Showing 1 - 20 results of 131 for search '"АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ"', query time: 1.46s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: The work was carried out within the framework of task 2.16 of the State Research Programe "Material Science, New Materials and Technologies", subprograme "Nanostructured materials, nanotechnologies, nanotechnique" ("Nanostructure")., Работа выполнена в рамках задания 2.16 государственной программы научных исследований “Материаловедение, новые материалы и технологии”, подпрограммы “Наноструктурные материалы, нанотехнологии, нанотехника” (“Наноструктура

    Source: Devices and Methods of Measurements; Том 16, № 1 (2025); 69-76 ; Приборы и методы измерений; Том 16, № 1 (2025); 69-76 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2025-16-1

    File Description: application/pdf

    Relation: https://pimi.bntu.by/jour/article/view/930/720; Sunipa R., Ghosh C.K., Dey S., Pal A.K. Solid State and Microelectronics Technology. – Singapore: Bentham Science Publishers Pte. Ltd., 2023. – 407 p. DOI:10.2174/9789815079876123010001; Гранько С.В. Применение фоторезистивных масок для маскирования ионного пучка в технологии КМОП интегральных схем / С.В. Гранько [и др.] // Вестник Нижегородского университета. Сер. Физика. – 2001. – № 2. – С. 41–47.; Моро У. Микролитография. Принципы, методы, материалы. В 2-х ч. Ч. 2. – М.: Мир, 1990. – 632 с.; Mack C.A. Field Guide to Optical Lithography. – SPIE Press, Bellingham, WA, 2006. – 122 p.; Харченко А.А. Радиационно-индуцированные процессы в структурах DLC/полиимид при облучении γ-квантами 60Со / А.А. Харченко [и др.] // Химия высоких энергий. – 2022. – Т. 56, № 5. – С. 378–387. DOI:10.31857/S0023119322050059; Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных, Москва, Мир, Бином. 2006. – 438 c.; Бринкевич С.Д. Модификация пленок диазохинон-новолачного фоторезиста за областью внедрения ионов В+ / С.Д. Бринкевич [и др.] // Химия высоких энергий. – 2020. – Т. 54, № 5. – С. 377–386. DOI:10.31857/S0023119320050046; Garcia I.T.S. The effects of nuclear and electronic stopping powers on ion irradiated novolac–diazoquinone films / I.T.S.Garcia, F.C.Zawislak, D.Samios // Applied Surface Science. – 2004. – Vol. 228, no. 1–4. – Pр. 63–76. DOI:10.1016/j.apsusc.2003.12.027; Бринкевич Д.И. Модификация спектров отражения пленок диазохинон-новолачного фоторезиста при имплантации ионами бора и фосфора / Д.И. Бринкевич [и др.] // Микроэлектроника. – 2019. – Т. 48, № 3. – С. 235–239. DOI:10.1134/S0544126919020029; Аскадский А.А., Кондрашенко В.И. Компьютерное материаловедение полимеров. Том 1. Атомномолекулярный уровень. М.: Научный мир. 1999. – 544 с.; Poljansek I. Characterization of phenol-ureaformaldehyde resin by inline FTIR spectroscopy / I. Poljansek, U. Sebenik, M. Krajnc // Journal of Applied Polymer Science. – 2006. – Vol. 99, no. 5. – Pp. 2016–2028. DOI:10.1002/app22161; Бринкевич Д.И. Инфракрасная Фурье-спектроскопия структур фоторезист/кремний, используемых для обратной литографии / Д.И. Бринкевич [и др.] // Журнал прикладной спектроскопии. – 2023. – Т. 90, № 6. – С. 863–869.; https://pimi.bntu.by/jour/article/view/930

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Source: Journal of Chemistry and Technologies; Vol 27, No 1 (2019): Journal of Chemistry and Technologies; 79-91
    Journal of Chemistry and Technologies; Том 27, № 1 (2019): Journal of Chemistry and Technologies; 79-91

    File Description: application/pdf

  12. 12
  13. 13
    Academic Journal

    Source: Radio Engineering; № 5 (2021); 23-37 ; Радиостроение; № 5 (2021); 23-37 ; 2587-926X

    File Description: application/pdf

    Relation: https://www.radiovega.su/jour/article/view/198/192; Platt U., Stutz J. Differential Optical Absorption Spectroscopy – Principles and Applications. Springer-Verlag Berlin, 2008. 597 p.; Clemer K., van Roozendael M., Fayt C., Hendrick F., Hermans C., Pinardi G., Spurr R., Wang P., De Maziere M. Multiple wavelength retrieval of tropospheric aerosol opticalproperties from MAX-DOAS measurements in Beijing // Atmospheric Measurement Techn. 2010. V.3. P. 863–878.; Stutz J., Hurlock S., Colosimo S. et al. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons // Atmospheric Environment. 2016. V.147. N. 1. P. 121–132.; Stutz J., Hurlock S., Colosimo S., Tsai C., Cheung R., Festa J., Pikelnaya O., Alvarez S., Flynn J., Erickson M., Olaguer E. A novel dual-LED based long-path DOAS instrument for the measurement of aromatic hydrocarbons // Atmospheric Environent. 2016. V.147. N.1. P. 121–132. Doi:10.1016/j.atmosenv.2016.09.054.; Geiko P.P., Smirnov S.S., Samokhvalov I.V. Detection of concentration small gas components of atmosphere by DOAS method // Optical Memory and Neural Networks (Information Optics). 2015. V.24. N.2. P. 152–158.; Kern C., Trick S., Rippel B., Platt U. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements // Applied Opt. 2006. V. 45. N.9. Р. 2077–2068. Doi:10.1364/AO.45.002077.; Vita F., Kern C., Inguaggiato S. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements // J. Sens. Syst. 2014. V.3. N. 1. Р. 355–367. Doi:10.5194/jsss-3- 355-2014.; Vlemmix T., Piters A. J. M., Berkhout A. J. C., Gast L. F. L., Wang P., Levelt P. F. Ability of the MAX-DOAS method to derive profile information for NO2: can the boundary layer and free troposphere be separated? // Atmospheric Measurement Techn. 2011. V.4. P. 2659–2684.; Coburn S., Dix B., Sinreich R., Volkamer R. The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO // Atmospheric Measurement. Techn. 2011. V.4. P. 2421–2439.; Козинцев В.И., Орлов В.М., Белов М.Л., Городничев В.А., Стрелков Б.В. Оптико-электронные системы экологического мониторинга природной среды. М.: Изд-во МГТУ, 2002. 528 c.; Медынский М. М., Дьячук А.К. Численные методы оптимизации с использованием Mapple 11. М.: Изд-во МАИ-ПРИНТ, 2009. 287 с; Nelder J.A., Mead R. A simplex method for function minimization. // Computer Journal. 1965. N1. 308-313.; A.O. Umar, I.M. Sulaiman, M. Mamat, M.Y. Waziri, N. Zamri. On damping parameters of Levenberg-Marquardt algorithm for nonlinear least square problems. // Phys.: Conf. Ser. 2021. 1734 012018.; Zhenxiang Wu, Tong Zhou, Lei Li, Liang Chen, Yanfang Ma, A New Modified Efficient Levenberg–Marquardt Method for Solving Systems of Nonlinear Equations // Mathematical Problems in Engineering. 2021. V.2021. Article ID 5608195. 11 p. Available at: https://doi.org/10.1155/2021/5608195.; Maya2000 Pro Deep UV Spectrometer. Available at: www.oceanoptics.com, accessed 02.12.2021.; Kurucz R.L. The solar spectrum: atlases and line identications. In: Sauval, A. J., Blomme, R., Grevesse, N. (ed) Laboratory and astronomical high resolution spectra, Astronomical Society of the Pacic Conference Series, 1995. V.81. P. 17-31.; Nam Pham, Bogdan M. Wilamowski. Improved Nelder Mead’s Simplex Method and Applications. // Journal of computing. 2011. V.3. N.3. Available at: https://sites.google.com/site/ journalofcomputing/www.journalofcomputing.org, accessed 02.12.2021.; Fuchang Gao, Lixing Han. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. // Comput Optim Appl. 2010. DOI 10.1007/s10589-010-9329-3.; Метод оптимизации Нелдера — Мида. Available at: https://habr.com/ru/post/332092/, accessed 02.12.2021.; https://www.radiovega.su/jour/article/view/198

  14. 14
  15. 15
  16. 16
    Academic Journal

    Contributors: Groupe de Spectrométrie Moléculaire et Atmosphérique, Barbara, Laboratory of Theoretical Spectroscopy Tomsk (LTS), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS)-Siberian Branch of the Russian Academy of Sciences (SB RAS), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Astronomy and Geophysics New London, Connecticut College

    Source: Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. Vol. 206. P. 306-312

    Linked Full Text
  17. 17
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 57, № 2 (2021); 224-231 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 57, № 2 (2021); 224-231 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2021-57-2

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/589/488; Uzhinov, B. M. Conformational effects in excited state intramolecular proton transfer of organic compounds / B. M. Uzhinov, M. N. Khimich // Russ. Chem. Rev. – 2011. – Vol. 80, № 6. – P. 553–578. https://doi.org/10.1070/rc2011v080n06abeh004144; Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy / C. Fang [et al.] // Nature. – 2009. – Vol. 462, № 7272. – P. 200–205. https://doi.org/10.1038/nature08527; The Proton-Transfer Laser. Gain Spectrum and Amplification of Spontaneous Emission of 3-Hydroxyflavone / P.Chou [et al.] // J. Phys. Chem. – 1984. – Vol. 88, № 20. – P. 4596–4599. https://doi.org/10.1021/j150664a032; Fluorescence Studies of Salicylic Acid Doped Poly (Vinyl Alcohol) Film as a Water/Humidity Sensor / H Mishra [et al.] // J. Phys. Chem. A. – 2004. – Vol. 108, № 12. – P. 2346–2352. https://doi.org/10.1021/jp0309365; Sobolewski, A. L. Reversible Molecular Switch Driven by Excited-State Hydrogen Transfer / A. L. Sobolewski // Phys. Chem. Chem. Phys. – 2008. – Vol. 10, № 9. – P. 1243–1247. https://doi.org/10.1039/b716075e; Control of the Reversibility of Excited-State Intramolecular Proton Transfer (ESIPT) Reaction: Host-Polarity Tuning White Organic Light Emitting Diode on a New Thiazolo[5,4-d]Thiazole ESIPT System / Z. Zhang [et al.] // Chem. Mater. – 2016. – Vol. 28, № 23. – P. 8815–8824. https://doi.org/10.1021/acs.chemmater.6b04707; Ultrafast excited state intramolecular proton transfer (ESIPT) mechanism for 2,6-bis(benzothiazolyl-2-yl)phenol: A theoretical investigation / D. Yang [et al.] // Chem. Phys. Lett. – 2020. – Vol. 744. – P. 137226. https://doi.org/10.1016/j.cplett.2020.137226; Excited-State Intramolecular Proton Transfer in the Kinetic-Control Regime / Z.-Y. Liu [et al.] // Phys. Chem. Chem. Phys. – 2020. – Vol. 22, № 39. – P. 22271–22278. https://doi.org/10.1039/d0cp03408h; Taylor, C. A. Excited-State Two-Proton Tautomerism in Hydrogen-Bonded N-Heterocyclic Base Pairs / C. A. Taylor, M. A. El-Bayoumi, M. Kasha // Proc. Natl. Acad. Sci. USA. – 1969. – Vol. 63, № 2. – P. 253–260. https://doi.org/10.1073/pnas.63.2.253; Takeuchi, S. The answer to concerted versus step-wise controversy for the double proton transfer mechanism of 7-azaindole dimer in solution / S. Takeuchi, T. Tahara // Proc. Natl. Acad. Sci. USA. – 2007. – Vol. 104, № 13. – P. 5285–5290. https://doi.org/10.1073/pnas.0610141104; Kwon, O.-H. Double Proton Transfer Dynamics of Model DNA Base Pairs in the Condensed Phase / O.-H. Kwon, A. H. Zewail // Proc. Natl. Acad. Sci. USA. – 2007. – Vol. 104, № 21. – P. 8703–8708. https://doi.org/10.1073/pnas.0702944104; Pivovarenko, V. G. 2,8-Bis[4-(diethylamino)phenyl]-3,7-dihydroxy-4H,6H-pyrano[3,2-g]chromene-4,6-dione? A New Liquid-Phase-Sensitive Fluorescent Probe Utilising Intramolecular One- or Two-Proton Transfer Phenomena / V. G. Pivovarenko, L. Jozwiak, J. Blazejowski // Eur. J. Org. Chem. – 2002. – Vol. 2020, № 23. – P. 3979–3985. https://doi.org/10.1002/1099-0690(200212)2002:233.0.co;2-5; Falkovskaia, E. Interplay between Intra- and Intermolecular Excited-State Single- and Double-Proton-Transfer Processes in the Biaxially Symmetric Molecule 3,7-Dihydroxy-4H,6H-pyrano[3,2-g]-chromene-4,6-dione / E. Falkovskaia, V. G. Pivovarenko, J. C. del Valle // J. Phys. Chem. A. – 2003.– Vol. 107, № 18. – P. 3316–3325. https://doi.org/10.1021/jp021791p; Photodynamics of intramolecular proton transfer in polar and nonpolar biflavonoid solutions / S. L. Bondarev [et al.] // Opt. Spectrosc. – 2012. – Vol. 113, № 4. – P. 401–410. https://doi.org/10.1134/s0030400x12070065; Solvent polarity effect on nonradiative decay rate of Thioflavin T / V. I. Stsiapura [et al.] // J. Phys. Chem. A. – 2016. – Vol. 120, № 28. – P. 5481–5496. https://doi.org/10.1021/acs.jpca.6b02577; https://vestifm.belnauka.by/jour/article/view/589

  18. 18
  19. 19
  20. 20