblum M., Farquhar D. Intensively cytotoxic anthracycline prodrugs: glucuronides // J. Med. Chem. 1997. V. 40. P. 4013-4018.; Houba P., Leenders R., Boven E., Scheeren J., Pinedo H., Haisma H. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase in antibody-directed enzyme prodrug therapy // Biohem. Pharmacol. 1996. V. 52. P. 455-463.; Haisma H., van Muijen M., Pinedo H., Boven E. Comparison of two anthracycline based prodrugs for activation by monoclonal antibody-beta-glucuronidase conjugate in the specific treatment of cancer // Cell Biophys. 1994. V. 24-25. P. 185-192.; Houba P., Boven E., van der Meulen-MuilemanI., Leenders R., Scheeren J., Pinedo H., Haisma H. Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody beta-glucuronidase conjugate // Int. J. Cancer. 2001. V. 91. P. 550-554.; Houba P., Boven E., Erkelens C., Leenders R., Scheeren J., Pinedo H., Haisma H. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts // Br. J. Cancer. 1998. V. 78. P. 1600-1606.; Shabat D., Rader C., List B., Lerner R., Barbas III C. Multiple event action of a generic prodrug trigger by antibody catalysis // Proc. Natl. Acad. Sci. 1999. V. 96. P. 6925-6930.; Bakina E., Farquhar D. Intensely cytotoxic anthracycline prodrugs: Galactosides // Anticancer Drug Des. 1999. V. 14. P. 507-515.; Lu J., Lowe D., Kennedy M., Low P. Folate-target enzyme prodrug cancer therapy utilizing penicillin-V-amidase and a doxorubicin prodrug // J. Drug Target. 1999. V. 7. P. 43-53.

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20