Showing 1 - 20 results of 76 for search '"АДЪЮВАНТНАЯ ТЕРАПИЯ"', query time: 0.70s Refine Results
  1. 1
    Academic Journal

    Contributors: The company Autonomous Non-Profit Organization National Society of Onco-Pulmonologists is the sponsor and coordinator of this study. The authors would like to thank AstraZeneca., Компания АНО «НООП» является спонсором и координатором данного исследования. Коллектив авторов выражает благодарность компании AstraZeneca.

    Source: Meditsinskiy sovet = Medical Council; Online First ; Медицинский Совет; Online First ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8936/7770; Kratzer TB, Bandi P, Freedman ND, Smith RA, Travis WD, Jemal A, Siegel RL. Lung cancer statistics, 2023. Cancer. 2024;130(8):1330−1348. https://doi.org/10.1002/cncr.35128.; Каприн АД, Старинский ВВ, Шахзадовой АО (ред.). Злокачественные новообразования в России в 2021 году. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022. 252 с. Режим доступа: https://oncology-association.ru/wp-content/uploads/2022/11/zlokachestvennye-novoobrazovaniya-v-rossii-v-2021-g_zabolevaemost-i-smertnost.pdf.; de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7(3):220−233. https://doi.org/10.21037/tlcr.2018.05.06.; Garinet S, Wang P, Mansuet-Lupo A, Fournel L, Wislez M, Blons H. Updated Prognostic Factors in Localized NSCLC. Cancers. 2022;14(6):1400. https://doi.org/10.3390/cancers14061400.; Mueller M. ED08.01 Surgery of Early-Stage NSCLC. J Thorac Oncol. 2017;12(1):S40−S42. https://doi.org/10.1016/j.jtho.2016.11.038.; McDonald F, De Waele M, Hendriks LE, Faivre-Finn C, Dingemans AC, Van Schil PE. Management of stage I and II nonsmall cell lung cancer. Eur Respir J. 20173;49(1):1600764. https://doi.org/10.1183/13993003.00764-2016.; Raman V, Yang CJ, Deng JZ, D’Amico TA. Surgical treatment for early stage non-small cell lung cancer. J Thorac Dis. 2018;10(Suppl. 7):S898−S904. https://doi.org/10.21037/jtd.2018.01.172.; Veronesi G, Novellis P, Voulaz E, Alloisio M. Robot-assisted surgery for lung cancer: State of the art and perspectives. Lung Cancer. 2016;101:28−34. https://doi.org/10.1016/j.lungcan.2016.09.004.; Lackey A, Donington JS. Surgical management of lung cancer. Semin Intervent Radiol. 2013;30(2):133–140. https://doi.org/10.1055/s-0033-1342954.; Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med. 2004;350(4):351−360. https://doi.org/10.1056/NEJMoa031644.; Kim MH, Kim SH, Lee MK, Eom JS. Recent Advances in Adjuvant Therapy for Non-Small-Cell Lung Cancer. Tuberc Respir Dis. 2024;87(1):31−39. https://doi.org/10.4046/trd.2023.0085.; Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552−3559. https://doi.org/10.1200/JCO.2007.13.9030.; Rotolo F, Dunant A, Le Chevalier T, Pignon JP, Arriagada R. Adjuvant cisplatin-based chemotherapy in nonsmall-cell lung cancer: new insights into the effect on failure type via a multistate approach. Ann Oncol. 2014;25(11):2162–2166. https://doi.org/10.1093/annonc/mdu442.; Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398(10308):1344−1357. https://doi.org/10.1016/S0140-6736(21)02098-5.; Wakelee HA, Altorki NK, Zhou C, Csőszi T, Vynnychenko IO, Goloborodko O et al. IMpower010: Final disease-free survival (DFS) and second overall survival (OS) interim results after ≥5 years of follow up of a phase III study of adjuvant atezolizumab vs best supportive care in resected stage IB-IIIA non-small cell lung cancer (NSCLC). J Clin Oncol. 2024;42(17):LBA8035. https://doi.org/10.1200/JCO.2024.42.17_suppl.LBA803.; Cascone T, Awad MM, Spicer J, He J, Lu S, Sepesi B et al. LBA1 CheckMate 77T: Phase III study comparing neoadjuvant nivolumab (NIVO) plus chemotherapy (chemo) vs neoadjuvant placebo plus chemo followed by surgery and adjuvant NIVO or placebo for previously untreated, resectable stage II–IIIb NSCLC. Ann Oncol. 2023;34(Suppl. 2):S1295. https://doi.org/10.1016/j.annonc.2023.10.050.; Oselin K, Shim BY, Okada M, Bryl M, Bonanno L, Demirag G. Pembrolizumab vs placebo for early-stage non‒small-cell lung cancer after resection and adjuvant therapy: Subgroup analysis of patients who received adjuvant chemotherapy in the phase 3 PEARLS/ KEYNOTE-091 study. J Clin Oncol. 2023;41(16):8520. https://doi.org/10.1200/JCO.2023.41.16_suppl.8520.; Tsuboi M, Herbst RS, John T, Kato T, Majem M, Grohé C et al. Overall Survival with Osimertinib in Resected EGFR-Mutated NSCLC. N Engl J Med. 2023;389(2):137−147. https://doi.org/10.1056/NEJMoa2304594.; Wu YL, Dziadziuszko R, Ahn JS, Barlesi F, Nishio M, Lee DH et al. Alectinib in Resected ALK-Positive Non–Small-Cell Lung Cancer. N Engl J Med. 2024;390(14):1265–1276. https://doi.org/10.1056/NEJMoa2310532.; Kim MH, Kim SH, Lee MK, Eom JS. Recent Advances in Adjuvant Therapy for Non-Small-Cell Lung Cancer. Tuberc Respir Dis. 2024;87(1):31–39. https://doi.org/10.4046/trd.2023.0085.

  2. 2
    Academic Journal

    Contributors: The study was not sponsored, Авторы декларируют отсутствие внешнего финансирования для публикации статьи

    Source: PULMONOLOGIYA; Том 34, № 6 (2024); 775-787 ; Пульмонология; Том 34, № 6 (2024); 775-787 ; 2541-9617 ; 0869-0189

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4662/3712; Cillóniz C., Cardozo C., García-Vidal C. Epidemiology, pathophysiology, and microbiology of community-acquired pneumonia. Ann. Res. Hosp. 2018; (2): 1. DOI:10.21037/arh.2017.12.03.; Авдеев С.Н., Белобородов В.Б., Белоцерковский Б.З. и др. Тяжелая внебольничная пневмония у взрослых. Клинические рекомендации Федерации анестезиологов и реаниматологов России. Анестезиология и реаниматология. 2022; (1): 6–35. DOI:10.17116/anaesthesiology20220116.; Минаков А.А., Вахлевский В.В., Волошин Н.И. и др. Новый взгляд на этиологию и иммунологические аспекты пневмонии. Медицинский совет. 2023; 17 (4): 141–153. DOI:10.21518/ms2023-056.; Ruiz-Spinelli A., Waterer G., Rello J. Severe community-acquired pneumonia in the post COVID-19 era. Curr. Opin Crit. Care. 2023; 29 (5): 400–406. DOI:10.1097/MCC.0000000000001083.; Battaglini D., Fazzini B., Silva P.L. et. al. Challenges in ARDS definition, management, and identification of effective personalized therapies. Clin. Med. 2023; 12 (4): 1381. DOI:10.3390/jcm12041381.; Buttgereit F., da Silva J.A., Boers M. et. al. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann. Rheum. Dis. 2002; 61 (8): 718–722. DOI:10.1136/ard.61.8.718.; Pastores S.M., Annane D., Rochwerg B. et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically Ill patients (Part II): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit. Care Med. 2018; 46 (1): 146–148. DOI:10.1097/CCM.0000000000002737.; Czock D., Keller F., Rasche F.M. et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 2005. 44 (1): 61–98. DOI:10.2165/00003088-200544010-00003.; Williams D.M. Clinical pharmacology of corticosteroids. Respir. Care. 2018; 63 (6): 655–670. DOI:10.4187/respcare.06314.; Yang J.W., Mao B., Tao R.J. Corticosteroids alleviate lipopolysaccharide-induced inflammation and lung injury via inhibiting NLRP3-inflammasome activation. J. Cell. Mol. Med. 2020; 24 (21): 12716–12725. DOI:10.1111/jcmm.15849.; Tu G.W., Shi Y., Zheng Y.J. et al. Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage. J. Transl. Med. 2017; 15 (1): 181. DOI:10.1186/s12967-017-1284-7.; Волошин Н.И., Пугач В.А., Салухов В.В. и др. Экспериментальное исследование эффективности дексаметазона на модели липополисахарид-индуцированного острого повреждения легких у крыс. Бюллетень сибирской медицины. 2023; 22 (4): 22–30. DOI:10.20538/1682-0363-2023-4-22-30.; Venkatesh B., Finfer S., Cohen J. et al. Adjunctive glucocorticoid therapy in patients with septic shock. N. Engl. J. Med. 2018; 378 (9): 797–808. DOI:10.1056/NEJMoa1705835.; Kamath S., Hammad Altaq H., Abdo T. Management of sepsis and septic shock: what have we learned in the last two decades? Microorganisms. 2023; 11 (9): 2231. DOI:10.3390/microorganisms11092231.; Lewis S.R., Pritchard M.W., Thomas C.M. et al. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst. Rev. 2019; 7 (7): CD004477. DOI:10.1002/14651858.cd004477.pub3.; Lin P., Zhao Y., Li X. et al. Decreased mortality in acute respiratory distress syndrome patients treated with corticosteroids: an updated meta-analysis of randomized clinical trials with trial sequential analysis. Crit. Care. 2021; 25 (1): 122. DOI:10.1186/s13054-021-03546-0.; Yoshihro S., Taito S., Yatabe T. The influence of steroid type on outcomes in patients with acute respiratory distress syndrome. J. Intensive Care. 2023; 11 (1): 32. DOI:10.1186/s40560-023-00681-4.; He Q., Wang C., Wang Y. et al. Efficacy and safety of glucocorticoids use in patients with COVID-19: a systematic review and network meta-analysis. BMC Infect. Dis. 2023; 23 (1): 896. DOI:10.1186/s12879-023-08874-w.; Saleem N., Kulkarni A., Snow T.A.C. Effect of corticosteroids on mortality and clinical cure in community-acquired pneumonia: a systematic review, meta-analysis, and meta-regression of randomized control trials. Chest. 2023; 163 (3): 484–497. DOI:10.1016/j.chest.2022.08.2229.; Tang Q., Chen Q., Li Y., Wang Z. Association between glucocorticoids and mortality in patients with severe pneumonia: a systematic review and meta-analysis based on randomized controlled trials. Comput. Math. Methods Med. 2022; 2022: 1191205. DOI:10.1155/2022/1191205.; Chen S., Hu C. Effect of corticosteroids on mortality in patients with community-acquired pneumonia. Crit. Care. 2023; 27 (1): 358. DOI:10.1186/s13054-023-04645-w.; Wu J.Y., Tsai Y.W., Hsu W.H. et al. Efficacy and safety of adjunctive corticosteroids in the treatment of severe community-acquired pneumonia: a systematic review and meta-analysis of randomized controlled trials. Crit. Care. 2023; 27 (1): 274. DOI:10.1186/s13054-023-04561-z.; Bradley J., Khurana S., Cavallazzi R. Adjunctive immunomodulation in severe community-acquired pneumonia. J. Bras. Pneumol. 2023; 49 (4): e20230248. DOI:10.36416/1806-3756/e20230248.; Martin-Loeches I., Nagavci B., Torres A. Final approval for corticosteroids in severe CAP? For sure, in septic shock. Crit. Care. 2023; 27 (1): 342. DOI:10.1186/s13054-023-04613-4.; Amratia D.A., Viola H., Ioachimescu O.C. Glucocorticoid therapy in respiratory illness: bench to bedside. J. Investig Med. 2022; 70 (8): 1662–1680. DOI:10.1136/jim-2021-002161.; Vornicu O., Perriens E., Blackman S. et. al. Mortality reduction in severe community-acquired pneumonia: key findings from a large randomized controlled trial and their clinical implications. Ann. Transl. Med 2023; 11 (11): 395. DOI:10.21037/atm-23-1719.; Abdallah M.S., Madi A.F., Rana M.A. The best use of systemic corticosteroids in the intensive care units, review. J. Steroids Horm Sci. 2015; 6 (1): 1000149. DOI:10.4172/2157-7536.1000149.; Mager D.E., Lin S.X., Blum R.A. et al. Dose equivalency evaluation of major corticosteroids: pharmacokinetics and cell trafficking and cortisol dynamics. J. Clin. Pharmacol. 2003; 43 (11): 1216–1227. DOI:10.1177/0091270003258651.; Танин И.Ю., Иванова Л.А., Король И.В. и др. Принципы назначения глюкокортикостероидов у пациентов с CОVID-19. Вестник современной клинической медицины. 2022; 15 (2): 103–109. DOI:10.20969/VSKM.2022.15(2).103-109.; RECOVERY Collaborative Group, Horby P. et al. Dexamethasone in hospitalized patients with COVID‐19. N. Engl. J. Med. 2021; 384: 693–704. DOI:10.1056/NEJMoa2021436.; Rygаrd S.L., Butler E., Granholm A. et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018; 44 (7): 1003–1016. DOI:10.1007/s00134-018-5197-6.; Salton F., Confalonieri P., Meduri G.U.et al. Theory and practice of glucocorticoids in COVID-19: getting to the heart of the matter-A critical review and viewpoints. Pharmceuticals (Basel). 2023; 16 (7): 924. DOI:10.3390/ph16070924.; Selye H. A syndrome produced by diverse nocuous agents. 1936. J. Neuropsychiatry Clin. Neurosci. 1998; 10 (2):230 231. DOI:10.1038/138032a.; Russell G., Lightman S. The human stress response. Nat. Rev. Endocrinol. 2019; 15 (9): 525–534. DOI:10.1038/s41574-019-0228-0.; Marik P.E., Pastores S.M., Annane D. et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit. Care Med. 2008; 36 (6): 1937–1949. DOI:10.1097/CCM.0b013e31817603ba.; Annane D., Pastores S.M., Arlt W. et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a multispecialty task force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Intensive Care Med. 2017; 43 (12): 1781–1792. DOI:10.1007/s00134-017-4914-x.; Meduri G.U., Chrousos G.P. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front. Endocrinol. (Lausanne). 2020. 11: 161. DOI:10.3389/fendo.2020.00161.; Harris L.K., Crannage A.J. Corticosteroids in community-acquired pneumonia: a review of current literature. J. Pharm. Technol. 2021; 37 (3): 152–160. DOI:10.1177/8755122521995587.; Mueller C., Blum C.A., Trummler M. et.al. Association of adrenal function and disease severity in community-acquired pneumonia. PLoS One. 2014; 9 (6): e99518. DOI:10.1371/journal.pone.0099518.; Beishuizen A., Thijs L.G., Vermes I. Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Crit. Care. 2002; 6 (5): 434–438. DOI:10.1186/cc1530.; Draghici S., Nguyen T.M., Sonna L.A. et al. COVID-19: Disease pathways and gene expression changes predict methylprednisolone can improve outcome in severe cases. Bioinformatics. 2021; 37 (17): 2691–2698. DOI:10.1093/bioinformatics/btab163.; Харитонов М.А., Рудаков Ю.В., Салухов В.В., Волошин Н.И. Роль сурфактанта в патогенезе бронхолегочной патологии. Медицинский Совет. 2023; (20): 52. DOI:10.21518/ms2023-340.; Young A., Marsh S. Steroid use in critical care. BJA Educ. 2018; 18 (5): 129–134. DOI:10.1016/j.bjae.2018.01.005.; Lansbury L., Rodrigo C., Leonardi-Bee J. et al. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst. Rev. 2019; 2 (2): Cd010406. DOI:10.1002/14651858.CD010406.; Torres A., Sibila O., Ferrer M. et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA. 2015; 313 (7): 677–686. DOI:10.1001/jama.2015.88.; Martin-Loeches I., Torres A., Nagavci B. et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Eur. Respir J. 2023; 61 (4): 2200735. DOI:10.1183/13993003.00735-2022.; Evans L., Rhodes A., Alhazzani W. et al Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47 (11): 1181–1247. DOI:10.1007/s00134-021-06506-y.; Chaudhuri D., Nei A.M., Rochwerg B. et al. 2024 focused update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit. Care Med. 2024; 52 (5): e219–233. DOI:10.1097/CCM.0000000000006172.; Cilloniz C., Ferrer M., Liapikou A. et.al. Acute respiratory distress syndrome in mechanically ventilated patients with community-acquired pneumonia. Eur. Respir. J. 2018; 51 (3): 1702215. DOI:10.1183/13993003.02215-2017.; Салухов В.В., Волошин Н.И., Шперлинг М.И. Эффективность применения различных схем системной противовоспалительной терапии глюкокортикоидами при развитии острого ЛПС-индуцированного повреждения легких в эксперименте. Известия Российской Военно-медицинской академии. 2022; 41 (2): 111–116. DOI:10.17816/rmmar104619.; Hong S., Jian C., Wang H. Effects of different doses of methylprednisolone therapy on acute respiratory distress syndrome: results from animal and clinical studies. BMC Pulm. Med. 2022; 22 (1): 348. DOI:10.1186/s12890-022-02148-y.; Chaudhuri D., Sasaki K., Karkar A. et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: a systematic review and meta-analysis. Intensive Care Med. 2021; 47 (5): 521–537. DOI:10.1007/s00134-021-06394-2; Tasaka S., Ohshimo S., Takeuchi M. et al. ARDS clinical practice guideline 2021. J. Intensive Care. 2022; 10 (1): 32. DOI:10.1186/s40560-022-00615-6.; Meduri G.U., Annane D., Confalonieri M. et. al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med. 2020; 46 (12): 2284–2296. DOI:10.1007/s00134-020-06289-8.; Vandewalle J., Libert C. Glucocorticoids in sepsis: to be or not to be. Front. Immunol. 2020; 11: 1318. DOI:10.3389/fimmu.2020.01318.; Villar J., Ferrando C., Martínez D. et al Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir. Med. 2020; 8: 267–276. DOI:10.1016/s2213-2600(19)30417-5.; Meduri G.U., Headley A.S., Golden E. et al: Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998; 280 (2): 159–165. DOI:10.1001/jama.280.2.159.; Meduri G.U., Golden E., Freire A.X. et al. Methylprednisolone infusion in early severe ARDS: Results of a randomized controlled trial. Chest. 2007; 131 (4): 954–959. DOI:10.1378/chest.06-2100.; Meduri G.U., Shih M.C., Bridges L. et al. Low-dose methylprednisolone treatment in critically ill patients with severe community-acquired pneumonia. Intensive Care Med. 2022; 48 (8): 1009–1023. DOI:10.1007/s00134-022-06684-3.; Dequin P.F., Meziani F., Quenot J.P. et al. Hydrocortisone in severe community-acquired pneumonia. N. Engl. J. Med. 2023; 388 (21): 1931–1941. DOI:10.1056/NEJMoa2215145.; Metlay J.P., Waterer G.W. Time to treat severe community-acquired pneumonia with steroids? N. Engl. J. Med. 2023; 388 (21): 2001–2002. DOI:10.1056/NEJMe2302544.; Pitre T., Abdali D., Chaudhuri D. et al. Corticosteroids in community-acquired bacterial pneumonia: a systematic review, pairwise and dose-response meta-analysis. J. Gen. Intern. Med. 2023; 38 (11): 2593–2606. DOI:10.1007/s11606-023-08203-6.; Gu X., Yang P., Yu L.et al. Glucocorticoids can reduce mortality in patients with severe community-acquired pneumonia: a systematic review and meta-analysis of randomized controlled trials. Research Square. (Version 1). [Preprint. Posted: 2023, Nov. 10]. DOI:10.21203/rs.3.rs-3576792/v1.; https://journal.pulmonology.ru/pulm/article/view/4662

  3. 3
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 10 (2024); 22-27 ; Медицинский Совет; № 10 (2024); 22-27 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8389/7380; Dickson PV, Gershenwald JE. Staging and prognosis of cutaneous melanoma. Surg Oncol Clin N Am. 2011;20(1):1–17. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221385/.; Hersh EM, Del Vecchio M, Brown MP, Kefford R, Loquai C, Testori A et al. A randomized, controlled phase III trial of nab-Paclitaxel versus dacarbazine in chemotherapy-naïve patients with metastatic melanoma. Ann Oncol. 2015;26(11):2267–2274. https://doi.org/10.1093/annonc/mdv324.; Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel). 2024;16(8):1571. https://doi.org/10.3390/cancers16081571.; Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R et al. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol. 2024;196:104276. https://doi.org/10.1016/j.critrevonc.2024.104276.; Wolchok JD, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J Clin Oncol. 2022;40(2):127–137. https://doi.org/10.1200/JCO.21.02229.; Urbanski A, Minnemann J, Mauch C, Schmidt T, Kreuzberg N, Schlaak M et al. Oligometastatic disease and visceral resections in advanced malignant melanoma: a propensity-matched analysis. Langenbecks Arch Surg. 2023;408(1):53. https://doi.org/10.1007/s00423-023-02804-9.; McLoughlin JM, Zager JS, Sondak VK. Cytoreductive surgery for melanoma. Surg Oncol Clin N Am. 2007;16(3):683–693. https://doi.org/10.1016/j.soc.2007.04.007.; Enomoto LM, Levine EA, Shen P, Votanopoulos KI. Role of Surgery for Metastatic Melanoma. Surg Clin North Am. 2020;100(1):127–139. https://doi.org/10.1016/j.suc.2019.09.011.; Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13(1):8–10. https://doi.org/10.1200/JCO.1995.13.1.8.; Lievens Y, Guckenberger M, Gomez D, Hoyer M, Iyengar P, Kindts I et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother Oncol. 2020;148:157–166. https://doi.org/10.1016/j.radonc.2020.04.003.; Guckenberger M, Lievens Y, Bouma AB, Collette L, Dekker A, deSouza NM et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020;21(1):e18–e28. https://doi.org/10.1016/S1470-2045(19)30718-1.; Miller ED, Hitchcock KE, Romesser PB. Oligometastatic Colorectal Cancer: A Review of Definitions and Patient Selection for Local Therapies. J Gastrointest Cancer. 2023;54(4):1116–1127. https://doi.org/10.1007/s12029-022-00900-5.; Kroese TE, van Laarhoven HWM, Nilsson M, Lordick F, Guckenberger M, Ruurda JP et al. Definition of oligometastatic esophagogastric cancer and impact of local oligometastasis-directed treatment: A systematic review and meta-analysis. Eur J Cancer. 2022;166:254–269. https://doi.org/10.1016/j.ejca.2022.02.018.; Jasper K, Stiles B, McDonald F, Palma DA. Practical Management of Oligometastatic Non-Small-Cell Lung Cancer. J Clin Oncol. 2022;40(6):635–641. https://doi.org/10.1200/JCO.21.01719.; Rogowski P, Roach M 3rd, Schmidt-Hegemann NS, Trapp C, von Bestenbostel R, Shi R et al. Radiotherapy of oligometastatic prostate cancer: a systematic review. Radiat Oncol. 2021;16(1):50. https://doi.org/10.1186/s13014-021-01776-8.; Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1884–1901. https://doi.org/10.1093/annonc/mdz411.; Seth R, Agarwala SS, Messersmith H, Alluri KC, Ascierto PA, Atkins MB et al. Systemic Therapy for Melanoma: ASCO Guideline Update. J Clin Oncol. 2023;41(30):4794–4820. https://doi.org/10.1200/JCO.23.01136.; Versluis JM, Hendriks AM, Weppler AM, Brown LJ, de Joode K, Suijkerbuijk KPM et al. The role of local therapy in the treatment of solitary melanoma progression on immune checkpoint inhibition: A multicentre retrospective analysis. Eur J Cancer. 2021;151:72–83. https://doi.org/10.1016/j.ejca.2021.04.003.; Petersen RP, Hanish SI, Haney JC, Miller CC 3rd, Burfeind WR Jr, Tyler DS et al. Improved survival with pulmonary metastasectomy: an analysis of 1720 patients with pulmonary metastatic melanoma. J Thorac Cardiovasc Surg. 2007;133(1):104–110. https://doi.org/10.1016/j.jtcvs.2006.08.065.; Sosman JA, Moon J, Tuthill RJ, Warneke JA, Vetto JT, Redman BG et al. A phase 2 trial of complete resection for stage IV melanoma: results of Southwest Oncology Group Clinical Trial S9430. Cancer. 2011;117(20):4740–4706. https://doi.org/10.1002/cncr.26111.; Howard JH, Thompson JF, Mozzillo N, Nieweg OE, Hoekstra HJ, Roses DF et al. Metastasectomy for distant metastatic melanoma: analysis of data from the first Multicenter Selective Lymphadenectomy Trial (MSLT-I). Ann Surg Oncol. 2012;19(8):2547–2555. https://doi.org/10.1245/s10434-012-2398-z.; O’Neill CH, McMasters KM, Egger ME. Role of Surgery in Stage IV Melanoma. Surg Oncol Clin N Am. 2020;29(3):485–495. https://doi.org/10.1016/j.soc.2020.02.010.; Bello DM. Indications for the surgical resection of stage IV disease. J Surg Oncol. 2019;119(2):249–261. https://doi.org/10.1002/jso.25326.; Wollina U, Brzezinski P. The value of metastasectomy in stage IV cutaneous melanoma. Wien Med Wochenschr. 2019;169(13-14):331–338. https://doi.org/10.1007/s10354-018-0630-6.; Bello DM, Panageas KS, Hollmann T, Shoushtari AN, Momtaz P, Chapman PB et al. Survival Outcomes After Metastasectomy in Melanoma Patients Categorized by Response to Checkpoint Blockade. Ann Surg Oncol. 2020;27(4):1180–1188. https://doi.org/10.1245/s10434-019-08099-9.; Orlova KV, Ledin E, Zhukova NV, Orlova R, Protsenko S, Novik A et al. The role of surgery (metastasectomy) in advanced BRAF positive melanoma during modern therapy. J Clin Oncol. 2022;40(Suppl. 16):e21512. https://doi.org/10.1200/JCO.2022.40.16_suppl.e21512.; Meacci E, Nachira D, Congedo MT, Ibrahim M, Pariscenti G, Petrella F et al. Surgical Resection of Pulmonary Metastases from Melanoma in Oligometastatic Patients: Results from a Multicentric Study in the Era of Immunoncology and Targeted Therapy. Cancers (Basel). 2023;15(9):2462. https://doi.org/10.3390/cancers15092462.; Ch’ng S, Uyulmaz S, Carlino MS, Pennington TE, Shannon KF, Rtshiladze M et al. Re-defining the role of surgery in the management of patients with oligometastatic stage IV melanoma in the era of effective systemic therapies. Eur J Cancer. 2021;153:8–15. https://doi.org/10.1016/j.ejca.2021.04.037.; Patel SP, Othus M, Chen Y, Wright GP Jr, Yost KJ, Hyngstrom JR et al. Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N Engl J Med. 2023;388(9):813–823. https://doi.org/10.1056/NEJMoa2211437.; Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. https://doi.org/10.1038/nature13954.; Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–3895. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x.; Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–824. https://doi.org/10.1093/intimm/dxm057.; Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–12297. https://doi.org/10.1073/pnas.192461099.; Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. https://doi.org/10.1126/science.aaa8172.; Liu J, Blake SJ, Yong MC, Harjunpää H, Ngiow SF, Takeda K et al. Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease. Cancer Discov. 2016;6(12):1382–1399. https://doi.org/10.1158/2159-8290.CD-16-0577.; Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018;24(11):1655–1661. https://doi.org/10.1038/s41591-018-0198-0.; Mangla A, Lee C, Mirsky MM, Wang M, Rothermel LD, Hoehn R et al. Neoadjuvant Dual Checkpoint Inhibitors vs Anti-PD1 Therapy in High-Risk Resectable Melanoma: A Pooled Analysis. JAMA Oncol. 2024;10(5):612–620. https://doi.org/10.1001/jamaoncol.2023.7333.; Atkins MB, Lee SJ, Chmielowski B, Tarhini AA, Cohen GI, Truong TG et al. Combination Dabrafenib and Trametinib Versus Combination Nivolumab and Ipilimumab for Patients With Advanced BRAF-Mutant Melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. J Clin Oncol. 2023;41(2):186–197. https://doi.org/10.1200/JCO.22.01763.; Ascierto PA, Mandalà M, Ferrucci PF, Guidoboni M, Rutkowski P, Ferraresi V et al. Sequencing of Ipilimumab Plus Nivolumab and Encorafenib Plus Binimetinib for Untreated BRAF-Mutated Metastatic Melanoma (SECOMBIT): A Randomized, Three-Arm, Open-Label Phase II Trial. J Clin Oncol. 2023;41(2):212–221. https://doi.org/10.1200/JCO.21.02961.; Amaria RN, Prieto PA, Tetzlaff MT, Reuben A, Andrews MC, Ross MI et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 2018;19(2):181–193. https://doi.org/10.1016/S1470-2045(18)30015-9.; Menzies AM, Saw RPM, Lo SN, Gonzalez M, Ch’ng S, Nieweg OE et al. Neoadjuvant dabrafenib and trametinib (D+T) for stage III melanoma: Longterm results from the NeoCombi trial. J Clin Oncol. 2022;40(Suppl. 16):9580. https://doi.org/10.1200/JCO.2022.40.16_suppl.9580.

  4. 4
  5. 5
    Academic Journal

    Contributors: The study was performed without external funding., Исследование проведено без спонсорской поддержки.

    Source: Cancer Urology; Том 18, № 3 (2022); 67-75 ; Онкоурология; Том 18, № 3 (2022); 67-75 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1553/1398; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с.; Bill-Axelson A., Holmberg L., Garmo H. et al. Radical prostatectomy or watchful waiting in prostate cancer – 29-year follow-up. N Engl J Med 2018;379(24):2319–29. DOI:10.1056/NEJMoa1807801; Wilt T.J., Jones K.M., Barry M.J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 2017;377(2):132–42. DOI:10.1056/NEJMoa1615869; Hamdy F.C., Donovan J.L., Lane J.A. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016;375(15):1415–24. DOI:10.1056/NEJMoa1606220; Hegarty J., Beirne P.V., Walsh E. et al. Radical prostatectomy versus watchful waiting for prostate cancer. Cochrane Database Syst Rev 2010;(11):CD006590. DOI:10.1002/14651858.CD006590.pub2; Pedregosa F., Varoquaux G., Gramfort A., Michel V. Scikit-learn: machine learning in python. JMLR 2011;12:2825–30.; CamDavidsonPilon/lifelines: v0.21.0. (2019) Available at: https://doi.org/10.5281/ZENODO.2638135; Therneau T.M., Lumley T., Atkinson E., Crowson C. A package for survival analysis in R. R package version 3.2-11. (2021). Available at: https://CRAN.Rproject.org/package=survival.; Therneau T.M., Grambsch P.M. Modeling survival data: extending the Cox model. New York: Springer, 2000.; Venables W.N., Ripley B.D. Modern applied statistics with S. 4th edn. New York: Springer, 2002. Available at: https://www.stats.ox.ac.uk/pub/MASS4/.; Fox J., Weisberg S. An R companion to applied regression. 3rd edn. Sage Publications, 2019. Available at: https://socialsciences.mcmaster.ca/jfox/Books/Companion/.; Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer, 2016. Available at: https://ggplot2.tidyverse.org.; Zhang Z., Kattan M.W. Drawing nomograms with R: applications to categorical outcome and survival data. Ann Transl Med 2017;5(10):211. DOI:10.21037/atm.2017.04.01; https://oncourology.abvpress.ru/oncur/article/view/1553

  6. 6
    Academic Journal

    Source: Head and Neck Tumors (HNT); Том 12, № 3 (2022); 53-70 ; Опухоли головы и шеи; Том 12, № 3 (2022); 53-70 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-3

    File Description: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/815/542; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3): 209–49. DOI:10.3322/caac.21660; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 239 с.; Поляков А.П., Геворков А.Р., Степанова А.А. Современная стратегия диагностики и лечения плоскоклеточного рака кожи. Опухоли головы и шеи 2021;11(1):51–72. DOI:10.17650/2222-1468-2021-11-1-51-72; Newman G., Hall M.A., Kurley S.J. et al. Adjuvant therapy for high-risk cutaneous squamous cell carcinoma: 10-year review. Head Neck 2021;43(9):2822–43. DOI:10.1002/hed.26767; Balamucki C.J., Mancuso A.A., Amdur R.J. et al. Skin carcinoma of the head and neck with perineural invasion. Am J Otolaryngol 2012;33(4):447–54. DOI:10.1016/j.amjoto.2011.11.004; Kovatch K.J., Smith J.D., Birkeland A.C. et al. Institutional experience of treatment and outcomes for cutaneous periauricular squamous cell carcinoma. OTO Open 2019;3(3):2473974X19875077. DOI:10.1177/2473974X19875077; Subramaniam P., Olsen C.M., Thompson B.S. et al. Anatomical distributions of basal cell carcinoma and squamouscell carcinoma in a population-based study in Queensland, Australia. JAMA Dermatol 2017;153(2):175–82. DOI:10.1001/jamadermatol.2016.4070; Eigentler T.K., Leiter U., Hafner H.M. et al. Survival of patients with cutaneous squamous cell carcinoma: results of a prospective cohort study. J Invest Dermatol 2017;137:2309e15.; Claveau J., Archambault J., Ernst D.S. et al. Multidisciplinary management of locally advanced and metastatic cutaneous squamous cell carcinoma. Curr Oncol 2020;27(4):e399–407. DOI:10.3747/co.27.6015; Ebrahimi А., Gupta R., Luk P. et al. Number of nodal metastases and the American Joint Committee on cancer staging of head and neck cutaneous squamous cell carcinoma: a multicenter study. Oral Oncol 2020;111:104855. DOI:10.1016/j.oraloncology.2020.104855; Marrazzo G., Zitelli J.A., Brodland D. Clinical outcomes in highrisk squamous cell carcinoma patients treated with Mohs micrographic surgery alone. J Am Acad Dermatol 2019;80(3):633–8. DOI:10.1016/j.jaad.2018.09.015; Que S.K.T., Zwald F.O., Schmults C.D. Cutaneous squamous cell carcinoma: management of advnced and high-stage tumors. J Am Acad Dermatol 2018;78(2):249–61. DOI:10.1016/j.jaad.2017.08.058; Farberg A.S., Hall M.A., Douglas L. et al. Integrating gene expression profiling into NCCN high-risk cutaneous squamous cell carcinoma management recommendations: impact on patient management. Curr Med Res Opin 2020;36(8):1301–7. DOI:10.1080/03007995.2020.1763284; Wysong A., Newman J.G., Covington K.R. et al. Validation of a 40-gene expression profile test to predict metastatic risk in localized high-risk cutaneous squamous cell carcinoma. J Am Acad Dermatol 2020;84(2):361–9. DOI:10.1016/j.jaad.2020.04.088; Chapalain M., Baroudjian B., Dupont A. et al. Stage IV cutaneous squamous cell carcinoma (cSCC): treatment outcomes in a series of 42 patients. J Eur Acad Dermatol Venereol 2019;34(6):1202–9. DOI:10.1111/jdv.16007; Handbook of evidence-based radiation oncology. 3rd edn. Ed. by E.K. Hansen, M. Roach. Springer International Publishing AG, 2018. 937 p. DOI:10.1007/978-3-319-62642-0; Radiotherapy in practice: external beam therapy. Ed. by P. Hoskin. Oxford university press, 2019. 545 p.; Radiation therapy treatment effects. An evidence-based guide to managing toxicity. Ed. by B.F. Koontz. Springer publishing company, 2018. 324 p.; Waldman A., Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin N Am 2019;33(1):1–12. DOI:10.1016/j.hoc.2018.08.001; Recognition and management of high-risk (aggressive) cutaneous squamous cell carcinoma. Ed. by J.A. DeSimone, P.S. Karia, A.M. Hong et al. Waltham, MA: UpToDate, 2020. Available at: https://www.uptodate.com/contents/recognition-and-management-of-high-risk-aggressive-cutaneous-squamous-cell-carcinoma.; Клинические рекомендации Ассоциации онкологов России по лечению плоскоклеточного рака кожи. 2020 г. Доступно по: https://oncology-association.ru/clinical-guidelines.; National Comprehensive Cancer Network. Squamous cell skin cancer. NCCN Guidelines Version 1.2022, in NCCN Clinical Practice Guidelines in Oncology. 2020. Available at: https://www.nccn.org/patients/guidelines/content/PDF/squamous_cell-patient.pdf.; Likhacheva A., Awan M., Barker C.A. et al. Definitive and postoperative radiation therapy for basal and squamous cell cancers of the skin: executive summary of an American Society for Radiation Oncology clinical practice guideline. Pract Radiat Oncol 2020;10(1):8–20. DOI:10.1016/j.prro.2019.10.014; Essentials of clinical radiation oncology. Ed. by M.C. Ward, R.D. Tendulkar Videtic, G.M.M. Demos Medical Publishing, 2018. 651 p.; Pugh J.W. Four cases of rodent ulcer treated by X rays. Br Med J 1902;1(2154):882–3.; Sequeira J.H. Further observations upon the treatment of rodent ulcer by the X rays. Br Med J 1903;1(2214):1307–10. DOI:10.1136/bmj.1.2214.1304; Abatucci J.S., Boulier N., Laforge T., Lozier J.C. Radiation therapy of skin carcinomas: results of a hypofractionated irradiation schedule in 675 cases followed more than 2 years. Radiother Oncol 1989;14(2):113–9. DOI:10.1016/0167-8140(89)90055-8; Hernandez-Machin B., Borrego L., Gil-Garcнa M., Hernández B.H. Office-based radiation therapy for cutaneous carcinoma: evaluation of 710 treatments. Int J Dermatol 2007;46(5):453–9.; Cognetta A.B., Howard B.M., Heaton H.P. et al. Superficial x-ray in the treatment of basal and squamous cell carcinomas: a viable option in select patients. J Am Acad Dermatol 2012;67(6):1235–41. DOI:10.1016/j.jaad.2012.06.001; Lovett R.D., Perez C.A., Shapiro S.J., Garcia D.M. External irradiation of epithelial skin cancer. Int J Radiat Oncol Biol Phys 1990;19(2):235–42. DOI:10.1016/0360-3016(90)90529-s; Schulte K.-W., Lippold A., Auras C. et al. Soft X-ray therapy for cutaneous basal cell and squamous cell carcinomas. J Am Acad Dermatol 2005;53(6):993–1001. DOI:10.1016/j.jaad.2005.07.045; Lee C.T., Lehrer E.J., Aphale A. et al. Surgical excision, Mohs micrographic surgery, external-beam radiotherapy, or brachytherapy for indolent skin cancer: An international meta-analysis of 58 studies with 21,000 patients. Cancer 2019;125:3582–94. DOI:10.1002/cncr.32371; Chernichenko A., Boiko A., Mescheryakova I., Gerasimov V. Surface brachytherapy of skin with individual applicators. J Contemp Brachytherapy 2011;3(1):55.; Tagliaferri L., Ciardo F.G., Fionda B. et al. Non-melanoma skin cancer treated by contact high-dose-rate radiotherapy (brachytherapy): a mono-institutional series and literature review. In Vivo 2021;35(4):2313–9. DOI:10.21873/invivo.12505; Guinot J.L., Rembielak A., Perez-Calatayud J. et al. GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiother Oncol 2018;126(3):377–85. DOI:10.1016/j.radonc.2018.01.013; Apisarnthanarax S., Dhruva N., Ardeshirpour F. et al. Concomitant radiotherapy and chemotherapy for high-risk nonmelanoma skin carcinomas of the head and neck. Int J Surg Oncol 2011;2011:464829. DOI:10.1155/2011/464829; Nottage M.K., Lin C., Hughes B.G. et al. Prospective study of defnitive chemoradiation in locally or regionally advanced squamous cell carcinoma of the skin. Head Neck 2017;39(4): 679–83. DOI:10.1002/hed.24662; Porceddu S.V., Bressel M., Poulsen M.G. et al. Postoperative concurrent chemoradiotherapy versus postoperative radiotherapy in high-risk cutaneous squamous cell carcinoma of the head and neck: the randomized phase III TROG 05.01 trial. J Clin Oncol 2018;36(13):1275–83. DOI:10.1200/JCO.2017.77.0941; Rogers H.W., Coldiron B.M. A relative value unit-based cost comparison of treatment modalities for nonmelanoma skin cancer: Effect of the loss of the Mohs multiple surgery reduction exemption. J Am Acad Dermatol 2009;61(1):96–103. DOI:10.1016/j.jaad.2008.07.0472009; Porceddu S.V., Daniels C., Yom S.S. et al. Head and Neck Cancer International Group (HNCIG) consensus guidelines for the delivery of postoperative radiation therapy in complex cutaneous squamous cell carcinoma of the head and neck (cSCCHN). Int J Radiat Oncol Biol Phys 2020;107(4):641–51. DOI:10.1016/j.ijrobp.2020.03.024; Koyfman S.A., Joshi N., Vidimos A. Adjuvant radiotherapy in highrisk cutaneous squamous cell cancer of the head and neck in immunosuppressed patients. JAAD Case Rep 2015;1(6):S5–7. DOI:10.1016/j.jdcr.2015.09.016; Gluck I., Ibrahim M., Popovtzer A. et al. Skin cancer of the head and neck with perineural invasion: defining the clinical target volumes based on the pattern of failure. Int J Radiat Oncol Biol Phys 2009;74(1):38–46. DOI:10.1016/j.ijrobp.2008.06.1943; Jackson J.E., Dickie G.J., Wiltshire K.L. et al. Radiotherapy for perineural invasion in cutaneous head and neck carcinomas: toward a risk-adapted treatment approach. Head Neck 2009;31(5):604–10. DOI:10.1002/hed.20991; Garcia-Serra A., Hinerman R.W., Mendenhall W.M. et al. Carcinoma of the skin with perineural invasion. Head Neck 2003;25(12):1027–33. DOI:10.1002/hed.10334; Lin C., Tripcony L., Keller J. et al. Cutaneous carcinoma of the head and neck with clinical features of perineural infiltration treated with radiotherapy. Clin Oncol (R Coll Radiol) 2013;25(6):362–7. DOI:10.1016/j.clon.2013.02.001; Ampil F.L., Hardin J.C., Peskind S.P., Stucker F.J. Perineural invasion in skin cancer of the head and neck: a review of nine cases. J Oral Maxillofac Surg 1995;53(1):34–8. DOI:10.1016/0278-2391(95)90496-4; Cottel W.I. Perineural invasion by squamous-cell carcinoma. J Dermatol Surg Oncol 1982;8(7):589–600. DOI:10.1111/j.1524-4725.1982.tb00317.x; Leibovitch I., Huilgol S., Selva D. et al. Cutaneous squamous cell carcinoma treated with Mohs micrographic surgery in Australia II. Perineural invasion. J Am Acad Dermatol 2005;53(2):261–6. DOI:10.1016/j.jaad.2005.03.048; Stevenson M.L., Criscito M.C., Wilken R. et al. Use of adjuvant radiotherapy in the treatment of high-risk cutaneous squamous cell carcinoma with perineural invasion. JAMA Dermatol 2020;156(8):918–21. DOI:10.1001/jamadermatol.2020.1984; Miller J., Chang T., Schwartz D. et al. Outcomes of adjuvant radiotherapy following negative surgical margins for cutaneous squamous cell carcinoma. Dermatol Surg 2019;45(9):1111–6. DOI:10.1097/DSS.0000000000001827; Harris B.N., Pipkorn P., Nguyen K.N.B. et al. Association of adjuvant radiation therapy with survival in patients with advanced cutaneous squamous cell carcinoma of the head and neck. JAMA Otolaryngol Head Neck Surg 2019;145(2):153–8. DOI:10.1001/jamaoto.2018.3650; Coombs A.C., Butler A., Allison R. Metastatic cutaneous squamous cell carcinoma of the parotid gland: prognostic factors. J Laryngol Otol 2018;132(3):264–9. DOI:10.1017/S0022215117001323; Sapir E., Tolpadi A., McHugh J. et al. Skin cancer of the head and neck with gross or microscopic perineural involvement: patterns of failure. Radiother Oncol 2016;120(1):81–6. DOI:10.1016/j.radonc.2016.06.011; Kadakia S., Ducic Y., Marra D. et al. Cutaneous squamous cell carcinoma of the scalp in the immunocompromised patient: review of 53 cases. Oral Maxillofac Surg 2016;20(2):171–5. DOI:10.1007/s10006-016-0545-6; Wray J., Amdur R.J., Morris C.G. et al. Efficacy of elective nodal irradiation in skin squamous cell carcinoma of the face, ears, and scalp. Radiat Oncol 2015;10:199.; Wang J.T., Palme C.E., Morgan G.J. et al. Predictors of outcome in patients with metastatic cutaneous head and neck squamous cell carcinoma involving cervical lymph nodes: improved survival with the addition of adjuvant radiotherapy. Head Neck 2012;34(11):1524–8. DOI:10.1002/hed.21965; Givi B., Andersen P.E., Diggs B.S. et al. Outcome of patients treated surgically for lymph node metastases from cutaneous squamous cell carcinoma of the head and neck. Head Neck 2011;33(7):999–1004. DOI:10.1002/hed.21574; Strassen U., Hofauer B., Jacobi C., Knopf A. Management of locoregional recurrence in cutaneous squamous cell carcinoma of the head and neck. Eur Arch Otorhinolaryngol 2017;274(1):501–6. DOI:10.1007/s00405-016-4243-7; Tanvetyanon T., Padhya T., McCaffrey J. et al. Postoperative concurrent chemotherapy and radiotherapy for high-risk cutaneous squamous cell carcinoma of the head and neck. Head Neck 2015;37(6):840–5. DOI:10.1002/hed.23684; Ruiz E.S., Koyfman S.A., Que S.K.T. et al. Evaluation of the utility of localized adjuvant radiation for nodenegative primary cutaneous squamous cell carcinoma with clear histologic margins. J Am Acad Dermatol 2020;82(2):420–9. DOI:10.1016/j.jaad.2019.07.048; Trosman S.J., Zhu A., Nicolli E.A. et al. High-risk cutaneous squamous cell cancer of the head and neck: risk factors for recurrence and impact of adjuvant treatment. Laryngoscope 2020;131(1):E136–43. DOI:10.1002/lary.28564; Amoils M., Lee C.S., Sunwoo J. et al. Node-positive cutaneous squamous cell carcinoma of the head and neck: survival, high-risk features, and adjuvant chemoradiotherapy outcomes. Head Neck 2017;39(5):881–5. DOI:10.1002/hed.24692; Goyal U., Prabhakar N.K., Davuluri R. et al. Role of concurrent systemic therapy with adjuvant radiation therapy for locally advanced cutaneous head and neck squamous cell carcinoma. Cureus 2017;9(10):e1784. DOI:10.7759/cureus.1784; Jambusaria-Pahlajani A., Miller C.J., Quon H. et al. Surgical monotherapy versus surgery plus adjuvant radiotherapy in high-risk cutaneous squamous cell carcinoma: a systematic review of outcomes. Dermatol Surg 2009;35(4):574–84. DOI:10.1111/j.1524-4725.2009.01095.x; Hillen U., Leiter U., Haase S., Kaufmann R. et al. Advanced cutaneous squamous cell carcinoma: a retrospective analysis of patient profiles and treatment patterns-results of a noninterventional study of the DeCOG. Eur J Cancer 2018;96:34–43. DOI:10.1016/j.ejca.2018.01.075; Corry J., Peters L.J., Costa I.D. et al. The QUAD SHOT – a phase II study of palliative radiotherapy for incurable head and neck cancer. Radiother Oncol 2005;77(2):137–42. DOI:10.1016/j.radonc.2005.10.008; Barnes E.A., Breen D., Culleton S. et al. Palliative radiotherapy for non-melanoma skin cancer. Clin Oncol 2010;22(10):844–9. DOI:10.1016/j.clon.2010.07.014; Ferro M., Deodato F., Macchia G. et al. Short-course radiotherapy in elderly patients with early stage nonmelanoma skin cancer: a phase II Study. Cancer Invest 2015;33(2):34–8. DOI:10.3109/073 57907.2014.998835; Vuong W., Lin J., Wei R.L. Palliative radiotherapy for skin malignancies. Ann Palliat Med 2017;6(2):165–72. DOI:10.21037/apm.2016.11.10; Varra V., Smile T.D., Geiger J.L., Koyfman S.A. Recent and emerging therapies for cutaneous squamous cell carcinomas of the head and neck. Curr Treat Options Oncol 2020;21(5):37. DOI:10.1007/s11864-020-00739-7; Mierzwa M.L. Radiotherapy for skin cancers of the face, head, and neck. Facial Plast Surg Clin N Am 2019;27(1):131–8. DOI:10.1016/j.fsc.2018.08.005; Nath N.S., Gilmore B.F., McCann R.K. et al. Management of a cuta neous squamous cell carcinoma overlying an AV fistula. BMJ Case Rep 2017;2017:bcr2016218932. DOI:10.1136/bcr-2016-218932; Romesser P.B., Cahlon O., Scher E. et al. Proton beam radiation therapy results in significantly reduced toxicity compared with intensity-modulated radiation therapy for head and neck tumors that require ipsilateral radiation. Radiother Oncol 2016;118(2):286–92. DOI:10.1016/j.radonc.2015.12.008; Bryant C.M., Dagan R., Li Z. et al. Proton therapy for nonmelanoma skin cancers with clinical perineural invasion. Int J Radiat Oncol Biol Phys Ther 2017;99:E324–5. DOI:10.1016/j.ijrobp.2017.06.1376; Khan L., Choo R., Breen D. al. Recommendations for CTV margins in radiotherapy planning for non melanoma skin cancer. Radiother Oncol 2012;104(2):263–6. DOI:10.1016/j.radonc.2012.06.013; Lin C., Ballah T., Nottage M. et al. A prospective study investigating the efficacy and toxicity of definitive Chemoradiation and Immunotherapy (CRIO) in locally and/or regionally advanced unresectable cutaneous squamous cell carcinoma. Radiat Oncol 2021;16(1):69. DOI:10.1186/s13014-021-01795-5; https://ogsh.abvpress.ru/jour/article/view/815

  7. 7
  8. 8
    Academic Journal

    Source: Siberian journal of oncology; Том 20, № 1 (2021); 141-148 ; Сибирский онкологический журнал; Том 20, № 1 (2021); 141-148 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-1

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1701/837; Ahn D.H., Bekaii-Saab T. Ampullary cancer: an overview. Am Soc Clin Oncol Educ Book. 2014: 112–5. doi:10.14694/EdBook_AM.2014.34.112.; Ishihara S., Horiguchi A., Miyakawa S., Endo I., Miyazaki M., Takada T. Biliary tract cancer registry in Japan from 2008 to 2013. J Hepatobiliary Pancreat Sci. 2016 Mar; 23(3): 149– 57. doi:10.1002/jhbp.314.; Riall T.S., Cameron J.L., Lillemoe K.D., Winter J.M., Campbell K.A., Hruban R.H., Chang D., Yeo C.J. Resected periampullary adenocarcinoma: 5-year survivors and their 6- to 10-year follow-up. Surgery. 2006 Nov; 140(5): 764–72. doi:10.1016/j.surg.2006.04.006.; Miyakawa S., Ishihara S., Horiguchi A., Takada T., Miyazaki M., Nagakawa T. Biliary tract cancer treatment: 5,584 results from the Biliary Tract Cancer Statistics Registry from 1998 to 2004 in Japan. J Hepatobiliary Pancreat Surg. 2009; 16(1): 1–7. doi:10.1007/s00534-008-0015-0.; Liu F., Cheng J.L., Cui J., Xu Z.Z., Fu Z., Liu J., Tian H. Surgical method choice and coincidence rate of pathological diagnoses in transduodenal ampullectomy: A retrospective case series study and review of the literature. World J Clin Cases. 2019 Mar 26; 7(6): 717–726. doi:10.12998/wjcc.v7.i6.717.; Rattner D.W., Fernandez-del Castillo C., Brugge W.R., Warshaw A.L. Defining the criteria for local resection of ampullary neoplasms. Arch Surg. 1996 Apr; 131(4): 366–71. doi:10.1001/archsurg.1996.01430160024003.; Roggin K.K., Yeh J.J., Ferrone C.R., Riedel E., Gerdes H., Klimstra D.S., Jaques D.P., Brennan M.F. Limitations of ampullectomy in the treatment of nonfamilial ampullary neoplasms. Ann Surg Oncol. 2005; 12(12): 971–80. doi:10.1245/ASO.2005.03.009.; Ceppa E.P., Burbridge R.A., Rialon K.L., Omotosho P.A., Emick D., Jowell P.S., Branch M.S., Pappas T.N. Endoscopic versus surgical ampullectomy: an algorithm to treat disease of the ampulla of Vater. Ann Surg. 2013 Feb; 257(2): 315–22. doi:10.1097/SLA.0b013e318269d010.; Beger H.G., Treitschke F., Gansauge F., Harada N., Hiki N., Mattfeldt T. Tumor of the ampulla of Vater: experience with local or radical resection in 171 consecutively treated patients. Arch Surg. 1999; 134(5): 526–32. doi:10.1001/archsurg.134.5.526.; Casaretto E., Andrada D.G., Granero L.E. Results of cephalic pancreaticoduodenectomy for ampullary carcinoma. Analysis of 18 consecutive cases. Acta Gastroenterol Latinoam. 2010 Mar; 40(1): 22–31.; Bourgouin S., Ewald J., Mancini J., Moutardier V., Delpero J.R., Le Treut Y.P. Disease-free survival following resection in non-ductal periampullary cancers: A retrospective multicenter analysis. Int J Surg. 2017; 42: 103–109. doi:10.1016/j.ijsu.2017.04.051.; Dorandeu A., Raoul J.L., Siriser F., Leclercq-Rioux N., Gosselin M., Martin E.D., Ramée M.P., Launois B. Carcinoma of the ampulla of Vater: prognostic factors after curative surgery: a series of 45 cases. Gut. 1997 Mar; 40(3): 350–5. doi:10.1136/gut.40.3.350.; Hsu H.P., Yang T.M., Hsieh Y.H., Shan Y.S., Lin P.W. Predictors for patterns of failure after pancreaticoduodenectomy in ampullary cancer. Ann Surg Oncol. 2007 Jan; 14(1): 50–60. doi:10.1245/s10434-006-9136-3.; Todoroki T., Koike N., Morishita Y., Kawamoto T., Ohkohchi N., Shoda J., Fukuda Y., Takahashi H. Patterns and predictors of failure after curative resections of carcinoma of the ampulla of Vater. Ann Surg Oncol. 2003 Dec; 10(10): 1176–83. doi:10.1245/aso.2003.07.512.; O'Connell J.B., Maggard M.A., Manunga J.Jr., Tomlinson J.S., Reber H.A., Ko C.Y., Hines O.J. Survival after resection of ampullary carcinoma: a national population-based study. Ann Surg Oncol. 2008 Jul; 15(7): 1820–7. doi:10.1245/s10434-008-9886-1.; Sudo T., Murakami Y., Uemura K., Hayashidani Y., Hashimoto Y., Ohge H., Shimamoto F., Sueda T. Prognostic impact of perineural invasion following pancreatoduodenectomy with lymphadenectomy for ampullary carcinoma. Dig Dis Sci. 2008 Aug; 53(8): 2281–6. doi:10.1007/s10620-007-0117-6.; Kim W.S., Choi D.W., Choi S.H., Heo J.S., You D.D., Lee H.G. Clinical significance of pathologic subtype in curatively resected ampulla of vater cancer. J Surg Oncol. 2012 Mar; 105(3): 266–72. doi:10.1002/jso.22090.; Murakami T., Matsuyama R., Ueda M., Mochizuki Y., Homma Y., Kameda K., Yazawa K., Izumisawa Y., Fukushima T., Kamimukai N., Yoshida K., Kamiya N., Hoffman R.M., Endo I. High-Mobility Group Box 1 expression predicts survival of patients after resection of adenocarcinoma of the ampulla of Vater. World J Surg Oncol. 2019 Aug 9; 17(1): 140. doi:10.1186/s12957-019-1675-8.; Zimmermann C., Wolk S., Aust D.E., Meier F., Saeger H.D., Ehehalt F., Weitz J., Welsch T., Distler M. The pathohistological subtype strongly predicts survival in patients with ampullary carcinoma. Sci Rep. 2019; 9(1): 12676. doi:10.1038/s41598-019-49179-w.; Yamaguchi K., Enjoji M., Tsuneyoshi M. Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19-9. J Surg Oncol. 1991; 47(3): 148–54. doi:10.1002/jso.2930470303.; Martin E.D. Anatomopathologie des tumeurs oddiennes. Les tumeurs oddiennes. Paris: Masson, 1978. 35–52.; Talbot I.C., Neoptolemos J.P., Shaw D.E., Carr-Locke D. The histopathology and staging of carcinoma of the ampulla of Vater. Histopathology. 1988 Feb; 12(2): 155–65. doi:10.1111/j.1365-2559.1988.tb01926.x.; Monson J.R., Donohue J.H., McEntee G.P., McIlrath D.C., van Heerden J.A., Shorter R.G., Nagorney D.M., Ilstrup D.M. Radical resection for carcinoma of the ampulla of Vater. Arch Surg. 1991 Mar; 126(3): 353–7. doi:10.1001/archsurg.1991.01410270099016.; Dawson P.J., Connolly M.M. Influence of site of origin and mucin production on survival in ampullary carcinoma. Ann Surg. 1989 Aug; 210(2): 1739. doi:10.1097/00000658-198908000-00006.; Kozuka S., Tsubone M., Yamaguchi A., Hachisuka K.Adenomatous residue in cancerous papilla of Vater. Gut. 1981 Dec; 22(12): 10314. doi:10.1136/gut.22.12.1031.; Kamisawa T., Fukayama M., Koike M., Tabata I., Egawa N., Isawa T., Okamoto A., Hayashi Y. Carcinoma of the ampulla of Vater: expression of cancer-associated antigens inversely correlated with prognosis. Am J Gastroenterol. 1988 Oct; 83(10): 111823.; Willett C.G., Warshaw A.L., Convery K., Compton C.C. Patterns of failure after pancreaticoduodenectomy for ampullary carcinoma. Surg Gynecol Obstet. 1993 Jan; 176(1): 338.; Willett C.G., Lewandrowski K., Warshaw A.L., Efird J., Compton C.C. Resection margins in carcinoma of the head of the pancreas. Implications for radiation therapy. Ann Surg. 1993 Feb; 217(2): 1448. doi:10.1097/00000658-199302000-00008.; Nakao A., Harada A., Nonami T., Kishimoto W., Takeda S., Ito K., Takagi H. Prognosis of cancer of the duodenal papilla of Vater in relation to clinicopathological tumor extension. Hepatogastroenterology. 1994 Feb; 41(1): 738.; Allema J.H., Reinders M.E., van Gulik T.M., van Leeuwen D.J., Verbeek P.C., de Wit L.T., Gouma D.J. Results of pancreaticoduodenectomy for ampullary carcinoma and analysis of prognostic factors for survival. Surgery. 1995 Mar; 117(3): 24753. doi:10.1016/s0039-6060(05)80197-7.; Su C.H., Shyr Y.M., Lui W.Y., P'eng F.K. Factors affecting morbidity, mortality and survival after pancreaticoduodenectomy for carcinoma of the ampulla of Vater. Hepatogastroenterology. 1999 May-Jun; 46(27): 19739.; Lee J.H., Whittington R., Williams N.N., Berry M.F., Vaughn D.J., Haller D.G., Rosato E.F. Outcome of pancreaticoduodenectomy and impact of adjuvant therapy for ampullary carcinomas. Int J Radiat Oncol Biol Phys. 2000 Jul 1; 47(4): 94553. doi:10.1016/s0360-3016(00)00537-x.; Talamini M.A., Moesinger R.C., Pitt H.A., Sohn T.A., Hruban R.H., Lillemoe K.D., Yeo C.J., Cameron J.L. Adenocarcinoma of the ampulla of Vater. A 28-year experience. Ann Surg. 1997 May; 225(5): 5909; discussion 599600. doi:10.1097/00000658-199705000-00015.; Shirai Y., Tsukada K., Ohtani T., Hatakeyama K. Carcinoma of the ampulla of Vater: is radical lymphadenectomy beneficial to patients with nodal disease? J Surg Oncol. 1996 Mar; 61(3): 1904. doi:10.1002/(SICI)1096-9098(199603)61:33.0.CO;2-6.; Brown K.M., Tompkins A.J., Yong S., Aranha G.V., Shoup M. Pancreaticoduodenectomy is curative in the majority of patients with node-negative ampullary cancer. Arch Surg. 2005 Jun; 140(6): 52932; discussion 532-3. doi:10.1001/archsurg.140.6.529.; Narang A.K., Miller R.C., Hsu C.C., Bhatia S., Pawlik T.M., Laheru D., Hruban R.H., Zhou J., Winter J.M., Haddock M.G., Donohue J.H., Schulick R.D., Wolfgang C.L., Cameron J.L., Herman J.M. Evaluation of adjuvant chemoradiation therapy for ampullary adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Radiat Oncol. 2011 Sep 28; 6: 126. doi:10.1186/1748-717X-6-126.; Kawaida H., Kono H., Amemiya H., Hosomura N., Watanabe M., Saito R., Maruyama S., Shimizu H., Furuya S., Akaike H., Kawaguchi Y., Sudo M., Matusda M., Itakura J., Shindo H., Takahashi E.I., Takano S., Fukasawa M., Satou T., Nakazawa T., Enomoto N., Fujii H., Ichikawa D. Stratification of Prognosis in Patients With Ampullary Carcinoma After Surgery by Preoperative Platelet-to-lymphocyte Ratio and Conventional Tumor Markers. Anticancer Res. 2019 Dec; 39(12): 69236929. doi:10.21873/anticanres.13913.; Kimura W., Futakawa N., Yamagata S., Wada Y., Kuroda A., Muto T., Esaki Y. Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res. 1994 Feb; 85(2): 1616. doi:10.1111/j.1349-7006.1994.tb02077.x.; Albores-Saavedra J., Henson D.E., Klimstra D.S. Tumors of the gallbladder, extrahepatic bile ducts, and ampulla of Vater. Atlas of tumor pathology. 2000; 27: 259316.; Radojkovic M., Stojanovic M., Radojković D., Jeremic L., Mihailovic D., Ilic I. Histopathologic differentiation as a prognostic factor in patients with carcinoma of the hepatopancreatic ampulla of Vater. J Int Med Res. 2018 Nov; 46(11): 46344639. doi:10.1177/0300060518786920.; Kohler I., Jacob D., Budzies J., Lehmann A., Weichert W., Schulz S., Neuhaus P., Röcken C. Phenotypic and genotypic characterization of carcinomas of the papilla of Vater has prognostic and putative therapeutic implications. Am J Clin Pathol. 2011 Feb; 135(2): 20211. doi:10.1309/AJCPCTCUQSYI89YT.; Westgaard A., Pomianowska E., Clausen O.P., Gladhaug I.P. Intestinal-type and pancreatobiliary-type adenocarcinomas: how does ampullary carcinoma differ from other periampullary malignancies? Ann Surg Oncol. 2013 Feb; 20(2): 4309. doi:10.1245/s10434-012-2603-0.; Asano E., Okano K., Oshima M., Kagawa S., Kushida Y., Munekage M., Hanazaki K., Watanabe J., Takada Y., Ikemoto T., Shimada M., Suzuki Y.; Shikoku Consortium of Surgical Research (SCSR). Phenotypic characterization and clinical outcome in ampullary adenocarcinoma. J Surg Oncol. 2016 Jul; 114(1): 11927. doi:10.1002/jso.24274.; Bowitz Lothe I.M., Kleive D., Pomianowska E., Cvancarova M., Kure E., Dueland S., Gladhaug I.P., Labori K.J. Clinical relevance of pancreatobiliary and intestinal subtypes of ampullary and duodenal adenocarcinoma: Pattern of recurrence, chemotherapy, and survival after pancreatoduodenectomy. Pancreatology. 2019 Mar; 19(2): 316324. doi:10.1016/j.pan.2019.01.019.; Nitschke P., Volk A., Welsch T., Hackl J., Reissfelder C., Rahbari M., Distler M., Saeger H.D., Weitz J., Rahbari N.N. Impact of Intraoperative Re-resection to Achieve R0 Status on Survival in Patients With Pancreatic Cancer: A Single-center Experience With 483 Patients. Ann Surg. 2017 Jun; 265(6): 12191225. doi:10.1097/SLA.0000000000001808.; Schiergens T.S., Reu S., Neumann J., Renz B.W., Niess H., Boeck S., Heinemann V., Bruns C.J., Jauch K.W., Kleespies A. Histomorphologic and molecular phenotypes predict gemcitabine response and overall survival in adenocarcinoma of the ampulla of Vater. Surgery. 2015 Jul; 158(1): 15161. doi:10.1016/j.surg.2015.02.001.; Neoptolemos J.P., Moore M.J., Cox T.F., Valle J.W., Palmer D.H., Mcdonald A., Carter R., Tebbutt N.C., Dervenis C., Smith D., Glimelius B., Coxon F.Y., Lacaine F., Middleton M.R., Ghaneh P., Bassi C., Halloran C., Olah A., Rawcliffe C.L., Büchler M.W. Ampullary cancer ESPAC-3 (v2) trial: a multicenter, international, open-label, randomized controlled phase III trial of adjuvant chemotherapy versus observation in patients with adenocarcinoma of the ampulla of Vater. J Clin Oncol. 2016; 29: LBA4006.; Klinkenbijl J.H., Jeekel J., Sahmoud T., van Pel R., Couvreur M.L., Veenhof C.H., Arnaud J.P., Gonzalez D.G., de Wit L.T., Hennipman A., Wils J. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg. 1999 Dec; 230(6): 77682; discussion 782-4. doi:10.1097/00000658-199912000-00006.; Takada T., Amano H., Yasuda H., Nimura Y., Matsushiro T., Kato H., Nagakawa T., Nakayama T.; Study Group of Surgical Adjuvant Therapy for Carcinomas of the Pancreas and Biliary Tract. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreaticobiliary carcinoma. Cancer. 2002 Oct 15; 95(8): 168595. doi:10.1002/cncr.10831. PMID: 12365016.; Mehta V.K., Fisher G.A., Ford J.M., Poen J.C., Vierra M.A., Oberhelman H.A., Bastidas A.J.Adjuvant chemoradiotherapy for «unfavorable» carcinoma of the ampulla of Vater: preliminary report. Arch Surg. 2001 Jan; 136(1): 659. doi:10.1001/archsurg.136.1.65.; Bhatia S., Miller R.C., Haddock M.G., Donohue J.H., Krishnan S. Adjuvant therapy for ampullary carcinomas: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys. 2006 Oct 1; 66(2): 5149. doi:10.1016/j.ijrobp.2006.04.018.; Palta M., Patel P., Broadwater G., Willett C., Pepek J., Tyler D., Zafar S.Y., Uronis H., Hurwitz H., White R., Czito B. Carcinoma of the ampulla of Vater: patterns of failure following resection and benefit of chemoradiotherapy. Ann Surg Oncol. 2012 May; 19(5): 153540. doi:10.1245/s10434-011-2117-1.; Ha H.R., Oh D.Y., Kim T.Y., Lee K., Kim K., Lee K.H., Han S.W., Chie E.K., Jang J.Y., Im S.A., Kim T.Y., Kim S.W., Bang Y.J. Survival Outcomes According to Adjuvant Treatment and Prognostic Factors Including Host Immune Markers in Patients with Curatively Resected Ampulla of Vater Cancer. PLoS One. 2016 Mar 14; 11(3): e0151406. doi:10.1371/journal.pone.0151406.; Kwon J., Kim B.H., Kim K., Chie E.K., Ha S.W. Survival Benefit of Adjuvant Chemoradiotherapy in Patients With Ampulla of Vater Cancer: A Systematic Review and Meta-analysis. Ann Surg. 2015 Jul; 262(1): 4752. doi:10.1097/SLA.0000000000001182.; Nassour I., Hynan L.S., Christie A., Minter R.M., Yopp A.C., Choti M.A., Mansour J.C., Porembka M.R., Wang S.C. Association of Adjuvant Therapy with Improved Survival in Ampullary Cancer: A National Cohort Study. J Gastrointest Surg. 2018 Apr; 22(4): 695702. doi:10.1007/s11605-017-3624-6.; Primrose J.N., Fox R.P., Palmer D.H., Malik H.Z., Prasad R., Mirza D., Anthony A., Corrie P., Falk S., Finch-Jones M., Wasan H., Ross P., Wall L., Wadsley J., Evans J.T.R., Stocken D., Praseedom R., Ma Y.T., Davidson B., Neoptolemos J.P., Iveson T., Raftery J., Zhu S., Cunningham D., Garden O.J., Stubbs C., Valle J.W., Bridgewater J.; BILCAP study group. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019 May; 20(5): 663673. doi:10.1016/S1470-2045(18)30915-X.; Yeung R.S., Weese J.L., Hoffman J.P., Solin L.J., Paul A.R., Engstrom P.F., Litwin S., Kowalyshyn M.J., Eisenberg B.L. Neoadjuvant chemoradiation in pancreatic and duodenal carcinoma. A Phase II Study. Cancer. 1993 Oct 1; 72(7): 212433. doi:10.1002/1097-0142(19931001)72:73.0.co;2-c.; Hoffman J.P., Cooper H.S., Young N.A., Pendurthi T.K. Preoperative chemotherapy of chemoradiotherapy for the treatment of adenocarcinoma of the pancreas and ampulla of Vater. J Hepatobiliary Pancreat Surg. 1998; 5(3): 2514. doi:10.1007/s005340050042.; Cloyd J.M., Wang H., Overman M., Zhao J., Denbo J., Prakash L., Kim M.P., Shroff R., Javle M., Varadhachary G.R., Fogelman D., Wolff R.A., Koay E.J., Das P., Maitra A., Aloia T.A., Vauthey J.N., Fleming J.B., Lee J.E., Katz M.H.G. Influence of Preoperative Therapy on Short- and Long-Term Outcomes of Patients with Adenocarcinoma of the Ampulla of Vater. Ann Surg Oncol. 2017 Jul; 24(7): 20312039. doi:10.1245/s10434-017-5777-7.; Yamashita S., Overman M.J., Wang H., Zhao J., Okuno M., Goumard C., Tzeng C.W., Kim M., Fleming J.B., Vauthey J.N., Katz M.H., Lee J.E., Conrad C. Pathologic Response to Preoperative Therapy as a Novel Prognosticator for Ampullary and Duodenal Adenocarcinoma. Ann Surg Oncol. 2017 Dec; 24(13): 39543963. doi:10.1245/s10434-017-6098-6.; https://www.siboncoj.ru/jour/article/view/1701

  9. 9
  10. 10
    Academic Journal

    Source: Cancer Urology; Том 17, № 1 (2021); 108-119 ; Онкоурология; Том 17, № 1 (2021); 108-119 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1442/1258; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7-30. DOI:10.3322/caac.21332.; Kamat A.M., Hahn N.M., Efstathiou J.A. et al. Bladder cancer. Lancet 2016;388(10061):2796-810. DOI:10.1016/S0140-6736(16)30512-8.; Клинические рекомендации. Рак мочевого пузыря. Общероссийский национальный союз «Ассоциация онкологов России», 2021.; Flaig T.W., Spiess P.E., Agarwal N. et al. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020;18(3): 329-54. DOI:10.6004/jnccn.2020.0011.; Witjes J.A. (Chair), Bruins H.M., Cathomas R. et al. Muscle-invasive and Metastatic Bladder Cancer. EAU Guidelines. 2020. Available at: https://uroweb.org/guideline/bladder-cancer-muscle-invasive-and-metastatic/#9.; Raj G.V., Karavadia S., Schlomer B. et al. Contemporary use of perioperative cisplatin-based chemotherapy in patients with muscle-invasive bladder cancer. Cancer 2011;117(2):276-82. DOI:10.1002/cncr.25429.; Donat S.M., Shabsigh A., Savage C. et al. Potential impact of postoperative early complications on the timing of adjuvant chemotherapy in patients undergoing radical cystectomy: a high-volume tertiary cancer center experience. Eur Urol 2009;55(1):177-86. DOI:10.1016/j.eururo.2008.07.018.; Rosenberg J.E., Hoffman-Censits J., Powles T. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinumbased chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909-20. DOI:10.1016/S0140-6736(16)00561-4.; Bellmunt J., de Wit R., Vaughn D.J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;376(11):1015-26. DOI:10.1056/NEJMoa1613683.; Massard C., Gordon M.S., Sharma S. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016;34(26):3119-25. DOI:10.1200/JCO.2016.67.9761.; Apolo A.B., Infante J.R., Hamid O. et al. Avelumab (MSB0010718C; anti-PD-L1) in patients with metastatic urothelial carcinoma from the JAVELIN solid tumor phase 1b trial: analysis of safety, clinical activity, and PD-L1 expression [abstract]. J Clin Oncol 2016;34:4514.; Sharma P., Retz M., Siefker-Radtke A. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2017;18(3):312-22. DOI:10.1016/S1470-2045(17)30065-7.; Necchi A., Raggi D., Gallina A. et al. Updated results of PURE-01 with preliminary activity of neoadjuvant pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies. Eur Urol 2020;77(4):439-46. DOI:10.1016/j.eururo.2019.10.026.; Powles T., Rodriguez-Vida A., Duran I. et al. A phase II study investigating the safety and efficacy of neoadjuvant atezolizumab in muscle invasive bladder cancer (ABACUS). JCO 2018;36(15_suppl).; Bajorin D.F., Witjes J.A., Gschwend J.E. et al. First results from the phase 3 CheckMate 274 trial of adjuvant nivolumab versus placebo in patients who underwent radical surgery for high-risk muscle-invasive urothelial carcinoma. Oral presentation at the 2021 Genitourinary Cancers Symposium (ASCO GU). February 11-13, 2021; Virtual Meeting.; Kim H.S., Jeong C.W., Kwak C. et al. Disease-free survival at 2 and 3 years is a significant early surrogate marker predicting the 5-year overall survival in patients treated with radical cystectomy for urothelial carcinoma of the bladder: external evaluation and validation in a cohort of Korean patients. Front Oncol 2015;5:246. DOI:10.3389/fonc.2015.00246.; Sonpavde G., Khan M.M., Lerner S.P. et al. Disease-free survival at 2 or 3 years correlates with 5-year overall survival of patients undergoing radical cystectomy for muscle invasive bladder cancer. J Urol 2011;185(2):456-61. DOI:10.1016/j.juro.2010.09.110.; https://oncourology.abvpress.ru/oncur/article/view/1442

  11. 11
    Academic Journal

    Source: Head and Neck Tumors (HNT); Том 11, № 2 (2021); 50-56 ; Опухоли головы и шеи; Том 11, № 2 (2021); 50-56 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2021-11-2

    File Description: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/647/480; Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2019. 250 с.; Пачес А.И., Бржезовский В.Ж., Демидов Л.В. и др. Опухоли головы и шеи: клинические рекомендации. М.: Практическая медицина, 2013:60–9.; Ozao-Choy J., Nelson D.W., Hiles J. et al. The prognostic importance of scalp location in primary head and neck melanoma. J Surg Oncol 2017;116(3): 337–43. DOI:10.1002/jso.24679.; Leong S.P., Accortt N.A., Essner R. et al. Impact of sentinel node status and other risk factors on the clinical outcome of head and neck melanoma patients. Arch Otolaryngol Head Neck Surg 2006;132(4):370–3. DOI:10.1001/archotol.132.4.370.; Weinstock M.A., Morris B.T., Lederman J.S. et al. Effect of BANS location on the prognosis of clinical stage I melanoma: new data and meta-analysis. Br J Dermatol 1988;119:559–565.; Law M.M., Wong J.H. Evaluation of the prognostic significance of the site of origin of cutaneous melanoma. Am Surg 1994;60:362–6.; Garbe C., Buttner P., Bertz J. et al. Primary cutaneous melanoma. Prognostic classification of anatomic location. Cancer 1995;75:2492–98. DOI:10.1002/10970142(19950515)75:103.0.co;2-w.; Fadaki N., Li R., Parrett B. et al. Is head and neck melanoma different from trunk and extremity melanomas with respect to sentinel lymph node status and clinical outcome? Ann Surg Oncol 2013;20(9): 3089–97. DOI:10.1245/s10434-013-2977-7.; Veronesi U., Cascinelli N., Adamus J. et al. Thin stage I primary cutaneous malignant melanoma. Comparison of excision with margins of 1 or 3 cm. N Engl J Med 1988;318:1159–62. DOI:10.1056/NEJM198805053181804.; Balch C.M., Soong S., Ross M.I. et al. Long-term results of a multi-institutional randomized trial comparing prognostic factors and surgical results for intermediate thickness melanomas (1,0 to 4,0 mm). Intergroup Melanoma Surgical Trial. Ann Surg Oncol 2000;7:87–97. DOI:10.1007/s10434-000-0087-9.; Thomas J.M., Newton-Bishop J., A’Hern R. et al. Excision margins in high-risk malignant melanoma. N Engl J Med 2004;350:757–66. DOI:10.1056/NEJMoa030681.; Gillgren P., Drzewiecki K.T., Niin M. et al. 2-cm versus 4-cm surgical excision margins for primary cutaneous melanoma thicker than 2 mm: A randomized, multicenter trial. Lancet 2011;378:1635–41. DOI:10.1016/S0140-6736(11)61546-8.; Пак М.Б., Мудунов А.М., Демидов Л.В. и др. Влияние величины хирургического отступа на отдаленные результаты лечения больных с меланомой кожи головы и шеи. Клиническая онкология 2017;19(4):22–7.; Hu A.C., Lee S.A., Clark E.G. et al. Impact of immediate surgical reconstruction following wide local excision of malignant head and neck melanoma. Plast Reconstr Surg Glob Open 2020;8(2):e2661. DOI:10.1097/GOX.0000000000002661.; Morton D.L., Thompson J.F., Cochran A.J. et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N Engl J Med 2014;370(7):599–609. DOI:10.1056/NEJMoa1310460.; Faries M.B., Thompson J.F., Cochran A.J. et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med 2017;376(23):2211–22. DOI:10.1056/NEJMoa1613210.; Leiter U., Stadler R., Mauch C. et al. Final analysis of DeCOG-SLT Trial: no survival benefit for complete lymph node dissection in patients with melanoma with positive sentinel node. J Clin Oncol 2019;37(32):3000–8. DOI:10.1200/JCO.18.02306.; Chao C., Wong S.L., Edwards M.J. et al. Sentinel lymph node biopsy for head and neck melanomas. Ann Surg Oncol 2003;10(1):21–6.; Miller M.W., Vetto J.T., Monroe M.M. et al. False-negative sentinel lymph node biopsy in head and neck melanoma. Otolaryngol Head Neck Surg 2011;145:606–11. DOI:10.1177/0194599811411878.; Fincher T.R., O’Brien J.C., McCarty T.M. et al. Patterns of drainage and recurrence following sentinel lymph node biopsy for cutaneous melanoma of the head and neck. Arch Otolaryngol Head Neck Surg 2004;130:844–8. DOI:10.1001/archotol.130.7.844.; Lin D., Franc B.L., Kashani-Sabet M., Singer M.I. Lymphatic drainage patterns of head and neck cutaneous melanoma observed on lymphoscintigraphy and sentinel lymph node biopsy. Head Neck 2006; 28:249–255. DOI:10.1002/hed.20328.; Klop W.M., Veenstra H.J., Vermeeren L. et al. Assessment of lymphatic drainage patterns and implications for the extent of neck dissection in head and neck melanoma patients. J Surg Oncol 2011;103:756–60. DOI:10.1002/jso.21865.; De Wilt J.H., Thompson J.F., Uren R.F. et al. Correlation between preoperative lymphoscintigraphy and metastatic nodal disease sites in 362 patients with cutaneous melanomas of the head and neck. Ann Surg 2004;239:544–52. DOI:10.1097/01.sla.0000118570.26997.a1.; Reynolds H.M., Smith N.P., Uren R.F. Three-dimensional visualization of skin lymphatic drainage patterns of the head and neck. Head Neck 2009;31(10):1316–25. DOI:10.1002/hed.21089.; Andersen P.S., Chakera A.H., Thamsborg A.K.M. et al. Recurrence and survival after neck dissections in cutaneous head and neck melanoma. Dan Med J 2014;61(12):A4953.; Henderson M.A., Burmeister B.H., Ainslie J. et al. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/ TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. Lancet Oncol 2015;16(9):1049–60. DOI:10.1016/S1470-2045(15)00187-4.; Zaman A., Wu W., Bivona T.G. Targeting Oncogenic BRAF: Past, present, and future. Cancers (Basel) 2019;11(8):1197. DOI:10.3390/cancers11081197.; Dummer R., Ascierto P.A., Gogas H.J. et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, openlabel, randomised phase 3 trial. Lancet Oncol 2018;19:603–15. DOI:10.1016/S1470-2045(18)30142-6.; Ascierto P.A., McArthur G.A., Dréno B. et al. coBRIM: a phase 3, double-blind, placebo-controlled study of vemurafenib versus vemurafenib + cobimetinib in previously untreated BRAFV600 mutation-positive patients with unresectable locally advanced or metastatic melanoma (NCT01689519). J Transl Med 2015;13(1):O4. DOI:10.1186/1479-5876-13-S1-O4.; Luke J.J. Comprehensive clinical trial data summation for BRAF-MEK inhibition and checkpoint immunotherapy in metastatic melanoma. Oncologist 2019;24(11):e1197–e1211. DOI:10.1634/theoncologist.2018-0876.; Yamasaki A., Wu M.P., Emerick K.S. Outcomes of cartilage-sparing wide local excision for primary melanoma of the external ear. OTO Open 2020;4(1):2473974X20903124. DOI:10.1177/2473974X20903124.; https://ogsh.abvpress.ru/jour/article/view/647

  12. 12
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 20 (2021); 68-74 ; Медицинский Совет; № 20 (2021); 68-74 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6582/5965; Pauletti G., Dandekar S., Rong H., Ramos L., Peng H., Seshadri R., Slamon D.J. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000;18(21):3651– 3664. https://doi.org/10.1200/JCO.2000.18.21.3651.; Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–182. https://doi.org/10.1126/science.3798106.; Cossetti R.J.D., Tyldesley S., Speers C., Zheng Y., Gelmon K.A. Comparison of breast cancer recurrence and outcome patterns between patients treated from 1986 to 1992 and from 2004 to 2008. J Clin Oncol. 2015;33(1):65–73. https://doi.org/10.1200/JCO.2014.57.2461.; Lambertini M., Pondé N.F., Solinas C., de Azambuja E. Adjuvant trastuzumab: a 10-year overview of its benefit. Expert Rev Anticancer Ther. 2017;17(1):61–74. https://doi.org/10.1080/14737140.2017.1264876.; Romond E.H., Perez E.A., Bryant J., Suman V.J., Geyer Jr C.E., Davidson N.E., et al. Trastuzumab plus adjuvant chemotherapy for operable HER2- positive breast cancer. N Engl J Med. 2005;353(16):1673–1684. https://doi. org/10.1056/NEJMoa052122.; Slamon D., Eiermann W., Robert N., Pienkowski T., Martin M., Press M. et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–1283. https://doi.org/10.1056/NEJMoa0910383.; Gianni L., Eiermann W., Semiglazov V., Lluch A., Tjulandin S., Zambetti M. et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2- positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–647. https://doi.org/10.1016/S1470-2045(14)70080-4.; De Azambuja E., Holmes A.P., Piccart-Gebhart M., Holmes E., Di Cosimo S., Swaby R.F. et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15(10):1137–1146. https://doi.org/10.1016/S1470-2045(14)70320-1.; Carey L.A., Berry D.A., Cirrincione C.T., Barry W.T., Pitcher B.N., Harris L.N., et al. Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus trastuzumab with or without lapatinib. J Clin Oncol. 2016;34(6):542–548. https://doi.org/10.1200/JCO.2015.62.1268.; Robidoux A., Tang G., Rastogi P., Geyer Jr C.E., Azar C.A., Atkins J.N. et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14(12):1183–1192. https://doi. org/10.1016/S1470-2045(13)70411-X.; Gianni L., Pienkowski T., Im Y.H., Roman L., Tseng L.M., Liu M.C. et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13(1):25–32. https://doi.org/10.1016/S1470-2045(11)70336-9.; Gianni L., Pienkowski T., Im Y.H., Tseng L.M., Liu M.C., Lluch A. et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 2016;17(6):791–800. https://doi.org/10.1016/S1470-2045(16)00163-7.; Schneeweiss A., Chia S., Hickish T., Harvey V., Eniu A., Hegg R., et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA) Ann Oncol. 2013;24(9):2278–2284. https://doi.org/10.1093/annonc/mdt182.; Cortazar P., Zhang L., Untch M., Mehta K., Costantino J.P., Wolmark N. et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–172. https://doi.org/10.1016/S0140-6736(13)62422-8.; Spring L.M., Fell G., Arfe A., Sharma C., Greenup R., Reynolds K.L. et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Metaanalysis. Clin Cancer Res. 2020;26(12):2838–2848. https://doi.org/10.1158/1078-0432.CCR-19-3492.; Jackisch C., Cortazar P., Geyer Jr C.E., Gianni L., Gligorov J., Machackova Z. et al. Risk-based decision-making in the treatment of HER2-positive early breast cancer: Recommendations based on the current state of knowledge. Cancer Treat Rev. 2021;99:102229. https://doi.org/10.1016/j.ctrv.2021.102229.; Untch M., Fasching P.A., Konecny G.E., Hasmüller S., Lebeau A., Kreienberg R. et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2–overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J Clin Oncol. 2011;29(25):3351–3357. Https://doi.org/10.1200/JCO.2010.31.4930.; Schneeweiss A., Chia S., Hickish T., Harvey V., Eniu A., Waldron-Lynch M. et al. Long-term efficacy analysis of the randomised, phase II TRYPHAENA cardiac safety study: evaluating pertuzumab and trastuzumab plus standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer. Eur J Cancer. 2018;89:27–35. https://doi.org/10.1016/j.ejca.2017.10.021.; Von Minckwitz G., Huang C.S., Mano M.S., Loibl S., Mamounas E.P., Untch M. et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–628. https://doi.org/10.1056/NEJMoa1814017.; Birrer M.J., Moore K.N., Betella I., Bates, R.C. Antibody-drug conjugatebased therapeutics: state of the science. J Natl Cancer Inst. 2019;111(6):538–549. https://doi.org/10.1093/jnci/djz035.; Diéras V., Miles D., Verma S., Pegram M., Welslau M., Baselga J. et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(6):732–742. https://doi.org/10.1016/S1470-2045(17)30312-1.; Krop I.E., Kim S.B., González-Martín A., LoRusso P.M., Ferrero J.M., Smitt M. et al. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(7):689–699. https://doi.org/10.1016/S1470-2045(14)70178-0.; Mamounas E.P., Untch M., Mano M.S., Huang C.S., Geyer Jr C.E., von Minckwitz G. et al. Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: subgroup analyses from KATHERINE. Ann Oncol. 2021;32(8):1005–1014. https://doi.org/10.1016/j.annonc.2021.04.011.; Hanusch C., Schneeweiss A., Loibl S., Untch M., Paepke S., Kümmel S. et al. Dual blockade with AFatinib and trastuzumab as NEoadjuvant treatment for patients with locally advanced or operable breast cancer receiving taxane–anthracycline containing chemotherapy—DAFNE (GBG-70). Clin Cancer Res. 2015;21(13):2924–2931. https://doi.org/10.1158/1078-0432.CCR-14-2774.; Van Ramshorst M.S., van der Voort A., van Werkhoven E.D., Mandjes I.A., Kemper I., Dezentjé V.O. et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(12):1630–1640. https://doi.org/10.1016/S1470-2045(18)30570-9.; Жукова Л.Г., Смолин С.А. Постнеоадъювантная терапия-новый подход в лечении HER2-положительного рака молочной железы (результаты исследования KATHERINE). Медицинский совет. 2019;(19):44–49. https://doi.org/10.21518/2079-701X-2019-19-44-49.; Denkert C., Lambertini C., Fasching P.A., Pogue-Geile K.L., Mano M.S., Untch M. et al. Biomarker data from KATHERINE: A phase III study of adjuvant trastuzumab emtansine (T-DM1) versus trastuzumab (H) in patients with residual invasive disease after neoadjuvant therapy for HER2- positive breast cancer. J Clin Oncol. 2020; 38(15_suppl):502–502. http://doi.org/10.1200/JCO.2020.38.15_suppl.502.; Huang C.S., Yang Y., Kwong A., Chen S.C., Tseng L.M., Liu M.C. et al. Trastuzumab emtansine (T-DM1) versus trastuzumab in Chinese patients with residual invasive disease after neoadjuvant chemotherapy and HER2-targeted therapy for HER2-positive breast cancer in the phase 3 KATHERINE study. Breast Cancer Res Treat. 2021;187(3):759–768. https://doi.org/10.1007/s10549-021-06166-y.; Wedam S., Fashoyin-Aje L., Gao X., Bloomquist E., Tang S., Sridhara R. et al. FDA Approval Summary: Ado-trastuzumab emtansine for the adjuvant treatment of HER2-positive early breast cancer. Clin Cancer Res. 2020;26(16):4180–4185. https://doi.org/10.1158/1078-0432.CCR-19-3980.; Schneeweiss A., Loibl S., Mamounas E.P., Minckwitz G.V., Mano M.S., Untch M. et al. Patient-reported outcomes (PROs) from KATHERINE: A phase III study of adjuvant trastuzumab emtansine (T-DM1) versus trastuzumab (H) in patients (pts) with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer. Cancer. 2020;126(13):3132–3139. https://doi.org/10.1002/cncr.32873.

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: PULMONOLOGIYA; Том 29, № 4 (2019); 443-447 ; Пульмонология; Том 29, № 4 (2019); 443-447 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2019-29-4

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/1197/940; Васильева И.А., Аксенова В.А., Эргешов А.Э. и др. Федеральные клинические рекомендации по диагностике и лечению туберкулеза органов дыхания. М. – Тверь: Триада; 2014. Доступно на: http://roftb.ru/netcat_files/doks/protokol1.pdf; Богуш Т.А., Дудко Е.А., Богуш Е.А. и др. Глутоксим как ингибитор фенотипа множественной лекарственной резистентности, ассоциированной с экспрессией Pgp. Антибиотики и химиотерапия. 2010; 55 (5-6): 18–23. Доступно на: https://cyberleninka.ru/article/v/glutoksim-kak-ingibitor-fenotipa-mnozhestvennoy-lekarstvennoy-rezistentnosti-assotsiirovannoy-s-ekspressiey-pgp; Куничан А.Д., Соколова Г.Б., Синицын М.В. и др. Влияние глутоксима на рост лекарственно-резистентных микобактерий туберкулеза и на активность основных противотуберкулезных препаратов в культуре легочной ткани. Большой целевой журнал о туберкулезе. 2002; 15: 22–24.; Синицын М.В., Богадельникова И.В., Перельман М.И. Глутоксим – 10 лет во фтизиатрии (опыт применения при лечении туберкулеза). Туберкулез и болезни легких. 2010; 87 (10): 3–9.; Фещенко Ю.И., Ищук С.Г., Матвиенко Ю.А. Терапевтические возможности инновационного иммуномодулятора в пульмонологии и фтизиатрии. Український пульмонологічний журнал. 2012; (3): 50–54.; Шальмин А.С., Ясинский Р.Н., Растворов А.А. и др. Эффективность лечения ВИЧ/СПИД-ассоциированного впервые диагностированного туберкулеза легких с использованием апротинина, глутоксима и лазеротерапии. Туберкулез, легочные болезни, ВИЧ-инфекция. 2014; 2 (17): 25–30.; Маничева О.А., Соловьева Н.С., Антонов В.Г. и др. Влияние глутоксима на антимикробную активность изониазида в отношении лекарственно-устойчивых штаммов Mycobacterium tuberculosis. Туберкулез и болезни легких. 2014; 91 (9): 89–96.; https://journal.pulmonology.ru/pulm/article/view/1197

  18. 18
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 19 (2019); 44-50 ; Медицинский Совет; № 19 (2019); 44-50 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2019-19

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5135/4662; Susmitha Apuri. Neoadjuvant and Adjuvant Therapies for Breast Cancer. South Med J. 2017;110(10):638-642. doi:10.14423/SMJ.0000000000000703.; Berns K., Horlings H.M., Hennessy B.T., Madiredjo M., Hijmans E.M., Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395-402. doi:10.1016/j.ccr.2007.08.030.; Fabi A., Di Benedetto A., Metro G., Perracchio L., Nisticò C., Di Filippo F., et al. HER2 protein and gene variation between primary and metastatic breast cancer: significance and impact on patient care. Clinical Cancer Research. 2011;17(7):205520-64. doi:10.1158/1078-0432.CCR-10-1920.; von Minckwitz G., Procter M., de Azambuja E., Zardavas D., Benyunes M., et al. APHINITY Steering Committee and Investigators. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017;377(2):122-131. doi:10.1056/NEJMoa1703643.; Untch M., Fasching P.A., Konecny G.E., Hasmüller S., Lebeau A., Kreienberg R., et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups. J Clin Oncol. 2011;29(25):3351-3357. doi:10.1200/JCO.2010.31.4930.; de Azambuja E., Holmes A.P., Piccart-Gebhart M., Holmes E., Di Cosimo S., Swaby R.F., et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol. 2014;15(10):1137-1146. doi:10.1016/S1470-2045(14)70320-1.; Cardoso F., Kyriakides S., Ohno S., PenaultLlorca F., Poortmans P., Rubio I.T., Zackrisson S., Senkus E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019. pii: mdz189. doi:10.1093/annonc/mdz189.; Inno A., Barni S., Ghidini A., Zaniboni A., Petrelli F. One year versus a shorter duration of adjuvant trastuzumab for HER2-positive early breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2019;173(2):247-254. doi:10.1007/s10549-018-5001-x.; Zardavas D., Fouad T.M., Piccart M. Optimal adjuvant treatment for patients with HER2-positive breast cancer in 2015. Breast (Edinburgh, Scotland). 2015;24(Suppl 2):143-148. doi:10.1016/j.breast.2015.07.034.; Burris H.A. 3rd, Rugo H.S., Vukelja S.J., Vogel C.L., Borson R.A., Limentani S., et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29(4):398-405. doi:10.1200/JCO.2010.29.5865.; Peddi P.F., Hurvitz S.A. Trastuzumab emtansine: the first targeted chemotherapy for treatment of breast cancer. Future Oncol. 2013;9(3):319-326. doi:10.2217/fon.13.7.; Krop I.E., Kim S.B., González-Martín A., LoRusso P.M., Ferrero J.M., Smitt M., Yu R., et al. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(7):689-699. doi:10.1016/S1470-2045(14)70178-0.; Verma S., Miles D., Gianni L., Krop I.E., Welslau M., Baselga J., et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783-1791. doi:10.1056/NEJMoa1209124.; Penault-Llorca F., Radosevic-Robin N. Biomarkers of residual disease after neoadjuvant therapy for breast cancer. Nature reviews. Clinical oncology. 2016;13(8):487–503. doi:10.1038/nrclinonc.2016.1.; Prowell T.M., Beaver J.A., Pazdur R. Residual Disease after Neoadjuvant Therapy – Developing Drugs for High-Risk Early Breast Cancer. N Engl J Med. 2019;380(7):612-615. doi:10.1056/NEJMp1900079.; Pernas S., Barroso-Sousa R., Tolaney S.M. Optimal treatment of early stage HER2-positive breast cancer. Cancer. 2018;124(23):4455-4466. doi:10.1002/cncr.31657.; Wuerstlein R., Harbeck N. Neoadjuvant Therapy for HER2-positive Breast Cancer. Reviews on recent clinical trials. 2017;12(2):81–92. doi:10.2174/1574887112666170202165049.; Hanusch C., Schneeweiss A., Loibl S., Untch M., Paepke S., Kümmel S., et al. Dual Blockade with AFatinib and Trastuzumab as NEoadjuvant Treatment for Patients with Locally Advanced or Operable Breast Cancer Receiving TaxaneAnthracycline Containing Chemotherapy-DAFNE (GBG-70). Clin Cancer Res. 2015;21(13):2924-2931. doi:10.1158/1078-0432.CCR-14-2774.; Kalous O., Conklin D., Desai A.J., et al. Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol Cancer Ther. 2012;11(9):1978-1987. doi:10.1158/1535-7163.MCT-11-0730.; Martin M., Holmes F.A., et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology. 2017;18(12)1688–1700. doi:10.1016/S1470-2045(17)30717-9.; Piccart-Gebhart M., Holmes E., Baselga J., de Azambuja E., Dueck A.C., Viale G., et al. Adjuvant Lapatinib and Trastuzumab for Early Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Results From the Randomized Phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization Trial. J Clin Oncol. 2016;34(10):1034-1042. doi:10.1200/JCO.2015.62.1797.; Castaneda S.A., Strasser J. Updates in the Treatment of Breast Cancer with Radiotherapy. Surg Oncol Clin N Am. 2017;26(3):371-382. doi:10.1016/j.soc.2017.01.013; Shah C., Tendulkar R., Smile T., et al. Adjuvant Radiotherapy in Early-Stage Breast Cancer: Evidence-Based Options. Ann Surg Oncol. 2016;23:3880. doi:10.1245/s10434-016-5503-x.; I van Hellemond I.E.G, Geurts S.M.E., TjanHeijnen V.C.G. Current Status of Extended Adjuvant Endocrine Therapy in Early Stage Breast Cancer. Curr Treat Options Oncol. 2018;19(5):26. doi:10.1007/s11864-018-0541-1.; Gourgou-Bourgade S., Cameron D., Poortmans P., Asselain B., Azria D., Cardoso F., et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials)†. Ann Oncol. 2015;26(5):873-879. doi:10.1093/annonc/mdv106.; Hudis C.A., Barlow W.E., Costantino J.P., Gray R.J., Pritchard K.I., Chapman J.A., et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol. 2007;25(15):2127-2132. doi:10.1200/JCO.2006.10.3523.; Krop I.E., Suter T.M., Dang C.T., Dirix L., Romieu G., Zamagni C., et al. Feasibility and cardiac safety of trastuzumab emtansine after anthracycline-based chemotherapy as (neo)adjuvant therapy for human epidermal growth factor receptor 2-positive earlystage breast cancer. J Clin Oncol. 2015;33(10):1136-1142. doi:10.1200/JCO.2014.58.7782.; von Minckwitz G., Huang C.S., Mano M.S., Loibl S., Mamounas E.P., Untch M. et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N Engl J Med. 2019;380(7):617-628. doi:10.1056/NEJMoa1814017.

  19. 19
    Academic Journal

    Source: Malignant tumours; Том 9, № 3 (2019); 71-81 ; Злокачественные опухоли; Том 9, № 3 (2019); 71-81 ; 2587-6813 ; 2224-5057

    File Description: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/676/466; Goetze T. O. Gallbladder carcinoma: Prognostic factors and therapeutic options. World J Gastroenterol. 2015;21 (43):12211 —12217.; Harrington J.A., Carter L.L., Basu B., Cook N. Drug development and clinical trial design in pancreatico-biliary malignancies. Curr Probl Cancer. 2018 2018;42 (1):73-94.; Valle J. W, Lamarca A., Goyal L., Barriuso J., Zhu A. X. New horizons for precision medicine in biliary tract cancers. 2017;7 (9):943 - 962; Okuda K., Nakanuma Y., Miyazaki M., Cholangiocarcinoma: recent progress. Part 1: epidemiology and etiology. J. Gastroenterol. Hepatol. 2002;17 (10):1049-1055; Злокачественные новообразования в России в 2017 году (заболеваемость и смертность) под редакцией А.Д. Каприна, В. В. Старинского, Г. В. Петровой, Москва 2018, стр. 13 -17; Squadroni M., Tondulli L., Gatta G., Mosconi S., Beretta G., Labianca R. Cholangiocarcinoma. Crit Rev Oncol Hematol. 2017;116:11-31; Kim S. J, Akita M., Sung Y. N, Fujikura K., Lee J. H. etal. MDM2 Amplification in intrahepatic cholangiocarcinomas: its relationship with large-duct type morphology and uncommon KRAS mutations. Am J Surg Pathol. 2018;42 (4):512 - 521.; Horgan A. M., Amir E., Walter T., Knox J.J. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol. 2012;30 (16):1934-40.; Takada T., Amano H., Yasuda H., Nimura Y., Matsushiro T., Kato H., et al. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreaticobiliary carcinoma. Cancer. 2002;95 (8):1685 —1695; Ebata T., Hirano S., Konishi M., et al. Randomized clinical trial of adjuvant gemcitabine chemotherapy versus observation in resected bile duct cancer. Br J Surg. 2018;105 (3):192 -202.; Edeline J., Benabdelghani M., Bertaut A., Watelet J., Hammel P. et al Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. Clin Oncol 37:658-667; Primrose J. N., Fox R. P., Palmer D. H., Malik H. Z., Prasad R., Mirza D. et al Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol 2019, 20 (5):663 - 673.; Kim T. H., Han S. S., Park S.J., Lee W. J., Woo S. M., Moon S.H., etal. Role of adjuvant chemoradiotherapy for resected extrahepatic biliary tract cancer. Int J Radiat Oncol Biol Phys. 2011;81 (5): 853-9.; Ben-Josef E., Guthrie K.A., El-Khoueiry A.B., Corless C.L., Zalupski M.M., Lowy A.M., et al. A Phase II Intergroup Trial of Adjuvant Capecitabine and Gemcitabine Followed by Radiotherapy and Concurrent Capecitabine in Extrahepatic Cholangiocarcinoma and Gallbladder Carcinoma. Clin Oncol. 2015;33 (24):2617 -22.; Kim J. H. Won H.J., Shin Y. M., Kim K. A., Kim P. N. Radiofrequency ablation for the treatment of primary intrahepatic cholangiocarcinoma. AJR Am J Roentgenol. 2011;196 (2):W205-9.; Kuhlmann J. B., Euringer W., Spangenberg H. C., Breidert M., Blum H. E., Harder J., etal. Treatment of unresectable cholangiocarcinoma: conventional transarterial chemoembolization compared with drug eluting bead-transarterial chemoembolization and systemic chemotherapy. Eur J Gastroenterol Hepatol. 2012;24 (4):437-43.; Hyder O., Marsh J.W., Salem R., Petre E.N., Kalva S., Liapi E. etal. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol. 2013;20 (12):3779 — 86.; Al-Adra D.P., Gill R.S., Axford S.J., Shi X., Kneteman N., Liau S.S. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis. Eur J Surg Oncol. 2015;41 (1):120-7.; Konstantinidis I. T., Groot Koerkamp B., Do R. K., Gonen M., Fong Y., Allen P. J., D»Angelica M. I. Mar Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 2016;122 (5):758-65.; Долгушин Б.И., Сергеева О.Н., Францев Д.Ю., Кукушкин А.В., Панов В.О., Виршке Э.Р., и др. Внутрипротоковая фотодинамическая терапия при воротной холангиокарциноме у неоперабельных больных. Анналы хирургической гепатологии, № 3, стр. 106, 2016 г.; Gonzalez-Carmona M. A., Bolch M., Jansen C., Vogt A., Sampels M., Mohr R. U. etal. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther. 2019 Feb;49 (4):437 -447.; Pereira S.P., Jitlal M., Duggan M., Lawrie E., Beare S., O»Donoghue P., Wasan H. S. PHOTOSTENT-02: porfimer sodium photodynamic therapy plus stenting versus stenting alone in patients with locally advanced or metastatic biliary tract cancer. ESMO Open. 2018;3 (5):000379.; Valle J., Wasan H., Palmer D.H., et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362 (14):1273-1281; Morizane C., Okusaka T., Mizusawa J. Randomized phase III study of gemcitabine plus S-1 combination therapy versus gemcitabine plus cisplatin combination therapy in advanced biliary tract cancer: a Japan Clinical Oncology Group study (JCOG1113, FUGA-BT). J Clin Oncol. 2018;36 (4):205-205.; Kim S.T., Kang J.H., Lee J., Lee H.W., Oh S.Y., etal. Capecitabine Plus Oxaliplatin Versus Gemcitabine Plus Oxaliplatin as First-Line Therapy for Advanced Biliary Tract Cancers: A Multicenter, Open-Label, Randomized, Phase Three, Non-Inferiority Trial. Annals of Oncology, mdz058, 20 February 2019; Brieau B., Dahan L., De Rycke Y., et al. Second-line chemotherapy for advanced biliary tract cancer after failure of the gemcitabine-platinum combination: A large multicenter study by the Association des GastroEnterologues Oncologues: Chemotherapy for Advanced Biliary Tract Cancer. Cancer 2015 Sep 15;121 (18):3290-7.; Lamarca A., Hubner R.A., David Ryder W., et al. Secondline chemotherapy in advanced biliary cancer: a systematic review. Ann Oncol 2014; 25:2328-38.; Fornaro L., Vivaldi C., Cereda S., et al. Second-line chemotherapy in advanced biliary cancer progressed to first-line platinum-gemcitabine combination: a multicenter survey and pooled analysis with published data. J Exp Clin Cancer Res 2015;34:156; Lamarca A., Palmer H. P., Wasan H. S., et al. A randomized phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/ 5-FU chemotherapy for patients with locally advanced/ metastatic biliary tract cancer previously-treated with CisGem chemotherapy, 2019 ASCO Annual Meeting.; C. Neuzillet, A. C. Gardini, B. Brieau»d et al. Prediction of Survival With Second-Line Therapy in Biliary Tract Cancer Eur.J. Cancer; Mar 12, 2019 ESMO 2018 Congress; Simile M. M., Bagella P., Vidili G., Spanu A., Manetti R., et al. Targeted Therapies in Cholangiocarcinoma: Emerging Evidence from Clinical Trials Medicina 2019;55 (2):42.; Sia D.; Tovar V.; Moeini A.; Llovet J.M. Intrahepatic cholangiocarcinoma: Pathogenesis and rationale for molecular therapies. Oncogene 2013 10;32 (41):4861-70.; Yoshikawa D.; Ojima H.; Iwasaki M.; Hiraoka N.; Kosuge T.; Kasai S.; Hirohashi S.; Shibata T. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br.J. Cancer 2008;98:418-425.; Walter D.; Hartmann S.; Waidmann O. Update on cholangiocarcinoma: Potential impact of genomic studies on clinical management. Z. Gastroenterol. 2017;55:575-581.; Перегудова М. В., Зарецкий А. Р. Бредер В. В., Романова К. А., Мороз Е.А., Лактионов К. К. Эффективность тар-гетной терапии у пациентки с BRAF- позитивной метастатической холангиокарциномой. Экспериментальная клиническая гастроэнтерология. 2017; 144 (8): 87-90.; Roa I., de Toro G., Schalper K., de Aretxabala X., Churi C., Javle M. Overexpression of the HER2 /neu Gene: A New Therapeutic Possibility for Patients With Advanced Gallbladder Cancer. Gastrointest Cancer Res. 2014 Mar;7 (2):42 - 8.; Heeke A.L., Pishvaian M.J., Lynce F., Xiu J., Brody J.R., Chen W. J., et al. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis Oncol. 2018.; Lee, J.; Park, S.; Chang, H. M.; Kim, J. S.; Choi, H. J.; Lee, M. A.; et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012 Feb;13 (2):e49; Ferraro D., Goldstein D., O»Connell R.L., et al. TACTIC: a multicentre, open-label, single-arm phase II trial of panitumumab, cisplatin, and gemcitabine in biliary tract cancer. Cancer Chemother Pharmacol. 2016;78 (2):361 — 367; Vogel A., Kasper S., Bitzer M., et al. PICCA study: panitumumab in combination with cisplatin / gemcitabine chemotherapy in KRAS wildtype patients with biliary cancer-a randomised biomarker-driven clinical phase II AIO study. Eur J Cancer. 2018 Mar;92:11-19.; Malka D., Cervera P., Foulon S., et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15 (8); Iyer R. V., Pokuri V. K., Groman A., et al. A multicenter Phase II study of gemcitabine, capecitabine, and bevacizumab for locally advanced or metastatic biliary tract cancer. Am J Clin Oncol. 2018;41 (7): 649-655.; Larsen F. O., Markussen A., Diness L.V., Nielsen D. Efficacy and safety of capecitabine, irinotecan, gemcitabine, and bevacizumab as second-line treatment in advanced biliary tract cancer: a Phase II cancer: A Phase II Study. Oncology. 2018 Aug;23 (8):919 - 927; Lubner, S. J.; Mahoney, M. R.; Kolesar, J. L.; Loconte, N. K.; Kim, G. P.; Pitot, H. C.; et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: A phase II Consortium study. J. Clin. Oncol. 2010;28:3491-3497; Moehler M., Maderer A., Schimanski C., et al. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: a double-blind placebo-controlled multicentre phase II AIO study with biomarker and serum programme. Eur J Cancer. 2014;50 (18):3125-3135.; Neuzillet C, Seitz JF, Fartoux L, et al. Sunitinib as second-line treatment in patients with advanced intrahepatic cholangiocarcinoma (SUN-CK phase II trial): safety, efficacy, and updated translational results. J Clin Oncol. 2015;33 (3 Suppl): 343-343.; Santoro A., Gebbia V., Pressiani T., et al. A randomized, multicenter, phase II study of vandetanib monotherapy versus vandetanib in combination with gemcitabine versus gemcitabine plus placebo in subjects with advanced biliary tract cancer: the VanGogh study. Ann Oncol. 2015;26 (3):542-547.; Fontugne J., Augustin J., Pujals A., et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget. 2017;8 (15):24644-24651.; Bang Y.J., Doi T., Braud F. D., et al. 525 Safety and efficacy of pembrolizumab (MK-3475) in patients (pts) with advanced biliary tract cancer: Interim results of KEYNOTE-028. Eur J Cancer. 2015 51 (3):S112; Sahai V., Griffith K.A., Beg M. S., Zalupski M. A multi-center randomized phase II study of nivolumab in combination with gemcitabine / cisplatin or ipilimumab as first line therapy for patients with advanced unresectable biliary tract cancer. J Clin Oncol. 2018;36 (15 Suppl).; Abou-Alfa GK, Macarulla Mercade T, Javle M, et al. ClarlDHy: A global, phase 3, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutation.; Silkin S., Startsev S., Krasnova M. et al. Complete Clinical Response of БкАк-Mutated Cholangiocarcinoma to Vemurafenib, Panitumumab, and Irinotecan. J Gastrointest Cancer. -2015. — Dec 19.; Marabelle A, Le D. T., Ascierto P. A., et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability / Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study Clin Oncol. 2019 Nov 4.; https://www.malignanttumors.org/jour/article/view/676

  20. 20
    Academic Journal

    Source: Cancer Urology; Том 14, № 3 (2018); 133 ; Онкоурология; Том 14, № 3 (2018); 133 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2018-14-3

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/829/794; Noguchi G., Nakaigawa N., Taguri M. et al. Time-dependent change in relapse sites of renal cell carcinoma after curative surgery. Clin Exp Metastasis 2018;35(1–2):69–75. PMID: 29516208. DOI:10.1007/s10585-018-9883-0.; Grassi P., Verzoni E., Mariani L. et al. Prognostic role of pancreatic metastases from renal cell carcinoma: results from an Italian center. Clin Genitourin Cancer 2013;11(4):484–8. PMID: 23791435. DOI:10.1016/j.clgc.2013.04.022.; Kalra S., Atkinson B.J., Matrana M.R. et al. Prognosis of patients with metastatic renal cell carcinoma and pancreatic metastases. BJU Int 2016;117(5):761–5. PMID: 26032863. DOI:10.1111/bju.13185.; Santoni M., Conti A., Partelli S. et al. Surgical resection does not improve survival in patients with renal metastases to the pancreas in the era of tyrosine kinase inhibitors. Ann Surg Oncol 2015;22(6):2094–100. PMID: 25472645. DOI:10.1245/s10434-014-4256-7.; https://oncourology.abvpress.ru/oncur/article/view/829