-
1Academic Journal
Authors: M. V. Miroshnikov, K. T. Sultanova, M. N. Makarova, N. M. Faustova, S. O. Khan, E. A. Loseva, М. В. Мирошников, К. Т. Султанова, М. Н. Макарова, Н. М. Фаустова, С. О. Хан, Е. А. Лосева
Source: Regulatory Research and Medicine Evaluation; Том 14, № 4 (2024); 448-462 ; Регуляторные исследования и экспертиза лекарственных средств; Том 14, № 4 (2024); 448-462 ; 3034-3453 ; 3034-3062 ; 10.30895/1991-2919-2024-14-4
Subject Terms: L-FABP, nephrotoxicity, biomarkers, albumin, total protein, KIM-1, NGAL, β2-microglobulin, NAG, нефротоксичность, биомаркеры, альбумин, общий белок, β2-микроглобулин
File Description: application/pdf
Relation: https://www.vedomostincesmp.ru/jour/article/view/631/1612; https://www.vedomostincesmp.ru/jour/article/view/631/1508; https://www.vedomostincesmp.ru/jour/article/view/631/1530; https://www.vedomostincesmp.ru/jour/article/view/631/1584; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/631/672; Смирнов АВ, Наточин ЮВ. Нефрология: фундаментальная и клиническая. Нефрология. 2019;23(4):9–26. https://doi.org/10.24884/1561-6274-2019-23-4-9-26; Брюханов ВМ, Зверев ЯФ, Лампатов ВВ, Жариков АЮ. Методические подходы к изучению функции почек в эксперименте на животных. Нефрология. 2009;13(3):52–62. EDN: LKFRPV; Al-Naimi MS, Rasheed HA, Hussien NR, Al-Kuraishy HM, Al-Gareeb AI. Nephrotoxicity: role and significance of renal biomarkers in the early detection of acute renal injury. J Adv Pharm Technol Res. 2019;10(3):95–9. https://doi.org/10.4103/japtr.JAPTR_336_18; Zhang WR, Parikh CR. Biomarkers of acute and chronic kidney disease. Annu Rev Physiol. 2019;81:309–33. https://doi.org/10.1146/annurev-physiol-020518-114605; Vaidya VS, Ferguson MA, Bonventre JV, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463–93. https://doi.org/10.1146/annurev.pharmtox.48.113006.094615; Gu X, Yang B. Methods for assessment of the glomerular filtration rate in laboratory animals. Kidney Dis (Basel). 2022;8(5):381–91. https://doi.org/10.1159/000525049; Waldrop JE. Urinary electrolytes, solutes, and osmolality. Vet Clin North Am Small Anim Pract. 2008;38(3):503–12. https://doi.org/10.1016/j.cvsm.2008.01.011; Hard GC. Species comparison of the content and composition of urinary proteins. Food Chem Toxicol. 1995;33(9):731–46. https://doi.org/10.1016/0278-6915(95)00041-y; Maddens B, Heiene R, Smets P, Svensson M, Aresu L, Van der Lugt J, et al. Evaluation of kidney injury in dogs with pyometra based on proteinuria, renal histomorphology, and urinary biomarkers. J Vet Intern Med. 2011;25(5):1075–83. https://doi.org/10.1111/j.1939-1676.2011.0772.x; Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit. 2019;41(2):213–26. https://doi.org/10.1097/FTD.0000000000000589; Sato T, Ishikawa A, Homma Y. Effect of reduced form of coenzyme Q10 on cyclosporine nephrotoxicity. Exp Clin Transplant. 2013;11(1):17–20. https://doi.org/10.6002/ect.2012.0126; Abdel-Latif RG, Morsy MA, El-Moselhy MA, Khalifa MA. Sildenafil protects against nitric oxide deficiency-related nephrotoxicity in cyclosporine A treated rats. Eur J Pharmacol. 2013;705(1–3):126–34. https://doi.org/10.1016/j.ejphar.2013.02.039; Fuchs TC, Hewitt P. Preclinical perspective of urinary biomarkers for the detection of nephrotoxicity: what we know and what we need to know. Biomark Med. 2011;5(6):763–79. https://doi.org/10.2217/bmm.11.86; Ennulat D, Adler S. Recent successes in the identification, development, and qualification of translational biomarkers: the next generation of kidney injury biomarkers. Toxicol Pathol. 2015;43(1):62–9. https://doi.org/10.1177/0192623314554840; Kim YD, Yim DH, Eom SY, Moon SI, Park CH, Kim GB, et al. Temporal changes in urinary levels of cadmium, N-acetyl-β-d-glucosaminidase and β2-microglobulin in individuals in a cadmium-contaminated area. Environ Toxicol Pharmacol. 2015;39(1):35–41. https://doi.org/10.1016/j.etap.2014.10.016; Viau C, Bernard A, Ouled A, Lauwerys R. Determination of rat β2-microglobulin in urine and in serum. II. Application of its urinary measurement to selected nephrotoxicity models. J Appl Toxicol. 1986;6(3):191–5. https://doi.org/10.1002/jat.2550060310; Vlasakova K, Erdos Z, Troth SP, McNulty K, Chapeau-Campredon V, Mokrzycki N, et al. Evaluation of the relative performance of 12 urinary biomarkers for renal safety across 22 rat sensitivity and specificity studies. Toxicol Sci. 2014;138(1):3–20. https://doi.org/10.1093/toxsci/kft330; Kuwata K, Nakamura I, Ide M, Sato H, Nishikawa S, Tanaka M. Comparison of changes in urinary and blood levels of biomarkers associated with proximal tubular injury in rat models. J Toxicol Pathol. 2015;28(3):151–64. https://doi.org/10.1293/tox.2014-0039; Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol. 2010;28(5):463–9. https://doi.org/10.1038/nbt.1622; Nabity MB, Lees GE, Cianciolo R, Boggess MM, Steiner JM, Suchodolski JS. Urinary biomarkers of renal disease in dogs with X-linked hereditary nephropathy. J Vet Intern Med. 2012;26(2):282–93. https://doi.org/10.1111/j.1939-1676.2012.00891.x; Vinge L, Lees GE, Nielsen R, Kashtan CE, Bahr A, Christensen EI. The effect of progressive glomerular disease on megalin-mediated endocytosis in the kidney. Nephrol Dial Transplant. 2010;25(8):2458–67. https://doi.org/10.1093/ndt/gfq044; Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol. 2010;28(5):486–94. https://doi.org/10.1038/nbt.1627; Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290(2):F517–29. https://doi.org/10.1152/ajprenal.00291.2005; Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–63. https://doi.org/10.1152/ajprenal.00285.2002; Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159–70. https://doi.org/10.1093/toxsci/kfm260; Zhao X, Zhang Y, Li L, Mann D, Imig JD, Emmett N, et al. Glomerular expression of kidney injury molecule-1 and podocytopenia in diabetic glomerulopathy. Am J Nephrol. 2011;34(3):268–80. https://doi.org/10.1159/000330187; Dong Y, Zhang Q, Wen J, Chen T, He L, Wang Y, et al. Ischemic duration and frequency determines AKI-to-CKD progression monitored by dynamic changes of tubular biomarkers in IRI mice. Front Physiol. 2019;10:153. https://doi.org/10.3389/fphys.2019.00153; Kramer AB, van Timmeren MM, Schuurs TA, Vaidya VS, Bonventre JV, van Goor H, et al. Reduction of proteinuria in adriamycin-induced nephropathy is associated with reduction of renal kidney injury molecule (KIM-1) over time. Am J Physiol Renal Physiol. 2009;296(5):F1136-45. https://doi.org/10.1152/ajprenal.00541.2007; Rouse RL, Zhang J, Stewart SR, Rosenzweig BA, Espandiari P, Sadrieh NK. Comparative profile of commercially available urinary biomarkers in preclinical drug-induced kidney injury and recovery in rats. Kidney Int. 2011;79(11):1186–97. https://doi.org/10.1038/ki.2010.463; Jeong M, Kim YW, Min JR, Kwon M, Han BS, Kim JG, et al. Kidney toxicity induced by 13 weeks exposure to the fruiting body of Paecilomyces sinclairii in rats. Toxicol Res. 2012;28(3):179–85. https://doi.org/10.5487/TR.2012.28.3.179; Hussein AM, Malek HA, Saad MA. Renoprotective effects of aliskiren on adenine-induced tubulointerstitial nephropathy: possible underlying mechanisms. Can J Physiol Pharmacol. 2016;94(8):829–37. https://doi.org/10.1139/cjpp-2015-0364; Lippi I, Perondi F, Meucci V, Bruno B, Gazzano V, Guidi G. Clinical utility of urine kidney injury molecule-1 (KIM-1) and gamma-glutamyl transferase (GGT) in the diagnosis of canine acute kidney injury. Vet Res Commun. 2018;42(2):95–100. https://doi.org/10.1007/s11259-018-9711-7; Ennulat D, Ringenberg M, Frazier KS. Toxicologic Pathology Forum Opinion Paper*: recommendations for a tiered approach to nonclinical mechanistic nephrotoxicity evaluation. Toxicol Pathol. 2018;46(6):636–46. https://doi.org/10.1177/0192623318788302; Kharasch ED, Schroeder JL, Bammler T, Beyer R, Srinouanprachanh S. Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (“compound A”) in rats. Toxicol Sci. 2006;90(2):419–31. https://doi.org/10.1093/toxsci/kfj088; Rached E, Hoffmann D, Blumbach K, Weber K, Dekant W, Mally A. Evaluation of putative biomarkers of nephrotoxicity after exposure to ochratoxin A in vivo and in vitro. Toxicol Sci. 2008;103(2):371–81. https://doi.org/10.1093/toxsci/kfn040; Tsuchiya Y, Tominaga Y, Matsubayashi K, Jindo T, Furuhama K, Suzuki KT. Investigation on urinary proteins and renal mRNA expression in canine renal papillary necrosis induced by nefiracetam. Arch Toxicol. 2005;79(9):500–7. https://doi.org/10.1007/s00204-005-0666-4; Yoshida T, Kurella M, Beato F, Min H, Ingelfinger JR, Stears RL, et al. Monitoring changes in gene expression in renal ischemia-reperfusion in the rat. Kidney Int. 2002;61(5):1646–54. https://doi.org/10.1046/j.1523-1755.2002.00341.x; Correa-Rotter R, Hostetter TH, Manivel JC, Eddy AA, Rosenberg ME. Intrarenal distribution of clusterin following reduction of renal mass. Kidney Int. 1992;41(4):938–50. https://doi.org/10.1038/ki.1992.144; Ishii A, Sakai Y, Nakamura A. Molecular pathological evaluation of clusterin in a rat model of unilateral ureteral obstruction as a possible biomarker of nephrotoxicity. Toxicol Pathol. 2007;35(3):376–82. https://doi.org/10.1080/01926230701230320; Hidaka S, Kränzlin B, Gretz N, Witzgall R. Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell Tissue Res. 2002;310(3):289–96. https://doi.org/10.1007/s00441-002-0629-5; Harpur E, Ennulat D, Hoffman D, Betton G, Gautier JC, Riefke B, et al. Biological qualification of biomarkers of chemical-induced renal toxicity in two strains of male rat. Toxicol Sci. 2011;122(2):235–52. https://doi.org/10.1093/toxsci/kfr112; Eti S, Cheng CY, Marshall A, Reidenberg MM. Urinary clusterin in chronic nephrotoxicity in the rat. Proc Soc Exp Biol Med. 1993;202(4):487–90. https://doi.org/10.3181/00379727-202-43564; Zhou X, Ma B, Lin Z, Qu Z, Huo Y, Wang J, et al. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs. Toxicol Appl Pharmacol. 2014;280(1):30–5. https://doi.org/10.1016/j.taap.2014.07.002; McMahon BA, Koyner JL, Murray PT. Urinary glutathione S-transferases in the pathogenesis and diagnostic evaluation of acute kidney injury following cardiac surgery: a critical review. Curr Opin Crit Care. 2010;16(6):550–5. https://doi.org/10.1097/MCC.0b013e32833fdd9a; Swain A, Turton J, Scudamore CL, Pereira I, Viswanathan N, Smyth R, et al. Urinary biomarkers in hexachloro-1: 3-butadiene-induced acute kidney injury in the female Hanover Wistar rat; correlation of α-glutathione S-transferase, albumin and kidney injury molecule-1 with histopathology and gene expression. J Appl Toxicol. 2011;31(4):366–77. https://doi.org/10.1002/jat.1624; Wadey RM, Pinches MG, Jones HB, Riccardi D, Price SA. Tissue expression and correlation of a panel of urinary biomarkers following cisplatin-induced kidney injury. Toxicol Pathol. 2014;42(3):591–602. https://doi.org/10.1177/0192623313492044; Chen Y, Brott D, Luo W, Gangl E, Kamendi H, Barthlow H, et al. Assessment of cisplatin-induced kidney injury using an integrated rodent platform. Toxicol Appl Pharmacol. 2013;268(3):352–61. https://doi.org/10.1016/j.taap.2013.01.032; Miyagawa Y, Takemura N, Hirose H. Evaluation of the measurement of serum cystatin C by an enzyme-linked immunosorbent assay for humans as a marker of the glomerular filtration rate in dogs. J Vet Med Sci. 2009;71(9):1169–76. https://doi.org/10.1292/jvms.71.1169; Wehner A, Hartmann K, Hirschberger J. Utility of serum cystatin C as a clinical measure of renal function in dogs. J Am Anim Hosp Assoc. 2008;44(3):131–8. https://doi.org/10.5326/0440131; Braun JP, Perxachs A, Chereau D, De La Farge F. Plasma cystatin C in the dog: reference values and variations with renal failure. Comp Clin Path. 2002;11:44–9. https://doi.org/10.1007/s580-002-8081-2; Togashi Y, Sakaguchi Y, Miyamoto M, Miyamoto Y. Urinary cystatin C as a biomarker for acute kidney injury and its immunohistochemical localization in kidney in the CDDP-treated rats. Exp Toxicol Pathol. 2012;64(7–8):797–805. https://doi.org/10.1016/j.etp.2011.01.018; Song S, Meyer M, Türk TR, Wilde B, Feldkamp T, Assert R, et al. Serum cystatin C in mouse models: a reliable and precise marker for renal function and superior to serum creatinine. Nephrol Dial Transplant. 2009;24(4):1157–61. https://doi.org/10.1093/ndt/gfn626; Song L, Wang, K, Yin J, Yang Y, Li B, Zhang D, et al. Traditional Chinese Medicine Fufang-Zhenzhu-Tiaozhi capsule prevents renal injury in diabetic minipigs with coronary heart disease. Chin Med. 2022;17(1):102. https://doi.org/10.1186/s13020-022-00648-x; Uchino H, Fujishima J, Fukuoka K, Iwakiri T, Kamikuri A, Maeda H, et al. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside. J Toxicol Sci. 2017;42(5):629–40. https://doi.org/10.2131/jts.42.629; Yamaguchi I, Myojo K, Sanada H, Takami A, Suzuki Y, Imaizumi M, et al. Five-sixth nephrectomy in female common marmosets (Callithrix jacchus) as a chronic renal failure model — a longitudinal course of serum biochemical, hema tological and histopathological changes. J Toxicol Pathol. 2014;27(3–4):183–95. https://doi.org/10.1293/tox.2013-0055; Bolignano D, Donato V, Coppolino G, Campo S, Buemi A, Lacquaniti A, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am J Kidney Dis. 2008;52(3):595–605. https://doi.org/10.1053/j.ajkd.2008.01.020; Lee YJ, Hu YY, Lin YS, Chang CT, Lin FY, Wong ML, et al. Urine neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute canine kidney injury. BMC Vet Res. 2012;8:248. https://doi.org/10.1186/1746-6148-8-248; Silberstein JL, Sprenkle PC, Su D, Power NE, Tarin TV, Ezell P, et al. Neutrophil gelatinase-associated lipocalin (NGAL) levels in response to unilateral renal ischaemia in a novel pilot two-kidney porcine model. BJU Int. 2013;112(4):517–25. https://doi.org/10.1111/bju.12066; Palm CA, Segev G, Cowgill LD, LeRoy BE, Kowalkowski KL, Kanakubo K, et al. Urinary neutrophil gelatinase-associated lipocalin as a marker for identification of acute kidney injury and recovery in dogs with gentamicin-induced nephrotoxicity. J Vet Intern Med. 2016;30(1):200–5. https://doi.org/10.1111/jvim.13819; Burt D, Crowell SJ, Ackley DC, Magee TV, Aubrecht J. Application of emerging biomarkers of acute kidney injury in development of kidney-sparing polypeptide-based antibiotics. Drug Chem Toxicol. 2014;37(2):204–12. https://doi.org/10.3109/01480545.2013.834360; Wang Y, Wang B, Qi X, Zhang X, Ren K. Resveratrol protects against post-contrast acute kidney injury in rabbits with diabetic nephropathy. Front Pharmacol. 2019;10:833. https://doi.org/10.3389/fphar.2019.00833; Bazzi C, Rizza V, Olivieri G, Casellato D, D’Amico G. Tubular reabsorption of high, middle and low molecular weight proteins according to the tubulo-interstitial damage marker N-acetyl-β-D-glucosaminidase in glomerulonephritis. J Nephrol. 2015;28(5):541–8. https://doi.org/10.1007/s40620-014-0139-z; Śliwińska-Mossoń M, Sobiech K, Dolezych B, Madej P, Milnerowicz H. N-acetyl-beta-d-glucosaminidase in tissues of rats chronically exposed to cadmium and treated with ozone. Ann Clin Lab Sci. 2019;49(2):193–203. PMID: 31028064; Bosomworth MP, Aparicio SR, Hay AW. Urine N-acetyl-beta-D-glucosaminidase — a marker of tubular damage? Nephrol Dial Transplantat. 1999;14(3):620–6. https://doi.org/10.1093/ndt/14.3.620; Hanbeyoğlu A, Kazez A, Üstündağ B, Akpolat N. Determination of urinary N-acetyl-β-D glucosaminidase (NAG) levels in experimental blunt renal trauma. Ulus Travma Acil Cerrahi Derg. 2011;17(6):475–81. https://doi.org/10.5505/tjtes.2011.57973; Suzuki CAM, Thomas BH, Mueller R. Evaluation of enzymuria as an indicator of amikacin-induced renal damage in guinea pigs. Toxicol Lett. 1992;62(1):101–14. https://doi.org/10.1016/0378-4274(92)90083-v; Türkmen M, Kavukcu S, Islekel H, Sarioğlu S, Akhunlar H, Gökden N, et al. Urinary N-acetyl-β-D-glucosaminidase activity in rabbits with experimental hypercalciuria. Pediatr Nephrol. 1997;11:481–4. https://doi.org/10.1007/s004670050321; Pressler BM. Clinical approach to advanced renal function testing in dogs and cats. Clin Lab Med. 2015;35(3):487–502. https://doi.org/10.1016/j.cll.2015.05.001; Adedeji AO, Sonee M, Chen Y, Lynch K, Peron K, King N, et al. Evaluation of novel urinary biomarkers in beagle dogs with Amphotericin B-induced kidney injury. Int J Toxicol. 2023;42(2):146–55. https://doi.org/10.1177/10915818221142542; Ruiz P, Durán Á, Duque FJ, González MA, Cristóbal JI, Nicolás P, et al. Urinary cystatin C and N-acetyl-beta-D-gluco saminidase (NAG) as early biomarkers for renal disease in dogs with leishmaniosis. Vet Parasitol. 2023;318:109930. https://doi.org/10.1016/j.vetpar.2023.109930; Gautier JC, Zhou X, Yang Y, Gury T, Qu Z, Palazzi X, et al. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin. Toxicol Appl Pharmacol. 2016;303:1–10. https://doi.org/10.1016/j.taap.2016.04.012; Watanabe A, Ohata K, Oikawa T, Sugaya T, Miyazaki M, Satoh H, et al. Preliminary study of urinary excretion of liver-type fatty acid-binding protein in a cat model of chronic kidney disease. Can J Vet Res. 2021;85(2):156–60.; Matsui K, Kamijo-Ikemorif A, Sugaya T, Yasuda T, Kimura K. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. Am J Pathol. 2011;178(3):1021–32. https://doi.org/10.1016/j.ajpath.2010.12.002; Kamijo-Ikemori A, Ichikawa D, Matsui K, Yokoyama T, Sugaya T, Kimura K. Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan. Rinsho Byori. 2013;61(7):635–40 (In Japanese). PMID: 24205707; Yamamoto T, Noiri E, Ono Y, D o i K, Negishi K, Kamijo A, et al. Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18(11):2894–902. https://doi.org/10.1681/ASN.2007010097; Kanaguchi Y, Suzuki Y, Osaki K, Sugaya T, Horikoshi S, Tomino Y. Protective effects of L-type fatty acid-binding protein (L-FABP) in proximal tubular cells against glomerular injury in anti-GBM antibody-mediated glomerulonephritis. Nephrol Dial Transplant. 2011;26(11):3465–73. https://doi.org/10.1093/ndt/gfr110; Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, et al. Trefoil factor 3: new highlights in chronic kidney disease research. Cell Signal. 2022;100:110470. https://doi.org/10.1016/j.cellsig.2022.110470; Yu Y, Jin H, Holder D, Ozer JS, Villarreal S, Shughrue P, et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat Biotechnol. 2010;28(5):470–7. https://doi.org/10.1038/nbt.1624; Reeves BW, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol. 2008;294(4):F731–8. https://doi.org/10.1152/ajprenal.00507.2007; Rajasundari A, Pays L, Mehlen P, Ramesh G. Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cisplatin nephrotoxicity. Lab Invest. 2011;91(12):1717–26. https://doi.org/10.1038/labinvest.2011.126; White JJ, Mohamed R, Jayakumar C, Ramesh G. Tubular injury markers netrin-1 is elevated early in experimental diabetes. J Nephrol. 2013;26(6):1055–64. https://doi.org/10.5301/jn.5000303; Bai J, Hao J, Zhang X, Cui H, Han J, Cao N. Netrin-1 attenuates the progression of renal dysfunction by blocking endothelial-to-mesenchymal transition in the 5/6 nephrectomy rat model. BMC Nephrol. 2016;17(1):47. https://doi.org/10.1186/s12882-016-0260-4; García-Martínez JD, Tvarijonaviciute A, Cerón JJ, Caldin M, Martínez-Subiela S. Urinary clusterin as a renal marker in dogs. J Vet Diagn Invest. 2012;24(2):301–6. https://doi.org/10.1177/1040638711435112; Son JY, Kang YJ, Kim KS, Kim TH, Lim SK, Lim HJ, et al. Evaluation of renal toxicity by combination exposure to melamine and cyanuric acid in male Sprague-Dawley rats. Toxicol Res. 2014;30(2):99–107. https://doi.org/10.5487/TR.2014.30.2.099; Adedeji AO, Gu YZ, Pourmohamad T, Kanerva J, Chen Y, Atabakhsh E, et al. The utility of novel urinary biomarkers in mice for drug development studies. Int J Toxicol. 2021;40(1):15–25. https://doi.org/10.1177/1091581820970498; Stubbs JR, Zhang S, Jansson KP, Fields TA, Boulanger J, Liu S, et al. Critical role of osteopontin in maintaining urinary phosphate solubility in CKD. Kidney360. 2022;3(9):1578–89. https://doi.org/10.34067/KID.0007352021; Phillips JA, Holder DJ, Ennulat D, Gautier JC, Sauer JM, Yang Y, et al. Rat urinary osteopontin and neutrophil gelatinase-associated lipocalin improve certainty of detecting drug-induced kidney injury. Toxicol Sci. 2016;151(2):214–23. https://doi.org/10.1093/toxsci/kfw038; Zhang Q, Davis KJ, Hoffmann D, Vaidya VS, Brown RP, Goering PL. Urinary biomarkers track the progression of nephropathy in hypertensive and obese rats. Biomark Med. 2014;8(1):85–94. https://doi.org/10.2217/bmm.13.106; Dobrek Ł, Arent Z, Nalik-Iwaniak K, Fic K, Kopańska M. Osteopontin and fatty acid binding protein in ifosfamide-treated rats. Open Medicine. 2019;14(1):561–71. https://doi.org/10.1515/med-2019-0063; Carlos CP, Sonehara NM, Oliani SM, Burdmann EA. Predictive usefulness of urinary biomarkers for the identification of cyclosporine A-induced nephrotoxicity in a rat model. PLoS One. 2014;9(7):e103660. https://doi.org/10.1371/journal.pone.0103660; Harjen HJ, Nicolaysen TV, Negard T, Lund H, Sævik BK, Anfinsen KP, et al. Serial serum creatinine, SDMA and urinary acute kidney injury biomarker measurements in dogs envenomated by the European adder (Vipera berus). BMC Vet Res. 2021;17(1):154. https://doi.org/10.1186/s12917-021-02851-8; Gu YZ, Vlasakova K, Troth SP, Peiffer RL, Tournade H, Pasello dos Santos FR, et al. Performance assessment of new urinary translational safety biomarkers of drug-induced renal tubular injury in tenofovir-treated cynomolgus monkeys and beagle dogs. Toxicol Pathol. 2018;46(5):553–63. https://doi.org/10.1177/0192623318775023; Monti P, Benchekroun G, Berlato D, Archer J. Initial evaluation of canine urinary cystatin C as a marker of renal tubular function. J Small Anim Pract. 2012;53(5):254–9. https://doi.org/10.1111/j.1748-5827.2012.01198.x; Ghys LFE, Meyer E, Paepe D, Delanghe J, Daminet S. Analytical validation of a human particle-enhanced nephelometric assay for cystatin C measurement in feline serum and urine. Vet Clin Pathol. 2014;43(2):226–34. https://doi.org/10.1111/vcp.12144; Gil A, Brod V, Awad H, Heyman SN, Abassi Z, Frajewicki V. Neutrophil gelatinase-associated lipocalin in a triphasic rat model of adenine-induced kidney injury. Ren Fail. 2016;38(9):1448–54. https://doi.org/10.1080/0886022X.2016.1194164; Sekulic M, Pichler Sekulic S. A compendium of urinary biomarkers indicative of glomerular podocytopathy. Patholog Res Int. 2013;2013:782395. https://doi.org/10.1155/2013/782395; Pan QR, Ren YL, Zhu JJ, Hu YJ, Zheng JS, Fan H, et al. Resveratrol increases nephrin and podocin expression and alleviates renal damage in rats fed a high-fat diet. Nutrients. 2014;6(7):2619–31. https://doi.org/10.3390/nu6072619; Мирошников МВ, Султанова КТ, Макарова МН, Фаустова НМ, Хан СО, Лосева Е.А. Комплексная оценка функционального состояния мочевыделительной системы в доклинических исследованиях. Часть 1: инструментальные и лабораторные методы оценки (обзор). Регуляторные исследования и экспертиза лекарственных средств. 2024;14(3):283–94. https://doi.org/10.30895/1991-2919-2024-14-3-283-294; https://www.vedomostincesmp.ru/jour/article/view/631
-
2
-
3Academic Journal
Contributors: Авторы выражают благодарность заслуженному врачу Российской Федерации, заведующему отделением гемодиализа ФГБУ «Главный военный клинический госпиталь им. академика Н.Н. Бурденко» Минобороны России, д.м.н. Сергею Евгеньевичу Хорошилову (г. Москва) за идею проведения настоящего обзора.
Source: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 1 (2023); 87–104 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 1 (2023); 87–104 ; 2070-4933 ; 2070-4909
Subject Terms: L-FABP, AKI, biomarkers, cystatin C, neutrophil gelatinase-associated lipocalin, NGAL, kidney injury molecule 1, KIM-1, β2-microglobulin, liver-type fatty acid binding protein, ОПП, биомаркеры, цистатин С, липокалин, ассоциированный с желатиназой нейтрофилов, молекула повреждения почек 1, β2-микроглобулин, печеночная форма белка, связывающего жирные кислоты
File Description: application/pdf
Relation: https://www.pharmacoeconomics.ru/jour/article/view/799/463; Костюченко А.Л. Экстракорпаральные методы в лечении острой почечной недостаточности. Эфферентная терапия. 1995; 1 (1): 24–30.; Hoste E.A.J., Kellum J.A., Selby N.M., et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018; 14 (10): 607–25. https://doi.org/10.1038/s41581-018-0052-0.; Ronco C., Bellomo R., Kellum J.A. Acute kidney injury. Lancet. 2019; 394 (10212): 1949–64. https://doi.org/10.1016/S0140-6736(19)32563-2.; Корабельников Д.И., Коновалов П.П., Магомедалиев М.О., Хорошилов С.Е. Клинико-эпидемиологическая характеристика острого повреждения почек при тяжелой внебольничной пневмонии у лиц молодого возраста. Военно-медицинский журнал. 2022; 343 (12): 38–45. https://doi.org/10.52424/00269050_2022_343_12_38.; Магомедалиев М.О., Корабельников Д.И., Хорошилов С.Е. Острое повреждение почек при тяжелом течении пневмоний, ассоциированных с новой коронавирусной инфекцией (COVID-19). Вестник Российской Военно-медицинской академии. 2022; 24 (3) 511–20. https://doi.org/10.17816/brmma109938.; Samimagham H.R., Kheirkhah S., Haghighi A., Najmi Z. Acute kidney injury in intensive care unit: incidence, risk factors and mortality rate. Saudi J Kidney Dis Transpl. 2011; 22 (3): 464–70.; Jiang L., Zhu Y., Luo X., et al. Epidemiology of acute kidney injury in intensive care units in Beijing: the multi-center BAKIT study. BMC Nephrol. 2019; 20 (1): 468. https://doi.org/10.1186/s12882-019-1660-z.; Malhotra R., Siew E.D. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol. 2017; 12 (1): 149–73. https://doi.org/10.2215/CJN.01300216.; Pike F., Murugan R., Keener C., et al. Biomarker enhanced risk prediction for adverse outcomes in critically ill patients receiving RRT. Clin J Am Soc Nephrol. 2015; 10 (8): 1332–9. https://doi.org/10.2215/CJN.09911014.; Murray P.T., Mehta R.L., Shaw A., et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014; 85 (3): 513–21. https://doi.org/10.1038/ki.2013.374.; Wysocki J., Batlle D. Urinary angiotensinogen: a promising biomarker of AKI progression in acute decompensated heart failure: what does it mean? Clin J Am Soc Nephrol. 2016; 11 (9): 1515–7. https://doi.org/10.2215/CJN.07780716.; Parikh C.R., Abraham E., Ancukiewicz M., Edelstein C.L. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005; 16 (10): 3046–52. https://doi.org/10.1681/ASN.2005030236.; Nejat M., Pickering J.W., Walker R.J., et al. Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care. 2010; 14 (3): R85. https://doi.org/10.1186/cc9014.; Kashani K., Cheungpasitporn W., Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017; 55 (8): 1074–89. https://doi.org/10.1515/cclm2016-0973.; Tesch G.H. Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology. 2010; 15 (6): 609–16. https://doi.org/10.1111/j.1440-1797.2010.01361.x.; Уразаева Л.И., Максудова А.Н. Биомаркеры раннего повреждения почек: обзор литературы. Практическая медицина. 2014; 1 (4): 125–30.; Waring W.S., Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol. 2011; 49 (8): 720–8. https://doi.org/10.3109/15563650.2011.615319.; Oh D. A long journey for acute kidney injury biomarkers. Ren Fail. 2020; 42 (1): 154–65. https://doi.org/10.1080/0886022X.2020.1721300.; Bonventre J.V., Vaidya V.S., Schmouder R., et al. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol. 2010; 28 (5): 436–40. https://doi.org/10.1038/nbt0510-436.; Peake M., Whiting M. Measurement of serum creatinine – current status and future goals. Clin Biochem Rev. 2006; 27 (4): 173–84.; Острое повреждение почек: основные принципы диагностики, профилактики и терапии. Национальные рекомендации. URL: https://library.mededtech.ru/rest/documents/nonr_19/ (дата обращения 10.02.2023).; Stevens L.A., Levey A.S. Measurement of kidney function. Med Clin North Am. 2005; 89 (3): 457–73. https://doi.org/10.1016/j.mcna.2004.11.009.; Смирнов А.В., Каюков И.Г., Добронравов В.А., Румянцев А.Ш. Острое повреждение почек: концептуальные проблемы. Нефрология. 2014; 18 (2): 8–24.; Bellomo R., Ronco C., Kellum J.A., et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004; 8 (4): R204–12. https://doi.org/10.1186/cc2872.; Parikh C.R., Coca S.G., Thiessen-Philbrook H., et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol. 2011; 22 (9): 1748–57. https://doi.org/10.1681/ASN.2010121302.; Магомедалиев М.О., Корабельников Д.И., Хорошилов С.Е. Острое повреждение почек при пневмонии. Российский медико-социальный журнал. 2019; 1 (1): 59–73. https://doi.org/10.35571/RMSJ.2019.1.006.; Chertow G.M., Burdick E., Honour M., et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005; 16 (11): 3365–70. https://doi.org/10.1681/ASN.2004090740.; Silver S.A., Long J., Zheng Y., Chertow G.M. Cost of acute kidney injury in hospitalized patients. J Hosp Med. 2017; 12 (2): 70–6. https://doi.org/10.12788/jhm.2683.; Collister D., Pannu N., Ye F., et al. Health care costs associated with AKI. Clin J Am Soc Nephrol. 2017; 12 (11): 1733–43. https://doi.org/10.2215/CJN.00950117.; Aubry P., Brillet G., Catella L., et al. Outcomes, risk factors and health burden of contrast-induced acute kidney injury: an observational study of one million hospitalizations with image-guided cardiovascular procedures. BMC Nephrol. 2016; 17 (1): 167. https://doi.org/10.1186/s12882-016-0385-5.; Suh K., Kellum J.A., Kane-Gill S.L. A systematic review of costeffectiveness analyses across the acute kidney injury landscape. Expert Rev Pharmacoecon Outcomes Res. 2021; 21 (4): 571–8. https://doi.org/10.1080/14737167.2021.1882307.; Petrovic S., Bogavac-Stanojevic N., Lakic D., et al. Costeffectiveness analysis of acute kidney injury biomarkers in pediatric cardiac surgery. Biochem Medica. 2015; 25 (2): 262–71. https://doi.org/10.11613/BM.2015.027.; Jacobsen E., Sawhney S., Brazzelli M., et al. Cost-effectiveness and value of information analysis of NephroCheck and NGAL tests compared to standard care for the diagnosis of acute kidney injury. BMC Nephrol. 2021; 22 (1): 399. https://doi.org/10.1186/s12882-021-02610-9.; Grubb A. Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol. 1992; 38 (Suppl. 1): S20–7.; Langlois V. Laboratory evaluation at different ages. В кн.: Geary D.F., Schaefer F. (ред.) Comprehensive pediatric nephrology. Elsevier; 2008: 39–54. https://doi.org/10.1016/B978-0-323-04883-5.50008-8.; Tonnelle C., Colle A., Fougereau M., Manuel Y. Partial amino acid sequence of two forms of human Post-γ-globulin. Biochem Biophys Res Commun. 1979; 86 (3): 613–9. https://doi.org/10.1016/0006-291X(79)91757-1.; Abrahamson M., Alvarez-Fernandez M., Nathanson C.M. Cystatins. Biochem Soc Symp. 2003; 70: 179–99. https://doi.org/10.1042/bss0700179.; Mussap M., Plebani M. Biochemistry and сlinical role of human сystatin C. Crit Rev Clin Lab Sci. 2004; 41 (5–6): 467–550. https://doi.org/10.1080/10408360490504934.; Hall A., Håkansson K., Mason R.W., et al. Structural basis for the biological specificity of cystatin C. J Biol Chem. 1995; 270 (10): 5115–21. https://doi.org/10.1074/jbc.270.10.5115.; Rawlings N.D., Barrett A.J. Evolution of proteins of the cystatin superfamily. J Mol Evol. 1990; 30 (1): 60–71. https://doi.org/10.1007/BF02102453.; Brown W.M., Dziegielewska K.M. Friends and relations of the cystatin superfamily-new members and their evolution. Protein Sci. 2008; 6 (1): 5–12. https://doi.org/10.1002/pro.5560060102.; Stevens L.A., Coresh J., Greene T., Levey A.S. Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med. 2006; 354 (23): 2473–83. https://doi.org/10.1056/NEJMra054415.; Laterza O.F., Price C.P., Scott M.G. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem. 2002; 48 (5): 699–707.; Каюков И.Г., Смирнов А.В., Эмануэль В.Л. Цистатин С в современной медицине. Нефрология. 2012; 16 (1): 22–39.; Rodrigo E., De Francisco A.L.M., Escallada R., et al. Measurement of renal function in pre-ESRD patients. Kidney Int. 2002; 61: S11–7. https://doi.org/10.1046/j.1523-1755.61.s80.4.x.; Löfberg H., Grubb A.O. Quantitation of γ-trace in human biological fluids: indications for production in the central nervous system. Scand J Clin Lab Invest. 1979; 39 (7): 619–26. https://doi.org/10.3109/00365517909108866.; Randers E., Kristensen H., Erlandsen E., Danielsen S. Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest. 1998; 58 (7): 585–92. https://doi.org/10.1080/00365519850186210.; Yang M., Zou Y., Lu T., et al. Revised equations to estimate glomerular filtration rate from serum creatinine and cystatin C in China. Kidney Blood Press Res. 2019; 44 (4): 553–64. https://doi.org/10.1159/000500460.; Division R., Hospital M.G. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004; 65 (4): 1416–21. https://doi.org/10.1111/j.1523-1755.2004.00517.x.; Köttgen A., Selvin E., Stevens L.A., et al. Serum cystatin C in the United States : the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis. 2008; 51 (3): 385–94. https://doi.org/10.1053/j.ajkd.2007.11.019.; He M., Ke P., Chen W., et al. Clinical correlates and reference intervals for cystatin C in a Han population from Southeast China. Clin Lab. 2017; 63 (3): 607–15. https://doi.org/10.7754/Clin.Lab.2016.160807.; Ichihara K., Saito K., Itoh Y. Sources of variation and reference intervals for serum cystatin C in a healthy Japanese adult population. Clin Chem Lab Med. 2007; 45 (9): 1232–6. https://doi.org/10.1515/CCLM.2007.504.; Dharnidharka V.R., Kwon C., Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002; 40 (2): 221–6. https://doi.org/10.1053/ajkd.2002.34487.; Bagshaw S.M., Bellomo R. Cystatin C in acute kidney injury. Curr Opin Crit Care. 2010; 16 (6): 533–9. https://doi.org/10.1097/MCC.0b013e32833e8412.; Roos J.F., Doust J., Tett S.E., Kirkpatrick C.M.J. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children – a meta-analysis. Clin Biochem. 2007; 40 (5–6): 383–91. https://doi.org/10.1016/j.clinbiochem.2006.10.026.; Turk V., Stoka V., Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008; 13: 5406–20. https://doi.org/10.2741/3089.; Herget-Rosenthal S., Marggraf G., Hüsing J., et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004; 66 (3): 1115–22. https://doi.org/10.1111/j.1523-1755.2004.00861.x.; Koyner J.L., Bennett M.R., Worcester E.M., et al. Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int. 2008; 74 (8): 1059–69. https://doi.org/10.1038/ki.2008.341.; Ronco C., Haapio M., House A.A., et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008; 52 (19): 1527–39. https://doi.org/10.1016/j.jacc.2008.07.051.; Levey A.S., De Jong P.E., Coresh J., et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011; 80 (1): 17–28. https://doi.org/10.1038/ki.2010.483.; Vanholder R., Massy Z., Argiles A., et al. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant. 2005; 20 (6): 1048–56. https://doi.org/10.1093/ndt/gfh813.; Yang S., Song L., Zhao L., et al. Predictive value of cystatin C in people with suspected or established coronary artery disease: a metaanalysis. Atherosclerosis. 2017; 263: 60–7. https://doi.org/10.1016/j.atherosclerosis.2017.05.025.; Tuominen T., Jämsä T., Oksanen J., et al. Composite implant composed of hydroxyapatite and bone morphogenetic protein in the healing of a canine ulnar defect. Ann Chir Gynaecol. 2001; 90 (1): 32–6.; Taleb S., Lacasa D., Bastard J.P., et al. Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB J. 2005; 19 (11): 1540–2. https://doi.org/10.1096/fj.05-3673fje.; Correa S., Morrow D.A., Braunwald E., et al. Cystatin C for risk stratification in patients after an acute coronary syndrome. J Am Heart Assoc. 2018; 7 (20): e009077. https://doi.org/10.1161/JAHA.118.009077.; Hoke M., Amighi J., Mlekusch W., et al. Cystatin C and the risk for cardiovascular events in patients with asymptomatic carotid atherosclerosis. Stroke. 2010; 41 (4): 674–9. https://doi.org/10.1161/STROKEAHA.109.573162.; Mao Q., Zhao N., Wang Y., et al. Association of cystatin C with metabolic syndrome and its prognostic performance in non-ST-segment elevation acute coronary syndrome with preserved renal function. Biomed Res Int. 2019; 2019: 1–11. https://doi.org/10.1155/2019/854140269.; Patschan D., Müller G.A. Acute kidney injury in diabetes mellitus. Int J Nephrol. 2016; 2016: 6232909. https://doi.org/10.1155/2016/6232909.; Deng Y., Wang L., Hou Y., et al. The influence of glycemic status on the performance of cystatin C for acute kidney injury detection in the critically ill. Ren Fail. 2019; 41 (1): 139–49. https://doi.org/10.1080/0886022X.2019.1586722.; Naour N., Fellahi S., Renucci J.F., et al. Potential contribution of adipose tissue to elevated serum cystatin C in human obesity. Obesity. 2009; 17 (12): 2121–6. https://doi.org/10.1038/oby.2009.96.; Garcia-Carretero R., Vigil-Medina L., Barquero-Perez O., et al. Cystatin C as a predictor of cardiovascular outcomes in a hypertensive population. J Hum Hypertens. 2017; 31 (12): 801–7. https://doi.org/10.1038/jhh.2017.68.; Benoit S.W., Ciccia E.A., Devarajan P. Cystatin C as a biomarker of chronic kidney disease: latest developments. Expert Rev Mol Diagn. 2020; 20 (10): 1019–26. https://doi.org/10.1080/14737159.2020.1768849.; Zhang W., Zhang T., Ding D., et al. Use of both serum cystatin C and creatinine as diagnostic criteria for contrast-induced acute kidney injury and its clinical implications. J Am Heart Assoc. 2017; 6 (1): e004747. https://doi.org/10.1161/JAHA.116.004747.; Zinellu A., Mangoni A.A. Cystatin C, COVID-19 severity and mortality: a systematic review and meta-analysis. J Nephrol. 2022; 35 (1): 59–68. https://doi.org/10.1007/s40620-021-01139-2.; Cowland J.B., Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997; 45 (1): 17–23. https://doi.org/10.1006/geno.1997.4896.; Kjeldsen L., Johnsen A.H., Sengeløv H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993; 268 (14): 10425–32.; Xu S.Y., Pauksen K., Venge P. Serum measurements of human neutrophil lipocalin (HNL) discriminate between acute bacterial and viral infections. Scand J Clin Lab Invest. 1995; 55 (2): 125–31. https://doi.org/10.3109/00365519509089604.; Nasioudis D., Witkin S.S. Neutrophil gelatinase-associated lipocalin and innate immune responses to bacterial infections. Med Microbiol Immunol. 2015; 204 (4): 471–9. https://doi.org/10.1007/s00430-015-0394-1.; Schmidt-Ott K.M., Mori K., Li J.Y., et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007; 18 (2): 407–13. https://doi.org/10.1681/ASN.2006080882.; Mishra J. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004; 15 (12): 3073–82. https://doi.org/10.1097/01.ASN.0000145013.44578.45.; Goetz D.H., Holmes M.A., Borregaard N., et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophoremediated iron acquisition. Mol Cell. 2002; 10 (5): 1033–43. https://doi.org/10.1016/S1097-2765(02)00708-6.; Roudkenar M.H., Halabian R., Bahmani P., et al. Neutrophil gelatinaseassociated lipocalin: a new antioxidant that exerts its cytoprotective effect independent on Heme Oxygenase-1. Free Radic Res. 2011; 45 (7): 810–9. https://doi.org/10.3109/10715762.2011.581279.; Haase-Fielitz A., Haase M., Devarajan P. Neutrophil gelatinaseassociated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann Clin Biochem. 2014; 51 (Pt. 3): 335–51. https://doi.org/10.1177/0004563214521795.; Schrezenmeier E.V., Barasch J., Budde K., et al. Biomarkers in acute kidney injury – pathophysiological basis and clinical performance. Acta Physiol. 2017; 219 (3): 556–74. https://doi.org/10.1111/apha.12764.; Mori K., Lee H.T., Rapoport D., et al. Endocytic delivery of lipocalinsiderophore-iron complex rescues the kidney from ischemiareperfusion injury. J Clin Invest. 2005; 115 (3): 610–21. https://doi.org/10.1172/JCI23056.; Andreucci M., Faga T., Riccio E., et al. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis. 2016; 9: 205–21. https://doi.org/10.2147/IJNRD.S105124.; Kokkoris S., Pipili C., Grapsa E., et al. Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail. 2013; 35 (4): 579–91. https://doi.org/10.3109/0886022X.2013.773835.; Schmidt-Ott K.M., Mori K., Kalandadze A., et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens. 2006; 15 (4): 442–9. https://doi.org/10.1097/01.mnh.0000232886.81142.58.; Singer E., Markó L., Paragas N., et al. Neutrophil gelatinaseassociated lipocalin: pathophysiology and clinical applications. Acta Physiol. 2013; 207 (4): 663–72. https://doi.org/10.1111/apha.12054.; Mishra J. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003; 14 (10): 2534–43. https://doi.org/10.1097/01.ASN.0000088027.54400.C6.; de Geus H.R.H., Bakker J., Lesaffre E.M., le Noble J.L. Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med. 2011; 183 (7): 907–14. https://doi.org/10.1164/rccm.200908-1214OC.; Siew E.D., Ware L.B., Gebretsadik T., et al. Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J Am Soc Nephrol. 2009; 20 (8): 1823–32. https://doi.org/10.1681/ASN.2008070673.; Hang C.C., Yang J., Wang S., et al. Evaluation of serum neutrophil gelatinase-associated lipocalin in predicting acute kidney injury in critically ill patients. J Int Med Res. 2017; 45 (3): 1231–44. https://doi.org/10.1177/0300060517709199.; Poston J.T., Koyner J.L. Sepsis associated acute kidney injury. BMJ. 2019; 364: k4891. https://doi.org/10.1136/bmj.k4891.; Bagshaw S.M., Bennett M., Haase M., et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 2010; 36 (3): 452–61. https://doi.org/10.1007/s00134-009-1724-9.; Levy M.M., Fink M.P., Marshall J.C., et al. 2001 SCCM/ESICM/ACCP/ ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003; 31 (4): 1250–6. https://doi.org/10.1097/01.CCM.0000050454.01978.3B.; Kellum J.A., Lameire N., Aspelin P., et al. Kidney disease: improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012 (1): 1–126.; Dai X., Zeng Z., Fu C., et al. Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Crit Care. 2015; 19 (1): 223. https://doi.org/10.1186/s13054-015-0941-6.; Zhang A., Cai Y., Wang P.F., et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis. Crit Care. 2016; 20 (1): 41. https://doi.org/10.1186/s13054-016-1212-x.; Mishra J., Dent C., Tarabishi R., et al. Neutrophil gelatinaseassociated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005; 365 (9466): 1231–8. https://doi.org/10.1016/S0140-6736(05)74811-X.; Dent C.L., Ma Q., Dastrala S., et al. Plasma neutrophil gelatinaseassociated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007; 11 (6): R127. https://doi.org/10.1186/cc6192.; Wu B., Chen J., Yang Y. Biomarkers of acute kidney injury after cardiac surgery: a narrative review. Biomed Res Int. 2019; 2019: 7298635. https://doi.org/10.1155/2019/7298635.; Bennett M., Dent C.L., Ma Q., et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol. 2008; 3 (3): 665–73. https://doi.org/10.2215/CJN.04010907.; Aghel A., Shrestha K., Mullens W., et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010; 16 (1): 49–54. https://doi.org/10.1016/j.cardfail.2009.07.003.; Cruz D.N., de Cal M., Garzotto F., et al. Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med. 2010; 36 (3): 444–51. https://doi.org/10.1007/s00134-009-1711-1.; Hjortrup P.B., Haase N., Wetterslev M., Perner A. Clinical review: predictive value of neutrophil gelatinase-associated lipocalin for acute kidney injury in intensive care patients. Crit Care. 2013; 17 (2): 211. https://doi.org/10.1186/cc11855.; Legrand M., Darmon M., Joannidis M. NGAL and AKI: the end of a myth? Intensive Care Med. 2013; 39 (10): 1861–3. https://doi.org/10.1007/s00134-013-3061-2.; Mårtensson J., Bell M., Oldner A., et al. Neutrophil gelatinaseassociated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. 2010; 36 (8): 1333–40. https://doi.org/10.1007/s00134-010-1887-4.; Eagan T.M., Damås J.K., Ueland T., et al. Neutrophil gelatinaseassociated lipocalin. Chest. 2010; 138 (4): 888–95. https://doi.org/10.1378/chest.09-2718.; Haase M., Bellomo R., Devarajan P., et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009; 54 (6): 1012–4. https://doi.org/10.1053/j.ajkd.2009.07.020.; McIlroy D.R., Wagener G., Lee H.T. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance. Clin J Am Soc Nephrol. 2010; 5 (2): 211–9. https://doi.org/10.2215/CJN.04240609.; Glassford N.J., Schneider A.G., Xu S., et al. The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med. 2013; 39 (10): 1714–24. https://doi.org/10.1007/s00134-013-3040-7.; Darmon M., Gonzalez F., Vincent F. Limits of neutrophil gelatinaseassociated lipocalin at intensive care unit admission for prediction of acute kidney injury. Am J Respir Crit Care Med. 2011; 184 (1): 142–3. https://doi.org/10.1164/ajrccm.184.1.142a.; Ichimura T., Bonventre J.V., Bailly V., et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998; 273 (7): 4135–42. https://doi.org/10.1074/jbc.273.7.4135.; Ichimura T., Asseldonk E.J., Humphreys B.D., et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008; 118 (5): 1657–68. https://doi.org/10.1172/JCI34487.; Bonventre J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol. 2003; 14 (Suppl. 1): S55–61. https://doi.org/10.1097/01.ASN.0000067652.51441.21.; Shao X., Tian L., Xu W., et al. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One. 2014; 9 (1): e84131. https://doi.org/10.1371/journal.pone.0084131.; Xie Y., Wang Q., Wang C., et al. High urinary excretion of kidney injury molecule-1 predicts adverse outcomes in acute kidney injury: a case control study. Crit Care. 2016; 20 (1): 286. https://doi.org/10.1186/s13054-016-1455-6.; Tian L., Shao X., Xie Y., et al. Kidney injury molecule-1 is elevated in nephropathy and mediates macrophage activation via the Mapk signalling pathway. Cell Physiol Biochem. 2017; 41 (2): 769–83. https://doi.org/10.1159/000458737.; Yin C., Wang N. Kidney injury molecule-1 in kidney disease. Ren Fail. 2016; 38 (10): 1567–73. https://doi.org/10.1080/0886022X.2016.1193816.; Dieterle F., Sistare F., Goodsaid F., et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010; 28 (5): 455–62. https://doi.org/10.1038/nbt.1625.; van Timmeren M.M., van den Heuvel M.C., Bailly V., et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 2007; 212 (2): 209–17. https://doi.org/10.1002/path.2175.; Tu Y., Wang H., Sun R., et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Ren Fail. 2014; 36 (10): 1559–63. https://doi.org/10.3109/0886022X.2014.949764.; de Geus H.R., Fortrie G., Betjes M.G., et al. Time of injury affects urinary biomarker predictive values for acute kidney injury in critically ill, non-septic patients. BMC Nephrol. 2013; 14 (1): 273. https://doi.org/10.1186/1471-2369-14-273.; Barton K.T., Kakajiwala A., Dietzen D.J., et al. Using the newer Kidney Disease: Improving Global Outcomes criteria, beta-2- microglobulin levels associate with severity of acute kidney injury. Clin Kidney J. 2018; 11 (6): 797–802. https://doi.org/10.1093/ckj/sfy056.; Пролетов Я.Ю., Саганова Е.С., Смирнов А.В., Зверьков Р.В. Биомаркеры в диагностике острого повреждения почек. Cообщение II. Нефрология. 2014; 18 (6): 51–8.; Fernandez F., Barrio V., Guzman J., et al. Beta-2-microglobulin in the assessment of renal function in full term newborns following perinatal asphyxia. J Perinat Med. 1989; 17 (6): 453–9. https://doi.org/10.1515/jpme.1989.17.6.453.; Cabrera J., Arroyo V., Ballesta A.M., et al. Aminoglycoside nephrotoxicity in cirrhosis. Value of urinary beta 2-microglobulin to discriminate functional renal failure from acute tubular damage. Gastroenterology. 1982; 82 (1): 97–105.; Zaleska-Kociecka M., Skrobisz A., Wojtkowska I., et al. Serum beta-2 microglobulin levels for predicting acute kidney injury complicating aortic valve replacement. Interact Cardiovasc Thorac Surg. 2017; 25 (4): 533–40. https://doi.org/10.1093/icvts/ivx198.; Herget-Rosenthal S., Poppen D., Husing J., et al. Prognostic value ̈ of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem. 2004; 50 (3): 552–8. https://doi.org/10.1373/clinchem.2003.027763.; Smathers R.L., Petersen D.R. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics. 2011; 5 (3): 170. https://doi.org/10.1186/1479-7364-5-3-170.; Furuhashi M., Hotamisligil G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008; 7 (6): 489–503. https://doi.org/10.1038/nrd2589.; McArthur M.J., Atshaves B.P., Frolov A., et al. Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res. 1999; 40 (8): 1371–83.; Tanaka T., Doi K., Maeda-Mamiya R., et al. Urinary L-type fatty acidbinding protein can reflect renal tubulointerstitial injury. Am J Pathol. 2009; 174 (4): 1203–11. https://doi.org/10.2353/ajpath.2009.080511.; Portilla D., Dent C., Sugaya T., et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008; 73 (4): 465–72. https://doi.org/10.1038/sj.ki.5002721.; Yang J., Choi H.M., Seo M.Y., et al. Urine liver-type fatty acidbinding protein predicts graft outcome up to 2 years after kidney transplantation. Transplant Proc. 2014; 46 (2): 376–80. https://doi.org/10.1016/j.transproceed.2013.11.130.; Susantitaphong P., Siribamrungwong M., Doi K., et al. Performance of urinary liver-type fatty acid–binding protein in acute kidney injury: a meta-analysis. Am J Kidney Dis. 2013; 61 (3): 430–9. https://doi.org/10.1053/j.ajkd.2012.10.016.; Parikh C.R., Moledina D.G., Coca S.G., et al. Application of new acute kidney injury biomarkers in human randomized controlled trials. Kidney Int. 2016; 89 (6): 1372–9. https://doi.org/10.1016/j.kint.2016.02.027.; Siew E.D., Ware L.B., Bian A., et al. Distinct injury markers for the early detection and prognosis of incident acute kidney injury in critically ill adults with preserved kidney function. Kidney Int. 2013; 84 (4): 786–94. https://doi.org/10.1038/ki.2013.174.; https://www.pharmacoeconomics.ru/jour/article/view/799
-
4Academic Journal
Authors: O. V. Muslimova, V. A. Evteev, I. A. Mazerkina, E. A. Sokova, A. B. Prokofiev, A. V. Shapchenko, T. V. Alexandrova, О. В. Муслимова, В. А. Евтеев, И. А. Мазеркина, Е. А. Сокова, А. Б. Прокофьев, А. В. Шапченко, Т. В. Александрова
Contributors: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022400082-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022400082-4).
Source: Safety and Risk of Pharmacotherapy; Том 9, № 4 (2021); 173-184 ; Безопасность и риск фармакотерапии; Том 9, № 4 (2021); 173-184 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2021-9-4
Subject Terms: TIMP-2, drug nephrotoxicity, acute kidney injury, NAG, L-FABP, KIM-1, NGAL, β2-microglobulin, MCP-1, cystatin C, IGFBP7, лекарственная нефротоксичность, острое повреждение почек, β2-микроглобулин, МСР-1, цистатин С
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/238/377; https://www.risksafety.ru/jour/article/downloadSuppFile/238/202; Mody H, Ramakrishnan V, Chaar M, Lezeau J, Rump A, Taha K, et al. A review on drug-induced nephrotoxicity: pathophysiological mechanisms, drug classes, clinical management, and recent advances in mathematical modeling and simulation approaches. Clin Pharmacol Drug Dev. 2020;9(8):896–909. https://doi.org/10.1002/cpdd.879; Malyszko J. Biomarkers of acute kidney injury in different clinical settings: a time to change the paradigm? Kidney and Blood Press Res. 2010;33(5):368–82. https://doi.org/10.1159/000319505; Taber SS, Mueller BA. Drug-associated renal dysfunction. Crit. Care Clin. 2006;22(2):357–74. https://doi.org/10.1016/j.ccc.2006.02.003; Wu H, Huang J. Drug-induced nephrotoxicity: pathogenic mechanisms, biomarkers and prevention strategies. Curr Drug Metab. 2018;19(7):559–67. https://doi.org/10.2174/1389200218666171108154419; Brower V. Biomarkers: Portents of malignancy. Nature. 2011;471(7339):S19–21 https://doi.org/10.1038/471S19a; Rizvi MS, Kashani KB. Biomarkers for early detection of acute kidney injury. J Appl Lab Med. 2017;2(3):386–99. https://doi.org/10.1373/jalm.2017.023325; Andreucci M, Faga T, Pisani A, Perticone M, Michael A. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med. 2017;39:1–8. https://doi.org/10.1016/j.ejim.2016.12.001; Fiorentino M, Castellano G, Kellum JA. Differences in acute kidney injury ascertainment for clinical and preclinical studies. Nephrol Dial Transplant. 2017;32(11):1789–805. https://doi.org/10.1093/ndt/gfx002; Tajima S, Yamamoto N, Masuda S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem Pharmacol. 2019;170:113664. https://doi.org/10.1016/j.bcp.2019.113664; Shinke H, Masuda S, Togashi Y, Ikemi Y, Ozawa A, Sato T. Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients. Cancer Chemother Pharmacol. 2015;76(5):989–96. https://doi.org/10.1007/s00280-015-2880-y; Cosner D, Zeng X, Zhang PL. Proximal tubular injury in medullary rays is an early sign of acute tacrolimus nephrotoxicity. J Transplant. 2015;(6):142521. https://doi.org/10.1155/2015/142521; Shin YJ, Kim TH, Won AJ, Jung JY, Kwack SJ, Kacew S, et al. Age-related differences in kidney injury biomarkers induced by cisplatin. Environ Toxicol Pharmacol. 2014;37(3):1028–39. https://doi.org/10.1016/j.etap.2014.03.014; Sinha V, Vence LM, Salahudeen AK. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med. 2013;61(3):564–8. https://doi.org/10.2310/JIM.0b013e31828233a8; Vinken P, Starckx S, Barale-Thomas E, Looszova A, Sonee M, Goeminne N, et al. Tissue KIM-1 and urinary clusterin as early indicators of cisplatin-induced acute kidney injury in rats. Toxicol Pathol. 2012;40(7):1049–62. https://doi.org/10.1177/0192623312444765; Luo QH, Chen ML, Sun FJ, Chen Z, Li M, Zeng W, et al. KIM-1 and NGAL as biomarkers of nephrotoxicity induced by gentamicin in rats. Mol Cell Biochem. 2014;397(1–2):53–60. https://doi.org/10.1007/s11010-014-2171-7; Kramer AB, van Timmeren MM, Schuurs TA, Vaidya VS, Bonventre JV, van Goor H, et al. Reduction of proteinuria in adriamycin-induced nephropathy is associated with reduction of renal kidney injury molecule (KIM-1) over time. Am J Physiol Renal Physiol. 2009;296(5):F1136–45. https://doi.org/10.1152/ajprenal.00541.2007; Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci. 2008;101(1):159–70. https://doi.org/10.1093/toxsci/kfm260; Wunnapuk K, Liu X, Gobe GC, Endre ZH, Peake PW, Grice JE, et al. Kidney biomarkers in MCPA induced acute kidney injury in rats: reduced clearance enhances early biomarker performance. Toxicol Lett. 2014;225(3):467–78. https://doi.org/10.1016/j.toxlet.2014.01.018; Cardenas-Gonzalez MC, Del Razo LM, Barrera-Chimal J, Jacobo-Estrada T, López-Bayghen E, Bobadilla NA, et al. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations. Toxicol Appl Pharmacol. 2013;272(3):888–94. https://doi.org/10.1016/j.taap.2013.07.026; Ho J, Tangri N, Komenda P, Kaushal A, Sood M, Brar R, et al. Urinary, plasma, and serum biomarkers’ utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005. https://doi.org/10.1053/j.ajkd.2015.06.018; Li W, Yu Y, He H, Chen J, Zhang D. Urinary kidney injury molecule-1 as an early indicator to predict contrast-induced acute kidney injury in patients with diabetes mellitus undergoing percutaneous coronary intervention. Biomed Rep. 2015;3(4):509–12. https://doi.org/10.3892/br.2015.449; Torregrosa I, Montoliu C, Urios A, Andrés-Costa MJ, Giménez-Garzó C, Juan I, et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels. 2015;30(6):703–11. https://doi.org/10.1007/s00380-014-0538-z; Yang CH, Chang CH, Chen TH, Fan PC, Chang SW, Chen CC, et al. Combination of urinary biomarkers improves early detection of acute kidney injury in patients with heart failure. Circ J. 2016;80(4):1017–23. https://doi.org/10.1253/circj.CJ-15-0886; Matsui K, Kamijo-Ikemori A, Hara M, Sugaya T, Kodama T, Fujitani S, et al. Clinical significance of tubular and podocyte biomarkers in acute kidney injury. Clin Exp Nephrol. 2011;15(2):220–5. https://doi.org/10.1007/s10157-010-0384-y; Katoh H, Nozue T, Kimura Y, Nakata S, Iwaki T, Kawano M, et al. Elevation of urinary liver-type fatty acid-binding protein as predicting factor for occurrence of contrastinduced acute kidney injury and its reduction by hemodiafiltration with blood suction from right atrium. Heart Vessels. 2014;29(2):191–7. https://doi.org/10.1007/s00380-013-0347-9; Negishi K, Noiri E, Sugaya T, Li S, Megyesi J, Nagothu K, Portilla D, et al. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int. 2007;72(3):348–58. https://doi.org/10.1038/sj.ki.5002304; Geus H, Betjes M, Bakker J. Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J. 2012;5(2):102–8. https://doi.org/10.1093/ckj/sfs008; Gautier JC, Zhou X, Yang Y, Gury T, Qu Z, Palazzi X, et al. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin. Toxicol Appl Pharmacol. 2016;303:1–10. https://doi.org/10.1016/j.taap.2016.04.012; D’Amico G, Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens. 2003;12(6):639–43. https://doi.org/10.1097/01.mnh.0000098771.18213.a6; Garcia-Garcia PM, Martin-Izquierdo E, de Basoa CM, Jarque-Lopez A, Perez-Suarez G, Rivero-Gonzales A, et al. Urinary Clara cell protein in kidney transplant patients: a preliminary study. Transplant Proc. 2016:48(9):2884–7. https://doi.org/10.1016/j.transproceed.2016.09.022; Hsu CY, Xie D, Waikar SS, Bonventre JV, Zhang X, Sabbisetti V, et al. Urine biomarkers of tubular injury do not improve on the clinical model predicting chronic kidney disease progression, Kidney Int. 2017;91(1):196–203. https://doi.org/10.1016/j.kint.2016.09.003; Westhuyzen J, Endre ZH, Reece G, Reith DM, Saltissi D, Morgan TJ, et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant. 2003;18(3):543–51. https://doi.org/10.1093/ndt/18.3.543; Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425–32. PMID: 7683678; Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407–13. https://doi.org/10.1681/ASN.2006080882; Wagener G, Jan M, Kim M, Mori K, Barasch JM, Sladen RN, Lee HT. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105(3):485–91. https://doi.org/10.1097/00000542-200609000-00011; Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365(9466):1231–8. https://doi.org/10.1016/S0140-6736(05)74811-X; Udupa V, Prakash V. Gentamicin induced acute renal damage and its evaluation using urinary biomarkers in rats. Toxicol Rep. 2019;6:91–9. https://doi.org/10.1016/j.toxrep.2018.11.015; Uchino H, Fujishima J, Fukuoka K, Iwakiri T, Kamikuri A, Maeda H, Nakama K. Usefulness of urinary biomarkers for nephrotoxicity in cynomolgus monkeys treated with gentamicin, cisplatin, and puromycin aminonucleoside. J Toxicol Sci. 2017;42(5):629–40. https://doi.org/10.2131/jts.42.629; Pang HM, Qin XL, Liu TT, Wei WX, Cheng DH, Lu H, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as early biomarkers for predicting vancomycin-associated acute kidney injury: a prospective study. Eur Rev Med Pharmacol Sci. 2017;21(18):4203–13. PMID: 29028077; Tsuchimoto A, Shinke H, Uesugi M, Kikuchi M, Hashimoto E, Sato T, et al. Urinary neutrophil gelatinase-associated lipocalin: a useful biomarker for tacrolimus-induced acute kidney injury in liver transplant patients. PLoS One. 2014;9(10):110527. https://doi.org/10.1371/journal.pone.0110527; Gaspari F, Cravedi P, Mandala M, Perico N, de Leon FR, Stucchi N, et al. Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study. Nephron Clin Pract. 2010;115(2):154–60. https://doi.org/10.1159/000312879; Seker MM, Deveci K, Seker A, Sancakdar E, Yilmaz A, Turesin AK, et al. Predictive role of neutrophil gelatinase-associated lipocalin in early diagnosis of platin-induced renal injury. Asian Pac J Cancer Prev. 2015;16(2):407–10. https://doi.org/10.7314/apjcp.2015.16.2.407; Shahbazi F, Sadighi S, Dashti-Khavidaki S, Shahi F, Mirzania M. Urine ratio of neutrophil gelatinase-associated lipocalin to creatinine as a marker for early detection of cisplatin-associated nephrotoxicity. Iran J Kidney Dis. 2015;9(4):306–10. PMID: 26174458; Lin HY, Lee SC, Lin SF, Hsiao HH, Liu YC, Yang WC, et al. Urinary neutrophil gelatinase-associated lipocalin levels predict cisplatin-induced acute kidney injury better than albuminuria or urinary cystatin C levels. Kaohsiung J Med Sci. 2013;29(6):304–11. https://doi.org/10.1016/j.kjms.2012.10.004; Balkanay OO, Goksedef D, Omeroglu SN, Ipek G. The dose-related effects of dexmedetomidine on renal functions and serum neutrophil gelatinaseassociated lipocalin values after coronary artery bypass grafting: a randomized, triple-blind, placebo-controlled study. Interact Cardiovasc Thorac Surg. 2015;20(2):209–14. https://doi.org/10.1093/icvts/ivu367; Tasanarong A, Hutayanon P, Piyayotai D. Urinary neutrophil gelatinaseassociated lipocalin predicts the severity of contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. BMC Nephrol. 2013;14:270. https://doi.org/10.1186/1471-2369-14-270; Kardakos IS, Volanis DI, Kalikaki A, Tzortzis VP, Serafetinides EN, Melekos MD, et al. Evaluation of neutrophil gelatinase-associated lipocalin, interleukin-18, and cystatin C as molecular markers before and after unilateral shock wave lithotripsy. Urology. 2014;84(4):783–8. https://doi.org/10.1016/j.urology.2014.05.034; Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996;38(3):414–20. https://doi.org/10.1136/gut.38.3.414; Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–43. https://doi.org/10.1097/01.asn.0000088027.54400.c6; Woodson BW, Wang L, Mandava S, Lee BR. Urinary cystatin C and NGAL as early biomarkers for assessment of renal ischemia-reperfusion injury: a serum marker to replace creatinine? J Endourol. 2013;27(12):1510–5. https://doi.org/10.1089/end.2013.0198; Aksun SA, Ozmen D, Ozmen B, Parildar Z, Mutaf I, Turgan N, et al. Beta2-microglobulin and cystatin C in type 2 diabetes: assessment of diabetic nephropathy. Exp Clin Endocrinol Diabetes. 2004;112(4):195–200. https://doi.org/10.1055/s-2004-817933; Barreto EF, Rule AD, Murad MH, Kashani KB, Lieske JC, Erwin PJ, et al. Prediction of the renal elimination of drugs with cystatin C vs creatinine: a systematic review. Mayo Clin Proc. 2019;94(3):500–14. https://doi.org/10.1016/j.mayocp.2018.08.002; Herget-Rosenthal S, Marggraf G, Husing J, Göring F, Pietruck F, Janssen O, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–22. https://doi.org/10.1111/j.1523-1755.2004.00861.x; Bokenkamp A, van Wijk JA, Lentze MJ, Stoffel-Wagner B. Effect of corticosteroid therapy on serum cystatin C and beta2-microglobulin concentrations. Clin Chem. 2002;48(7):1123–6. PMID: 12089191; Manetti L, Pardini E, Genovesi M, Campomori A, Grasso L, Morselli LL, et al. Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest. 2005;28(4):346–9. https://doi.org/10.1007/BF03347201; Pianta TJ, Pickering JW, Succar L, Chin M, Davidson T, Buckley NA, et al. Dexamethasone modifies cystatin C-based diagnosis of acute kidney injury during cisplatin-based chemotherapy. Kidney Blood Press Res. 2017;42(1):62–75. https://doi.org/10.1159/000469715; Ylinen E, Jahnukainen K, Saarinen-Pihkala UM, Jahnukainen T. Assessment of renal function during high-dose methotrexate treatment in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014;61(12):2199–202. https://doi.org/10.1002/pbc.25137; Torigoe K, Tamura A, Watanabe T, Kadota J. 20-Hour preprocedural hydration is not superior to 5-hour preprocedural hydration in the prevention of contrast-induced increases in serum creatinine and cystatin C. Int J Cardiol. 2013;167(5):2200–3. https://doi.org/10.1016/j.ijcard.2012.05.122; Poletti PA, Saudan P, Platon A, Mermillod B, Sautter A-M, Vermeulen B, et al. IV N-acetylcysteine and emergency CT: use of serum creatinine and cystatin C as markers of radiocontrast nephrotoxicity. AJR Am J Roentgenol. 2007;189(3):687–92. https://doi.org/10.2214/AJR.07.2356; Masood A, Benabdelkamel H, Ekhzaimy A, Alfadda A. Plasma-based proteomics profiling of patients with hyperthyroidism after antithyroid treatment. Molecules. 2020;25(12):2831. https://doi.org/10.3390/molecules25122831; Kohl K, Herzog E, Dickneite G, Pestel S. Evaluation of urinary biomarkers for early detection of acute kidney injury in a rat nephropathy model. J Pharmacol Toxicol Methods. 2020;105:106901. https://doi.org/10.1016/j.vascn.2020.106901; Ratnayake I, Mohamed F, Buckley NA, Gawarammana IB, Dissanayake DM, Chathuranga U, et al. Early identification of acute kidney injury in Russell’s viper (Daboia russelii) envenoming using renal biomarkers. PLoS Negl Trop Dis. 2019;13(7):е0007486. https://doi.org/10.1371/journal.pntd.0007486; Gordin E, Gordin D, Viitanen S, Szlosek D, Coyne M, Farace G, et al. Urinary clusterin and cystatin B as biomarkers of tubular injury in dogs following envenomation by the European adder. Res Vet Sci. 2021;134:12–8. https://doi.org/10.1016/j.rvsc.2020.11.019; Pianta TJ, Succar L, Davidson T, Buckley NA, Endre ZH, et al. Monitoring treatment of acute kidney injury with damage biomarkers. Toxicol Lett. 2017;268:63–70. https://doi.org/10.1016/j.toxlet.2017.01.001; Pais GM, Liu J, Avedissian SN, Hiner D, Xanthos T, Chalkias A, et al. Lack of synergistic nephrotoxicity between vancomycin and piperacillin/tazobactam in a rat model and a confirmatory cellular model. J Antimicrob Chemother. 2020;75(5):1228–36. https://doi.org/10.1093/jac/dkz563; Da Y, Akalya K, Murali T, Vathsala A, Tan CS, Low S, et al. Serial quantification of urinary protein biomarkers to predict drug-induced acute kidney injury. Curr Drug Metab. 2019;20(8):656–64. https://doi.org/10.2174/1389200220666190711114504; Zumrutdal A. Role of β2-microglobulin in uremic patients may be greater than originally suspected. World J Nephrol. 2015;4(1):98–104. https://doi.org/10.5527/wjn.v4.i1.98; Argyropoulos CP, Chen SS, Ng Y-H, Roumelioti M-E, Shaffi K, Singh PP, Tzamaloukas AH. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med (Lausanne). 2017;4:73. https://doi.org/10.3389/fmed.2017.00073; Kim Y-D, Yim D-H, Eom S-Y, Moon S-I, Park C-H, Kim G-B, et al. Temporal changes in urinary levels of cadmium, N-acetyl-β-d-glucosaminidase and β2-microglobulin in individuals in a cadmium-contaminated area. Environ Toxicol Pharmacol. 2015;39(1):35–41. https://doi.org/10.1016/j.etap.2014.10.016; Rybakowski JK, Abramowicz M, Chłopocka-Wozniak M, Czekalski S. Novel markers of kidney injury in bipolar patients on long-term lithium treatment. Hum Psychopharmacol. 2013;28(6):615–8. https://doi.org/10.1002/hup.2362; Nishijima T, Gatanaga H, Komatsu H, Tsukada K, Shimbo T, Aoki T, et al. Renal function declines more in tenofovirthan abacavir-based antiretroviral therapy in low-body weight treatmentnaive patients with HIV infection. PLoS One. 2012;7:e29977. https://doi.org/10.1371/journal.pone.0029977; Oboho I, Abraham A, Benning L, Anastos K, Sharma A, Young M, et al. Tenofovir use and urinary biomarkers among HIV-infected women in the Women’s Interagency HIV Study (WIHS). J Acquir Immune Defic Syndr. 2013;62(4):388–95. https://doi.org/10.1097/QAI.0b013e31828175c9; George B, Joy MS, Aleksunes LM. Urinary protein biomarkers of kidney injury in patients receiving cisplatin chemotherapy. Exp Biol Med (Maywood). 2018;243(3):272–82. https://doi.org/10.1177/1535370217745302; Gautier JC, Gury T, Guffroy M, Masson R, Khan-Malek R, Hoffman D, et al. Comparison between male and female Sprague-Dawley rats in the response of urinary biomarkers to injury induced by gentamicin. Toxicol Pathol. 2014;42(7):1105–16. https://doi.org/10.1177/0192623314524489; Griffin BR, Faubel S, Edelstein CL. Biomarkers of drug-induced kidney toxicity. Ther Drug Monit. 2019;41(2):213–26. https://doi.org/10.1097/FTD.0000000000000589; Amighi J, Hoke M, Mlekusch W, Schlager O, Exner M, et al. Beta 2 microglobulin and the risk for cardiovascular events in patients with asymptomatic carotid atherosclerosis. Stroke. 2011;42(7):1826–33. https://doi.org/10.1161/STROKEAHA.110.600312; Fan W, Ankawi G, Zhang J, Digvijay K, Giavarina D, Yin Y, Ronco C. Current understanding and future directions in the application of TIMP-2 and IGFBP 7 in AKI clinical practice. Clin Chem Lab Med. 2019;57(5):567–76. https://doi.org/10.1515/cclm-2018-0776; Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med. 2014;189(8):932–9. https://doi.org/10.1164/rccm.201401-0077OC; Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43. https://doi.org/10.1038/nm.2144; Мазеркина ИА, Евтеев ВА, Прокофьев АБ, Муслимова ОВ, Демченкова ЕЮ. Экспериментальные модели клеточных линий для скрининга нефротоксичности. Ведомости Научного центра экспертизы средств медицинского применения. 2021;11(3):160–6. https://doi.org/10.30895/1991-2919-2021-11-160-166; Qiu X, Zhou X, Miao Y, Li B. An in vitro method for nephrotoxicity evaluation using HK-2 human kidney epithelial cells combined with biomarkers of nephrotoxicity. Toxicol Res (Camb). 2018;7(6):1205–13. https://doi.org/10.1039/c8tx00095f; Qiu X, Miao Y, Geng X, Zhou X, Li B. Evaluation of biomarkers for in vitro prediction of drug-induced nephrotoxicity in RPTEC/TERT1 cells. Toxicol Res (Camb). 2020;9(2):91–100. https://doi.org/10.1093/toxres/tfaa005; Silva SCT, de Almeida LA, Soares S, Grossi MF, Valente AMS, Tagliati CA. In vitro study of putative genomic biomarkers of nephrotoxicity through differential gene expression using gentamicin. Toxicol Mech Methods. 2017;27(6):435–41. https://doi.org/10.1080/15376516.2017.1313345; https://www.risksafety.ru/jour/article/view/238
-
5Academic Journal
Source: Clinical and experimental pathology; Vol. 19 No. 1 (2020) ; Клиническая и экспериментальная патология; Том 19 № 1 (2020) ; Клінічна та експериментальна патологія; Том 19 № 1 (2020) ; 2521-1153 ; 1727-4338
Subject Terms: chronic kidney disease, rheumatoid arthritis, diagnostics, β2-microglobulin, transforming growth factor β1, хроническая болезнь почек, ревматоидный артрит, диагностика, β2-микроглобулин, трансформирующий фактор роста β1, хронічна хвороба нирок, ревматоїдний артрит, діагностика, β2-мікроглобулін, трансформуючий фактор росту β1
File Description: application/pdf
-
6Academic Journal
Authors: Shostakovych-Koretskaya, L. R., Lytvyn, K. Y., Volikova, O. O., Gubar, I. O., Chykarenko, Z. O., Kushnerova, O. A., Sheveleva, O. V.
Source: Bulletin of Scientific Research; No 3 (2017) ; Вестник научных исследований; № 3 (2017) ; Вісник наукових досліджень; № 3 (2017) ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2017.3
Subject Terms: HIV infection, HIV-associated neurological diseases, 2-microglobulin, hematological, immunological profile, ВИЧ-инфекция, ВИЧ-ассоциированные неврологические заболевания, β2-микроглобулин, гематологичес- кий, иммунологический профиль, ВІЛ-інфекція, ВІЛ-асоційовані неврологічні захворювання, β2-мікроглобулін, гематологічний, імунологічний профіль
File Description: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/visnyk-nauk-dos/article/view/8092/7597; https://repository.tdmu.edu.ua//handle/123456789/12493
-
7Academic Journal
Authors: Клiмчук, Л. В., Музика, М. I.
Source: Pain, Anaesthesia and Intensive Care; № 1(66) (2014); 14-25
PAIN, ANAESTHESIA & INTENSIVE CARE; № 1(66) (2014); 14-25
Біль, знеболення та інтенсивна терапія; № 1(66) (2014); 14-25Subject Terms: 2. Zero hunger, урапидил, управляемая гипотония, β2-микроглобулин, 616-089.5:615.225.2, урапiдил, керована гiпотонiя, β2-мiкроглобулiн, urapidil, controlled hypotension, β2-microglobulin, 3. Good health
File Description: application/pdf
-
8Academic Journal
Authors: D. S. Polyakov, O. M. Domashenko, P. V. Beloborodov, K. A. Syssoev, M. M. Shavlovsky, Areg A. Totolian, Д. С. Поляков, О. М. Домашенко, П. В. Белобородов, К. А. Сысоев, М. М. Шавловский, Арег А. Тотолян
Source: Medical Immunology (Russia); Том 13, № 2-3 (2011); 211-218 ; Медицинская иммунология; Том 13, № 2-3 (2011); 211-218 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2011-2-3
Subject Terms: амилоидоз, haemodialysis, inflammation, β2-microglobulin, amyloidosis, гемодиализ, воспаление, β2-микроглобулин
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/513/516; Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Бета-2-микроглобулиновый амилоидоз: фибриллогенез природного и рекомбинантных бета-2микроглобулинов человека // Медицинский академический журнал. – 2010. – Т. 10, № 2. – С. 40-49.; Поляков Д.С., Тотолян Арег А., Шавловский М.М. Получение природного бета2микроглобулина человека // Молекулярная медицина. – 2010. – № 6. – С. 39-43.; Соловьев К.В., Грудинина Н.А., Семернин Е.Н., Морозова В., Смирнова С.А., Поляков Д.С., Алейникова Т.Д., Шляхто Е.В., Гудкова А.Я., Шавловский М.М. Мутации V30M, H90N и del9 в гене транстиретина у больных с кардиомиопатиями в Санкт-Петербурге // Генетика. – 2011. – Т. 47, № 2. – С. 1-7.; Шило В. Позднее осложнение программного гемодиализа: бета 2-микроглобулиновый амилоидоз. В. Шило, А. Денисов // Врач: Ежемесячный научно-практический и публицистический журнал. – 2002. – № 6. – С. 7-12.; Benz R.L., Siegfried J.W., Teehan B.P. Carpal tunnel syndrome in dialysis patients: Comparison between continuous ambulatory peritoneal dialysis and hemodialysis populations // Am. J. Kidney Dis. – 1988. – N 11. – Р. 473-476.; Campistol J.M., Sole M., Munoz-Gomez J., Lopez-Pedret J., Revert L. Systemic involvement of dialysis-amyloidosis // Am. J. Nephrol. – 1990. – N 10. – Р. 389-396.; Cavaillon J.M., Poignet J.L., Fitting C., Delons S. Serum interleukin-6 in long-term hemodialyzed patients // Nephron. – 1992. – 60. – Р. 307-313.; Cornelis F., Bardin T., Faller B. et al. Rheumatic syndromes and beta 2-microglobulin amyloidosis in patients receiving long-term peritoneal dialysis // Arthritis Rheum. – 1989. – N 32. – Р. 785-788.; Descamps-Latscha B., Herbelin A., Nguyen A.T. et al. Balance between IL-1 betaTNF-α, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes // J. Immunol. – 1995. – 154. – Р. 882-892.; Gal R., Korzets A., Schwartz A., RathWolfson L., Gafter U. Systemic distribution of beta 2-microglobulin-derived amyloidosis in patients who undergo long-term hemodialysis. Report of seven cases and review of the literature // Arch. Pathol. Lab. Med. – 1994. – N 118. – Р. 718-721.; Herbelin A., Urena P., Nguyen A.T., Zingraff J., Descamps-Latscha B. Elevated circulating levels of interleukin-6 in patients with chronic renal failure // Kidney Int. – 1991. – 39. – Р. 954-960.; Jadoul M., Garbar C., Noёl H., Sennesael J., Vanholder R., Bernaert P., Rorive G., Hanique G., van Ypersele, de Strihou C. Histological prevalence of beta 2-microglobulin amyloidosis in hemodialysis: a prospective post-mortem study // Kidney Int. – 1997. – Jun; 51 (6). – Р. 1928-1932.; Kaizu Y., Kimura M., Yoneyama T. et al. Interleukin-6 may mediate malnutrition in chronic hemodialysis patients // Am. J. Kidney Dis. – 1998. – 31. – Р. 93-100.; Ketteler M., Koch K.M., Floege J. Imaging techniques in the diagnosis of dialysis-related amyloidosis // Semin Dial. – 2001. – Mar-Apr; 14 (2). – Р. 90-3. mmunologic function and survival in hemodialysis patients // Kidney Int. – 1998. – 54. – Р. 236-244.; Libetta C., De Nicola L., Rampino T., De Simone W., Memoli B. Inflammatory effects of peritoneal dialysis: evidence of systemic monocyte activation //Kidney Int. – 1996. – 49. – Р. 506-511.; Loughrey C.M., Young I.S., Lightbody J.H., McMaster D., McNamee P.T., Trimble E.R. Oxidative stress in haemodialysis // QJM87. – 1994. – Р. 679-683.; Massry S.G., Coburn J.W. Guideline 10. β2-microglobulin amyloidosis // Clinical Practice Guidelines for Bone Metabolism and Disease in Chronic Kidney Disease / American Journal of Kidney Diseases. – 2003. – Vol. 42, Suppl 3. – P. 1-202.; Miyata T., van Ypersele de Strihou C., Kurokawa K., Baynes J.W. Alterations in nonenzymatic biochemistry in uremia: origin and significance of ‘‘carbonyl stress’’ in long-term uremic complications // Kidney Int. – 1999. – 55. – Р. 389-399.; McGrath LT., Douglas A.F., McClean E., Brown J.H., Doherty C.C., Johnston G.D., Archbold G.P. Oxidative stress and erythrocyte membrane fluidity in patients undergoing regular dialysis // Clin. Chim. Acta. – 1995. – N 235. – Р. 179-188.; Moriniere P., Marie A., el Esper N., Fardellone P., Deramond H., Remond A., Sebert J.L., Fournier A. Destructive spondyloarthropathy with beta 2-microglobulin amyloid deposits in a uremic patient before chronic hemodialysis // Nephron. – 1991. – N 59. – Р. 654-657.; Naugle K., Darby M.L., Bauman D.B., Lineberger L.T., Powers R. The oral health status of individuals on renal dialysis // Ann Periodontol. – 1998. – N 3. – Р. 197-205.; Odetti P., Cosso L., Pronzato M.A., Dapino D., Gurreri G. Plasma advanced glycosylation endproducts in maintenance haemodialysis patients // Nephrol Dial Transplant. – 1995. – Nov. 10 (11). – Р. 2110-2113.; Ohashi K., Hara M., Kawai R., Ogura Y., Honda K., Nihei H., Mimura N. Cervical discs are most susceptible to beta 2-microglobulin amyloid deposition in the vertebral column // Kidney Int. – 1992. – N 41. – Р. 1646-1652.; Palestro C.J., Vega A., Kim C.K., Vallabhajosula S., Goldsmith S.J. Indium-111-labeled leukocyte scintigraphy in hemodialysis access-site infection // J. NuclMed. – 1990. – N 31. – Р. 319-324.; Pereira B.J., Shapiro L., King A.J., Falagas M.E., Strom J.A., Dinarello C.A. Plasma levels of IL-1 beta, TNF-α and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients // Kidney Int. – 1994. – N 45. – Р. 890-896.; Pereira B.J., Snodgrass B.R., Hogan P.J., King A.J. Diffusive and convective transfer of cytokine-inducing bacterial products across hemodialysis membranes // Kidney Int. – 1995. – N 47. – Р. 603-610.; Sheikh-Hamad D., Ayus J.C. The patient with a clotted PTFE graft developing fever // Nephrol Dial Transplant. – 1998. – N 13. – Р. 2392-2393.; Sprague S.M., Moe S.M. Clinical manifestations and pathogenesis of dialysis-related amyloidosis // Semin Dial. – 1996. – N 9. – Р. 360-369.; Varela M.P., Kimmel P.L., Phillips T.M. et al. Biocompatibility of hemodialysis membranes: interrelations between plasma complement and cytokine levels // Blood Purif. – 2001. – N 19. – Р. 370-379.; Zingraff J.J., Noel L.H., Bardin T., Atienza C., Zins B., Drueke T.B., Kuntz D. Beta 2-microglobulin amyloidosis in chronic renal failure // N. Engl J. Med. – 1990. – N 323. – Р. 1070-1071.; https://www.mimmun.ru/mimmun/article/view/513
-
9Academic Journal
Authors: Moroz, T. P., Zub, L. O.
Source: Bukovinian Medical Herald; Vol. 16 No. 3 (63) P.2 (2012); 168-169 ; Буковинский медицинский вестник; Том 16 № 3 (63) P.2 (2012); 168-169 ; Буковинський медичний вісник; Том 16 № 3 (63) P.2 (2012); 168-169 ; 2413-0737 ; 1684-7903
Subject Terms: хронічна хвороба нирок, трансформуючий фактор росту-β1, β2-мікроглобулін, хроническая болезнь почек, трансформирующий фактор роста-β1, β2-микроглобулин, chronic kidney disease, transforming growth factor-β1 (TGF-β1), β2-microglobulin (β2m)
File Description: application/pdf
-
10Academic Journal
Authors: Домашенко, О., Белобородов, П., Сысоев, К., Шавловский, М., Тотолян, Арег, Поляков, Дмитрий
Subject Terms: КЛЮЧЕВЫЕ СЛОВА: ЦИТОКИНЫ, ГЕМОДИАЛИЗ, ВОСПАЛЕНИЕ, β2-МИКРОГЛОБУЛИН, АМИЛОИДОЗ, β2-MICROGLOBULIN
File Description: text/html
-
11Academic Journal
Source: Анестезиология и реаниматология.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, ЦИСТАТИН С, β2-МИКРОГЛОБУЛИН, СКОРОСТЬ КЛУБОЧКОВОЙ ФИЛЬТРАЦИИ, ОСТРОЕ ПОВРЕЖДЕНИЕ ПОЧЕК, НОВОРОЖДЕННЫЙ, ВРОЖДЕННЫЕ ПОРОКИ РАЗВИТИЯ, β2-MICROGLOBULIN
File Description: text/html
-
12Academic Journal
Authors: Кацнельсон, Б. А., Хрущева, Н. А., Журавлева, Н. С., Привалова, Л. И., Киреева, Е. П., Кузьмин, С. В., Бейкин, Я. Б., Постникова, Т. В., Макаренко, Н. П., Поровицина, А. В., Денисенко, С. А., Солобоева, Ю. И.
Subject Terms: β²-МИКРОГЛОБУЛИН, КАДМИЙ, СВИНЕЦ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2007. Т. 37, № 9.; http://elib.usma.ru/handle/usma/17426
Availability: http://elib.usma.ru/handle/usma/17426
-
13Academic Journal
Authors: Moroz, T. P., Zub, L. O.
Source: Буковинський медичний вісник; Том 16, № 3 (63) P.2 (2012); 168-169
Буковинский медицинский вестник; Том 16, № 3 (63) P.2 (2012); 168-169
Bukovinian Medical Herald; Том 16, № 3 (63) P.2 (2012); 168-169Subject Terms: хронічна хвороба нирок, трансформуючий фактор росту-β1, β2-мікроглобулін, chronic kidney disease, transforming growth factor-β1 (TGF-β1), β2-microglobulin (β2m), хроническая болезнь почек, трансформирующий фактор роста-β1, β2-микроглобулин, 3. Good health
File Description: application/pdf
Access URL: http://e-bmv.bsmu.edu.ua/article/view/223734
-
14Academic Journal
Source: Медицинская иммунология.
Subject Terms: КЛЮЧЕВЫЕ СЛОВА: ЦИТОКИНЫ, ГЕМОДИАЛИЗ, ВОСПАЛЕНИЕ, β2-МИКРОГЛОБУЛИН, АМИЛОИДОЗ, β2-MICROGLOBULIN, 3. Good health
File Description: text/html
-
15Academic Journal
Authors: Кулачек, Вероніка Тарасівна, Зуб, Лілія Олексіївна, Калугін, Вадим Онисимович, Патратій, Марина Володимирівна, Кулачек, В.Т., Зуб, Л.А., Калугин, В.О., Патратий, М.В., Kulachek, V.T., Zub, L.O., Kalugin, V.O., Patratiy, M.V.
Subject Terms: ревматоїдний артрит, β2-мікроглобулін, трансформуючий фактор росту β1, тубуло-інтерстиціальне пошкодження, ревматоидный артрит, β2-микроглобулин, трансформирующий фактор роста β1, тубуло-интерстициальное повреждение, rheumatoid arthritis, β2-microglobulin, transforming growth factor-β1, tubulo-interstitial lesions
File Description: application/pdf
-
16Academic Journal
Authors: Акентьєва, Мирослава Сергіївна
Subject Terms: діабетична нефропатія, трансформуючий фактор росту β1, β2-мікроглобулін, ожиріння, аторвастатин, диабетическая нефропатия, трансформирующий фактор роста β1, β2-микроглобулин, ожирение, diabetic nephropathy, transforming growth factor-β1, β2-microglobulin, obesity, atorvastatin
File Description: application/pdf
-
17Academic Journal
Subject Terms: хронічна хвороба нирок, трансформуючий фактор росту-β1, β2-мікроглобулін, хроническая болезнь почек, трансформирующий фактор роста-β1, β2-микроглобулин, chronic kidney disease, transforming growth factor-β1 (TGF-β1), β2-microglobulin (β2m)
File Description: application/pdf
-
18Academic Journal
Authors: Казаченко А.В., Войтко Д.А., Просянников М.Ю., Константинова О.В., Анохин Н.В., Аполихин О.И., Каприн А.Д.
Source: Экспериментальная и клиническая урология
Subject Terms: markers of kidney function, creatinine, urea, glomerular filtration rate, clearance, formulas for calculating creatinine clearance, cystatin C, β2-Microglobulin, β-bound protein, NGAL, Kim-1, chronic kidney disease, Chronic Renal Failure, urolithiasis, маркеры функции почек, мочевина, скорость клубочковой фильтрации, клиренс, формулы для расчета клиренса креатинина, цистатин С, β2-микроглобулин, β-связанный белок, хроническая болезнь почек, хроническая почечная недостаточность, мочекаменная болезнь, креатинин
Availability: https://repository.rudn.ru/records/article/record/102631/
-
19Electronic Resource
Additional Titles: Оптимизация лечения больных с диабетической нефропатией с сопутствующим ожирением
Оптимізація лікування хворих на діабетичну нефропатію із супутнім ожиріннямAuthors: Akentieva, M. S.
Source: Буковинський медичний вісник; Том 17, № 3 (67) p.2 (2013); 119-121; Буковинский медицинский вестник; Bukovinian Medical Herald; 2413-0737; 1684-7903
Index Terms: diabetic nephropathy, transforming growth factor-ß1, β2-microglobulin, obesity, atorvastatin, диабетическая нефропатия, трансформирующий фактор роста β1, β2-микроглобулин, ожирение, аторвастатин, діабетична нефропатія, трансформуючий фактор росту β1, β2-мікроглобулін, ожиріння, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion