Εμφανίζονται 1 - 20 Αποτελέσματα από 20 για την αναζήτηση '"АНАПЛАСТИЧЕСКАЯ АСТРОЦИТОМА"', χρόνος αναζήτησης: 0,64δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке гранта РФФИ 18-315-00437

    Πηγή: Siberian journal of oncology; Том 20, № 6 (2021); 55-68 ; Сибирский онкологический журнал; Том 20, № 6 (2021); 55-68 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1985/931; Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI--Atheromatous affection of arteries. 1858. Nutr Rev. 1989 Jan; 47(1): 23–5. doi:10.1111/j.1753-4887.1989.tb02747.x.; Strauss Y., Globus J. Spongioblastoma with unusually rapid growth following decompression. Neurol. Bull. 1918; 1: 273–279.; Земская А.Г. Мультиформные глиобластомы головного мозга. Л., 1976. 178 с.; Смирнов Л.И. Морфология нервной системы, общая нормальная и патологическая гистология. М., 1935. 256 с.; Гейманович А.И., Смирнова Л.И. Опухоли центральной нервной системы. Гос. мед. издат. УССР, 1936; С. 401–421.; Васкин И.С., Васильев А.А. Патогистологическая характеристика опухолей центральной нервной системы. Современная хирургия. 1934; 6: 506–526.; Савенко С.Н. Мультиформная спонгиобластома. Опухоли центральной нервной системы. 1936; С. 424–443.; Scherer H., Gliomstudien. I.I. Uber die Grenzen der Zelldiagnostik der Gehirngeschwulsten, gargestellt am Beispiel des «Glioblastoma multiforme ganglioides. Virchow s, Arch. 1935; 294: 795–822.; Scherer H. The forms of growth in gliomas and their practical significance. Brain. 1940; 63: 11–35.; Hegi M.E., Diserens A.C., Gorlia T., Hamou M.F., de Tribolet N., Weller M., Kros J.M., Hainfellner J.A., Mason W., Mariani L., Bromberg J.E., Hau P., Mirimanoff R.O., Cairncross J.G., Janzer R.C., Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005 Mar 10; 352(10): 997–1003. doi:10.1056/NEJMoa043331.; Chinot O.L., Barrié M., Fuentes S., Eudes N., Lancelot S., Metellus P., Muracciole X., Braguer D., Ouafik L., Martin P.M., Dufour H., Figarella-Branger D. Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J Clin Oncol. 2007 Apr 20; 25(12): 1470–5. doi:10.1200/JCO.2006.07.4807.; Watanabe T., Nobusawa S., Kleihues P., Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009 Apr; 174(4): 1149–53. doi:10.2353/ajpath.2009.080958.; Kim Y.H., Nobusawa S., Mittelbronn M., Paulus W., Brokinkel B., Keyvani K., Sure U., Wrede K., Nakazato Y., Tanaka Y., Vital A., Mariani L., Stawski R., Watanabe T., De Girolami U., Kleihues P., Ohgaki H. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010 Dec; 177(6): 2708–14. doi:10.2353/ajpath.2010.100680.; Labussière M., Idbaih A., Wang X.W., Marie Y., Boisselier B., Falet C., Paris S., Laffaire J., Carpentier C., Crinière E., Ducray F., El Hallani S., Mokhtari K., Hoang-Xuan K., Delattre J.Y., Sanson M. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology. 2010; 74(23): 1886–90. doi:10.1212/WNL.0b013e3181e1cf3a.; Kim Y.H., Nobusawa S., Mittelbronn M., Paulus W., Brokinkel B. Keyvani K., Sure U., Wrede K., Nakazato Y., Tanaka Y., Vital A., Mariani L., Stawski R., Watanabe T., De Girolami U., Kleihues P., Ohgaki H. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010 Dec; 177(6): 2708–14. doi:10.2353/ajpath.2010.100680.; Hartmann C., Hentschel B., Tatagiba M., Schramm J., Schnell O., Seidel C., Stein R., Reifenberger G., Pietsch T., von Deimling A., Loeffler M., Weller M. Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res. 2011; 17(13): 4588–99. doi:10.1158/1078-0432.CCR-10-3194.; Meyer M., Reimand J., Lan X., Head R., Zhu X., Kushida M., Bayani J., Pressey J.C., Lionel A.C., Clarke I.D., Cusimano M., Squire J.A., Scherer S.W., Bernstein M., Woodin M.A., Bader G.D., Dirks P.B. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA. 2015; 112(3): 851–6. doi:10.1073/pnas.1320611111.; Parker N.R., Hudson A.L., Khong P., Parkinson J.F., Dwight T., Ikin R.J., Zhu Y., Cheng Z.J., Vafaee F., Chen J., Wheeler H.R., Howell V.M. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep. 2016 Mar 4; 6: 22477. doi:10.1038/srep22477.; Qazi M.A., Vora P., Venugopal C., Sidhu S.S., Moffat J., Swanton C., Singh S.K. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017 Jul 1; 28(7): 1448–56. doi:10.1093/annonc/mdx169.; Juillerat-Jeanneret L., Bernasconi C.C., Bricod C., Gros S., Trepey S., Benhattar J., Janzer R.C. Heterogeneity of human glioblastoma: glutathione-S-transferase and methylguanine-methyltransferase. Cancer Invest. 2008 Jul; 26(6): 597–609. doi:10.1080/07357900802072913.; Hamilton M.G., Roldán G., Magliocco A., McIntyre J.B., Parney I., Easaw J.C. Determination of the methylation status of MGMT in different regions within glioblastoma multiforme. J Neurooncol. 2011 Apr; 102(2): 255–60. doi:10.1007/s11060-010-0307-5.; Mitiushkina N.V., Iyevleva A.G., Poltoratskiy A.N., Ivantsov A.O., Togo A.V., Polyakov I.S., Orlov S.V., Matsko D.E., Novik V.I., Imyanitov E.N. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol. 2013 Jul; 121(7): 370–6. doi:10.1002/cncy.21281.; Журид И.С. К учению о спонгиобластомах. Сборник, посвященный 30-летию деятельности С.Н. Давиденкова. 1936; С. 193–194.; Маньковский Б.Н., Савенко С.Н. О корреляции клиники и структуры глиом. Советская психоневрология. 1937; 8: 43–49.; Ротенберг С.И. К характеристике мультиформных спонгиобластом. Труды II Всесоюзного съезда невропатологов и психиатров. T. IV. 1937; 331–355.; Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008 Oct 23; 455(7216): 1061–8. doi:10.1038/nature07385.; Johnson B.E., Mazor T., Hong C., Barnes M., Aihara K., McLean C.Y., Fouse S.D., Yamamoto S., Ueda H., Tatsuno K., Asthana S., Jalbert L.E., Nelson S.J., Bollen A.W., Gustafson W.C., Charron E., Weiss W.A., Smirnov I.V., Song J.S., Olshen A.B., Cha S., Zhao Y., Moore R.A., Mungall A.J., Jones S.J.M., Hirst M., Marra M.A., Saito N., Aburatani H., Mukasa A., Berger M.S., Chang S.M., Taylor B.S., Costello J.F. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014 Jan 10; 343(6167): 189–193. doi:10.1126/science.1239947.; Yip S., Miao J., Cahill D.P., Iafrate A.J., Aldape K., Nutt C.L., Louis D.N. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 2009 Jul 15; 15(14): 4622–9. doi:10.1158/1078-0432.CCR-08-3012.; Little S.E., Popov S., Jury A., Bax D.A., Doey L., Al-Sarraj S., Jurgensmeier J.M., Jones C. Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity. Cancer Res. 2012 Apr 1; 72(7): 1614–20. doi:10.1158/0008-5472.CAN-11-4069.; Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., Curtis C., Watts C., Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013 Mar 5; 110(10): 4009–14. doi:10.1073/pnas.1219747110.; Soeda A., Hara A., Kunisada T., Yoshimura S., Iwama T., Park D.M. The evidence of glioblastoma heterogeneity. Sci Rep. 2015 Jan 27; 5: 7979. doi:10.1038/srep07979.; Reinartz R., Wang S., Kebir S., Silver D.J., Wieland A., Zheng T., Küpper M., Rauschenbach L., Fimmers R., Shepherd T.M., Trageser D., Till A., Schäfer N., Glas M., Hillmer A.M., Cichon S., Smith A.A., Pietsch T., Liu Y., Reynolds B.A., Yachnis A., Pincus D.W., Simon M., Brüstle O., Steindler D.A., Scheffler B. Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma. Clin Cancer Res. 2017 Jan 15; 23(2): 562–574. doi:10.1158/1078-0432.CCR-15-2089.; Yan H., Parsons D.W., Jin G., McLendon R., Rasheed B.A., Yuan W., Kos I., Batinic-Haberle I., Jones S., Riggins G.J., Friedman H., Friedman A., Reardon D., Herndon J., Kinzler K.W., Velculescu V.E., Vogelstein B., Bigner D.D. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009 Feb 19; 360(8): 765–73. doi:10.1056/NEJMoa0808710.; Parkinson J.F., Wheeler H.R., Clarkson A., McKenzie C.A., Biggs M.T., Little N.S., Cook R.J., Messina M., Robinson B.G., McDonald K.L. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol. 2008 Mar; 87(1): 71–8. doi:10.1007/s11060-007-9486-0.; Cao V.T., Jung T.Y., Jung S., Jin S.G., Moon K.S., Kim I.Y., Kang S.S., Park C.S., Lee K.H., Chae H.J. The correlation and prognostic significance of MGMT promoter methylation and MGMT protein in glioblastomas. Neurosurgery. 2009 Nov; 65(5): 866–75; discussion 875. doi:10.1227/01.NEU.0000357325.90347.A1.; Akgül S., Patch A.M., D’Souza R.C.J., Mukhopadhyay P., Nones K., Kempe S., Kazakoff S.H., Jeffree R.L., Stringer B.W., Pearson J.V., Waddell N., Day B.W. Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers (Basel). 2019; 11(2): 190. doi:10.3390/cancers11020190.; Lemée J.M., Clavreul A., Menei P. Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro Oncol. 2015 Oct; 17(10): 1322–32. doi:10.1093/neuonc/nov119.; Parker N.R., Khong P., Parkinson J.F., Howell V.M., Wheeler H.R. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol. 2015 Mar 3; 5: 55. doi:10.3389/fonc.2015.00055.; Hemmati H.D., Nakano I., Lazareff J.A., Masterman-Smith M., Geschwind D.H., Bronner-Fraser M., Kornblum H.I. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003 Dec 9; 100(25): 15178–83. doi:10.1073/pnas.2036535100.; Singh S.K., Clarke I.D., Terasaki M., Bonn V.E., Hawkins C., Squire J., Dirks P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003 Sep 15; 63(18): 5821–8.; Ding Y., Hubert C.G., Herman J., Corrin P., Toledo C.M., SkuttKakaria K., Vazquez J., Basom R., Zhang B., Risler J.K., Pollard S.M., Nam D.H., Delrow J.J., Zhu J., Lee J., DeLuca J., Olson J.M., Paddison P.J. Cancer-Specific requirement for BUB1B/BUBR1 in human brain tumor isolates and genetically transformed cells. Cancer Discov. 2013 Feb; 3(2): 198–211. doi:10.1158/2159-8290.CD-12-0353.; Herman J.A., Toledo C.M., Olson J.M., DeLuca J.G., Paddison P.J. Molecular pathways: regulation and targeting of kinetochore-microtubule attachment in cancer. Clin Cancer Res. 2015 Jan 15; 21(2): 233–9. doi:10.1158/1078-0432.CCR-13-0645.; Lee E., Pain M., Wang H., Herman J.A., Toledo C.M., DeLuca J.G., Yong R.L., Paddison P., Zhu J. Sensitivity to BUB1B Inhibition Defines an Alternative Classification of Glioblastoma. Cancer Res. 2017; 77(20): 5518–5529. doi:10.1158/0008-5472.CAN-17-0736.; Berghoff A.S., Kiesel B., Widhalm G., Rajky O., Ricken G., Wöhrer A., Dieckmann K., Filipits M., Brandstetter A., Weller M., Kurscheid S., Hegi M.E., Zielinski C.C., Marosi C., Hainfellner J.A., Preusser M., Wick W. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015 Aug; 17(8): 1064–75. doi:10.1093/neuonc/nou307.; Yang I., Tihan T., Han S.J., Wrensch M.R., Wiencke J., Sughrue M.E., Parsa A.T. CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci. 2010 Nov; 17(11): 1381–5. doi:10.1016/j.jocn.2010.03.031.; Hussain S.F., Yang D., Suki D., Aldape K., Grimm E., Heimberger A.B. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 2006 Jul; 8(3): 261–79. doi:10.1215/15228517-2006-008.; Donson A.M., Birks D.K., Schittone S.A., KleinschmidtDeMasters B.K., Sun D.Y., Hemenway M.F., Handler M.H., Waziri A.E., Wang M., Foreman N.K. Increased immune gene expression and immune cell infiltration in high-grade astrocytoma distinguish long-term from short-term survivors. J Immunol. 2012 Aug 15; 189(4): 1920–7. doi:10.4049/jimmunol.1103373.; Li B., Severson E., Pignon J.C., Zhao H., Li T., Novak J., Jiang P., Shen H., Aster J.C., Rodig S., Signoretti S., Liu J.S., Liu X.S. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016 Aug 22; 17(1): 174. doi:10.1186/s13059-016-1028-7.; Huang B., Zhang H., Gu L., Ye B., Jian Z., Stary C., Xiong X. Advances in Immunotherapy for Glioblastoma Multiforme. J Immunol Res. 2017; 2017: 3597613. doi:10.1155/2017/3597613.; Daniel P.M., Filiz G., Tymms M.J., Ramsay R.G., Kaye A.H., Stylli S.S., Mantamadiotis T. Intratumor MAPK and PI3K signaling pathway heterogeneity in glioblastoma tissue correlates with CREB signaling and distinct target gene signatures. Exp Mol Pathol. 2018 Aug; 105(1): 23–31. doi:10.1016/j.yexmp.2018.05.009.; Neftel C., Laffy J., Filbin M.G., Hara T., Shore M.E., Rahme G.J., Richman A.R., Silverbush D., Shaw M.L., Hebert C.M., Dewitt J., Gritsch S., Perez E.M., Gonzalez Castro L.N., Lan X., Druck N., Rodman C., Dionne D., Kaplan A., Bertalan M.S., Small J., Pelton K., Becker S., Bonal D., Nguyen Q.D., Servis R.L., Fung J.M., Mylvaganam R., Mayr L., Gojo J., Haberler C., Geyeregger R., Czech T., Slavc I., Nahed B.V., Curry W.T., Carter B.S., Wakimoto H., Brastianos P.K., Batchelor T.T., StemmerRachamimov A., Martinez-Lage M., Frosch M.P., Stamenkovic I., Riggi N., Rheinbay E., Monje M., Rozenblatt-Rosen O., Cahill D.P., Patel A.P., Hunter T., Verma I.M., Ligon K.L., Louis D.N., Regev A., Bernstein B.E., Tirosh I., Suvà M.L. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019 Aug 8; 178(4): 835–849.e21. doi:10.1016/j.cell.2019.06.024.; Wenger A., Ferreyra Vega S., Kling T., Bontell T.O., Jakola A.S., Carén H. Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro Oncol. 2019 May 6; 21(5): 616–627. doi:10.1093/neuonc/noz011.; Pang L., Hu J., Li F., Yuan H., Yan M., Liao G., Xu L., Pang B., Ping Y., Xiao Y., Li X. Discovering Rare Genes Contributing to Cancer Stemness and Invasive Potential by GBM Single-Cell Transcriptional Analysis. Cancers (Basel). 2019 Dec 16; 11(12): 2025. doi:10.3390/cancers11122025.; Lee E., Yong R.L., Paddison P., Zhu J. Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 2018 Dec; 53: 201–211. doi:10.1016/j.semcancer.2018.07.006.; https://www.siboncoj.ru/jour/article/view/1985

  2. 2
    Academic Journal

    Συνεισφορές: Исследование выполнено при финансовой поддержке Минобрнауки в рамках научного проекта № 075-15-2020-809.

    Πηγή: Medical Visualization; Том 26, № 4 (2022); 82-92 ; Медицинская визуализация; Том 26, № 4 (2022); 82-92 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1269/761; McNeill K.A. Epidemiology of Brain Tumors. Neurologic. Clinics. 2016; 34 (4): 981–998. https://doi.org/10.1016/j.ncl.2016.06.014; Ostrom Q.T., Patil N., Cioffi G. et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology. 2020; 22 (Suppl. 1): iv1–iv96. https://doi.org/10.1093/neuonc/noaa200; Suzuki, H., Aoki, K., Chiba, K. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2015; 47 (3): 458–468. https://doi.org/10.1007/s00401-015-1398-z; Katsanos A.H., Alexiou G.A., Fotopoulos A.D. et al. Performance of 18 F-FDG, 11 C-Methionine, and 18 F-FET PET for Glioma Grading. Clin. Nuclear Med. 2019; 44 (11): 864–869. https://doi.org/10.1097/RLU.0000000000002654; Takei H., Shinoda J., Ikuta S. et al. Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. J. Neurosurg. 2020; 133 (4): https://doi.org/10.3171/2019.5.JNS19780; Law I., Albert N.L., Arbizu J. et al. Joint EANM/EANO/ RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F]FDG: version 1.0. Eur. J. Nucl. Med. Mol. Imaging. 2019; 46 (3): 540–557. https://doi.org/10.1007/s00259-018-4207-9; Weller M., van den Bent M., Tonn J.C. et al.; European Association for Neuro-Oncology (EANO) Task Force on Gliomas. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017; 18 (6): e315–e329. https://doi.org/10.1016/S1470-2045(17)30194-8; Shinozaki N., Uchino Y., Yoshikawa K. et al. Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11 C-methionine positron emission tomography. J. Neurosurg. 2011; 114 (6): 1640–1647. https://doi.org/10.3171/2010.11.JNS10553; Hatakeyama T., Kawai N., Nishiyama Y. et al. 11 C-methionine (MET) and18 F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur. J. Nucl. Med. Mol. Imaging. 2008; 35 (11): 2009–2017. https://doi.org/10.1007/s00259-008-0847-5; Kato T., Shinoda J., Nakayama N. et al. Metabolic Assessment of Gliomas Using 11 C-Methionine, [18 F] Fluorodeoxyglucose, and 11 C-Choline Positron-Emission Tomography. Am. J. Neuroradiol. 2008; 29 (6): 1176–1182. https://doi.org/10.3174/ajnr.A1008; Song S., Cheng Y., Ma J. et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study. Eur. J. Nucl. Med. Mol. Imaging. 2020; 47 (6): 1458–1467. https://doi.org/10.1007/s00259-019-04656-2; Unterrainer M., Fleischmann D.F., Vettermann F. et al. TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative18 F-GE-180 PET study. Eur. J. Nucl. Med. Mol. Imaging. 2020; 47 (6): 1368–1380. https://doi.org/10.1007/s00259-019-04491-5; Okita Y., Shofuda T., Kanematsu D. et al. The association between 11 C-methionine uptake, IDH gene mutation, and MGMT promoter methylation in patients with grade II and III gliomas. Clin. Radiol. 2020; 75 (8), 622–628. https://doi.org/10.1016/j.crad.2020.03.033; Kim D., Chun J.-H., Kim S.H. et al. Re-evaluation of the diagnostic performance of 11 C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur. J. Nucl. Med. Mol. Imaging. 2019; 46 (8): 1678–1684. https://doi.org/10.1007/s00259-019-04337-0; Verger A., Metellus P., Sala Q. et al. IDH mutation is paradoxically associated with higher 18 F-FDOPA PET uptake in diffuse grade II and grade III gliomas. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1306–1311. https://doi.org/10.1007/s00259-017-3668-6; Ogawa T., Kawai N., Miyake K. et al. Diagnostic value of PET/CT with 11 C-methionine (MET) and 18 F-fluorothymidine (FLT) in newly diagnosed glioma based on the 2016 WHO classification. EJNMMI Research. 2020; 10 (1): 44. https://doi.org/10.1186/s13550-020-00633-1; Kebir S., Lazaridis L., Weber M. et al. Comparison of l-Methyl- 11 C-Methionine PET With Magnetic Resonance Spectroscopy in Detecting Newly Diagnosed Glioma. Clin. Nucl. Med. 2019; 44 (6): e375–e381. https://doi.org/10.1097/RLU.0000000000002577; Saito T., Maruyama T., Muragaki Y. et al. 11 C-Methionine Uptake Correlates with Combined 1p and 19q Loss of Heterozygosity in Oligodendroglial Tumors. Am. J. Neuroradiol. 2013; 34 (1): 85–91. https://doi.org/10.3174/ajnr.A3173; Verger A., Stoffels G., Bauer E.K. et al. Static and dynamic18 F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (3): 443–451. https://doi.org/10.1007/s00259-017-3846-6; Nakajo K., Uda T., Kawashima T. et al. Diagnostic Performance of [11 C]Methionine Positron Emission Tomography in Newly Diagnosed and Untreated Glioma Based on the Revised World Health Organization 2016 Classification. Wld Neurosurg. 2021; 148: e471–e481. https://doi.org/10.1016/j.wneu.2021.01.012; https://medvis.vidar.ru/jour/article/view/1269

  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant № 075-15-2019-1721, RFMEFI60419X0216)., Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (проект №075-15-2019-1721, RFMEFI60419X0216).

    Πηγή: Siberian journal of oncology; Том 19, № 4 (2020); 59-66 ; Сибирский онкологический журнал; Том 19, № 4 (2020); 59-66 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1530/768; Ostrom Q.T., Gittleman H., Liao P., Vecchione-Koval T., Wolinsky Y., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 20102014. Neuro Oncol. 2017 Nov 6; 19(suppl_5): v1v88. doi:10.1093/neuonc/nox158.; Carson K.A., Grossman S.A., Fisher J.D., Shaw E.G. Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. J Clin Oncol. 2007 Jun 20; 25(18): 2601–6. doi:10.1200/JCO.2006.08.1661.; Curran W.J.Jr., Scott C.B., Horton J., Nelson J.S., Weinstein A.S., Fischbach A.J., Chang C.H., Rotman M., Asbell S.O., Krisch R.E. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993 May 5; 85(9): 704–10. doi:10.1093/jnci/85.9.704.; Iwabuchi S., Bishara S., Herbison P., Erasmus A., Samejima H. Prognostic factors for supratentorial low grade astrocytomas in adults. Neurol Med Chir (Tokyo). 1999 Apr; 39(4): 273–9. doi:10.2176/nmc.39.273.; Lamborn K.R., Chang S.M., Prados M.D. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004 Jul; 6(3): 227–35. doi:10.1215/S1152851703000620.; Мартынов Б.В., Парфенов В.Е., Труфанов Г.Е., Фокин В.А., Алексеева Н.П., Цибиров А.А., Холявин А.И., Грачева П.В., Смирнов И.Б., Свистов Д.В. Прогностические факторы у больных с глиомами: симптомно-синдромальный анализ. Вестник Российской Военно- медицинской академии. 2010; 1(29): 7–14.; Lynam L.M., Lyons M.K., Drazkowski J.F., Sirven J.I., Noe K.H., Zimmerman R.S., Wilkens J.A. Frequency of seizures in patients with newly diagnosed brain tumors: a retrospective review. Clin Neurol Neurosurg. 2007; 109(7): 634–8. doi:10.1016/j.clineuro.2007.05.017.; Ozbek N., Cakir S., Gursel B., Meydan D. Prognostic significance of seizure in patients with glioblastoma multiforme. Neurol India. 2004 Mar; 52(1): 76–8.; Мацко Д.Е., Мацко М.В., Имянитов Е.Н. Нейроонкология. Практическая онкология. 2017; 18(1): 103–14.; Stockhammer F., Misch M., Helms H.J., Lengler U., Prall F., von Deimling A., Hartmann C. IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure. 2012; 21(3): 194–7. doi:10.1016/j.seizure.2011.12.007.; Duan W.C., Wang L., Li K. IDH mutations but not TERTp mutations are associated with seizures in lower-grade gliomas. Medicine (Baltimore). 2018; 97(50): e13675. doi:10.1097/MD.0000000000013675.; Chen H., Judkins J., Thomas C., Wu M., Khoury L., Benjamin C.G., Pacione D., Golfinos J.G., Kumthekar P., Ghamsari F., Chen L., Lein P., Chetkovich D.M., Snuderl M., Horbinski C. Mutant IDH1 and seizures in patients with glioma. Neurology. 2017; 88(19): 1805–13. doi:10.1212/WNL.0000000000003911.; Phan K., Ng W., Lu V.M., McDonald K.L., Fairhall J., Reddy R., Wilson P. Association Between IDH1 and IDH2 Mutations and Preoperative Seizures in Patients with Low-Grade Versus High-Grade Glioma: A Systematic Review and Meta-Analysis. World Neurosurg. 2018 Mar; 111: e539-e545. doi:10.1016/j.wneu.2017.12.112.; Yang Y., Mao Q., Wang X., Liu Y., Mao Y., Zhou Q., Luo J. An analysis of 170 glioma patients and systematic review to investigate the association between IDH-1 mutations and preoperative glioma-related epilepsy. J Clin Neurosci. 2016 Sep; 31: 56–62. doi:10.1016/j.jocn.2015.11.030.; Прокудин М.Ю., Одинак М.М., Литвиненко И.В., Мартынов Б.В., Железняк И.С., Лыткин М.В., Воронцова Д.А. Магнитно-резонансная спектроскопия при глиомах головного мозга: биологические маркеры. Неврология. Психиатрия. 2018; 1(145): 10–15.; Chen R., Ravindra V.M., Cohen A.L., Jensen R.L., Salzman K.L., Prescot A.P., Colman H. Molecular features assisting in diagnosis, surgery, and treatment decision making in low-grade gliomas. Neurosurg Focus. 2015 Mar; 38(3): E2. doi:10.3171/2015.1.FOCUS14745.; Табаков Д.В., Катаргин А.Н., Строганова А.М., Сендерович А.И., Насхлеташвили Д.Р., Киселева Н.П. Мутации изоцитратдегидрогеназ 1 и 2 и метилирование гена MGMT в глиомах. Успехи молекулярной онкологии. 2017; 4: 53–59. doi:10.17650/2313-805X-2017-4-1-53-59.; Лобанова Н.В., Шишкина Л.В., Рыжова М.В., Кобяков Г.Л., Сычева Р.В., Буров С.А., Лукьянов А.В., Омарова Ж.Р. Клинические, иммуногистохимические и молекулярно-генетические факторы прогноза у больных с глиобластомой. Архив патологии. 2016; 78(4): 10–19. doi:10.17116/patol201678410-19.; Schittenhelm J., Mittelbronn M., Meyermann R., Melms A., Tatagiba M., Capper D. Confirmation of R132H mutation of isocitrate dehydrogenase 1 as an independent prognostic factor in anaplastic astrocytoma. Acta Neuropathol. 2011 Nov; 122(5): 651–2. doi:10.1007/s00401-011-0885-0.; https://www.siboncoj.ru/jour/article/view/1530

  5. 5
  6. 6
    Academic Journal
  7. 7
    Academic Journal

    Πηγή: Diagnostic radiology and radiotherapy; № 3 (2017); 37-41 ; Лучевая диагностика и терапия; № 3 (2017); 37-41 ; 2079-5343 ; 10.22328/2079-5343-2017-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/236/220; Злокачественные новообразования в России в 2013 году (заболеваемость и смертность) / под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой. М.: МНИОИ им. П. А. Герцена филиал ФГБУ «ФМИЦ им. П.А. Герцена» Минздрава России, 2015. 250 с. [Zlokachestvennye novoobrazovaniya v Rossii v 2013 godu (zabolevaemost’ i smertnost’) / pod red. A. D. Kaprina, V. V. Starinskogo, G. V. Petrovoj. Moscow: MNIOI im. P. A. Gercena filial FGBU «FMIC im. P. A. Gercena» Minzdrava Rossii, 2015, 250 р. (In Russ.)].; Walker M.D., Alexander E.Jr., Hunt W.E. et al. Evaluation of BCNU and / or radiotherapy in the treatment of anaplastic gliomas: A cooperative clinical trial. J. Neurosurgery, 1978, Vol. 49, рр. 333–343.; Barker C.A., Chang М., Beal К., Chan T.A. Survival of patients treated with radiation therapy for anaplastic astrocytoma. Radiol. Oncol., 2014, Vol. 48 (4), рр. 381–386.; Wen P.Y., Kesari S. Malignant gliomas in adults. New Engl. J. Med., 2008, Vol. 359 (5), рр. 492–507.; CBTRUS 2008 statistical report: Primary brain tumors in the United States, 1998–2002. Central Brain Tumor Registry of the United States, 2000–2004. (Accessed July 7, 2008, at http://www.cbtrus.org/reports/2007–2008/2007report.pdf).; Louis D.N., Ohgaki I.H., Wiestler O.D. et al. The 2007 WHO classification of tumors of the central nervous system. Lyon, France: IARC Press, 2007.; Кобяков Г.Л., Коновалов А.Н., Лошаков В.А. Новые возможности химиотерапии в лечении первичных злокачественных опухолей головного мозга // Мат-лы Российской конференции «Комбинированное лечение опухолей головного мозга». Екатеринбург, 2004. С. 53–54. [Kobyakov G.L., Konovalov A.N., Loshakov V.A. Novye vozmozhnosti himioterapii v lechenii pervichnyh zlokachestvennyh opuholej golovnogo mozga // Materialy Rossijskoj konferencii «Kombinirovannoe lechenie opuholej golovnogo mozga». Ekaterinburg, 2004, рр. 53–54. (In Russ.)].; Коновалов А.Н., Корниенко В.Н. Компьютерная томография в нейрохирургической клинике. М.: Медицина, 1985. С. 20–44. [Konovalov A.N., Kornienko V.N. Komp’yuternaya tomografiya v nejrohirurgicheskoj klinike. Moscow: Medicina, 1985, рр. 20–44 (In Russ.)].; Keles G.E., Lamborn K.R., Chang S.M. Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial glioblastomas multiforme who are undergoing chemotherapy. J. Neurosurgery, 2004, Vol. 100 (1), рр. 41–46.; Rao R, Krishnan S., Fitch T. et al. Phase II trial of carmustine, cisplatin, and oral etoposide chemotherapy before radiotherapy for grade 3 astrocytoma (anaplastic astrocytoma): results of north central cancer treatment group trial 98–7-51. International Journal of Radiation Oncology Biology Physics, 2005, Vol. 61 (2), рр. 380–386.; Quality assurance of the EORTC 26981/22981; NCIC CE3 intergroup trial on radiotherapy with or without temozolomide for newly-diagnosed glioblastoma multiforme: the individual case review. Europ. J. Cancer, 2004, Vol. 40, Issue 11, рр. 1724–1730.; Results of NRG oncology/RTOG 9813: A phase III randomized study of radiation therapy (RT) and temozolomide (TMZ) versus RT and nitrosourea (NU) therapy for anaplastic astrocytoma (AA). Search 2015 ASCO Annual Meeting Abstracts. Associated Presentation.; Young B., Oldfield E.H., Markesbery W.R. et al. Reoperation for glioblastoma. J. Neurosurgery, 1981, Vol. 55 (6), рр. 917–921.; Pinsker M., Lumenta C. Experiences with reoperation on recurrent glioblastoma multiforme. Zentralbl. Neurochir., 2001, Vol. 62(2), рр. 43–47.; Sipos L., Afra D. Re-operations of supratentorial anaplastic astrocytomas. Acta Neurochir (Wien), 1997, Vol. 139 (2), рр. 99–104.; Harsh G.R., Levin V.A., Gutin P.H., Seager M., Silver P., Wilson C.B. Reoperation for recurrent glioblastoma and anaplastic astrocytoma. Neurosurgery, 1987, Vol. 21(5), рр. 615–621.; Massey V., Wallner K.E. Patterns of second recurrence of malignant astrocytomas. International J. Radiation Oncology Biology Physics, 1990, Vol. 18, рр. 395–398.; Карташев А.В., Виноградов В.М., Олюшин В.Е., Герасимов С.В. Ускоренная послеоперационная химиолучевая терапия больных злокачественными глиомами головного мозга // Вопросы онкологии. 2008. Т. 54. С. 102–105. [Kartashev A.V., Vinogradov V.M., Olyushin V.E., Gerasimov S.V. Uskorennaya posleoperacionnaya himioluchevaya terapiya bol’nyh zlokachestvennymi gliomami golovnogo mozga. Voprosy onkologii, 2008, Vol. 54, рр. 102–105. (In Russ.)].; Карташев А.В., Виноградов В.М. Химиолучевая терапия опухолей головного мозга // Практическая онкология. 2008. Т. 9, № 1. С. 47–56. [Kartashev A.V., Vinogradov V.M. Himioluchevaya terapiya opuholej golovnogo mozga. Prakticheskaya onkologiya, 2008, Vol. 9, No. 1, рр. 47–56. (In Russ.)].; Карташев А.В., Виноградов В.М. Послеоперационная химиолучевая терапия больных с глиобластомами головного мозга // Вопросы онкологии. 2008. Т. 54, № 4. С. 471–474. [Kartashev A.V., Vinogradov V.M. Posleoperacionnaya himioluchevaya terapiya bol’nyh s glioblastomami golovnogo mozga. Voprosy onkologii, 2008, Vol. 54, No. 4, рр. 471–474. (In Russ.)].; Barrett A., Dobbs J., Morris S., Roques T. Practical Radiotherapy Planning, 4th еd. Hodder Arnold an Hachette UK Company, 2009, рр. 207–210.; Cardinale R., Won M., Choucair A. et al. A Phase II Trial of Accelerated Radiotherapy Using Weekly Stereotactic Conformal Boost for Supratentorial Glioblastoma Multiforme. RTOG 0023. International Journal of Radiation Oncology Biology Physics, 2006, Vol. 65(5), рр. 1422–1428. (http://dx.doi.org/10.1016/j.ijrobp.2006.02.042).; Поздняков А.В., Карташев А.В., Тютин Л.А. Протонная магнитно-резонансная спектроскопия при послеоперационной химиолучевой терапии больных злокачественными глиомами головного мозга // Вопросы онкологии. 2008. Т. 54. С. 164–169. [Pozdnyakov A.V., Kartashev A.V., Tyutin L.A. Protonnaya magnitno-rezonansnaya spektroskopiya pri posleoperacionnoj himioluchevoj terapii bol’nyh zlokachestvennymi gliomami golovnogo mozga. Voprosy onkologii, 2008, Vol. 54, рр. 164–169 (In Russ.)].

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20