-
1Academic Journal
Συγγραφείς: Skaredina, S. P., Skaredina, A. A., Ustyuzhanina, М. А., Скаредина, С. П., Скаредина, А. А., Устюжанина, М. А.
Θεματικοί όροι: PROTEIN, INFANT FORMULA, THE GROWTH OF CHILDREN IN INFANCY, БЕЛОК, АДАПТИРОВАННЫЕ СМЕСИ, РОСТ ДЕТЕЙ РАННЕГО ВОЗРАСТА
Περιγραφή αρχείου: application/pdf
Relation: Уральский медицинский журнал. 2019. Т. 174, № 6.; http://elib.usma.ru/handle/usma/12584
Διαθεσιμότητα: http://elib.usma.ru/handle/usma/12584
-
2Academic Journal
Συγγραφείς: I. N. Skidan, A. E. Gulyaev, S. V. Belmer, И. Н. Скидан, А. Е. Гуляев, С. В. Бельмер
Συνεισφορές: I.N. Skidan is the head of the scientific department of Bibicall-RUS Company, the exclusive distributor of infant adapted formulae based on whole goat milk in the Russian Federation, A.E. Gulyaev and S.V. Belmer confirm the absence of conflict of interests and financial support, which must be reported., И.Н. Скидан является руководителем научного отдела компании «БИБИКОЛЬ РУС», эксклюзивного дистрибьютора детских адаптированных смесей на основе цельного козьего молока в Российской Федерации, А.Е. Гуляев и С.В. Бельмер подтверждают отсутствие конфликта интересов и финансовой поддержки, о которых необходимо сообщить.
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 64, № 3 (2019); 37-49 ; Российский вестник перинатологии и педиатрии; Том 64, № 3 (2019); 37-49 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2019-64-3
Θεματικοί όροι: Orafti®Synergy1, adapted infant formula adapted, oligosaccharides of breast milk, inulin, oligofructose, детские адаптированные смеси, олигосахариды грудного молока, инулин, олигофруктоза
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/891/783; Victora C.G., Bahl R., Barros A.J., França G.V., Horton S., Krasevec J. et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016; 387: 475–490. DOI:10.1016/S0140-6736(15)01024-7; Hauck F.R., Thompson J.M., Tanabe K.O., Moon R.Y., Vennemann M.M. Breastfeeding and reduced risk of sudden infant death syndrome: A meta-analysis. Pediatrics 2011; 128: 103–110. DOI:10.1542/peds.2010-3000; Quigley M.A., Hockley C., Carson C., Kelly Y., Renfrew M.J., Sacker A. Breastfeeding is associated with improved child cognitive development: A population-based cohort study. J Pediatr 2012; 160: 25–32. DOI:10.1016/j.jpeds.2011.06.035; Horta B., Victora C. Long-term effects of breastfeeding: a systematic review. Geneva: World Health Organization, 2013; 74.; Gluckman P.D., Hanson M.A., Buklijas T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis 2010; 1(1): 6–18. DOI:10.1017/ S2040174409990171; Bianco-Miotto T., Craig JM., Gasser YP., van Dijk S.J., Ozanne S.E. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 2017; 8(5): 513–519. DOI:10.1017/S2040174417000733; Woo Baidal J.A., Locks L.M., Cheng, E.R., Blake-Lamb T.L., Perkins M.E., Taveras E.M. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med 2016; 50(6): 761–779. DOI:10.1016/j.amepre.2015.11.012; Goldman A.S. Future research in the immune system of human milk. J Pediatr 2019; 206: 274–279. DOI:10.1016/j. jpeds.2018.11.024; Martin R., Nauta A.J., Ben Amor K., Knippels L.M., Knol J., Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes 2010; 1(4): 367–382. DOI:10.3920/BM2010.0027; Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10(11): 735–742. DOI:10.1038/nrmicro2876.; Bremel R.D. University of Wisconsin and from Handbook of Milk Composition. Academic Press, 1995; 344.; Park Y.W., Juarez M., Ramos M., Haenlein G.F.W. Physicochemical characteristics of goat and sheep milk. Small Ruminant Res 2007; 68: 88–113. DOI: org/10.1016/j.smallrumres.2006.09.013; Messer M., Mossop G.S. Milk carbohydrates of marsupiais. I. Partial separation and characterisation of neutral milk oligosaccharides of the Eastern grey kangaroo. Aust J Biol Sci 1977; 30: 379–388. DOI:10.1071/BI9770379; Urashima T., Arita M., Yoshida M., Nakamura S., Arai I., Saito T. et al. Chemical characterisation of the oligosaccharides in hooded seal (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp Biochem Physiol B Biochem Mol Biol 2001; 128(2): 307–323. DOI: org/10.1016/S1096-4959(00)00327-4; Vandenplas Y. Lactose intolerance. Asia Pac J Clin Nutr 2015; 24 (Suppl 1): 9–13. DOI:10.6133/apjcn.2015.24.s1.02; Venema K. Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 2012; 22(2): 123–140. DOI: org/10.1016/j.idairyj.2011.10.011; Ito M., Rimura M. Influence of lactose on faecal microflora in lactose maldigesters. Microb Ecol Health Dis 1993; 6: 73– 76. DOI: org/10.3109/08910609309141564; Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14: 491–502. DOI:10.1038/nrgastro.2017.75; Макарова Е.Г., Нетребенко О.К., Украинцев С.Е. Олигосахариды грудного молока: история открытия, структура и защитные функции. Педиатрия. Журнал им. Г.Н. Сперанского 2018; 97(4): 152–160. [Makarova E.G., Netrebenko O.K., Ukrainzev S.E. Oligosaccharides of breast milk: history of opening, structure and protective functions. Pediatria 2018; 97(4): 152–160. (in Russ)]; Blank D., Dotz V., Geyer R., Kunz C. Human milk oligosaccharides and Lewis blood group: Individual high-throughput sample profiling to enhance conclusions from functional studies. Adv Nutr 2012; 3: 440–449. DOI:10.3945/an.111.001446; Prieto P. Profiles of human milk oligosaccharides and production of some human milk oligosaccharides in transgenic animals. Adv Nutr 2012; 3: 456–464. DOI:10.3945/ an.111.001529; Хавкин А.И. Влияние пребиотиков на иммунную систему. Эффективная фармакотерапия. 2014; 42: 34–39. [Khavkin A.I. Impact of prebiotics on immune system. Effektivnaya farmakoterapia 2014; 42: 34–39. (in Russ)]; McGuire M.K., Meehan C.L., McGuire M.A., Williams J.E., Foster J., Sellen D.W. et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017; 105: 1086– 1100. DOI:10.3945/ajcn.116.139980; Oliveira D.L., Wilbey R.A., Grandison A.S., Roseiro L.B. Milk oligosaccharides: A review. Inter J Dairy Technol 2015; 68(3): 305–321. DOI:10.1111/1471-0307.12209; Meyrand M., Dallas D.C., Caillat H., Bouvier F., Martin P., Barile D. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein. Small Rumin Res 2013; 113(2–3): 411–420.; Montreuil J. The saga of human milk gynolactose. In: B. Renner, G. Sawatzki (eds). New Perspectives in Infant Nutrition. Stuttgart, New York: Georg Thieme Verlag, 1992; 3–11.; Polonovski M., Lespagnol A. Sur deux nouveaux sucres du lait de femme, le gynolactose et 1’allolactose. Compte Rendu de l’Academie des Sciences 1931; 192: 1319–1320.; Polonowski M., Montreuil J. Etude chromatographique des polyosides du lait de Femme. C R Acad Sci Paris 1954; 238: 2263–2264.; Gyorgy P., Norris R.F., Rose C.S. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 1954; 48(1): 193–201.; Goehring K.C., Kennedy A.D., Prieto P.A., Buck R.H. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS ONE 2014; 9: e101692. DOI:10.1371/journal.pone.0101692; Craft K.M., Thomas H.C., Townsend S.D. Interrogation of human milk oligosaccharide fucosylation patterns for antimicrobial and antibiofilm trends in group B streptococcus. ACS Infect Dis. 2018; DOI:10.1021/acsinfecdis.8b00234; Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off J Eur Union 2017; 351: 72–201.; Kajzer J., Oliver J., Marriage B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J 2016; 30: 671.; Marriage B.J., Buck R.H., Goehring K.C., Oliver J.S., Williams J.A. Infants fed a lower calorie formula with 2’FL show growth and 2’FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr 2015; 61: 649–658. DOI:10.1097/ MPG.0000000000000889; Morrow A.L., Ruiz-Palacios G.M., Altaye M., Guerrero M.L., Meinzen-Derr J.K., Farkas T. et al. Human milk oligosaccharides are associated with protection against diarrhea in breastfed infants. J Pediatr 2004; 145: 297–303. DOI:10.1016/j. jpeds.2004.04.054; Stepans M.B., Wilhelm S.L., Hertzog M., Rodehorst T.K., Blaney S., Clemens B., et al. Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed Med 2006; 1: 207–215. DOI:10.1089/bfm.2006.1.207; Guan N., Chen R. Recent Technology Development for the Biosynthesis of Human Milk Oligosaccharide. Recent Pat Biotechnol 2018; 12(2): 92–100. DOI:10.2174/1872208311 666170531110721; Thum C., Roy N.C., McNabb W.C., Otter D.E., Cookson A.L. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Gut Microbes 2015; 6(6): 352–363. DOI:10.1080/19490976.2015.1105425; Daddaoua A., Puerta V., Requena P., Martínez-Férez A., Guadix E., de Medina F.S. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr 2006; 136(3): 672–676. DOI:10.1093/jn/136.3.672; Lara-Villoslada F., Debras E., Nieto A., Concha A., Gálvez J., López-Huertas E. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr 2006; 25(3): 477– 488. DOI:10.1016/j.clnu.2005.11.004; Kim H.-H., YunS-S., Oh C.-H., Yoon S.S. Galactooligosaccharide and sialyllactose content in commercial lactose powders from goat and cow milk. Korean J Food Sci Anim Resour 2015; 35(4): 572–576. DOI:10.5851/kosfa.2015.35.4.572; Скидан И.Н., Казначеев К.С., Кирилова А.В., Гуляев А.Е. Функциональные пищевые нутриенты в составе детских адаптированных смесей на основе цельного козьего молока. Вопросы практической педиатрии 2015; 4: 38–48. [Skidan I.N., Kaznacheev K.S., Kirillova A.V., Gulyaev A.E. The functional dietary components in infant formulas from goat milk. Voprosy Prakticheskoi Pediatrii 2015; 4: 38–48. (in Russ)]; Knol J., Scholtens P., Kafka C., Steenbakkers J., Gro S., Helm K. et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 2005; 40(1): 36–42.; Технический Регламент Таможенного союза «О безопасности молока и молочной продукции» (ТР ТС 033/2013). http://24.rospotrebnadzor.ru/links/NormMetodObesp/TehRegTS/.; Azagra-Boronat I., Massot-Cladera M., Knipping K., van’t Land B., Stahl B.,Garssen J. et al. Supplementation with 2’- FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats. Front Cell Infect Microbiol 2018; 8: 372. DOI:10.3389/fcimb.2018.00372; Roberfroid M. Prebiotics: the concept revisited. J Nutr 2007; 137(3,2): 830–837. DOI:10.1093/jn/137.3.830S; Kelly G. Inulin-type prebiotics – a review: part 1. Altern Med Rev 2008; 13(4): 315–329.; Firmansyah A., Chongviriyaphan N., Dillon D.H., Khan N.C., Morita T., Tontisirin K. et al. Fructans in the first 1000 days of life and beyond, and for pregnancy. Asia Pac J Clin Nutr 2016; 25(4): 652–675. DOI:10.6133/apjcn.092016.02; Vos A., M’Rabet L., Stahl B., Boehm G., Garssen J. Immunemodulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immunol 2007; 27: 97–140.; Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., Hinrichs W.L. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr Polym 2015; 130: 405–419. DOI:10.1016/j.carbpol.2015.05.026; Closa-Monasterolo R., Gispert-Llaurado M., Luque V., Ferre N., Rubio-Torrents C., Zaragoza-Jordana M. et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr 2013; 32(6): 918–927. DOI:10.1016/j.clnu.2013.02.009; Rao S., Srinivasjois R., Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med 2009; 163(8): 755– 764. DOI:10.1001/archpediatrics.2009.94; Kim S. H., Lee D. H., Meyer D. Supplementation of baby formula with native inuline has a prebiotic effect in formula-fed babies. Asia Pac J Clin Nutr 2007; 16: 172–177.; Lomax A.R., Calder P.C. Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 2009; 101(5): 633–658. DOI:10.1017/S0007114508055608; Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573. DOI:10.1126/science.1241165; Vogt L., Ramasamy U., Meyer D., Pullens G., Venema K., Faas M.M. et al. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent. PLoS One 2013; 8: e68367. DOI:10.1371/journal.pone.0068367; Казначеев К.С., Казначеева Л.Ф., Скидан И.Н., Чеганова Ю.В. Влияние молочной смеси с пребиотиками на основе новозеландского козьего молока на формирование здорового пищеварения у детей первого года жизни. Лечащий врач 2015; 9: 37–41. [Kaznacheev K.S., Kaznacheyeva L.F. Skidan I.N., Cheganova Y.V. Influence of milk mixture based on goat’s milk with prebiotics on forming healthy digestion in children in their first year. Lechashii Vrach 2015; 9: 37–41. (in Russ)].; Богданова С.В., Сенцова Т.Б., Денисова С.Н., Ильенко Л.И., Ревякина В. А., Тарасова О.В., Черняки О.О. Метаболическая активность кишечной микрофлоры и характер сенсибилизации при различных видах вскармливания у здоровых детей. Рос вестн перинатол и педиатр 2015; 5: 135–142. [Bogdanova S.V., Sentsova T.B., Denisova S.N., Il’enko L.I., Revyakina V. А., Tarasova O.V., Chernyaki O.O. The metabolic activity of the enteric microflora and the pattern of sensitization in different types of feeding in healthy infants. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2015; 60(5): 135– 142. (in Russ)].; Белоусова О.Ю., Ганзий Е.Б. Опыт применения смеси «НЭННИ 1 с пребиотиками» у детей первого полугодия жизни с функциональными запорами. Здоровье ребенка 2018; 13(2.1): 7–15. [Belousova O.Yu., Ganziy E.B. Experience in the use of a mixture of «NANNI 1 with prebiotics in children of the first half of the year of life with functional constipation. Zdorov’e rebenka 2018; 13(2.1): 7–15. (in Russ)].; Feruś K., Drabińska N., Krupa-Kozak U., Jarocka-Cyrta E. Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients 2018; 10(11): E1818. DOI:10.3390/nu10111818; Drabińska N., Jarocka-Cyrta E., Markiewicz L.H., Krupa-Kozak U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients 2018; 10(2): E201. DOI:10.3390/nu10020201; Drabińska N., Krupa-Kozak U., Ciska E., Jarocka-Cyrta E. Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: results of a randomised placebocontrolled pilot study. Amino Acids 2018; 50(10): 1451–1460. DOI:10.1007/s00726-018-2622-7; Drabińska N., Krupa-Kozak U., Abramowicz P., Jarocka-Cyrta E. Effect of oligofructose-enriched inulin on vitamin D and E Status in children with celiac disease on a long-term gluten-free diet: A preliminary randomized, placebo-controlled nutritional intervention study. Nutrients 2018; 10(11): E1768. DOI:10.3390/nu10111768; Ho J., Reimer R.A., Doulla M., Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 2016; 17(1): 347. DOI:10.1186/s13063-016-1486-y; Aliasgharzadeh A., Khalili M., Mirtaheri E., Pourghassem Gargari B., Tavakoli F., Abbasalizad Farhangi M. et al. Combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: a randomized controlled clinical trial. Adv Pharm Bull 2015; 5(4): 507–514. DOI:10.15171/apb.2015.069; Dehghan P., Pourghassem Gargari B., Asghari Jafar-abadi M. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 2014; 30(4): 418–423. DOI:10.1016/j.nut.2013.09.005; Nicolucci A.C., Hume M.P., Martínez I., Mayengbam S., Walter J., Reimer R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterol 2017; 153(3): 711–722. DOI:10.1053/j. gastro.2017.05.055; Hume M.P., Nicolucci A.C., Reimer R.A. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 790–799. DOI:10.3945/ajcn.116.140947; Valcheva R., Koleva P., Martínez I., Walter J., Gänzle M.G., Dieleman L.A. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 2018; 5: 1–24. DOI:10.1080/19490976.2018.1526583; Holloway L., Moynihan S., Abrams S.A., Kent K., Hsu A.R., Friedlander A.L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 2007; 97: 365–372. DOI:10.1017/S000711450733674X; Smith A.P., Sutherland D., Hewlett P. An investigation of the acute effects of oligofructose-enriched inulin on subjective wellbeing, mood and cognitive performance. Nutrients 2015; 7(11): 8887–8896. DOI:10.3390/nu7115441
-
3Academic Journal
-
4Academic Journal
Συγγραφείς: I. N. Skidan, C. Prosser, I. N. Zakharova, И. Н. Скидан, К. Проссер, И. Н. Захарова
Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 63, № 4 (2018); 30-42 ; Российский вестник перинатологии и педиатрии; Том 63, № 4 (2018); 30-42 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2018-63-4
Θεματικοί όροι: детские сухие адаптированные смеси для искусственного питания, carboxymethyl-lysine, infant formula, карбоксиметил-лизин
Περιγραφή αρχείου: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/693/653; John Mallett. Malt: A practical Guide from field to brewhouse. Brewers Publications, 2014; 300.; Maillard L.C. Action des acides aminés sur les sucres: formation des mélanoïdines par voie méthodique. C R Hebd. Séances Acad. Sci. 1912; 154, 66–68.; Rahbar S., Blumenfeld O., Ranney H.M. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 1969; 36:838–843.; Vistoli G., De Maddis D., Cipak A. et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic Res 2013; 47:3–27. DOI:10.3109/10715762.2013.815348.; Delgado-Andrade C., Fogliano V. Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through Maillard reaction: Physiological consequences of their intake. Annual Review of Food Science and Technology 2018; 9:271–91. DOI:10.1146/annurev-food-030117-012441.; Zhao M., Wang P., Li D. et al. Protection against neoformed contaminants (NFCs)-induced toxicity by phytochemicals. Food Chem Toxicol 2017; 108(Pt B):392–406. DOI:10.1016/j.fct.2017.01.023.; Nguyen H.T., van der Fels-Klerx H.J., van Boekel M.A. N-ϵ- (carboxymethyl)lysine: A Review on analytical methods, formation, and occurrence in processed food, and health impact. Food Reviews International 2013; 30(1):36–52. DOI:10.1080/87559129.2013.853774.; Pischetsrieder M., Henle T. Glycation products in infant formulas: chemical, analytical and physiological aspects. Amino Acids 2012; 42:1111–118. DOI:10.1007/s00726-010-0775-0.; Birlouez-Aragon I., Pischetsrieder M., Leclère J. et al. Assessment of protein glycation markers in infant formulas. Food Chem 2004; 87:253–259. DOI:10.1016/j.foodchem.2003.11.019.; Gonzales A.S., Naranjo G.B., Malec L.S. et al. Available lysine, protein digestibility and lactulose in commercial infant formulas. Int. Dairy J 2003; 13:95–99. DOI:10.1016/S0958-6946(02)00173-5.; Cardoso H.B., Wierenga P.A., Gruppen H. et al. Maillard induced glycation behaviour of individual milk proteins. Food Chem 2018; 252:311–317. DOI:10.1016/j.foodchem.2018.01.106.; Czerwenka C., Maier I., Pittner F., et al. Investigation of the lactosylation of whey proteins by liquid chromatographymass spectrometry. Journal of Agricultural and Food Chemistry 2006; 54(23):8874–882. DOI:10.1021/jf061646z.; Nacka F., Chobert J.M., Burova T., et al. Induction of new physicochemical and functional properties by the glycosylation of whey proteins. Journal of Protein Chemistry 1998; 17(5):495–503; Kwak E.J., Lim S.I. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino Acids 2004; 27:85–90. DOI:10.1007/s00726-004-0067-7.; Finot P.A., Deutsch R., Bujard E. The extent of the Maillard reaction during the processing of milk. Prog Food Nutr Sci 1981; 5:345–55.; Henle T., Walter H., Klostermeyer H. Evaluation of the extent of the early Maillard-reaction in milk products by direct measurement of the Amadori-product lactulosyllysine. Z Lebensm Unters Forsch 1991; 193:119–122.; Lund M.N., Ray C.A. Control of Maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem 2017; 65:4537–552. DOI:10.1021/acs.jafc.7b00882.; Uribarri J. Dietary AGEs and their role in health and disease. CRC Press, 2017; 384.; Mericq V., Piccardo C., Cai W. et al. Maternally transmitted and food-derived glycotoxins: a factor preconditioning the young to diabetes? Diabetes Care 2010; 33:2232–237. DOI:10.2337/dc10-1058.; Birlouez-Aragon I., Saavedra G., Tessier F.J. et al. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr 2010; 91:1220–226. DOI:10.3945/ajcn.2009.28737.; Goh S.Y., Cooper M.E. Clinical review: The role of advanced glycation end- products in progression and complications of diabetes. J Clin Endocrinol Metab 2008; 93:1143–152. DOI:10.1210/jc.2007-1817.; Sandu O., Song K., Cai W. et al. Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 2005; 54:2314–319.; Uribarri J., Cai W., Ramdas M. et al. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Daibetes Care 2011; 34:1610–616. DOI:10.2337/dc11-0091.; Sun H., Yuan Y., Sun Z. Update on mechanisms of renal tubule injury caused by advanced glycation end-products. Biomed Res Int 2016; 5475120. DOI:10.1155/2016/5475120.; Jensen L.J., Ostergaard J., Flyvbjerg A. AGE-RAGE and AGE cross-link interaction: important players in the pathogenesis of diabetic kidney disease. Horm Metab Res 2005; 37:26–34. DOI:10.1055/s-2005-861360; Rai D.S., Choudhury D., Welbourne T.C. et al. Advanced glycation end- products: a nephrologist’s perspective. Am J Kidney Dis. 2000; 35:365–80. DOI:10.1016/S0272-6386(00)70189-2.; Santos J.C., Valentim I.B., de Araújo O.R. et al. Development of nonalcoholic hepatopathy: contributions of oxidative stress and advanced glycation end products. Int J Mol Sci 2013; 14:19846–66. DOI:10.3390/ijms141019846.; Hyogo H., Yamagishi S., Iwamoto K. et al. Elevated levels of serum advanced glycation end products in patients with non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2007; 22:1112–119. DOI:10.1111/j.1440-1746.2007.04943.x.; Yağmur E., Tacke F., Weiss C. et al. Elevation of N-epsilon- (carboxymethyl)lysine-modified advanced glycation end products in chronic liver diseases an indicator of liver cirrhosis. Clin Biochem 2006; 39:39–45. DOI:10.1016/j.clinbiochem.2005.07.016.; Diamanti-Kandarakis E., Piperi C., Kalofoutis A. et al. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol 2005; 62:37–43. DOI:10.1016/j.clinbiochem.2005.07.016.; Diamanti-Kandarakis E., Piperi C., Patsouris E. et al. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol 2007; 127:581–9. DOI:10.1007/s00418-006-0265-3.; Kandarakis S.A., Piperi C., Topouzis F. et al. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Ret Eye Res 2014; 42:85–102. DOI:10.1016/j.preteyeres.2014.05.002.; Kandarakis S.A., Piperi C., Moschonas DP et al. Dietary glycotoxins induce RAGE and VEGF up-regulation in the retina of normal rats. Exp Eye Res. 2015; 137:1–10. DOI:10.1016/j.exer.2015.05.017.; Sharaf H., Matou-Nasri S., Wang Q. et al. Advanced glycation end-products increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim Biophys. Acta 2015; 1852:429–41. DOI:10.1016/j.bbadis.2014.12.009.; Van Heijst J.W., Niessen H.W., Hoekmann K. et al. Advanced glycation end- products in human cancer tissues: detection of Nepsilon-(carboxymethyl) lysine and argpyrimidine. Ann N Y Acad Sci. 2005, 1043:725–-33; DOI:10.1196/annals.1333.084; Jiao L., Weinstein S.J., Albanes D. et al. Evidence that serum levels of the soluble receptor for advanced glycation end-products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res 2011; 71:3582–589. DOI:10.1158/0008-5472.CAN-10-2573.; Luevano-Contreras C., Chapman-Novakofski K. Dietary advanced glycation end-products and aging. Nutrients 2010; 2:1247–265. DOI:10.3390/nu2121247.; Firmin S., Elmhiri G., Crepin D., et al. Formula derived Maillard reaction products in post-weaning intrauterine growthrestricted piglets induce developmental programming of hepatic oxidative stress independently of microRNA-21 and microRNA-155. J Dev Orig Health Dis 2018; 9:1–7. DOI:10.1017/S2040174417001015.; Holik A.K., Lieder B., Kretschy N., et al. N(ϵ)–Carboxymethyl-lysine increases the expression of miR-103/143 and enhances lipid accumulation in 3T3-L1 Cells. J Cell Biochem 2016; 117(10):2413–22. DOI:10.1002/jcb.25576.; Ramasamy R., Vannucci S.J., Yan S.S.D. et al. Advanced glycation end-products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15:16–28. DOI:10.1093/glycob/cwi053.; Hilmenyuk T., Bellinghausen I., Heydenreich B., et al. Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 2010; 129(3):437–45. DOI:10.1111/j.1365-2567.2009.03199.x.; Ilchmann A., Burgdorf S., Scheurer S., et al. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: Role of macrophage scavenger receptor class A type I and II. J Allergy Clin Immunol 2010; 125(1):175– 83. DOI:10.1016/j.jaci.2009.08.013.; Baskara I., Niquet-Leridon C., Anton P.M. et al. Neoformed compounds from the Maillard reaction in infant formulas: a new risk factor for allergy? EMJ Allergy Immunol 2017; 2(1):87-93.; Ullah M.A., Loh Z., Gan W.J. et al. Receptor for advanced glycation end- products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway in flammation. J Allergy Clin Immunol 2014; 134: 440–50. DOI:10.1016/j.jaci.2013.12.1035.; Milutinovic P.S., Alcorn J.F., Englert J.M. et al. The receptor for advanced glycation end-products is a central mediator of asthma pathogenesis. Am J Pathol 2012; 181:1215–225. DOI:10.1016/j.ajpath.2012.06.031.; Oczypok E.A., Milutinovic P.S., Alcorn J.F. et al. Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol 2015; 136:747–564. DOI:10.1016/j.jaci.2015.03.011.; Kierdorf K., Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol 2013; 94(1):55–68. DOI:10.1189/jlb.1012519.; Skovgaard D., Svensson R.B., Scheijen J., et al. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon. Physiol Rep 2017; 5(6):e13215. DOI:10.14814/phy2.13215.; Egawa T., Tsuda S., Goto A., et al. Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 2017; 117(1):21–29. DOI:10.1017/S0007114516004591.; Kutlu T. Dietary glycotoxins and infant formulas. Turk Pediatri Ars 2016; 51: 179–85. DOI:10.5152/TurkPediatriArs.2016.2543.; Moscovici A.M., Joubran Y., Briard-Bion V., et al. The impact of the Maillard reaction on the in vitro proteolytic breakdown of bovine lactoferrin in adults and infants. Food Funct 2014; 5(8):1898–908. DOI:10.1039/c4fo00248b.; O’Brien J., Morrissey P.A. Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr 1989; 28:211–48. DOI:10.1080/10408398909527499.; Lee K.-G., Shibamoto T. Toxicology and antioxidant activities of non-enzymatic browning reaction products: review. Food Rev. Int 2002; 18:151–75. DOI:10.1081/FRI-120014356; Liu X., Zheng L., Zhang R., et al. Toxicological evaluation of advanced glycation end product Nε-(carboxymethyl)lysine: Acute and subacute oral toxicity studies. Regul Toxicol Pharmacol 2016; 77:65–74. DOI:10.1016/j.yrtph.2016.02.013.; Koschinsky T., He C.J., Mitsuhashi T. et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA 1997; 94:6474–479.; Foerster A., Kuhne Y., Henle T. Studies on absorption and elimination of dietary Maillard reaction products. Ann N Y Acad Sci 2005; 1043:474–481. DOI:10.1196/annals.1333.054.; Cerami C., Founds H., Nicholl I. et al. Tobacco smoke is a source of toxic reactive glycation products. Proc. Natl. Acad. Sci. USA 1997; 94:13915–13920.; Korbet S.M., Makita Z., Firanek C.A. et al. Advanced glycosylation end- products in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis 1993; 22(4):588–91.; Makita Z., Radoff S., Rayfield E.J. et al. Advanced glycosylation end- products in patients with diabetic nephropathy. N Engl J Med 1991; 325(12):836–42. DOI:10.1056/NEJM199109193251202.; Makita Z., Bucala R., Rayfield E.J. et al. Reactive glycosylation end-products in diabetic uraemia and treatment of renal failure. Lancet 1994; 343(8912):1519–522. DOI:10.1016/S0140-6736(94)92935-1.; Qu W., Yuan X., Zhao J., et al. Dietary advanced glycation end-products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res 2017; 61(10). DOI:10.1002/mnfr.201700118.; Seiquer I., Rubio L.A., Peinado M.J., et al. Maillard reaction products modulate gut microbiota composition in adolescents. Mol Nutr Food Res 2014; 58(7):1552–560. DOI:10.1002/mnfr.201300847.; Tuohy K.M., Hinton D.J., Davies S.J., et al. Metabolism of Maillard reaction products by the human gut microbiota-implications for health. Mol Nutr Food Res 2006; 50(9):847–57. DOI:10.1002/mnfr.200500126.; Wiame E., Delpierre G., Collard F. et al. Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J Biol Chem 2002; 277(45):42523–9. DOI:10.1074/jbc.M200863200.; Borrelli R.C., Fogliano V. Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 2005; 49(7):673–8. DOI:10.1002/mnfr.200500011; Alamir I., Niquet-Leridon C., Jacolot P. et al. Digestibility of extruded proteins and metabolic transit of Ne-carboxymethyllysine in rats. Amino Acids 2013; 44 (6):1441–449. DOI:10.1007/s00726-012-1427-3.; Hellwig M., Bunzel, D., Huch M. et al. Stability of individual Maillard reaction products in the presence of the human colonic microbiota. J. Agric. Food Chem 2015; 63:6723–730. DOI:10.1021/acs.jafc.5b01391.; Dittrich R., Hoffmann I., Stahl P. et al. Concentrations of Nepsilon-carboxymethyllysine in human breast milk, infant formulas, and urine of infants. J Agric Food Chem 2006; 54(18):6924–928. DOI:10.1021/jf060905h.; Tareke E., Forslund A., Lindh C.H. et al. Isotope dilution ESI-LC-MS/MS for quantification of free and total Nε-(1-Carboxymethyl)-l-Lysine and free Nε-(1- Carboxyethyl)-l-Lysine: Comparison of total Nε-(1- Carboxymethyl)-l-Lysine levels measured with new method to ELISA assay in gruel samples. Food Chemistry 2013; 141(4):4253–259. DOI:10.1016/j.foodchem.2013.07.003.; Chávez-Servín J.L., de la Torre Carbot K., García-Gasca T., et al. Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet. Food Chem 2015; 166:486–91. DOI:10.1016/j.foodchem.2014.06.050.; Šebeková K., Saavedra G., Zumpe C. et al. Plasma Concentration and Urinary Excretion of Nɛ‐(Carboxymethyl) lysine in Breast Milk–and Formula‐fed Infants. Annals of the New York Academy of Sciences 2008; 1126(1):177–180. DOI:10.1196/annals.1433.049.; Delatour T., Hegele J., Parisod V. et al. Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography–electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. Journal of Chromatography A 2009; 1216(12):2371–381. DOI:10.1016/j.chroma.2009.01.011.; Birlouez-Aragon I., De Saint Louvent E., Stahl P. et al. Protein hydrolysis of infant formulas strongly activates the Maillard reaction. J. Pediatr. Gastr. Nutr 2004; 39:141–45.; Leclère J., Birlouez-Aragon I., Meli M. Fortification of milk with iron-ascorbate promotes lysine glycation and tryptophan oxidation. Food Chem 2002; 76:491–99. DOI:10.1016/S0308-8146(01)00369-7.90; Roux S., Courel M., Ait-Ameur L. et al. Kinetics of Maillard reactions in model infant formula during UHT treatment using a static batch ohmic heater. Dairy science & technology 2009; 89(3-4):349–362. DOI:10.1051/dst/2009015.; Contreras-Calderon J., Guerra-Hernandez E., Garcia-Villanova B. Indicators of non-enzymatic browning in the evaluation of heat damage of ingredient proteins used in manufactured infant formulas. Eur Food Res Technol 2008; 227:117–24. DOI:10.1007/s00217-007.; Rutherfurd S., Darragh A.J., Hendriks W.H. et al. True Ileal Amino Acid Digestibility of Goat and Cow Milk Infant Formulas. Journal of Dairy Science 2006; 89(7):2408-413. DOI:10.3168/jds.S0022-0302(06)72313-X.; Martysiak-Żurowska D., Stołyhwo A. Content of furosine in infant formulae and follow-on formulae. Pol. J. Food Nutr. Sci 2007; 57(2):185–90.; Скидан И.Н., Пырьева Е.А., Конь И.Я. Белки грудного молока как целевой ориентир для совершенствования рецептур детских адаптированных молочных смесей. Вопросы Питания 2017; 86 (4):130–142. [Skidan I.N., Pyr’eva E.A., Kon’ I.Ya. Breast milk proteins as a focus for the improvement of recipes for infant adapted milk formulae. Voprosy pitaniia. 2017; 86 (4): 130–42. (in Russ)].; Скидан И.Н., Пырьева Е.А., Конь И.Я. Развитие индустрии смесей заменителей грудного молока. Вопросы Питания 2017; 86(5):91–98. [Skidan I.N., Pyr’eva E.A., Kon’ I.Ya. Development of the infant formula industry. Voprosy pitaniia. 2017; 86 (5):91–-98. (in Russ)].; Zhou S.J., Sullivan T., Gibson R.A. et al. Nutritional adequacy of goat milk infant formulas for term infants: a double-blind randomised controlled trial. Br. J. Nutr 2014; 111:1641–651. DOI:10.1017/S0007114513004212.; Prosser C., Carpenter E., Hodgkinson A. Advanced Glycation End-products in formula. JPGN 2017; 64(1):836.; Joubran Y., Moscovici A., Portmann R. et al. Implications of the Maillard reaction on bovine alpha-lactalbumin and its proteolysis during in vitro infant digestion. Food & Function 2017; 8(6):2295-2308. DOI:10.1039/c7fo00588a.; Zhao D., Li L., Le T.T. et al. Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of PeptideBound Advanced Glycation End Products in Gastrointestinal Digests. Journal of Agricultural and Food Chemistry 2017; 65(28):5778-5788. DOI:10.1021/acs.jafc.7b01951.; Qu W., Yuan X., Zhao J., et al. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr 2017; 61(10). DOI:10.1002/mnfr.201700118.; Seiquer I., Rubio L.A., Peinado M.J. et al. Maillard reaction products modulate gut microbiota composition in adolescents. Molecular Nutrition & Food Research 2014; 58(7):1552-1560. DOI:10.1002/mnfr.201300847.; Klenovics K.S., Boor P., Somoza V. et al. Advanced glycation end-products in infant formulas do not contribute to insulin resistance associated with their consumption. PLoS ONE 2013; 8(1): e53056. DOI:10.1371/journal.pone.0053056.; Teodorowicz M., Van Neerven J., Savelkoul H. Food processing: The influence of the Maillard Reaction on immunogenicity and allergenicity of food proteins. Nutrients; 2017; 9(8):835. DOI:10.3390/nu9080835.; Smith P.K., Masilamani M., Li X.-M., Sampson H.A. The false alarm hypothesis: Food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. Journal of Allergy and Clinical Immunologyю 2017; 139(2):429-37. DOI:10.1016/j.jaci.2016.05.040.; Contreras-Calderón J., Guerra-Hernández E., García-Villanova B. et al. Effect of ingredients on non-enzymatic browning, nutritional value and furanic compounds in Spanish infant formulas. Journal of Food and Nutrition Research 2017; 5(4):243–252. DOI:10.12691/jfnr-5-4-6.
-
5Report
Συγγραφείς: M V Krasnov, L A Nikolaeva, M G Borovkova
Πηγή: Voprosy pitaniia. 87(3)
Θεματικοί όροι: 0301 basic medicine, Male, Rural Population, АДАПТИРОВАННЫЕ СМЕСИ, Russia, 03 medical and health sciences, BREAST MILK, 5. Gender equality, ПРИКОРМ, 11. Sustainability, Humans, 2. Zero hunger, 0303 health sciences, ГРУДНОЕ МОЛОКО, ГРУДНОЕ ВСКАРМЛИВАНИЕ, BREASTFEEDING, Infant, Newborn, 1. No poverty, Infant, COMPLEMENTARY FEEDING, ADAPTED FORMULAS, Infant Formula, 3. Good health, Breast Feeding, Female, INFANT, ДЕТИ, Food Analysis
-
6Academic Journal
Συγγραφείς: ВОЙТОВА Е.В., МИКУЛЬЧИК Н.В.
Περιγραφή αρχείου: text/html
-
7Academic Journal
Συγγραφείς: Войтова, Е., Микульчик, Н.
Θεματικοί όροι: адаптированные смеси на основе козьего молока, профилактическая и лечебная направленность диетологии в педиатрии, adapted based on a mixture of goat’s milk
Περιγραφή αρχείου: text/html
-
8Academic Journal
Συγγραφείς: Краснов, Михаил, Боровкова, Марина, Николаева, Лариса
Θεματικοί όροι: ГРУДНЫЕ ДЕТИ, ПИТАНИЕ, ОРГАНИЗАЦИЯ ПРИКОРМА, ГРУДНОЕ МОЛОКО, АДАПТИРОВАННЫЕ СМЕСИ
Περιγραφή αρχείου: text/html
-
9Academic Journal
Συγγραφείς: Шень, Наталья, Сучков, Д., Сайфитдинов, Ю.
Θεματικοί όροι: НУТРИТИВНАЯ ПОДДЕРЖКА, КРИТИЧЕСКИЕ СОСТОЯНИЯ, ЭНТЕРАЛЬНОЕ ПИТАНИЕ, ВОЗРАСТ-АДАПТИРОВАННЫЕ СМЕСИ
Περιγραφή αρχείου: text/html
-
10Academic Journal
Πηγή: Медицинские новости.
Θεματικοί όροι: 2. Zero hunger, АДАПТИРОВАННЫЕ СМЕСИ НА ОСНОВЕ КОЗЬЕГО МОЛОКА,ПРОФИЛАКТИЧЕСКАЯ И ЛЕЧЕБНАЯ НАПРАВЛЕННОСТЬ ДИЕТОЛОГИИ В ПЕДИАТРИИ,ADAPTED BASED ON A MIXTURE OF GOAT'S MILK,PREVENTIVE AND THERAPEUTIC ORIENTATION NUTRITION IN PEDIATRICS, 3. Good health
Περιγραφή αρχείου: text/html
-
11Academic Journal
Πηγή: Международные обзоры: клиническая практика и здоровье.
Θεματικοί όροι: 2. Zero hunger, адаптированные смеси на основе козьего молока, профилактическая и лечебная направленность диетологии в педиатрии, adapted based on a mixture of goat's milk, 3. Good health
Περιγραφή αρχείου: text/html
-
12Academic Journal
Συγγραφείς: Ладодо, Калерия, Боровик, Т., Скворцова, В., Бушуева, Т.
Θεματικοί όροι: ПРОДУКТЫ, ГИПОГАЛАКТИЯ, СМЕШАННОЕ И ИСКУССТВЕННОЕ ВСКАРМЛИВАНИЕ, ФУНКЦИОНАЛЬНЫЕ РАССТРОЙСТВА ПИЩЕВАРЕНИЯ, АДАПТИРОВАННЫЕ СМЕСИ
Περιγραφή αρχείου: text/html
-
13Academic Journal
Πηγή: Вестник Чувашского университета.
Θεματικοί όροι: ГРУДНЫЕ ДЕТИ, ПИТАНИЕ, ОРГАНИЗАЦИЯ ПРИКОРМА, ГРУДНОЕ МОЛОКО, АДАПТИРОВАННЫЕ СМЕСИ, 3. Good health
Περιγραφή αρχείου: text/html
-
14Academic Journal
Πηγή: Здоровье и образование в XXI веке.
Θεματικοί όροι: 2. Zero hunger, ПИТАНИЕ, ДЕТИ, МОЛОЧНЫЕ АДАПТИРОВАННЫЕ СМЕСИ, 3. Good health
Περιγραφή αρχείου: text/html
-
15Academic Journal
Πηγή: Педиатрическая фармакология.
Θεματικοί όροι: НУТРИТИВНАЯ ПОДДЕРЖКА, КРИТИЧЕСКИЕ СОСТОЯНИЯ, ЭНТЕРАЛЬНОЕ ПИТАНИЕ, ВОЗРАСТ-АДАПТИРОВАННЫЕ СМЕСИ, 3. Good health
Περιγραφή αρχείου: text/html
-
16Academic Journal
Πηγή: Вопросы современной педиатрии.
Θεματικοί όροι: ПРОДУКТЫ, ГИПОГАЛАКТИЯ, СМЕШАННОЕ И ИСКУССТВЕННОЕ ВСКАРМЛИВАНИЕ, ФУНКЦИОНАЛЬНЫЕ РАССТРОЙСТВА ПИЩЕВАРЕНИЯ, АДАПТИРОВАННЫЕ СМЕСИ, 3. Good health
Περιγραφή αρχείου: text/html
-
17
-
18