-
1Book
Source: Theory of Quantum Information with Memory. Dec 09, 2024
-
2Academic Journal
Authors: Yurii Dorofieiev, Leonid Lyubchyk, Maxim Malko
Contributors: ELAKPI
Source: Sistemnì Doslìdženâ ta Informacìjnì Tehnologìï, Iss 2 (2024)
Subject Terms: комутаційна топологія, semidefinite programming problem, invariant ellipsoids method, лінійна матрична нерівність, QA75.5-76.95, метод інваріантних еліпсоїдів, задача напіввизначеного програмування, консенсусне керування, ПІД регулятор, switching topology, Electronic computers. Computer science, multi-agent system, PID controller, мультиагентна система, consensus control, linear matrix inequality
File Description: application/pdf
-
3Academic Journal
Source: System research and information technologies; No. 2 (2024); 100-116
Системные исследования и информационные технологии; № 2 (2024); 100-116
Системні дослідження та інформаційні технології; № 2 (2024); 100-116Subject Terms: комутаційна топологія, semidefinite programming problem, invariant ellipsoids method, лінійна матрична нерівність, метод інваріантних еліпсоїдів, задача напіввизначеного програмування, консенсусне керування, ПІД регулятор, switching topology, multi-agent system, PID controller, consensus control, мультиагентна система, linear matrix inequality
File Description: application/pdf
Access URL: http://journal.iasa.kpi.ua/article/view/284844
-
4Academic Journal
Authors: Дорофєєв, Юрій, Любчик, Леонід, Малько, Максим
Source: System research and information technologies; No. 2 (2024); 100-116 ; Системные исследования и информационные технологии; № 2 (2024); 100-116 ; Системні дослідження та інформаційні технології; № 2 (2024); 100-116 ; 2308-8893 ; 1681-6048
Subject Terms: multi-agent system, consensus control, switching topology, PID controller, invariant ellipsoids method, linear matrix inequality, semidefinite programming problem, мультиагентна система, консенсусне керування, комутаційна топологія, ПІД регулятор, метод інваріантних еліпсоїдів, лінійна матрична нерівність, задача напіввизначеного програмування
File Description: application/pdf
Relation: http://journal.iasa.kpi.ua/article/view/284844/301162; http://journal.iasa.kpi.ua/article/view/284844
Availability: http://journal.iasa.kpi.ua/article/view/284844
-
5Conference
Authors: Hama, Ryota, Imai, Jun, Takahashi, Akiko, Funabiki, Shigeyuki
Source: 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA) Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA), 2014 International. :2470-2475 May, 2014
Relation: 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA)
-
6Academic Journal
Authors: Zhadan, V. G.Aff1, Aff2, IDS0965542522040133_cor1
Linked Full TextSource: Computational Mathematics and Mathematical Physics. 62(4):581-598
-
7Academic Journal
Authors: Zhadan, V. G.Aff1, IDS0965542522020129_cor1
Linked Full TextSource: Computational Mathematics and Mathematical Physics. 62(2):232-247
-
8Academic Journal
Authors: Yonmook Park, Min-Jea Tahk, Hyochoong Bang
Source: IEEE Transactions on Fuzzy Systems IEEE Trans. Fuzzy Syst. Fuzzy Systems, IEEE Transactions on. 12(6):766-779 Dec, 2004
-
9Academic Journal
Authors: Chen, Y., Karlsson, Johan
Source: IEEE Control Systems Letters. 2(2):260-265
Subject Terms: Agents-based systems, ensemble estimation, linear systems, nonlinear filtering, optimal mass transport, Convex optimization, Statistical mechanics, Convex optimization problems, Corresponding state, Estimation problem, Marginal distribution, Optimal solutions, Semidefinite programming problem, State trajectory, Dynamics
File Description: print
Linked Full Text -
10Academic Journal
Authors: Gotoh, Jun-ya, Konno, Hiroshi
Source: Management Science, 2002 May 01. 48(5), 665-678.
Access URL: https://www.jstor.org/stable/822505
-
11eBook
Authors: Kocvara, MichalAff1_26, Aff2_26, Stingl, MichaelAff3_26
Contributors: Anjos, Miguel F., editorAffID1, Lasserre, Jean B., editorAffID2
Source: Handbook on Semidefinite, Conic and Polynomial Optimization. 166:755-791
-
12Academic Journal
Authors: Zhadan, V. G.
Linked Full TextSource: Computational Mathematics and Mathematical Physics. July 2016 56(7):1220-1237
-
13Academic Journal
Authors: Atsuro Ito, Kentaro Matsui, Masaki Inoue, Shohei Mori, Shuichi Adachi, 井上 正樹, 伊藤 敦郎, 松井 健太郎, 森 翔平, 足立 修一
Source: 日本音響学会誌 / THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN. 2019, 75(7):374
-
14Academic Journal
Authors: Atsuro Ito, Kentaro Matsui, 伊藤 敦郎, 松井 健太郎
Source: 日本音響学会誌 / THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN. 2019, 76(1):23
-
15Academic Journal
Authors: Jun-ya Gotoh, Hiroshi Konno
Source: Management Science. 48:665-678
-
16Academic Journal
Authors: Wang Zhemin, Huang Zhenghai, Zhou Kunping
Source: Acta Mathematicae Applicatae Sinica. 16:171-179
Subject Terms: interior-point method, semidefinite programming problem, \(\varepsilon\)-approximate solution, 0211 other engineering and technologies, Semidefinite programming, 02 engineering and technology, 0101 mathematics, 01 natural sciences
File Description: application/xml
Linked Full TextAccess URL: https://link.springer.com/content/pdf/10.1007/BF02677677.pdf
https://en.cnki.com.cn/Article_en/CJFDTOTAL-YISY200002006.htm
https://link.springer.com/article/10.1007%2FBF02677677 -
17Academic Journal
Authors: V Varagapriya a, ⁎, Singh, Vikas Vikram a, Lisser, Abdel b
Linked Full TextSource: In Operations Research Letters March 2022 50(2):218-223
-
18Academic Journal
Authors: M. Kovara, Jochem Zowe, Aharon Ben-Tal, Arkadi Nemirovski
Source: SIAM Journal on Optimization. 9:813-832
Subject Terms: Convex programming, semidefinite programming problem, contact condition, 0211 other engineering and technologies, free material design, 02 engineering and technology, 01 natural sciences, polynomial-time algorithms, Topological methods for optimization problems in solid mechanics, Applications of mathematical programming, multiload case, contact conditions, polynomial time algorithms of interior point type, Semidefinite programming, discretization, structural optimization, Optimization of other properties in solid mechanics, 0101 mathematics, material optimization, topology optimization, existence of solution, stiffest structure
File Description: application/xml
Access URL: https://zbmath.org/1368641
https://doi.org/10.1137/s1052623497327994
https://zbmath.org/1579038
https://doi.org/10.1137/s0036144500372081
https://dialnet.unirioja.es/servlet/articulo?codigo=2848241
https://www2.isye.gatech.edu/~nemirovs/SIOPT_FMO_1999.pdf
https://documat.unirioja.es/servlet/articulo?codigo=2848241
https://dblp.uni-trier.de/db/journals/siamrev/siamrev42.html#Ben-TalKNZ00
http://ui.adsabs.harvard.edu/abs/2000SIAMR..42..695B/abstract
https://epubs.siam.org/doi/abs/10.1137/S0036144500372081 -
19Academic Journal
Authors: Zhadan, V. G., Orlov, A. A.
Linked Full TextSource: Computational Mathematics and Mathematical Physics. December 2011 51(12):2031-2051
-
20Academic Journal
Authors: Babynin, M. S., Zhadan, V. G.
Linked Full TextSource: Computational Mathematics and Mathematical Physics. October 2008 48(10):1746-1767