-
1Academic Journal
Authors: Виталий Борисович Калиберденко, Эльвина Рустамовна Кулиева, Виктория Сергеевна Бетер, Эмилия Рафилевна Загидуллина, Татьяна Сергеевна Пронькина, Валерия Александровна Кушнер, Виктория Владимировна Таран
Contributors: Отсутствует
Source: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0
Subject Terms: «ингибиторы иммунных контрольных точек», «иммуноопосредованные нежелательные явления», «иммунные контрольные точки», «противоопухолевая терапия», «иммунная система», «побочные явления»
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/3191/2095; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14970; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14971; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14972; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14973; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/14974; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/15164; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/15165; https://www.mimmun.ru/mimmun/article/downloadSuppFile/3191/15166; Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018;62:29–39. DOI:10.1016/j.intimp.2018.06.001.; Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2019;2:e192535. DOI:10.1001/jamanetworkopen.2019.2535.; Common terminology criteria for adverse events (CTCAE) V5. Available: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm; Arnaud-Coffin P, Maillet D, Gan HK, et al. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. International Journal of Cancer 2019;145:639–48. Doi:10.1002/ijc.32132; Li B, Chan HL, Chen P. Immune checkpoint inhibitors: basics and challenges. Curr Med Chem (2019) 26:3009–25. doi:10.2174/0929867324666170804143706.; Wang J, Yang T, Xu J. Therapeutic development of immune checkpoint inhibitors. Adv Exp Med Biol (2020) 1248:619–49. doi:10.1007/978-981-15-3266-5_23; Willsmore ZN, Coumbe B, Crescioli S, Reci S, Gupta A, Harris RJ, et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: treatment of melanoma and immune mechanisms of action. Eur J Immunol (2021) 51:544–56. doi:10.1002/eji.202048747; Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer (2016) 16:275–87. doi:10.1038/nrc.2016.36; Cuyas E, Verdura S, Martin-Castillo B, Alarcon T, Lupu R, Bosch-Barrera J, et al. Tumor cell-intrinsic immunometabolism and precision nutrition in cancer immunotherapy. Cancers (Basel) (2020) 12(7):1757. doi:10.3390/cancers12071757; Lim S, Phillips JB, Madeira DSL, Zhou M, Fodstad O, Owen LB, et al. Interplay between immune checkpoint proteins and cellular metabolism. Cancer Res (2017) 77:1245–9. doi:10.1158/0008-5472.CAN-16-1647; Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol (2021) 14:45. doi:10.1186/s13045-021-01056-8; Barclay J, Creswell J, Leon J. Cancer immunotherapy and the PD-1/PD-L1 checkpoint pathway. Arch Esp Urol (2018) 71:393–9.; Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J (2021) 23:39. doi:10.1208/s12248-021-00574-0; Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science (2018) 359:1350–5. doi:10.1126/science.aar4060; Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer (2019) 18:10. doi:10.1186/s12943-018-0928-4; Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol (2019) 10:609. doi:10.3389/fphar.2019.00609; Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res (2013) 1:32–42. doi:10.1158/2326-6066.CIR-13-0013; Waight JD, Chand D, Dietrich S, Gombos R, Horn T, Gonzalez AM, et al. Selective FcgammaR Co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell (2018) 33:1033–47. doi:10.1016/j.ccell.2018.05.005; Qi Y, Chen L, Liu Q, Kong X, Fang Y, Wang J. Research progress concerning dual blockade of lymphocyte-activation gene 3 and programmed death-1/Programmed death-1 ligand-1 blockade in cancer immunotherapy: preclinical and clinical evidence of this potentially more effective immunotherapy strategy. Front Immunol (2020) 11:563258. doi:10.3389/fimmu.2020.; Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernandez-Rubio L, et al. Understanding LAG-3 signaling. Int J Mol Sci (2021) 22(10):5282. doi:10.3390/ijms22105282; Hemon P, Jean-Louis F, Ramgolam K, Brignone C, Viguier M, Bachelez H, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol (2011) 186:5173–83. doi:10.4049/jimmunol.1002050; Lythgoe MP, Liu D, Annels NE, Krell J, Frampton AE. Gene of the month: lymphocyte-activation gene 3 (LAG-3). J Clin Pathol (2021) 74:543–7. doi:10.1136/jclinpath-2021-207517; Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol (2021) 14:147. doi:10.1186/s13045-021-01161-8; Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res (2014) 74:3418–28. doi:10.1158/0008-5472.CAN-13-2690; Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res (2015) 3:412–23. doi:10.1158/2326-6066.CIR-14-0150; Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science (2016) 353(6307):aah3374. doi:10.1126/science.aah3374; Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, et al. Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep (2015) 5:15659. doi:10.1038/srep15659; Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol (2018) 62:29–39. doi:10.1016/j.intimp.2018.06.001; Rocha M, Correia DSJ, Salgado M, Araujo A, Pedroto I. Management of gastrointestinal toxИКТty from immune checkpoint inhibitor. GE Port J Gastroenterol (2019) 26:268–74. doi:10.1159/000494569; Davies M, Duffield EA. Duffield EA: safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events. Immunotargets Ther 2017;6:51–71.; Couey MA, Bell RB, Patel AA, et al. Delayed immune-related events (dire) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. Journal for ImmunoTherapy of Cancer 2019;7:165. doi:10.1186/s40425-019-0645-6; Duma N, Lambertini M. It is time to talk about fertility and immunotherapy. Oncologist 2020;25:277–8. doi:10.1634/theoncologist.2019-0837; Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary 2016;19:82–92. doi:10.1007/s11102-015-0671-4; Andrade Vila JH, da Silva JP, Guilhen CJ, et al. Even low dose of mycophenolate mofetil in a mother recipient of heart transplant can seriously damage the fetus. Transplantation 2008;86:369–70. doi:10.1097/TP.0b013e31817cf28a; Merlob P, Stahl B, Klinger G. Tetrada of the possible mycophenolate mofetil embryopathy: a review. Reprod Toxicol 2009;28:105–8. doi:10.1016/j.reprotox.2009.02.007; Burotto M, Gormaz JG, Samtani S, et al. Viable pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy. Semin Oncol 2018;45:164–9.DOI:10.1053/j.seminoncol.2018.03.003; Xu W, Moor RJ, Walpole ET, et al. Pregnancy with successful foetal and maternal outcome in a melanoma patient treated with nivolumab in the first trimester: case report and review of the literature. Melanoma Res 2019;29:333–7. Doi:10.1097/CMR.0000000000000586; Bucheit AD, Hardy JT, Szender JB, et al. Conception and viable twin pregnancy in a patient with metastatic melanoma while treated with CTLA-4 and PD-1 checkpoint inhibition. Melanoma Res 2020;30:423–5. Doi:10.1097/CMR.0000000000000657; Butterfield LH, Kaufman HL, Johnson DH. SITC’s Guide to Managing Immunotherapy Toxicity, 1 edn. New York: Springer Publishing Company, 2019; Sarnes E, Crofford L, Watson M, et al. Incidence and US costs of Corticosteroid-Associated adverse events: a systematic literature review. Clin Ther 2011;33:1413–32. Doi:10.1016/j.clinthera.2011.09.009; Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal Toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol (2018) 4:1721–8. doi:10.1001/jamaoncol.2018.3923; Geisler AN, Phillips GS, Barrios DM, Wu J, Leung D, Moy AP, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol (2020) 83:1255–68. doi:10.1016/j.jaad.2020.03.132; Quach HT, Johnson DB, LeBoeuf NR, Zwerner JP, Dewan AK. Cutaneous adverse events caused by immune checkpoint inhibitors. J Am Acad Dermatol (2021) 85:956–66. doi:10.1016/j.jaad.2020.09.054; Nadelmann ER, Yeh JE, Chen ST. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors: a systematic review. JAMA Oncol (2022) 8:130–8. doi:10.1001/jamaoncol.2021.4318; Collins LK, Chapman MS, Carter JB, Samie FH. Cutaneous adverse effects of the immune checkpoint inhibitors. Curr Probl Cancer (2017) 41:125–8. doi:10.1016/j.currproblcancer.2016.12.001; Sibaud V. Dermatologic reactions to immune checkpoint inhibitors : skin toxИКТties and immunotherapy. Am J Clin Dermatol (2018) 19:345–61. doi:10.1007/s40257-017-0336-3; Ma B, Anandasabapathy N. Immune checkpoint blockade and skin toxИКТty pathogenesis. J Invest Dermatol (2022) 142:951–9. doi:10.1016/j.jid.2021.06.040; Ellis SR, Vierra AT, Millsop JW, Lacouture ME, Kiuru M. Dermatologic toxИКТties to immune checkpoint inhibitor therapy: a review of histopathologic features. J Am Acad Dermatol (2020) 83:1130–43. doi:10.1016/j.jaad.2020.04.105; Patil PA, Zhang X. Pathologic manifestations of gastrointestinal and hepatobiliary injury in immune checkpoint inhibitor therapy. Arch Pathol Lab Med (2021) 145:571–82. doi:10.5858/arpa.2020-0070-RA; Yamada K, Sawada T, Nakamura M, Yamamura T, Maeda K, Ishikawa E, et al. Clinical characteristics of gastrointestinal immune-related adverse events of immune checkpoint inhibitors and their association with survival. World J Gastroenterol (2021) 27:7190–206. doi:10.3748/wjg.v27.i41.7190; Haanen J, Obeid M, Spain L, Carbonnel F, Wang Y, Robert C, et al. Management of toxИКТties from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol (2022) 33:1217–38. doi:10.1016/j.annonc.2022.10.001; Rajha E, Chaftari P, Kamal M, Maamari J, Chaftari C, Yeung SJ. Gastrointestinal adverse events associated with immune checkpoint inhibitor therapy. Gastroenterol Rep (Oxf) (2020) 8:25–30. doi:10.1093/gastro/goz065; Wang ZH, Shen L. Management of gastrointestinal adverse events induced by immune-checkpoint inhibitors. Chronic Dis Transl Med (2018) 4:1–7. doi:10.1016/j.cdtm.2017.12.001; Gupta A, De Felice KM, Loftus EJ, Khanna S. Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther (2015) 42:406–17. doi:10.1111/apt.13281; Soularue E, Lepage P, Colombel JF, Coutzac C, Faleck D, Marthey L, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut (2018) 67:2056–67. doi:10.1136/gutjnl-2018-316948; Bergqvist V, Hertervig E, Gedeon P, Kopljar M, Griph H, Kinhult S, et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol Immunother (2017) 66:581–92. doi:10.1007/s00262-017-1962-6; Ascierto PA, Del VM, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol (2017) 18:611–22. doi:10.1016/S1470-2045(17)30231-0; Shojaie L, Ali M, Iorga A, Dara L. Mechanisms of immune checkpoint inhibitor-mediated liver injury. Acta Pharm Sin B (2021) 11:3727–39. doi:10.1016/j.apsb.2021.10.003; Farshidpour M, Hutson W. Immune checkpoint inhibitors induced hepatotoxИКТty; gastroenterologists' perspectives. Middle East J Dig Dis (2022) 14:244–53. doi:10.34172/mejdd.2022.279; Schneider BJ, Naidoo J, Santomasso BD, Lacchetti C, Adkins S, Anadkat M, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol (2021) 39:4073–126. doi:10.1200/JCO.21.01440; Reddy HG, Schneider BJ, Tai AW. Immune checkpoint inhibitor-associated colitis and hepatitis. Clin Transl Gastroenterol (2018) 9:180. doi:10.1038/s41424-018-0049-9; de Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res (2019) 51:145–56. doi:10.1055/a-0843-3366; Chera A, Stancu AL, Bucur O. Thyroid-related adverse events induced by immune checkpoint inhibitors. Front Endocrinol (Lausanne) (2022) 13:1010279. doi:10.3389/fendo.2022.1010279; Tachibana M, Imagawa A. Type 1 diabetes related to immune checkpoint inhibitors. Best Pract Res Clin Endocrinol Metab (2022) 36:101657. doi:10.1016/j.beem.2022.101657; Akturk HK, Kahramangil D, Sarwal A, Hoffecker L, Murad MH, Michels AW. Immune checkpoint inhibitor-induced type 1 diabetes: a systematic review and meta-analysis. Diabetes Med (2019) 36:1075–81. doi:10.1111/dme.14050; Zheng Z, Liu Y, Yang J, Tan C, Zhou L, Wang X, et al. Diabetes mellitus induced by immune checkpoint inhibitors. Diabetes Metab Res Rev (2021) 37:e3366. doi:10.1002/dmrr.3366; Larkin J, Chmielowski B, Lao CD, Hodi FS, Sharfman W, Weber J, et al. Neurologic serious adverse events associated with nivolumab plus ipilimumab or nivolumab alone in advanced melanoma, including a case series of encephalitis. Oncologist (2017) 22:709–18. doi:10.1634/theoncologist.2016-0487; Cuzzubbo S, Javeri F, Tissier M, Roumi A, Barlog C, Doridam J, et al. Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur J Cancer (2017) 73:1–8. doi:10.1016/j.ejca.2016.12.001; Marini A, Bernardini A, Gigli GL, Valente M, Muniz-Castrillo S, Honnorat J, et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology (2021) 96:754–66. doi:10.1212/WNL.0000000000011795; Varricchi G, Galdiero MR, Marone G, Criscuolo G, Triassi M, Bonaduce D, et al. CardiotoxИКТty of immune checkpoint inhibitors. ESMO Open (2017) 2:e247. doi:10.1136/esmoopen-2017-000247; Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation (2004) 109:2749–54. doi:10.1161/01.CIR.0000130926.51766.CC; Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F, et al. PD-1 defИКТency results in the development of fatal myocarditis in MRL mice. Int Immunol (2010) 22:443–52. doi:10.1093/intimm/dxq026; Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol (2012) 188:4876–84. doi:10.4049/jimmunol.1200389; Drobni ZD, Alvi RM, Taron J, Zafar A, Murphy SP, Rambarat PK, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation (2020) 142:2299–311. doi:10.1161/CIRCULATIONAHA.120.049981; Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet (2016) 387:1540–50. doi:10.1016/S0140-6736(15)01281-7; Michel L, Helfrich I, Hendgen-Cotta UB, Mincu RI, Korste S, Mrotzek SM, et al. Targeting early stages of cardiotoxИКТty from anti-PD1 immune checkpoint inhibitor therapy. Eur Heart J (2022) 43:316–29. doi:10.1093/eurheartj/ehab430; Jaworska K, Ratajczak J, Huang L, Whalen K, Yang M, Stevens BK, et al. Both PD-1 ligands protect the kidney from ischemia reperfusion injury. J Immunol (2015) 194:325–33. doi:10.4049/jimmunol.1400497; Liao W, Zheng H, Wu S, Zhang Y, Wang W, Zhang Z, et al. The systemic activation of programmed death 1-PD-L1 axis protects systemic lupus erythematosus model from nephritis. Am J Nephrol (2017) 46:371–9. doi:10.1159/000480641; Vandiver JW, Singer Z, Harshberger C. Severe hyponatremia and immune nephritis following an initial infusion of nivolumab. Target Oncol (2016) 11:553–6. doi:10.1007/s11523-016-0426-9; Wanchoo R, Karam S, Uppal NN, Barta VS, Deray G, Devoe C, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol (2017) 45:160–9. doi:10.1159/000455014; Roberto I, Chiara C, Emanuela F, Davide B, Mario R, Antonio BP, et al. Renal toxИКТty in patients treated with anti-Pd-1 targeted agents for solid tumors. J Onco-Nephrology (2017) 1(2):132–142. doi:10.5301/jo-n.5000019; Wang Y, Tong Z, Zhang W, Zhang W, Buzdin A, Mu X, et al. FDA-Approved and emerging next generation predictive biomarkers for immune checkpoint inhibitors in cancer patients. Front Oncol (2021) 11:683419. doi:10.3389/fonc.2021.683419; Olsen TA, Zhuang TZ, Caulfield S, Martini DJ, Brown JT, Carthon BC, et al. Advances in knowledge and management of immune-related adverse events in cancer immunotherapy. Front Endocrinol (Lausanne) (2022) 13:779915. doi:10.3389/fendo.2022.779915; Remash D, Prince DS, McKenzie C, Strasser SI, Kao S, Liu K. Immune checkpoint inhibitor-related hepatotoxicity: a review. World J Gastroenterol (2021) 27:5376–91. doi:10.3748/wjg.v27.i32.5376; Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis (2021) 80:36–48. doi:10.1136/annrheumdis-2020-217139; Liu X, Wu W, Fang L, Liu Y, Chen W. TNF-alpha inhibitors and other biologic agents for the treatment of immune checkpoint inhibitor-induced myocarditis. Front Immunol (2022) 13:922782. doi:10.3389/fimmu.2022.922782; Muley SA, Jacobsen B, Parry G, Usman U, Ortega E, Walk D, et al. Rituximab in refractory chronic inflammatory demyelinating polyneuropathy. Muscle Nerve (2020) 61:575–9. doi:10.1002/mus.26804; Chauvet E, Blanchard RG, Manel V, Delmont E, Boucraut J, Garcia-Tarodo S. Autoantibodies to a nodal isoform of neurofascin in pediatric chronic inflammatory demyelinating polyneuropathy. Child Neurol Open (2023) 10:2329048X–221149618X. doi:10.1177/2329048X221149618; Verma N, Jaffer M, Pina Y, Peguero E, Mokhtari S. Rituximab for immune checkpoint inhibitor myasthenia gravis. Cureus (2021) 13:e16337. doi:10.7759/cureus.16337; Lin JS, Wang DY, Mamlouk O, Glass WF, Abdelrahim M, Yee C, et al. Immune checkpoint inhibitor associated reactivation of primary membranous nephropathy responsive to rituximab. J Immunother Cancer (2020) 8(2):e001287. doi:10.1136/jitc-2020-001287; Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol (2014) 15:69–77. doi:10.1016/S1470-2045(13)70551-5; Nastoupil LJ, Chin CK, Westin JR, Fowler NH, Samaniego F, Cheng X, et al. Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma. Blood Adv (2022) 6:1143–51. doi:10.1182/bloodadvances.2021006240; Manos K, Chong G, Keane C, Lee ST, Smith C, Churilov L, et al. Immune priming with avelumab and rituximab prior to r-CHOP in diffuse large b-cell lymphoma: the phase II AvR-CHOP study. Leukemia (2023) 37(5):1092–1102. doi:10.1038/s41375-023-01863-7; Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol (2014) 6:a16295. doi:10.1101/cshperspect.a016295; Rossi JF, Lu ZY, Jourdan M, Klein B. Interleukin-6 as a therapeutic target. Clin Cancer Res (2015) 21:1248–57. doi:10.1158/1078-0432.CCR-14-2291; Smolen JS, Landewe R, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis (2023) 82:3–18. doi:10.1136/ard-2022-223356; Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M, Blockmans D, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med (2017) 377:317–28. doi:10.1056/NEJMoa1613849; Stroud CR, Hegde A, Cherry C, Naqash AR, Sharma N, Addepalli S, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract (2019) 25:551–7. doi:10.1177/1078155217745144; Horisberger A, La Rosa S, Zurcher JP, Zimmermann S, Spertini F, Coukos G, et al. A severe case of refractory esophageal stenosis induced by nivolumab and responding to tocilizumab therapy. J Immunother Cancer (2018) 6:156. doi:10.1186/s40425-018-0481-0; Moi L, Bouchaab H, Mederos N, Nguyen-Ngoc T, Perreau M, Fenwick C, et al. Personalized cytokine-directed therapy with tocilizumab for refractory immune checkpoint inhibitor-related cholangiohepatitis. J Thorac Oncol (2021) 16:318–26. doi:10.1016/j.jtho.2020.09.007; Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA Approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist (2018) 23:943–7. doi:10.1634/theoncologist.2018-0028; Campochiaro C, Farina N, Tomelleri A, Ferrara R, Lazzari C, De Luca G, et al. Tocilizumab for the treatment of immune-related adverse events: a systematic literature review and a multicentre case series. Eur J Intern Med (2021) 93:87–94. doi:10.1016/j.ejim.2021.07.016; Laino AS, Woods D, Vassallo M, Qian X, Tang H, Wind-Rotolo M, et al. Serum interleukin-6 and c-reactive protein are associated with survival in melanoma patients receiving immune checkpoint inhibition. J Immunother Cancer (2020) 8(1):e000842. doi:10.1136/jitc-2020-000842; Reich K, Warren RB, Lebwohl M, Gooderham M, Strober B, Langley RG, et al. Bimekizumab versus secukinumab in plaque psoriasis. N Engl J Med (2021) 385:142–52. doi:10.1056/NEJMoa2102383; Ruggiero A, Potestio L, Camela E, Fabbrocini G, Megna M. Bimekizumab for the treatment of psoriasis: a review of the current knowledge. Psoriasis (Auckl) (2022) 12:127–37. doi:10.2147/PTT.S367744; Merola JF, Landewe R, McInnes IB, Mease PJ, Ritchlin CT, Tanaka Y, et al. Bimekizumab in patients with active psoriatic arthritis and previous inadequate response or intolerance to tumour necrosis factor-alpha inhibitors: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (2023) 401:38–48. doi:10.1016/S0140-6736(22)02303-0; Esfahani K, Miller WJ. Reversal of autoimmune toxИКТty and loss of tumor response by interleukin-17 blockade. N Engl J Med (2017) 376:1989–91. doi:10.1056/NEJMc1703047; Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: from mechanism to autoimmune therapy. Int Immunopharmacol (2020) 80:106221. doi:10.1016/j.intimp.2020.106221; Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev (2009) 229:307–21. doi:10.1111/j.1600-065X.2009.00780.x; Hurwitz AA, Sullivan TJ, Sobel RA, Allison JP. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc Natl Acad Sci U.S.A. (2002) 99:3013–7. doi:10.1073/pnas.042684699; Scarsi M, Paolini L, Ricotta D, Pedrini A, Piantoni S, Caimi L, et al. Abatacept reduces levels of switched memory b cells, autoantibodies, and immunoglobulins in patients with rheumatoid arthritis. J Rheumatol (2014) 41:666–72. doi:10.3899/jrheum.130905; Blair HA, Deeks ED. Abatacept: a review in rheumatoid arthritis. Drugs (2017) 77:1221–33. doi:10.1007/s40265-017-0775-4; Viglietta V, Bourcier K, Buckle GJ, Healy B, Weiner HL, Hafler DA, et al. CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology (2008) 71:917–24. doi:10.1212/01.wnl.0000325915.00112.61; https://www.mimmun.ru/mimmun/article/view/3191
Availability: https://www.mimmun.ru/mimmun/article/view/3191
-
2Academic Journal
Authors: M. A. Lyadova, D. S. Fedorinov, M. V. Nosova, V. M. Tuleiko, A. S. Orlova, D. A. Vozniuk, K. V. Lyadov, V. N. Galkin, М. А. Лядова, Д. С. Федоринов, М. В. Носова, В. М. Тулейко, А. С. Орлова, Д. А. Вознюк, К. В. Лядов, В. Н. Галкин
Contributors: The authors express their gratitude to the team of the Oncology Department No. 1 of the Moscow Center for Rehabilitation Treatment: E.S. Chernyshova, A.A. Kosmynin, R.R. Shakirov, D.S. Shakirova, T.R. Eynullaeva, A.I. Tekeeva, Ya.V. Koroleva, A.A. Ploschik, as well as the administrator of the chemotherapy department No. 1 of the City Clinical Oncology Hospital No. 1 R. Blazhentseva., Авторы выражают благодарность коллективу отделения онкологии №1 Московского центра восстановительного лечения: Е.С. Чернышовой, А.А. Космынину, Р.Р. Шакирову, Д.С. Шакировой, Т.Р. Эйнуллаевой, А.И. Текеевой, Я.В. Королевой, А.А. Площик, а также администратору отделения химиотерапии №1 Городской клинической онкологической больницы №1 Р. Блаженцевой.
Source: Meditsinskiy sovet = Medical Council; № 22 (2023); 146-153 ; Медицинский Совет; № 22 (2023); 146-153 ; 2658-5790 ; 2079-701X
Subject Terms: иммуноопосредованные нежелательные явления, immunotherapy, nivolumab, pembrolizumab, ipilimumab, immune-related adverse events, иммунотерапия, ниволумаб, пембролизумаб, ипилимумаб
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8000/7089; Swetter SM, Tsao H, Bichakjian CK, Curiel-Lewandrowski C, Elder DE, Gershenwald JE et al. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol. 2019;80(1):208–250. https://doi.org/10.1016/j.jaad.2018.08.055.; Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–387. https://doi.org/10.1016/j.ejca.2018.07.005.; Владимирова ЛЮ, Теплякова МА, Попова ИЛ, Абрамова НА, Тихановская НМ, Льянова АА и др. Современные аспекты иммунотерапии ингибиторами контрольных точек при меланоме. Медицинский алфавит. 2022;26:35–40. https://doi.org/10.33667/2078-5631-2022-26-35-40.; Ralli M, Botticelli A, Visconti IC, Angeletti D, Fiore M, Marchetti P et al. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res. 2020;2020:9235638. https://doi.org/10.1155/2020/9235638.; Ascierto PA, Capone M, Grimaldi AM, Mallardo D, Simeone E, Madonna G et al. Proteomic test for anti-PD-1 checkpoint blockade treatment of metastatic melanoma with and without BRAF mutations. J Immunother Cancer. 2019;7(1):91. https://doi.org/10.1186/s40425-019-0569-1.; Jenkins RW, Fisher DE. Treatment of Advanced Melanoma in 2020 and Beyond. J Invest Dermatol. 2021;141(1):23–31. https://doi.org/10.1016/j.jid.2020.03.943.; Проценко СА, Имянитов ЕН, Семенова АИ, Латипова ДХ, Новик АВ, Юрлов ДО, Оганесян АП. Современная комбинированная таргетная и иммунотерапия метастатической меланомы кожи. Медицинский совет. 2020;20:54–61. https://doi.org/10.21518/2079-701X-2020-20-54-61.; Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. https://doi.org/10.1056/NEJMoa1003466.; McDermott D, Haanen J, Chen T, Lorigan P, O’Day S. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol. 2013;24(10):2694–2698. https://doi.org/10.1093/annonc/mdt291.; Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–2526. https://doi.org/10.1056/NEJMoa1104621.; Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015;33(10):1191–1196. https://doi.org/10.1200/JCO.2014.56.6018.; Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O et al. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol. 2015;33(17):1889–1894. https://doi.org/10.1200/JCO.2014.56.2736.; Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–384. https://doi.org/10.1016/S1470-2045(15)70076-8.; McDermott DF, Kluger HM, Sznol M, Carvajal RD, Lawrence DP, Topalian L et al. Long-term survival of ipilimumab-naiv patients (pts) with advanced melanoma (MEL) treated with nivolumab (anti-PD-1, BMS-936558, ONO-4538) in a phase I trial. Ann Oncol. 2014;25(4):iv374–iv393. https://doi.org/10.1093/annonc/mdu344.4.; Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330. https://doi.org/10.1056/NEJMoa1412082.; Жукова НВ, Антимоник НЮ, Орлова РВ, Беляк НП, Кутукова СИ, Каледина ЕА, Малкова АМ. Иммунотерапия метастатической меланомы: опыт шестилетнего наблюдения. Эффективная фармакотерапия. 2022;18(17):18–21. Режим доступа: https://umedp.ru/articles/immunoterapiya_metastaticheskoy_melanomy_opyt_shestiletnego_nablyudeniya.html?forgot_password=yes&ELEMENT_CODE=immunoterapiya_metastaticheskoy_melanomy_opyt_shestiletnego_nablyudeniya.; Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372(26):2521–2532. https://doi.org/10.1056/NEJMoa1503093.; Wang Y, Zhou S, Yang F, Qi X, Wang X, Guan X et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis. JAMA Oncol. 2019;5(7):1008–1019. https://doi.org/10.1001/jamaoncol.2019.0393.; Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N Engl J Med. 2022;386(1):24–34. https://doi.org/10.1056/NEJMoa2109970.; Анохина ЕМ, Новик АВ, Проценко СА, Балдуева ИА, Семиглазова ТЮ, Семенова АИ и др. Применение ипилимумаба у больных диссеминированной меланомой в рамках программы расширенного доступа: опыт ФГБУ «НМИЦ онкологии им. И.И. Петрова» Минздрава России. Вопросы онкологии. 2018;64(3):388–393. Режим доступа: https://cyberleninka.ru/article/n/primenenie-ipilimumaba-u-bolnyh-disseminirovannoy-melanomoy-v-ramkah-programmy-rasshirennogo-dostupa-opyt-fgbu-nmits-onkologii-im-i.
-
3Academic Journal
Source: Malignant tumours; Том 14, № 3s1 (2024); 53-62 ; Злокачественные опухоли; Том 14, № 3s1 (2024); 53-62 ; 2587-6813 ; 2224-5057
Subject Terms: иммуноопосредованные нежелательные явления, нежелательные явления
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1348/955; Darnell E.P., Mooradian M.J., Baruch E.N. et.al. Immune-Related Adverse Events (irAEs): Diagnosis, Management, and Clinical Pearls. Curr Oncol Rep 2020;22(4):39–39. https://doi.org/10.1007/S11912-020-0897-9; Francisco L.M., Salinas V.H., Brown K.E., et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206(13):3015–29. https://doi.org/10.1084/JEM.20090847; Amarnath S., Mangus C.W., Wang J.C.M., et al. The PDL1-PD1 Axis Converts Human Th1 Cells Into Regulatory T Cells. Sci Transl Med 2011;3(111):111ra120. https://doi.org/10.1126/SCITRANSLMED.3003130; Vaddepally R., Doddamani R., Sodavarapu S., et al. Review of Immune-Related Adverse Events (irAEs) in Non-Small-Cell Lung Cancer (NSCLC)-Their Incidence, Management, Multiorgan irAEs, and Rechallenge. Biomedicines 2022;10(4):790. https://doi.org/10.3390/BIOMEDICINES10040790; Abdel-Wahab N., Diab A., Yu R.K., et al. Genetic determinants of immune-related adverse events in patients with melanoma receiving immune checkpoint inhibitors. Cancer Immunol Immunother 2021;70(7):1939–49. https://doi.org/10.1007/S00262-020-02797-0; Nishino M., Ramaiya N.H., Awad M.M., et al. PD-1 Inhibitor-Related Pneumonitis in Advanced Cancer Patients: Radiographic Patterns and Clinical Course. Clin Cancer Res 2016;22(24):6051–60. https://doi.org/10.1158/1078-0432.; Delaunay M., Cadranel J., Lusque A., et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur Respir J 2017;50(2):1700050. https://doi.org/10.1183/13993003.00050-2017; Naidoo J., Wang X., Woo K.M., et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J Clin Oncol 2017;35(7):709–717. https://doi.org/10.1200/JCO.2016.68.2005; Weber J.S., Kähler K.C., Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012;30(21):2691–7. https://doi.org/10.1200/JCO.2012.41.6750; Gettinger S.N., Horn L., Gandhi L., et al. Overall Survival and Long-Term Safety of Nivolumab (Anti–Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non–Small-Cell Lung Cancer. J Clin Oncol 2015;33(18):2004–12. https://doi.org/10.1200/JCO.2014.58.3708; Schoenfeld S.R., Aronow M.E., Leaf R.K., et al. Diagnosis and Management of Rare Immune-Related Adverse Events. Oncologist 2020;25(1):6–14. https://doi.org/10.1634/theoncologist.2019-0083; Puzanov I., Diab A., Abdallah K., et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 2017;5(1):95. https://doi.org/10.1186/S40425-017-0300-Z; Brahmer J.R., Lacchetti C., Schneider B.J., et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2018;36(17):1714–68. https://doi.org/10.1200/JCO.2017.77.6385; Kuusisalo S., Koivunen J.P., Iivanainen S. Association of Rare Immune-Related Adverse Events to Survival in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors: A Real-World Single-Center Cohort Study. Cancers (Basel) 2022;14(9):2276. https://doi.org/10.3390/cancers14092276; Moslehi J.J., Salem J.E., Sosman J.A., et al. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018;391(10124):933. https://doi.org/10.1016/S0140-6736(18)30533-6; Wang D.Y., Salem J.E., Cohen J.V., et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol 2018;4(12):1721–8. https://doi.org/10.1001/jamaoncol.2018.3923; Park B.C., Narayanan S., Gavraldis A., et al. Rare immune-related adverse events in patients with melanoma: incidence, spectrum, and clinical presentations. Oncoimmunology 2023;12(1):2188719. https://doi.org/10.1080/2162402X.2023.2188719; Javaid A., Bennett C., Rao A., Spain L. Rare Immune-Related Adverse Events (irAEs): Approach to Diagnosis and Management. Pharmaceut Med 2024;38(1):25–38. https://doi.org/10.1007/S40290-023-00508-5; Haanen J., Obeid M., Spain L., et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022;33(12):1217–38. https://doi.org/10.1016/J.annonc.2022.10.001; Palaskas N., Lopez-Mattei J., Durand J.B., et al. Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. J Am Heart Assoc 2020;9(2):e013757. https://doi.org/10.1161/JAHA.119.013757; Mahmood S.S., Fradley M.G., Cohen J.V., et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 2018;71(16):A699. https://doi.org/10.1016/S0735-1097(18)31240-3; Herrmann J., Lenihan D., Armenian S., et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J 2022;43(4):280–99. https://doi.org/10.1093/eurheartj/ehab674; Nelke C., Pawlitzki M., Kerkhoff R., et al. Immune Checkpoint Inhibition-Related Myasthenia-Myositis-Myocarditis Responsive to Complement Blockade. Neurol Neuroimmunol Neuroinflamm 2023;11(1):e200177. https://doi.org/10.1212/NXI.0000000000200177; Albarrán-Artahona V., Laguna J.C., Gorría T., et al. Immune-Related Uncommon Adverse Events in Patients with Cancer Treated with Immunotherapy. Diagnostics (Basel) 2022;12(9):2091. https://doi.org/10.3390/diagnostics12092091; Huang Y.T., Chen Y.P., Lin W.C., et al. Immune Checkpoint Inhibitor-Induced Myasthenia Gravis. Front Neurol 2020;11:528324. https://doi.org/10.3389/fneur.2020.00634/bibtex; Larkin J., Chmielowski B., Lao C.D., et al. Neurologic Serious Adverse Events Associated with Nivolumab Plus Ipilimumab or Nivolumab Alone in Advanced Melanoma, Including a Case Series of Encephalitis. Oncologist 2017;22(6):709–718. https://doi.org/10.1634/theoncologist.2016-0487; Kao J.C., Brickshawana A., Liewluck T. Neuromuscular Complications of Programmed Cell Death-1 (PD-1) Inhibitors. Curr Neurol Neurosci Rep 2018;18(10):63. https://doi.org/10.1007/S11910-018-0878-7; Marini A., Bernardini A., Gigli G.L., et al. Neurologic Adverse Events of Immune Checkpoint Inhibitors: A Systematic Review. Neurology 2021;96(16):754–66. https://doi.org/10.1212/WNL.0000000000011795; Thouvenin L ., Olivier T., Banna G., et al. Immune checkpoint inhibitor-induced aseptic meningitis and encephalitis: a case-series and narrative review. Ther Adv Drug Saf 2021;12:20420986211004745. https://doi.org/10.1177/20420986211004745; Müller-Jensen L., Zierold S., Versluis J.M., et al. Characteristics of immune checkpoint inhibitor-induced encephalitis and comparison with HSV-1 and anti-LGI1 encephalitis: A retrospective multicentre cohort study. Eur J Cancer 2022;175:224–235. https://doi.org/10.1016/J.EJCA.2022.08.009; Dubey D., David W.S., Reynolds K.L., et al. Severe Neurological Toxicity of Immune Checkpoint Inhibitors: Growing Spectrum. Ann Neurol 2020;87(5):659–669. https://doi.org/10.1002/ANA.25708; Velasco R., Villagrán M., Jové M., et al. Encephalitis Induced by Immune Checkpoint Inhibitors: A Systematic Review. JAMA Neurol 2021;78(7):864–873. https://doi.org/10.1001/jamaneurol.2021.0249; Johnson D.B., Manouchehri A., Haugh A.M., et al. Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J Immunother Cancer 2019;7(1):134. https://doi.org/10.1186/S40425-019-0617-X; Martins F., Sofiya L., Sykiotis G.P., et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 2019;16(9):563–580. https://doi.org/10.1038/S41571-019-0218-0; Salam S., Lavin T., Turan A. Limbic encephalitis following immunotherapy against metastatic malignant melanoma. BMJ Case Rep 2016;2016:bcr2016215012. https://doi.org/10.1136/bcr-2016-215012; Thompson J.A., Schneider B.J., Brahmer J., et al. Management of Immunotherapy-Related Toxicities, Version 1.2019. J Natl Compr Canc Netw 2019;17(3):255–289. https://doi.org/10.6004/jnccn.2019.0013; Xu M., Nie Y., Yang Y., et al. Risk of Neurological Toxicities Following the Use of Different Immune Checkpoint Inhibitor Regimens in Solid Tumors: A Systematic Review and Meta-analysis. Neurologist 2019;24(3):75–83. https://doi.org/10.1097/NRL.0000000000000230; Li Y., Zhang X., Zhao C. Guillain-Barré Syndrome-Like Polyneuropathy Associated with Immune Checkpoint Inhibitors: A Systematic Review of 33 Cases. Biomed Res Int 2021;2021:9800488. https://doi.org/10.1155/2021/9800488; Abdel-Rahman O., Oweira H., Petrausch U., et al. Immune-related ocular toxicities in solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Anticancer Ther 2017;17(4):387–394. https://doi.org/10.1080/14737140.2017.1296765; Anquetil C., Salem J.E., Lebrun-Vignes B., et al. Evolving spectrum of drug-induced uveitis at the era of immune checkpoint inhibitors results from the WHO’s pharmacovigilance database. J Autoimmun 2020;111:102454. https://doi.org/10.1016/j.jaut.2020.102454; Bomze D., Meirson T., Hasan Ali O., et al. Ocular Adverse Events Induced by Immune Checkpoint Inhibitors: A Comprehensive Pharmacovigilance Analysis. Ocul Immunol Inflamm 2022;30(1):191–197. https://doi.org/10.1080/09273948.2020.1773867; Nguyen A.T., Elia M., Materin M.A., et al. Cyclosporine for Dry Eye Associated With Nivolumab: A Case Progressing to Corneal Perforation. Cornea 2016;35(3):399–401. https://doi.org/10.1097/ICO.0000000000000724; Hahn L., Pepple K.L. Bilateral neuroretinitis and anterior uveitis following ipilimumab treatment for metastatic melanoma. J Ophthalmic Inflamm Infect 2016;6:14. https://doi.org/10.1186/S12348-016-0082-3; Wilson M.A., Guld K., Galetta S., et al. Acute visual loss after ipilimumab treatment for metastatic melanoma. J Immunother Cancer 2016;4:66. https://doi.org/10.1186/S40425-016-0170-9; Zhang H., Houadj L., Wu K.Y., Tran S.D. Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics (Basel) 2024;14(3):336. https://doi.org/10.3390/diagnostics14030336; Bloch-Michel E., Nussenblatt R.B. International Uveitis Study Group recommendations for the evaluation of intraocular inflammatory disease. Am J Ophthalmol 1987;103(2):234–235. https://doi.org/10.1016/S0002-9394(14)74235-7; Chang C.J., Chen S.J., Hwang D.K., Liu C. Bilateral anterior uveitis after immunotherapy for malignant melanoma. Taiwan J Ophthalmol 2018;8(3):173–175. https://doi.org/10.4103/tjo.tjo_88_17.; Deschenes J., Murray P.I., Rao N.A., Nussenblatt R.B. International Uveitis Study Group (IUSG): clinical classification of uveitis. Ocul Immunol Inflamm 2008;16(1):1–2. https://doi.org/10.1080/09273940801899822; Sun M.M., Kelly S.P., Mylavarapu BS A.L., et al. Ophthalmic Immune-Related Adverse Events after Anti-CTLA-4 or PD-1 Therapy Recorded in the American Academy of Ophthalmology Intelligent Research in Sight Registry. Ophthalmology 2021;128(6):910–919. https://doi.org/10.1016/J.ophtha.2020.11.001; Braun D., Getahun D., Chiu V.Y., et al. Population-Based Frequency of Ophthalmic Adverse Events in Melanoma, Other Cancers, and After Immune Checkpoint Inhibitor Treatment. Am J Ophthalmol 2021;224:282–291. https://doi.org/10.1016/J.AJO.2020.12.013; Zhou L., Wei X. Ocular Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors in Lung Cancer. Front Immunol 2021;12:701951. https://doi.org/10.3389/FIMMU.2021.701951; Guex-Crosier Y. Do Naranjo Criteria Still Apply to Ipilimumab-induced Uveitis? Klin Monbl Augenheilkd 2016;233(4):356. https://doi.org/10.1055/S-0042-104249; Naranjo C.A., Busto U., Sellers E.M., et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30(2):239–245. https://doi.org/10.1038/CLPT.1981.154; Boyd S.R., Young S., Lightman S. Immunopathology of the noninfectious posterior and intermediate uveitides. Surv Ophthalmol 2001;46(3):209–233. https://doi.org/10.1016/S0039-6257(01)00275-2; Pasadhika S., Rosenbaum J.T. Ocular Sarcoidosis. Clin Chest Med 2015;36(4):669–683. https://doi.org/10.1016/J.CCM.2015.08.009; Regatieri C.V., Alwassia A., Zhang J.Y., et al. Use of optical coherence tomography in the diagnosis and management of uveitis. Int Ophthalmol Clin 2012;52(4):33–43. https://doi.org/10.1097/IIO.0B013E318265D439; Parikh R.A., Chaon B.C., Berkenstock M.K. Ocular Complications of Checkpoint Inhibitors and Immunotherapeutic Agents: A Case Series. Ocul Immunol Inflamm 2021;29(7–8):1585–1590. https://doi.org/10.1080/09273948.2020.1766082; Mazharuddin A.A., Whyte A.T., Gombos D.S., et al. Highlights on Ocular Toxicity of Immune Checkpoint Inhibitors at a US Tertiary Cancer Center. J Immunother Precis Oncol 2022;5(4):98–104. https://doi.org/10.36401/JIPO-22-14; Martens A., Schauwvlieghe P.P., Madoe A., et al. Ocular adverse events associated with immune checkpoint inhibitors, a scoping review. J Ophthalmic Inflamm Infect 2023;13(1):5. https://doi.org/10.1186/S12348-022-00321-2; Dick A.D., Rosenbaum J.T., Al-Dhibi H.A., et al. Guidance on Noncorticosteroid Systemic Immunomodulatory Therapy in Noninfectious Uveitis: Fundamentals Of Care for UveitiS (FOCUS) Initiative. Ophthalmology 2018;125(5):757–773. https://doi.org/10.1016/j.ophtha.2017.11.017; Karim R., Sykakis E., Lightman S., Fraser-Bell S. Interventions for the treatment of uveitic macular edema: a systematic review and meta-analysis. Clin Ophthalmol 2013;7:1109–1144. https://doi.org/10.2147/OPTH.S40268; Heiligenhaus A., Minden K., Tappeiner C., et al. Update of the evidence based, interdisciplinary guideline for anti-inflammatory treatment of uveitis associated with juvenile idiopathic arthritis. Semin Arthritis Rheum 2019;49(1):43–55. https://doi.org/10.1016/j.semarthrit.2018.11.004; De Filette J.M.K., Pen J.J., Decoster L., et al. Immune checkpoint inhibitors and type 1 diabetes mellitus: a case report and systematic review. Eur J Endocrinol 2019;181(3):363–374. https://doi.org/10.1530/EJE-19-0291; Mellati M., Eaton K.D., Brooks-Worrell B.M., et al. Anti-PD-1 and Anti-PDL-1 Monoclonal Antibodies Causing Type 1 Diabetes. Diabetes Care 2015;38(9):e137–138. https://doi.org/10.2337/DC15-0889; Godwin J.L., Jaggi S., Sirisena I., et al. Nivolumab-induced autoimmune diabetes mellitus presenting as diabetic ketoacidosis in a patient with metastatic lung cancer. J Immunother Cancer 2017;5:40. https://doi.org/10.1186/S40425-017-0245-2; Delanoy N., Michot J.M., Comont T., et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: a descriptive observational study. Lancet Haematol 2019;6(1):e48-е57. https://doi.org/10.1016/S2352-3026(18)30175-3; Michot J.M., Lazarovici J., Tieu A., et al. Haematological immune-related adverse events with immune checkpoint inhibitors, how to manage? Eur J Cancer 2019;122:72–90. https://doi.org/10.1016/J.EJCA.2019.07.014; Mullally W.J., Cooke F.J., Crosbie I.M., et al. Case Report: Thrombotic-Thrombocytopenic Purpura Following Ipilimumab and Nivolumab Combination Immunotherapy for Metastatic Melanoma. Front Immunol 2022;13:871217. https://doi.org/10.3389/FIMMU.2022.871217; Zaremba A., Kramer R., De Temple V., et al. Grade 4 Neutropenia Secondary to Immune Checkpoint Inhibition - A Descriptive Observational Retrospective Multicenter Analysis. Front Oncol 2021;11:765608. https://doi.org/10.3389/FONC.2021.765608; Kramer R., Zaremba A., Moreira A., Ugurel S., et al. Hematological immune related adverse events after treatment with immune checkpoint inhibitors. Eur J Cancer 2021;147:170–181. https://doi.org/10.1016/J.EJCA.2021.01.013; Delyon J., Mateus C., Lambert T. Hemophilia A induced by ipilimumab. N Engl J Med 2011;365(18):1747–1748. https://doi.org/10.1056/NEJMC1110923; Noseda R., Bertoli R., Müller L., Ceschi A. Haemophagocytic lymphohistiocytosis in patients treated with immune checkpoint inhibitors: analysis of WHO global database of individual case safety reports. J Immunother Cancer 2019;7(1):117. https://doi.org/10.1186/S40425-019-0598-9; Davis E.J., Salem J.-E., Young A., et al. Hematologic Complications of Immune Checkpoint Inhibitors. Oncologist 2019;24(5):584–588. https://doi.org/10.1634/theoncologist.2018-0574; Martin M., Nguyen H.M., Beuvon C., et al. Immune Checkpoint Inhibitor-Related Cytopenias: About 68 Cases from the French Pharmacovigilance Database. Cancers (Basel) 2022;14(20):5030. https://doi.org/10.3390/cancers14205030.; https://www.malignanttumors.org/jour/article/view/1348
-
4Academic Journal
Authors: Glibka A.A., Mazurina N.V., Sarantseva K.A., Kharkevich G.Y., Volkonskii M.V., Elfimova A.R., Troshina E.A.
Contributors: 0
Source: Almanac of Clinical Medicine; Vol 52, No 7 (2024); 385-397 ; Альманах клинической медицины; Vol 52, No 7 (2024); 385-397 ; 2587-9294 ; 2072-0505
Subject Terms: immune checkpoint inhibitors, endocrine immune-related adverse events, destructive thyroiditis, thyroid peroxidase antibodies, thyroglobulin antibodies, ингибиторы контрольных точек иммунного ответа, эндокринные иммуноопосредованные нежелательные явления, деструктивный тиреоидит, антитела к тиреопероксидазе, антитела к тиреоглобулину
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17329/1704; https://almclinmed.ru/jour/article/view/17329/1713; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160264; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160265; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160266; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160267; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160268; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160269; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160270; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160271; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160272; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160273; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160274; https://almclinmed.ru/jour/article/downloadSuppFile/17329/160275; https://almclinmed.ru/jour/article/view/17329
-
5Academic Journal
Authors: E. A. Degtiareva, S. A. Protsenko, E. N. Imyanitov, Е. А. Дегтярёва, С. А. Проценко, Е. Н. Имянитов
Contributors: The study was supported by the Russian Science Foundation (grant №21-75-30015), Работа выполнена при поддержке гранта РНФ (№21-75-30015)
Source: Siberian journal of oncology; Том 22, № 1 (2023); 141-150 ; Сибирский онкологический журнал; Том 22, № 1 (2023); 141-150 ; 2312-3168 ; 1814-4861
Subject Terms: иммуноопосредованные нежелательные явления, HIV, T-cell exhaustion, immunotherapy, immune checkpoint inhibitors, immune-related adverse events, ВИЧ, Т-клеточное истощение, иммунотерапия, ингибиторы контрольных точек иммунного ответа
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2440/1085; Puronen C.E., Ford E.S., Uldrick T.S. Immunotherapy in People With HIV and Cancer. Front Immunol. 2019; 10: 2060. doi:10.3389/fimmu.2019.02060.; Douek D.C., Brenchley J.M., Betts M.R., Ambrozak D.R., Hill B.J., Okamoto Y., Casazza J.P., Kuruppu J., Kunstman K., Wolinsky S., Gross- man Z., Dybul M., Oxenius A., Price D.A., Connors M., Koup R.A. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002; 417(6884): 95–8. doi:10.1038/417095a.; Fenwick C., Joo V., Jacquier P., Noto A., Banga R., Perreau M., Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev. 2019; 292(1): 149–63. doi:10.1111/imr.12823.; Jubel J.M., Barbati Z.R., Burger C., Wirtz D.C., Schildberg F.A. The Role of PD-1 in Acute and Chronic Infection. Front Immunol. 2020; 11: 487. doi:10.3389/fimmu.2020.00487.; Cockerham L.R., Jain V., Sinclair E., Glidden D.V., Hartogenesis W., Hatano H., Hunt P.W., Martin J.N., Pilcher C.D., Sekaly R., McCune J.M., Hecht F.M., Deeks S.G. Programmed death-1 expression on CD4⁺ and CD8⁺ T cells in treated and untreated HIV disease. AIDS. 2014; 28(12): 1749–58. doi:10.1097/QAD.0000000000000314.; Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015; 15(8): 486–99. doi:10.1038/nri3862.; van der Sluis R.M., Kumar N.A., Pascoe R.D., Zerbato J.M., Evans V.A., Dantanarayana A.I., Anderson J.L., Sékaly R.P., Fromentin R., Chomont N., Cameron P.U., Lewin S.R. Combination Immune Checkpoint Blockade to Reverse HIV Latency. J Immunol. 2020; 204(5): 1242–54. doi:10.4049/jimmunol.1901191.; Chen H., Moussa M., Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol. 2020; 11: 1223.; Velu V., Titanji K., Zhu B., Husain S., Pladevega A., Lai L., Vanderford T.H., Chennareddi L., Silvestri G., Freeman G.J., Ahmed R., Amara R.R. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009; 458(7235): 206–10. doi:10.1038/nature07662.; Mylvaganam G.H., Chea L.S., Tharp G.K., Hicks S., Velu V., Iyer S.S., Deleage C., Estes J.D., Bosinger S.E., Freeman G.J., Ahmed R., Amara R.R. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV. JCI Insight. 2018; 3(18). doi:10.1172/jci.insight.122940.; Heppt M.V., Schlaak M., Eigentler T.K., Kähler K.C., Kiecker F., Loquai C., Meier F., Tomsitz D., Brenner N., Niesert A.C., Thonke R., Hauschild A., Berking C. Checkpoint blockade for metastatic melanoma and Merkel cell carcinoma in HIV-positive patients. Ann Oncol. 2017; 28(12): 3104–6. doi:10.1093/annonc/mdx538.; Chang E., Sabichi A.L., Kramer J.R., Hartman C., Royse K.E., White D.L., Patel N.R., Richardson P., Yellapragada S.V., Garcia J.M., Chiao E.Y. Nivolumab Treatment for Cancers in the HIV-infected Population. J Immunother. 2018; 41(8): 379–83. doi:10.1097/CJI.0000000000000240.; Galanina N., Goodman A.M., Cohen P.R., Frampton G.M., Kurzrock R. Successful Treatment of HIV-Associated Kaposi Sarcoma with Immune Checkpoint Blockade. Cancer Immunol Res. 2018; 6(10): 1129–35. doi:10.1158/2326-6066.CIR-18-0121.; Ostios-Garcia L., Faig J., Leonardi G.C., Adeni A.E., Subegdjo S.J., Lydon C.A., Rangachari D., Huberman M.S., Sehgal K., Shea M., VanderLaan P.A., Cheng M.P., Marty F.M., Hammond S.P., Costa D.B., Awad M.M. Safety and Efficacy of PD-1 Inhibitors Among HIV-Positive Patients With Non-Small Cell Lung Cancer. J Thorac Oncol. 2018; 13(7): 1037–42. doi:10.1016/j.jtho.2018.03.031.; Cook M.R., Kim C. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients With HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019; 5(7): 1049–54. doi:10.1001/jamaoncol.2018.6737.; Spano J.P., Veyri M., Gobert A., Guihot A., Perré P., Kerjouan M., Brosseau S., Cloarec N., Montaudié H., Helissey C., Flament T., Gounant V., Lavolé A., Poizot-Martin I., Katlama C. Immunotherapy for cancer in people living with HIV: safety with an efficacy signal from the series in real life experience. AIDS. 2019; 33(11): 13–9. doi:10.1097/QAD.0000000000002298.; Uldrick T.S., Gonçalves P.H., Abdul-Hay M., Claeys A.J., Emu B., Ernstoff M.S., Fling S.P., Fong L., Kaiser J.C., Lacroix A.M., Lee S.Y., Lundgren L.M., Lurain K., Parsons C.H., Peeramsetti S., Ramaswami R., Sharon E., Sznol M., Wang C.J., Yarchoan R., Cheever M.A.; Cancer Immunotherapy Trials Network (CITN)-12 Study Team. Assessment of the Safety of Pembrolizumab in Patients With HIV and Advanced Cancer-A Phase 1 Study. JAMA Oncol. 2019; 5(9): 1332–9. doi:10.1001/jamaoncol.2019.2244.; Gonzalez-Cao M., Morán T., Dalmau J., Garcia-Corbacho J., Bracht J.W.P., Bernabe R., Juan O., de Castro J., Blanco R., Drozdowskyj A., Argilaguet J., Meyerhans A., Blanco J., Prado J.G., Carrillo J., Clotet B., Massuti B., Provencio M., Molina-Vila M.A., Mayo de Las Casa C., Garzon M., Cao P., Huang C.Y., Martinez-Picado J., Rosell R. Assessment of the Feasibility and Safety of Durvalumab for Treatment of Solid Tumors in Patients With HIV-1 Infection: The Phase 2 DURVAST Study. JAMA Oncol. 2020; 6(7): 1063–7. doi:10.1001/jamaoncol.2020.0465.; Lavole A., Mazieres J., Schneider S., Brosseau S., Kiakouama L., Greillier L., Guihot A., Abbar B., Baron M., Makinson A., Langlais A., Morin F., Spano J.P., Cadranel J.; On behalf the French Cooperative Thoracic Intergroup (IFCT). Assessment of nivolumab in HIV-Infected patients with advanced non-small cell lung cancer after prior chemotherapy. The IFCT-1602 CHIVA2 phase 2 clinical trial. Lung Cancer. 2021; 158: 146–50. doi:10.1016/j.lungcan.2021.05.031.; Uldrick T.S., Adams S.V., Fromentin R., Roche M., Fling S.P., Gonçalves P.H., Lurain K., Ramaswami R., Wang C.J., Gorelick R.J., Welker J.L., O'Donoghue L., Choudhary H., Lifson J.D., Rasmussen T.A., Rhodes A., Tumpach C., Yarchoan R., Maldarelli F., Cheever M.A., Sékaly R., Chomont N., Deeks S.G., Lewin S.R. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci Transl Med. 2022; 14(629). doi:10.1126/scitranslmed.abl3836.; Shah N.J., Al-Shbool G., Blackburn M., Cook M., Belouali A., Liu S.V., Madhavan S., He A.R., Atkins M.B., Gibney G.T., Kim C. Safety and efficacy of immune checkpoint inhibitors (ICIs) in cancer patients with HIV, hepatitis B, or hepatitis C viral infection. J Immunother Cancer. 2019; 7(1): 353. doi:10.1186/s40425-019-0771-1.; Guihot A., Marcelin A.G., Massiani M.A., Samri A., Soulié C., Autran B., Spano J.P. Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol. 2018; 29(2): 517–8. doi:10.1093/annonc/mdx696.; Abbar B., Baron M., Katlama C., Marcelin A.G., Veyri M., Autran B., Guihot A., Spano J.P. Immune checkpoint inhibitors in people living with HIV: what about anti-HIV effects? AIDS. 2020; 34(2): 167–75. doi:10.1097/QAD.0000000000002397.; Le Garff G., Samri A., Lambert-Niclot S., Even S., Lavolé A., Cadranel J., Spano J.P., Autran B., Marcelin A.G., Guihot A. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS. 2017; 31(7): 1048–51. doi:10.1097/QAD.0000000000001429.; Klein N.C., Go C.H., Cunha B.A. Infections associated with steroid use. Infect Dis Clin North Am. 2001; 15(2): 423–32. doi:10.1016/s0891-5520(05)70154-9.; Del Castillo M., Romero F.A., Argüello E., Kyi C., Postow M.A., Redelman-Sidi G. The Spectrum of Serious Infections Among Patients Receiving Immune Checkpoint Blockade for the Treatment of Melanoma. Clin Infect Dis. 2016; 63(11): 1490–3. doi:10.1093/cid/ciw539.; Fujita K., Kim Y.H., Kanai O., Yoshida H., Mio T., Hirai T. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respir Med. 2019; 146: 66–70. doi:10.1016/j.rmed.2018.11.021.; Management of Immunotherapy-Related Toxicities [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf. [cited 2022 Apr].; Prevention and Treatment of Cancer-Related Infections [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf. [cited 2022 Apr].; Проценко С.А., Антимоник Н.Ю., Берштейн Л.М., Жукова Н.В., Новик А.В., Носов Д.А., Петенко Н.Н., Семенова А.И., Чубенко В.А., Харкевич Г.Ю., Юдин Д.И. Практические рекомендации по управлению иммуноопосредованными нежелательными явлениями. Злокачественные опухоли: Практические рекомендации RUSSCO. 2020; 10(#3s2). doi:10.18027/22245057-2020-10-3s2-50.; Uchida N., Fujita K., Nakatani K., Mio T. Acute progression of aspergillosis in a patient with lung cancer receiving nivolumab. Respirol Case Rep. 2017; 6(2). doi:10.1002/rcr2.289.; Fujita K., Terashima T., Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol. 2016; 11(12): 2238–40. doi:10.1016/j.jtho.2016.07.006.; Chu Y.C., Fang K.C., Chen H.C., Yeh Y.C., Tseng C.E., Chou T.Y., Lai C.L. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. J Thorac Oncol. 2017; 12(8): 111–4. doi:10.1016/j.jtho.2017.03.012.; Zaemes J., Kim C. Immune checkpoint inhibitor use and tuberculosis: a systematic review of the literature. Eur J Cancer. 2020; 132: 168–75. doi:10.1016/j.ejca.2020.03.015.; Langan E.A., Graetz V., Allerheiligen J., Zillikens D., Rupp J., Terheyden P. Immune checkpoint inhibitors and tuberculosis: an old disease in a new context. Lancet Oncol. 2020; 21(1): 55–65. doi:10.1016/S1470-2045(19)30674-6.; Stroh G.R., Peikert T., Escalante P. Active and latent tuberculosis infections in patients treated with immune checkpoint inhibitors in a nonendemic tuberculosis area. Cancer Immunol Immunother. 2021; 70(11): 3105–11. doi:10.1007/s00262-021-02905-8.; Chang C.C., Sheikh V., Sereti I., French M.A. Immune reconstitution disorders in patients with HIV infection: from pathogenesis to prevention and treatment. Curr HIV/AIDS Rep. 2014; 11(3): 223–32. doi:10.1007/s11904-014-0213-0.; Клинические рекомендации Министерства здравоохранения Российской Федерации «ВИЧ-инфекция у взрослых» [Internet]. 2020. URL: https://cr.minzdrav.gov.ru/schema/79_1. [cited 2022 Apr].; Oseso L.N., Chiao E.Y., Bender Ignacio R.A. Evaluating Antiretroviral Therapy Initiation in HIV-Associated Malignancy: Is There Enough Evidence to Inform Clinical Guidelines? J Natl Compr Canc Netw. 2018; 16(8): 927–32. doi:10.6004/jnccn.2018.7057.; Боева Е.В., Беляков Н.А. Синдром восстановления иммунитета при ВИЧ-инфекции. Инфекция и иммунитет. 2018; 8(2): 139–49. doi:10.15789/2220-7619-2018-2-139-149.; Riechelmann R.P., Del Giglio A. Drug interactions in oncology: how common are they? Ann Oncol. 2009; 20(12): 1907–12. doi:10.1093/annonc/mdp369.; Gazzé G. Combination therapy for metastatic melanoma: a pharmacist’s role, drug interactions & complementary alternative therapies. Melanoma Manag. 2018; 5(2). doi:10.2217/mmt-2017-0026.; Cortellini A., Tucci M., Adamo V., Stucci L.S., Russo A., Tanda E.T., Spagnolo F., Rastelli F., Bisonni R., Santini D., Russano M., Anesi C., Giusti R., Filetti M., Marchetti P., Botticelli A., Gelibter A., Occhipinti M.A., Marconcini R., Vitale M.G., Nicolardi L., Chiari R., Bareggi C., Nigro O., Tuzi A., De Tursi M., Petragnani N., Pala L., Bracarda S., Macrini S., Inno A., Zoratto F., Veltri E., Di Cocco B., Mallardo D., Vitale M.G., Pinato D.J., Porzio G., Ficorella C., Ascierto P.A. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. J Immunother Cancer. 2020; 8(2). doi:10.1136/jitc-2020-001361.; van Leeuwen R.W.F., Jansman F.G.A., van den Bemt P.M.L.A., de Man F., Piran F., Vincenten I., Jager A., Rijneveld A.W., Brugma J.D., Mathijssen R.H.J., van Gelder T. Drug-drug interactions in patients treated for cancer: a prospective study on clinical interventions. Ann Oncol. 2015; 26(5): 992–7. doi:10.1093/annonc/mdv029.; Olin J.L., Klibanov O., Chan A., Spooner L.M. Managing Pharmacotherapy in People Living With HIV and Concomitant Malignancy. Ann Pharmacother. 2019; 53(8): 812–32. doi:10.1177/1060028019833038.; Spano J.P., Poizot-Martin I., Costagliola D., Boué F., Rosmorduc O., Lavolé A., Choquet S., Heudel P.E., Leblond V., Gabarre J., Valantin M.A., Solas C., Guihot A., Carcelain G., Autran B., Katlama C., Quéro L. Non-AIDS-related malignancies: expert consensus review and practical applications from the multidisciplinary CANCERVIH Working Group. Ann Oncol. 2016; 27(3): 397–408. doi:10.1093/annonc/mdv606.; Drug interactions checker [Internet]. URL: https://www.drugs.com/drug_interactions.html. [cited 2022 Apr].; HIV drug interactions. [Internet]. URL: https://www.hiv-druginteractions.org/checker. [cited 2022 Apr].; Bressan S., Pierantoni A., Sharifi S., Facchini S., Quagliarello V., Berretta M., Montopoli M. Chemotherapy-Induced Hepatotoxicity in HIV Patients. Cells. 2021; 10(11): 2871. doi:10.3390/cells10112871.; Centanni M., Moes D.J.A.R., Trocóniz I.F., Ciccolini J., van Hasselt J.G.C. Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin Pharmacokinet. 2019; 58(7): 835–57. doi:10.1007/s40262-019-00748-2.; Hussain N., Naeem M., Pinato D.J. Concomitant medications and immune checkpoint inhibitor therapy for cancer: causation or association? Hum Vaccin Immunother. 2021; 17(1): 55–61. doi:10.1080/21645515.2020.1769398.; Sahin I.H., Kane S.R., Brutcher E., Guadagno J., Smith K.E., Wu C., Lesinski G.B., Gunthel C.J., El-Rayes B.F. Safety and Efficacy of Immune Checkpoint Inhibitors in Patients With Cancer Living With HIV: A Perspective on Recent Progress and Future Needs. JCO Oncol Pract. 2020; 16(6): 319–25. doi:10.1200/JOP.19.00754.; Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. 2nd ed. Geneva: World Health Organization; 2016.; Cancer in People Living With HIV [Internet]. NCCN Clinical Practice Guidelines in Oncology, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/hiv.pdf. [cited 2022 Apr].; Gonzalez-Cao M., Puertolas T., Riveiro M., Muñoz-Couselo E., Ortiz C., Paredes R., Podzamczer D., Manzano J.L., Molto J., Revollo B., Carrera C., Mateu L., Fancelli S., Espinosa E., Clotet B., MartinezPicado J., Cerezuela P., Soria A., Marquez I., Mandala M., Berrocal A.; Spanish Melanoma Group (GEM). Cancer immunotherapy in special challenging populations: recommendations of the Advisory Committee of Spanish Melanoma Group (GEM). J Immunother Cancer. 2021; 9(3). doi:10.1136/jitc-2020-001664. Erratum in: J Immunother Cancer. 2022; 10(2).; Elkington P.T., Bateman A.C., Thomas G.J., Ottensmeier C.H. Implications of Tuberculosis Reactivation after Immune Checkpoint Inhibition. Am J Respir Crit Care Med. 2018; 198(11): 1451–3. doi:10.1164/rccm.201807-1250LE.; Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021.; Ghrenassia E., Martis N., Boyer J., Burel-Vandenbos F., Mekinian A., Coppo P. The diffuse infiltrative lymphocytosis syndrome (DILS). A comprehensive review. J Autoimmun. 2015; 59: 19–25. doi:10.1016/j.jaut.2015.01.010.; Пономарева Е.Ю., Шульдяков А.А., Анащенко А.В., Ребров А.П. Клиническая манифестация ВИЧ-инфекции, имитирующая ревматические заболевания. Научно-практическая ревматология. 2018; 56(4): 525–30.; https://www.siboncoj.ru/jour/article/view/2440
-
6Academic Journal
Authors: M. Yu. Fedyanin, A. V. Snegovoy, V. V. Breder, Yu. N. Linkova, A. V. Zinkina-Orikhan, S. B. Setkina, S. N. Fogt, V. S. Chistiakov, N. A. Kravtsova, М. Ю. Федянин, А. В. Снеговой, В. В. Бредер, Ю. Н. Линькова, А. В. Зинкина-Орихан, С. Б. Сеткина, С. Н. Фогт, В. С. Чистяков, Н. А. Кравцова
Contributors: The study sponsor is BIOCAD JSC (Russia)., Спонсор исследования — AO «БИОКАД» (Россия).
Source: Safety and Risk of Pharmacotherapy; Том 11, № 2 (2023); 215-230 ; Безопасность и риск фармакотерапии; Том 11, № 2 (2023); 215-230 ; 2619-1164 ; 2312-7821
Subject Terms: клинические исследования, pembrolizumab, biosimilar, PD-1 inhibitor, immune-related adverse events, immune-mediated adverse reactions, immune-checkpoint inhibitors, immunotherapy, clinical trials, пембролизумаб, биоаналог, PD-1-ингибитор, иммуноопосредованные нежелательные явления, иммуноопосредованные нежелательные реакции, ингибиторы иммунных контрольных точек, иммунотерапия
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/360/737; https://www.risksafety.ru/jour/article/view/360/788; https://www.risksafety.ru/jour/article/downloadSuppFile/360/347; Stege H, Haist M, Nikfarjam U, Schultheis M, Heinz J, Pemler S, et al. The status of adjuvant and neoadjuvant melanoma therapy, new developments and upcoming challenges. Target Oncol. 2021;16(5):537–52. https://doi.org/10.1007/s11523-021-00840-3; Qiu Z, Chen Z, Zhang C, Zhong W. Achievements and futures of immune checkpoint inhibitors in non-small cell lung cancer. Exp Hematol Oncol. 2019;8:19. https://doi.org/10.1186/s40164-019-0143-z; Lopez-Beltran A, Cimadamore A, Blanca A, Massari F, Vau N, Scarpelli M, et al. Immune checkpoint inhibitors for the treatment of bladder cancer. Cancers (Basel). 2021;13(1):131. https://doi.org/10.3390/cancers13010131; Márquez-Rodas I, Cerezuela P, Soria A, Berrocal A, Riso A, González-Cao M, Martín-Algarra S. Immune checkpoint inhibitors: therapeutic advances in melanoma. Ann Transl Med. 2015;3(18):267. PMID: 26605313; Feng MY, Chan LL, Chan SL. Drug treatment for advanced hepatocellular carcinoma: first-line and beyond. Curr Oncol. 2022;29(8):5489–507. https://doi.org/10.3390/curroncol29080434; Resch I, Bruchbacher A, Franke J, Fajkovic H, Remzi M, Shariat SF, et al. Outcome of immune checkpoint inhibitors in metastatic renal cell carcinoma across different treatment lines. ESMO Open. 2021;6(4):100122. https://doi.org/10.1016/j.esmoop.2021.100122; Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–8. https://doi.org/10.1001/jamaoncol.2018.3923; El Osta B, Hu F, Sadek R, Chintalapally R, Tang SC. Not all immune-checkpoint inhibitors are created equal: meta-analysis and systematic review of immune-related adverse events in cancer trials. Crit Rev Oncol Hematol. 2017;119:1–12. https://doi.org/10.1016/j.critrevonc.2017.09.002; Vaddepally R, Doddamani R, Sodavarapu S, Madam NR, Katkar R, Kutadi AP, et al. Review of immune-related adverse events (irAEs) in non-small-cell lung cancer (NSCLC)—their incidence, management, multi-organ irAEs, and rechallenge. Biomedicines. 2022;10(4):790. https://doi.org/10.3390/biomedicines10040790; Olsen TA, Zhuang TZ, Caulfield S, Martini DJ, Brown JT, Carthon BC, et al. Advances in knowledge and management of immune-related adverse events in cancer immunotherapy. Front Endocrinol (Lausanne). 2022;13:779915. https://doi.org/10.3389/fendo.2022.779915; Allouchery M, Beuvon C, Pérault-Pochat MC, Roblot P, Puyade M, Martin M. Safety of immune check-point inhibitor resumption after interruption for immune-related adverse events, a narrative review. Cancers (Basel). 2022;14(4):955. https://doi.org/10.3390/cancers14040955; Kubo T, Hirohashi Y, Tsukahara T, Kanaseki T, Murata K, Morita R, Torigoe T. Immunopathological basis of immune-related adverse events induced by immune checkpoint blockade therapy. Immunol Med. 2022;45(2):108–18. https://doi.org/10.1080/25785826.2021.1976942; Esfahani K, Elkrief A, Calabrese C, Lapointe R, Hudson M, Routy B, et al. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol. 2020;17(8):504–15. https://doi.org/10.1038/s41571-020-0352-8; Das R, Bar N, Ferreira M, Newman AM, Zhang L, Bailur JK, et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J Clin Invest. 2018;128(2):715–20. https://doi.org/10.1172/JCI96798; Kimbara S, Fujiwara Y, Iwama S, Ohashi K, Kuchiba A, Arima H, et al. Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab. Cancer Sci. 2018;109(11):3583–90. https://doi.org/10.1111/cas.13800; Byrne EH, Fisher DE. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer. 2017;123(S11):2143–53. https://doi.org/10.1002/cncr.30444; Bergqvist V, Hertervig E, Gedeon P, Kopljar M, Griph H, Kinhult S, et al. Vedolizumab treatment for immune checkpoint inhibitor-induced enterocolitis. Cancer Immunol Immunother. 2017;66(5):581–92. https://doi.org/10.1007/s00262-017-1962-6; Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45. https://doi.org/10.1126/scitranslmed.3008002; Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers. 2020;6(1):38. https://doi.org/10.1038/s41572-020-0160-6; Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016;7:10391. https://doi.org/10.1038/ncomms10391; Sabel MS, Lee J, Cai S, Englesbe MJ, Holcombe S, Wang S. Sarcopenia as a prognostic factor among patients with stage III melanoma. Ann Surg Oncol. 2011;18(13):3579–85. https://doi.org/10.1245/s10434-011-1976-9; Valpione S, Pasquali S, Campana LG, Piccin L, Mocellin S, Pigozzo J, Chiarion-Sileni V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J Transl Med. 2018;16(1):94. https://doi.org/10.1186/s12967-018-1467-x; Kehl KL, Yang S, Awad MM, Palmer N, Kohane IS, Schrag D. Pre-existing autoimmune disease and the risk of immune-related adverse events among patients receiving checkpoint inhibitors for cancer. Cancer Immunol Immunother. 2019;68(6):917–26. https://doi.org/10.1007/s00262-019-02321-z; Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228–40. https://doi.org/10.1016/j.semcancer.2018.01.008; Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol. 2017;28(3):583–9. https://doi.org/10.1093/annonc/mdw640; Toi Y, Sugawara S, Sugisaka J, Ono H, Kawashima Y, Aiba T, et al. Profiling preexisting antibodies in patients treated with anti-PD-1 therapy for advanced non-small cell lung cancer. JAMA Oncol. 2019;5(3):376–83. https://doi.org/10.1001/jamaoncol.2018.5860; Suzuki S, Ishikawa N, Konoeda F, Seki N, Fukushima S, Takahashi K, et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology. 2017;89(11):1127–34. https://doi.org/10.1212/WNL.0000000000004359; Clavel T, Gomes-Neto JC, Lagkouvardos I, Ramer-Tait AE. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol Rev. 2017;279(1):8–22. https://doi.org/10.1111/imr.12578; Cappelli LC, Dorak MT, Bettinotti MP, Bingham CO, Shah AA. Association of HLA-DRB1 shared epitope alleles and immune checkpoint inhibitor-induced inflammatory arthritis. Rheumatology (Oxford). 2019;58(3):476–80. https://doi.org/10.1093/rheumatology/key358; Hasan Ali O, Berner F, Bomze D, Fässler M, Diem S, Cozzio A, et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur J Cancer. 2019;107:8–14. https://doi.org/10.1016/j.ejca.2018.11.009; Fountzilas E, Lampaki S, Koliou GA, Koumarianou A, Levva S, Vagionas A, et al. Real-world safety and efficacy data of immunotherapy in patients with cancer and autoimmune disease: the experience of the Hellenic Cooperative Oncology Group. Cancer Immunol Immunother. 2022;71(2):327–37. https://doi.org/10.1007/s00262-021-02985-6; Danlos FX, Voisin AL, Dyevre V, Michot JM, Routier E, Taillade L, et al. Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. Eur J Cancer. 2018;91:21–9. https://doi.org/10.1016/j.ejca.2017.12.008; Robert C, Hwu WJ, Hamid O, Ribas A, Weber JS, Daud AI, et al. Long-term safety of pembrolizumab monotherapy and relationship with clinical outcome: a landmark analysis in patients with advanced melanoma. Eur J Cancer. 2021;144:182–91. https://doi.org/10.1016/j.ejca.2020.11.010; Bang A, Wilhite TJ, Pike LRG, Cagney DN, Aizer AA, Taylor A, et al. Multicenter evaluation of the tolerability of combined treatment with PD-1 and CTLA-4 immune checkpoint inhibitors and palliative radiation therapy. Int J Radiat Oncol Biol Phys. 2017;98(2):344–51. https://doi.org/10.1016/j.ijrobp.2017.02.003; Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. https://doi.org/10.1056/NEJMc1302338; Vizcarrondo FR, Patel SP, Pennell NA, Pakkala S, West H, Kratzke R, et al., Phase 1b study of crizotinib in combination with pembrolizumab in patients (pts) with untreated ALK-positive (+) advanced non-small cell lung cancer (NSCLC). Annals of Oncology. 2016;27(Suppl 6):vi416–54. https://doi.org/10.1093/annonc/mdw383.91; Ahn M-J, Yang J, Yu H, Saka H, Ramalingam S, Goto K, et al. 136O: osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. Journal of Thoracic Oncology. 2016;11(4):S115. https://doi.org/10.1016/S1556-0864(16)30246-5; Seethapathy H, Zhao S, Chute DF, Zubiri L, Oppong Y, Strohbehn I, et al. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin J Am Soc Nephrol. 2019;14(12):1692–700. https://doi.org/10.2215/CJN.00990119; Raghavan R, Shawar S. Mechanisms of drug-induced interstitial nephritis. Adv Chronic Kidney Dis. 2017;24(2):64–71. https://doi.org/10.1053/j.ackd.2016.11.004; Abu-Sbeih H, Herrera LN, Tang T, Altan M, Chaftari AP, Okhuysen PC, et al. Impact of antibiotic therapy on the development and response to treatment of immune checkpoint inhibitor-mediated diarrhea and colitis. J Immunother Cancer. 2019;7(1):242. https://doi.org/10.1186/s40425-019-0714-x; Проценко СА, Антимоник НЮ, Берштейн Л.М, Жукова НВ, Новик АВ, Носов ДА и др. Практические рекомендации по управлению иммуноопосредованными нежелательными явлениями. Злокачественные опухоли. 2022;10(3s2):168–99. https://doi.org/10.18027/2224-5057-2020-10-3s2-50; Haanen JBAG, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119–42. https://doi.org/10.1093/annonc/mdx225; Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis. 2021;80(1):36–48. https://doi.org/10.1136/annrheumdis-2020-217139; Thompson JA, Schneider BJ, Brahmer J, Andrews S, Armand P, Bhatia S, et al. NCCN Guidelines Insights: management of immunotherapy-related toxicities, version 1.2020. J Natl Compr Canc Netw. 2020;18(3):230–41. https://doi.org/10.6004/jnccn.2020.0012; Ito M, Fujiwara S, Fujimoto D, Mori R, Yoshimura H, Hata A, et al. Rituximab for nivolumab plus ipilimumab-induced encephalitis in a small-cell lung cancer patient. Ann Oncol. 2017;28(9):2318–9. https://doi.org/10.1093/annonc/mdx252; Crusz SM, Radunovic A, Shepherd S, Shah S, Newey V, Phillips M, et al. Rituximab in the treatment of pembrolizumab-induced myasthenia gravis. Eur J Cancer. 2018;102:49–51. https://doi.org/10.1016/j.ejca.2018.07.125; Esfahani K, Buhlaiga N, Thébault P, Lapointe R, Johnson NA, Miller WH Jr. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N Engl J Med. 2019;380(24):2375–6. https://doi.org/10.1056/NEJMc1903064; Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, Kerneis M. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N Engl J Med. 2019;380(24):2377–9. https://doi.org/10.1056/NEJMc1901677; Kim ST, Tayar J, Trinh VA, Suarez-Almazor M, Garcia S, Hwu P, et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann Rheum Dis. 2017;76(12):2061–4. https://doi.org/10.1136/annrheumdis-2017-211560; Комиссарова ВА. Меры минимизации рисков в фармаконадзоре: обзор отечественного и зарубежного опыта. Качественная клиническая практика. 2019;(3):33–43. https://doi.org/10.24411/2588-0519-2019-10081; Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. https://doi.org/10.1056/NEJMoa1503093; https://www.risksafety.ru/jour/article/view/360
-
7Academic Journal
Authors: С. А. Проценко, М. Ф. Баллюзек, Л. М. Берштейн, Н. В. Жукова, А. В. Новик, Д. А. Носов, Н. Н. Петенко, А. И. Семенова, В. А. Чубенко, Г. Ю. Харкевич, Д. И. Юдин
Source: Malignant tumours; Том 13, № 3s2-2 (2023); 212-251 ; Злокачественные опухоли; Том 13, № 3s2-2 (2023); 212-251 ; 2587-6813 ; 2224-5057
Subject Terms: лечение, иммуноопосредованные нежелательные явления
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1258/892; https://www.malignanttumors.org/jour/article/view/1258
-
8Academic Journal
Authors: Musaelyan A.A., Lapin S.V., Urtenova M.A., Odintsova S.V., Chistyakov I.V., Ulitin A.M., Ismanbaev N.T., Akopov A.L., Orlov S.V.
Source: Advances in Molecular Oncology; Vol 9, No 2 (2022); 79-88 ; Успехи молекулярной онкологии; Vol 9, No 2 (2022); 79-88 ; 2413-3787 ; 2313-805X
Subject Terms: predictive markers, immune-related adverse events, non-small cell lung cancer, immunotherapy, предиктивные маркеры, иммуноопосредованные нежелательные явления, немелкоклеточный рак легкого, иммунотерапия
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/441/263; https://umo.abvpress.ru/jour/article/view/441
-
9Academic Journal
Authors: E. A. Degtiareva, S. A. Protsenko, E. N. Imyanitov, G. M. Teletaeva, D. Kh. Latipova, A. I. Semenova, A. V. Novik, Е. А. Дегтярёва, С. А. Проценко, Е. Н. Имянитов, Г. М. Телетаева, Д. Х. Латипова, А. И. Семенова, А. В. Новик
Contributors: The study was supported by Russian Science Foundation (grant No. 20-15-00244)., Работа выполнена при поддержке РНФ (грант № 20-15-00244).
Source: Siberian journal of oncology; Том 21, № 5 (2022); 162-167 ; Сибирский онкологический журнал; Том 21, № 5 (2022); 162-167 ; 2312-3168 ; 1814-4861
Subject Terms: реактивация иммуноопосредованных нежелательных явлений, targeted therapy, immunotherapy, immune checkpoint inhibitors, delayed immune-related adverse events, reactivation of immune-related adverse events, таргетная терапия, иммунотерапия, терапия ингибиторами контрольных точек, отсроченные иммуноопосредованные нежелательные явления
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/2322/1042; Kennedy L.B., Salama A.K.S. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020; 70(2): 86–104. doi:10.3322/caac.21596.; Martins F., Sofiya L., Sykiotis G.P., Lamine F., Maillard M., Fraga M., Shabafrouz K., Ribi C., Cairoli A., Guex-Crosier Y., Kuntzer T., Michielin O., Peters S., Coukos G., Spertini F., Thompson J.A., Obeid M. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019; 16(9): 563–80. doi:10.1038/s41571-019-0218-0.; Gupta A., De Felice K.M., Loftus E.V. Jr, Khanna S. Systematic review: colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther. 2015; 42(4): 406–17. doi:10.1111/apt.13281.; Wang D.Y., Salem J.E., Cohen J.V., Chandra S., Menzer C., Ye F., Zhao S., Das S., Beckermann K.E., Ha L., Rathmell W.K., Ancell K.K., Balko J.M., Bowman C., Davis E.J., Chism D.D., Horn L., Long G.V., Carlino M.S., Lebrun-Vignes B., Eroglu Z., Hassel J.C., Menzies A.M., Sosman J.A., Sullivan R.J., Moslehi J.J., Johnson D.B. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018; 4(12): 1721–8. doi:10.1001/jamaoncol.2018.3923. Erratum in: JAMA Oncol. 2018; 4(12): 1792.; Cramer P., Bresalier R.S. Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors. Curr Gastroenterol Rep. 2017; 19(1): 3. doi:10.1007/s11894-017-0540-6.; Проценко С.А., Антимоник Н.Ю., Берштейн Л.М., Жукова Н.В., Новик А.В., Носов Д.А., Петенко Н.Н., Семенова А.И., Чубенко В.А., Харкевич Г.Ю., Юдин Д.И. Практические рекомендации по управлению иммуноопосредованными нежелательными явлениями. Злокачественные опухоли: Практические рекомендации RUSSCO. 2020; 10(3s2): 168–99. doi:10.18027/2224-5057-2020-10-3s2-50.; National Comprehensive Cancer Network, Clinical Practice Guidelines in Oncology (NCCN Guidelines®), Management of ImmunotherapyRelated Toxicities, Version 1.2022. URL: https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf [cited 2022 Mar 30].; Keane J., Gershon S., Wise R.P., Mirabile-Levens E., Kasznica J., Schwieterman W.D., Siegel J.N., Braun M.M. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001; 345(15): 1098–104. doi:10.1056/NEJMoa011110.; Ng S.C., Hilmi I.N., Blake A., Bhayat F., Adsul S., Khan Q.R., Wu D.C. Low Frequency of Opportunistic Infections in Patients Receiving Vedolizumab in Clinical Trials and Post-Marketing Setting. Inflamm Bowel Dis. 2018; 24(11): 2431–41. doi:10.1093/ibd/izy153.; Marthey L., Mateus C., Mussini C., Nachury M., Nancey S., Grange F., Zallot C., Peyrin-Biroulet L., Rahier J.F., Bourdier de Beauregard M., Mortier L., Coutzac C., Soularue E., Lanoy E., Kapel N., Planchard D., Chaput N., Robert C., Carbonnel F. Cancer Immunotherapy with Anti-CTLA-4 Monoclonal Antibodies Induces an Inflammatory Bowel Disease. J Crohns Colitis. 2016; 10(4): 395–401. doi:10.1093/ecco-jcc/jjv227.; Owen C.N., Bai X., Quah T., Lo S.N., Allayous C., Callaghan S., Martínez-Vila C., Wallace R., Bhave P., Reijers I.L.M., Thompson N., Vanella V., Gerard C.L., Aspeslagh S., Labianca A., Khattak A., Mandala M., Xu W., Neyns B., Michielin O., Blank C.U., Welsh S.J., Haydon A., Sandhu S., Mangana J., McQuade J.L., Ascierto P.A., Zimmer L., Johnson D.B., Arance A., Lorigan P., Lebbé C., Carlino M.S., Sullivan R.J., Long G.V., Menzies A.M. Delayed immune-related adverse events with anti-PD-1-based immunotherapy in melanoma. Ann Oncol. 2021; 32(7): 917–25. doi:10.1016/j.annonc.2021.03.204.; Couey M.A., Bell R.B., Patel A.A., Romba M.C., Crittenden M.R., Curti B.D., Urba W.J., Leidner R.S. Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. J Immunother Cancer. 2019; 7(1): 165. doi:10.1186/s40425-019-0645-6.; Sarofim M., Winn R. Rare case of delayed onset colitis due to immunotherapy for malignant melanoma. ANZ J Surg. 2019; 89(10): 472–3. doi:10.1111/ans.14768.; https://www.siboncoj.ru/jour/article/view/2322
-
10Academic Journal
Authors: С. А. Проценко, Н. Ю. Антимоник, М. Ф. Баллюзек, Л. М. Берштейн, Н. В. Жукова, А. В. Новик, Д. А. Носов, Н. Н. Петенко, А. И. Семенова, В. А. Чубенко, Г. Ю. Харкевич, Д. И. Юдин
Source: Malignant tumours; Том 12, № 3s2-2 (2022); 203-241 ; Злокачественные опухоли; Том 12, № 3s2-2 (2022); 203-241 ; 2587-6813 ; 2224-5057
Subject Terms: лечение, иммуноопосредованные нежелательные явления
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1074/770; https://www.malignanttumors.org/jour/article/view/1074
-
11Academic Journal
Authors: Glibka A.A., Mazurina N.V., Gridnev D.I., Sarantseva K.A., Troshina E.A.
Contributors: 0
Source: Almanac of Clinical Medicine; Vol 50, No 8 (2022); 490-496 ; Альманах клинической медицины; Vol 50, No 8 (2022); 490-496 ; 2587-9294 ; 2072-0505
Subject Terms: immune checkpoint inhibitors, nivolumab, endocrine immune-mediated adverse events, adrenal insufficiency, hypothyroidism, diabetes mellitus, lung cancer, ингибиторы контрольных точек, ниволумаб, эндокринные иммуноопосредованные нежелательные явления, надпочечниковая недостаточность, гипотиреоз, сахарный диабет, рак легкого
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/1767/1542; https://almclinmed.ru/jour/article/downloadSuppFile/1767/3112; https://almclinmed.ru/jour/article/downloadSuppFile/1767/3113; https://almclinmed.ru/jour/article/downloadSuppFile/1767/38214; https://almclinmed.ru/jour/article/downloadSuppFile/1767/38215; https://almclinmed.ru/jour/article/view/1767
-
12Academic Journal
Authors: С. А. Проценко, Н. Ю. Антимоник, М. Ф. Баллюзек, Л. М. Берштейн, Н. В. Жукова, А. В. Новик, Д. А. Носов, Н. Н. Петенко, А. И. Семенова, В. А. Чубенко, Г. Ю. Харкевич, Д. И. Юдин
Source: Malignant tumours; Том 11, № 3s2-2 (2021); 187-223 ; Злокачественные опухоли; Том 11, № 3s2-2 (2021); 187-223 ; 2587-6813 ; 2224-5057
Subject Terms: лечение, иммуноопосредованные нежелательные явления
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/903/651; https://www.malignanttumors.org/jour/article/view/903
-
13Academic Journal
Authors: E. S. Denisova, M. S. Ardzinba, K. K. Laktionov, D. I. Yudin, K. A. Sarantseva, G. V. Shcherbakova, N. V. Marinichenko, Е. С. Денисова, М. С. Ардзинба, К. К. Лактионов, Д. И. Юдин, К. А. Саранцева, Г. В. Щербакова, Н. В. Мариниченко
Source: Meditsinskiy sovet = Medical Council; № 9 (2020); 258-264 ; Медицинский Совет; № 9 (2020); 258-264 ; 2658-5790 ; 2079-701X
Subject Terms: иммуноопосредованные нежелательные явления, pneumonitis, Immune checkpoint inhibitors, PD-1, Nivolumab, case report, Immune related adverse events, ингибиторы контрольных точек иммунитета, пневмонит, ниволумаб, клинический случай
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/5743/5241; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi:10.3322/caac.21590.; Bareschino M.A., Schettino C., Rossi A., Maione P., Sacco P.C., Zeppa R., Gridelli C. Treatment of advanced non small cell lung cancer. J Thorac Dis. 2011;3(2):122–133. doi:10.3978/j.issn.2072-1439.2010.12.08.; Kim E.S., Hirsh V., Mok T., Socinski M.A., Gervais R., Wuet Y.L. et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet. 2008;372(9652):1809– 1818. doi:10.1016/S0140-6736(08)61758-4.; Iacono D., Chiari R., Metro G., Bennati C., Bellezza G., Cenci M. et al. Future options for ALK-positive non-small cell lung cancer. Lung Cancer. 2015;87(3):211–219. doi:10.1016/j.lungcan.2014.12.017.; Asahina H., Sekine I., Horinouchi H., Nokihara H., Yamamoto N., Kubota K. et al. Retrospective analysis of third-line and fourth-line chemotherapy for advanced non-small-cell lung cancer. Clin Lung Cancer. 2012;13(1):39–43. doi:10.1016/j.cllc.2011.06.008.; Stinchcombe T.E. The Use of EGFR Tyrosine Kinase Inhibitors in EGFR Wild-Type Non-Small-Cell Lung Cancer. Curr Treat Options Oncol. 2016;17(4):18. doi:10.1007/s11864-016-0394-4.; Doroshow D.B., Sanmamed M.F., Hastings K., Politi K., Rimm D.L., Chen L. et al. Immunotherapy in Non-Small Cell Lung Cancer: Facts and Hopes. Clin Cancer Res. 2019;25(15):4592–4602. doi:10.1158/1078-0432.CCR-18-1538.; Brahmer J., Reckamp K.L., Baas P., Crinò L., Eberhardt W.E., Poddubskaya E. et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell NonSmall-Cell Lung Cancer. N Engl J Med. 2015;373(2):123–135. doi:10.1056/NEJMoa1504627.; Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E. et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–1639. doi:10.1056/NEJMoa1507643.; Postow M.A. Managing immune checkpoint-blocking antibody side effects. Am Soc Clin Oncol Educ Book. 2015;76–83. doi:10.14694/EdBook_AM.2015.35.76.; Gandhi L., Rodríguez-Abreu D., Gadgeel S., Esteban E., Felip E., Angelis F.D. et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med. 2018;378(22):2078–2092. doi:10.1056/NEJMoa1801005.; Vokes E.E., Ready N., Felip E., Horn L., Burgio M.A., Antonia S.J. et al. Nivolumab versus docetaxel in previously treated advanced non-smallcell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann Oncol. 2018;29(4):959–965. doi:10.1093/annonc/mdy041.; Yasuda K., Tanaka T., Ishihara S., Otani K., Nishikawa T., Kiyomatsu T. et al. Intestinal perforation after nivolumab immunotherapy for a malignant melanoma: a case report. Surg Case Rep. 2017;3(1):94. doi:10.1186/s40792-017-0370-7.; Guan M., Zhou Y.P., Sun J.L., Chen S.C. Adverse events of monoclonal antibodies used for cancer therapy. Biomed Res Int. 2015;2015:428169. doi:10.1155/2015/428169.; Weber J.S., Yang J.C., Atkins M.B., Disis M.L. Toxicities of Immunotherapy for the Practitioner. J Clin Oncol. 2015;33(18):2092–2099. doi:10.1200/JCO.2014.60.0379.; Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–2454. doi:10.1056/NEJMoa1200690.; Nishino M., Giobbie-Hurder A., Hatabu H., Ramaiya N.H., Hodi F.S. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016;2(12):1607–1616. doi:10.1001/jamaoncol.2016.2453.; Wang Y., Zhou S., Yang F., Qi X., Wang X., Guan X. et al. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis. JAMA Oncol. 2019;5(7):1008–1019. doi:10.1001/jamaoncol.2019.0393.; Toh C.K., Wong E.H., Lim W.T., Leong S.S., Fong K.M., Wee J. et al. The impact of smoking status on the behavior and survival outcome of patients with advanced non-small cell lung cancer: a retrospective analysis. Chest. 2004;126(6):1750–1756. doi:10.1378/chest.126.6.1750.; Bouros D., Hatzakis K., Labrakis H., Zeibecoglou K. Association of malignancy with diseases causing interstitial pulmonary changes. Chest. 2002;121(4):1278–1289. doi:10.1378/chest.121.4.1278.; De Velasco G., Je Y., Bossé D., Awad M.M., Ott P.A., Moreira R.B. et al. Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients [published correction appears in Cancer Immunol Res. 2018;6(4):498–499]. Cancer Immunol Res. 2017;5(4):312–318. doi:10.1158/2326-6066.CIR-16-0237.; Naidoo J., Wang X., Woo K.M., Iyriboz T., Halpenny D., Cunningham J. et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/ Programmed Death Ligand 1 Therapy [published correction appears in J Clin Oncol. 2017;35(22):2590]. J Clin Oncol. 2017;35(7):709–717. doi:10.1200/JCO.2016.68.2005.; Xia L., Liu Y., Wang Y. PD-1/PD-L1 Blockade Therapy in Advanced NonSmall-Cell Lung Cancer: Current Status and Future Directions. Oncologist. 2019;24(1):31–41. doi:10.1634/theoncologist.2019-IO-S1-s05.; Shao J., Wang C., Ren P., Jiang Y., Tian P., Li W. Treatment- and immunerelated adverse events of immune checkpoint inhibitors in advanced lung cancer. Biosci Rep. 2020;40(5):BSR20192347. doi:10.1042/BSR20192347.; Engel-Nitz N.M., Johnson M.P., Bunner S.H., Ryan K.J. Real-World Costs of Adverse Events in First-Line Treatment of Metastatic Non-Small Cell Lung Cancer. J Manag Care Spec Pharm. 2020;26(6):729–740. doi:10.18553/jmcp.2020.26.6.729.
-
14Academic Journal
Authors: E. V. Reutova, K. P. Laktionov, V. V. Breder, K. A. Sarantseva, M. A. Okruzhnova, M. V. Peregudova, Е. В. Реутова, К. П. Лактионов, В. В. Бредер, К. А. Саранцева, М. А. Окружнова, М. В. Перегудова
Source: Malignant tumours; № 4 (2016); 68-76 ; Злокачественные опухоли; № 4 (2016); 68-76 ; 2587-6813 ; 2224-5057
Subject Terms: иммуноопосредованные нежелательные явления, immune checkpoint inhibitors, immune-mediated adverse events, ингибиторы контрольных точек
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/274/244; Brahmer J., Reckamp K. L., Baas P. et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(2): 123–35.; Borghaei H., Paz-Ares L., Horn L. et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(17): 1627–39.; Herbst R. S., Baas P., Kim D. W. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomized controlled trial. Lancet. 2016; 387(10027): 1540–50.; Naidoo J., Page D. B., Li B. T. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015 Dec;26(12):2375–91.; Pardoll D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22; 12(4):252–64.; Sarantseva K. A., Laktionava L. V., Reutova E. V., Chernenko P. A., Breder V. V. Immunology: immune response as leading protectionfactor against cancer. Malignant Tumours 2016; 2: 5–14.; Tarhini A. Immune-mediated adverse events associated with ipilimumab ctla-4 blockade therapy: the underlying mechanisms and clinical management. Scientifica (Cairo). 2013; 2013:857519.; Horvat T. Z., Adel N. G., Dang T. O. et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at memorial sloan kettering cancer center. J Clin Oncol 2015; 33(28): 3193–8.; Hodi F. S., O’Day S.J., McDermott D.F. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711e23.; Topalian S. L., Hodi F. S., Brahmer J. R., Gettinger S. N. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443e54.; Michot J. M., Bigenwald C., Champiat S. et al. Immunerelated adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016 Feb;54:1 39–48.; Good-Jacobson K.L., Szumilas C. G., Chen L. et al. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol 2010; 11: 535–542.; Teply B. A., Lipson E. J. Identification and management of toxicities from immune checkpoint-blocking drugs. Oncology (Williston Park). 2014 Nov;28 Suppl 3:30–8.; O Day S.J., Maio M., Chiarion-Sileni V. et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicentre single-arm phase II study. Ann. Oncol 2010; 21(8):1712–1717 2.; Robert C., Ribas A., Wolchok J. D. et al. Anti-programmeddeath-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384(9948): 1109–1117.; European Medicines Agency: EMEA/H/C/002213-PSUSA/00009200/201409 – ipilimumab Product information19/06/2015 Yervoy. http://www.ema.europa.eu/docs/en_GB/document_library/ERAP_-_Product information/human002213/WC500109299.pdf (8 November 2015, data last accessed), August 2015.; Weber J. S., Antonia S. J., Topalian S. L. et al. Safety profile of nivolumab (NIVO) in patients with advanced melanoma (MEL): a pooled analysis. J Clin Oncol 2015; 33 (suppl).; Kyi C., Hellmann M. D., Wolchok J. D. Opportunistic infections in patients treated with immunotherapy for cancer. J Immunother Cancer 2014; 2(1):19.; Robert C., Long G. V., Brady B. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015 Jan 22; 372(4).; Wolchok J. D., Neyns B., Linette G. et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, doseranging study. Lancet Oncol 2010 Feb; 11(2):155e64.; Hofmann L., Forschner A., Loquai C. et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer. 2016 Jun; 60: 190–209.; Belum V. R., Benhuri B., Postow M. A. et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer. 2016 Jun; 60: 12–25.; Lacouture M. E., Wolchok J. D., Yosipovitch G. et al. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Drematol. 2014; 71:161–9.; Langer C. J. Emerging immunotherapies in the treatment of non-small cell lung cancer (NSCLC): The role of immune checkpoint inhibitors. Am. J Clin Oncol.; Zimmer L., Goldinger S. M., Hofmann L. et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer. 2016 Jun;60:210–25. doi:10.1016/j.ejca.2016.02.024. Epub 2016 Apr 13.; Wilgenhof S., Neyns B. Anti-CTLA-4 antibody Guillain-Barre syndrome in a melanoma patient. Ann. Oncol.2011; 22: 991–993; https://www.malignanttumors.org/jour/article/view/274
-
15Academic Journal
Authors: Реутова Елена Валерьевна, Лактионов Константин Павлович, Бредер Валерий Владимирович, Саранцева Ксения Андреевна, Окружнова Мария Александровна, Перегудова Марина Валерьевна
Subject Terms: иммунотерапия, ингибиторы контрольных точек, иммуноопосредованные нежелательные явления
File Description: text/html
-
16Academic Journal
Source: Злокачественные опухоли.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, иммунотерапия, ингибиторы контрольных точек, иммуноопосредованные нежелательные явления, 3. Good health
File Description: text/html
-
17
Contributors: Новик Алексей Викторович, Novik Aleksej Viktorovic, Жукова Наталья Владимировна, Zukova Natala Vladimirovna
Subject Terms: иммунотерапия, иммуноопосредованные нежелательные явления, деревья классификации, immunotherapy, immune-related adverse events, classification trees
Relation: 049084; http://hdl.handle.net/11701/39572
Availability: http://hdl.handle.net/11701/39572