Showing 1 - 20 results of 174 for search '"эндотелиальные клетки"', query time: 0.84s Refine Results
  1. 1
    Academic Journal

    Contributors: Исследование выполнено за счет гранта Российского научного фонда № 24-65-00039 «Идентификация циркулирующего маркера провоспалительной дисфункции эндотелия в контексте гетерогенности эндотелиальных клеток», https://rscf.ru/project/24-65-00039/.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 5 (2025); 103-121 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 5 (2025); 103-121 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1763/1103; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1763/2248; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1763/2249; Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi:10.1016/j.atherosclerosis.2016.03.007.; Amersfoort J, Eelen G, Carmeliet P. Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol. 2022; 22(9):576-588. doi:10.1038/s41577-022-00694-4.; Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023; 20(3):197-210. doi:10.1038/s41569-022-00770-1.; Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022; 58(3):781-806. doi:10.1134/S0022093022030139.; Goncharov NV, Popova PI, Kudryavtsev IV, Golovkin AS, Savitskaya IV, Avdonin PP, Korf EA, Voitenko NG, Belinskaia DA, Serebryakova MK, Matveeva NV, Gerlakh NO, Anikievich NE, Gubatenko MA, Dobrylko IA, Trulioff AS, Aquino AD, Jenkins RO, Avdonin PV. Immunological Profile and Markers of Endothelial Dysfunction in Elderly Patients with Cognitive Impairments. Int J Mol Sci. 2024; 25(3):1888. doi:10.3390/ijms25031888.; Corban MT., Prasad A, Nesbitt L, Loeffler D, Herrmann J, Lerman LO, Lerman A. Local Production of Soluble Urokinase Plasminogen Activator Receptor and Plasminogen Activator Inhibitor-1 in the Coronary Circulation Is Associated With Coronary Endothelial Dysfunction in Humans. J Am Heart Assoc. 2018; 7(15):e009881. doi:10.1161/JAHA.118.009881.; Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025; 90(1):132-160. doi:10.1134/S0006297924604064.; Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova D, Basovich L, Repkin E, Kutikhin A. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int J Mol Sci. 2024; 25(21):11382. doi:10.3390/ijms252111382.; Gomez Toledo A, Golden GJ, Cummings RD, Malmström J, Esko JD. Endothelial Glycocalyx Turnover in Vascular Health and Disease: Rethinking Endothelial Dysfunction. Annu Rev Biochem. 2025; 94(1):561-586. doi:10.1146/annurev-biochem-032620-104745.; Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci. 2023; 24(19):15032. doi:10.3390/ijms241915032.; Shishkova D, Lobov A, Zainullina B, Matveeva V, Markova V, Sinitskaya A, Velikanova E, Sinitsky M, Kanonykina A, Dyleva Y, Kutikhin A. Calciprotein Particles Cause Physiologically Significant Pro-Inflammatory Response in Endothelial Cells and Systemic Circulation. Int J Mol Sci. 2022; 23(23):14941. doi:10.3390/ijms232314941.; Sinitsky M, Repkin E, Sinitskaya A, Markova V, Shishkova D, Barbarash O. Proteomic Profiling of Endothelial Cells Exposed to Mitomycin C: Key Proteins and Pathways Underlying Genotoxic Stress-Induced Endothelial Dysfunction. Int J Mol Sci. 2024; 25(7):4044. doi:10.3390/ijms25074044.; Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023; 132(8):970-992. doi:10.1161/CIRCRESAHA.123.321752.; Segers VFM, Bringmans T, De Keulenaer GW. Endothelial dysfunction at the cellular level in three dimensions: severity, acuteness, and distribution. Am J Physiol Heart Circ Physiol. 2023; 325(2):H398-H413. doi:10.1152/ajpheart.00256.2023.; Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol. 2024; 21(6):396-416. doi:10.1038/s41569-023-00964-1.

  2. 2
    Academic Journal

    Contributors: Исследование выполнено при поддержке гранта Российского научного фонда № 24-75-10057 «Идентификация клеточных маркеров дисфункции эндотелия», https://rscf.ru/project/24-75-10057/.

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 2 (2025); 110-126 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 2 (2025); 110-126 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1669/1030; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2051; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2052; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2053; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2054; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2055; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2056; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2057; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2058; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2059; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2060; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2061; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2062; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2063; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2064; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1669/2065; Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi:10.1134/S0022093022030139.; Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi:10.1161/CIRCRESAHA.115.306301.; Шишкова Д.К., Фролов А.В., Маркова В.Е., Маркова Ю.О., Каноныкина А.Ю., Лазебная А.И., Матвеева В.Г., Торгунакова Е.А., Кутихин А.Г. Современные подходы к моделированию дисфункции эндотелия и системному поиску ее циркулирующих маркеров. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 173-190. doi:10.17802/2306-1278-2024-13-3S-173-190.; Богданов Л.А., Кошелев В.А., Мухамадияров Р.А., Каноныкина А.Ю., Лазебная А.И., Кондратьев Е.А., Степанов А.Д., Кутихин А.Г. Современные подходы к идентификации клеточных маркеров дисфункции эндотелия. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 191-207. doi:10.17802/2306-1278-2024-13-3S-191-207.; da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TG, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol. 2022;13:978378. doi:10.3389/fphys.2022.978378.; Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SA, Haque MM, Stuehr DJ, Yu J, Polgar P, Naga Prasad SV, Erzurum SC. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1199-205. doi:10.1152/ajplung.00092.2016.; Li G, Zhang H, Zhao L, Zhang Y, Yan D, Liu Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J Am Soc Hypertens. 2017;11(12):842-852. doi:10.1016/j.jash.2017.10.009.; Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735. doi:10.1161/CIRCRESAHA.116.309326.; Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. doi:10.1093/eurheartj/ehr304.; Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013;4:347. doi:10.3389/fphys.2013.00347.; Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503-13. doi:10.2174/13816128113196660745.; Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775-2791. doi:10.1172/JCI123825.; Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276(21):17625-8. doi:10.1074/jbc.C100122200.; Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi:10.1161/hh1101.092677.; Lee CH, Wei YW, Huang YT, Lin YT, Lee YC, Lee KH, Lu PJ. CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010;110(1):112-7. doi:10.1002/jcb.22515.; Kennard S, Ruan L, Buffett RJ, Fulton D, Venema RC. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 2016;81:61-8. doi:10.1016/j.vph.2016.04.003.; Li C, Ruan L, Sood SG, Papapetropoulos A, Fulton D, Venema RC. Role of eNOS phosphorylation at Ser-116 in regulation of eNOS activity in endothelial cells. Vascul Pharmacol. 2007;47(5-6):257-64. doi:10.1016/j.vph.2007.07.001.; Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025;90(1):132-160. doi:10.1134/S0006297924604064.; Ku KH, Dubinsky MK, Sukumar AN, Subramaniam N, Feasson MYM, Nair R, Tran E, Steer BM, Knight BJ, Marsden PA. In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms. Circulation. 2021;144(5):365-381. doi:10.1161/CIRCULATIONAHA.120.051078.; Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest. 2021;131(21):e145734. doi:10.1172/JCI145734.; Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex-specific eNOS activity and function in human endothelial cells. Sci Rep. 2017;7(1):9612. doi:10.1038/s41598-017-10139-x.; Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell. 2006;5(5):391-400. doi:10.1111/j.1474-9726.2006.00232.x.; Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012 Oct 12;111(9):1176-89. doi:10.1161/CIRCRESAHA.112.266395.; Bu S, Nguyen HC, Nikfarjam S, Michels DCR, Rasheed B, Maheshkumar S, Singh S, Singh KK. Endothelial cell-specific loss of eNOS differentially affects endothelial function. PLoS One. 2022;17(9):e0274487. doi:10.1371/journal.pone.0274487.; Shu X, Keller TC 4th, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci. 2015;72(23):4561-75. doi:10.1007/s00018-015-2021-0.; Fries DM, Paxinou E, Themistocleous M, Swanberg E, Griendling KK, Salvemini D, Slot JW, Heijnen HF, Hazen SL, Ischiropoulos H. Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem. 2003;278(25):22901-7. doi:10.1074/jbc.M210806200.; Singh A, Sventek P, Larivière R, Thibault G, Schiffrin EL. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens. 1996;9(9):867-77. doi:10.1016/s0895-7061(96)00104-5.; Di Pietro N, Di Tomo P, Di Silvestre S, Giardinelli A, Pipino C, Morabito C, Formoso G, Mariggiò MA, Pandolfi A. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88-94. doi:10.1016/j.atherosclerosis.2012.10.062.; Preeclampsia is associated with loss of neuronal nitric oxide synthase expression in vascular smooth muscle cells of the human umbilical cord. Schönfelder G, Fuhr N, Hadzidiakos D, John M, Hopp H, Paul M. Histopathology. 2004;44(2):116-28. doi:10.1111/j.1365-2559.2004.01806.x.; Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res. 1998;83(12):1271-8. doi:10.1161/01.res.83.12.1271.; Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC. Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension. 2003;42(4):831-6. doi:10.1161/01.HYP.0000088854.04562.DA.; Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284. doi:10.3389/fphys.2012.00284.; Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):17-28.; Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239-47. doi:10.1111/micc.12040.; Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J Hypertens. 2018;36(7):1460-1467. doi:10.1097/HJH.0000000000001750.

  3. 3
    Academic Journal

    Contributors: Исследование выполнено в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».

    Source: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 91-101 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 91-101 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1607/1063; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1607/1918; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1607/1919; ГОСТ ISO 10993-5-2011. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro. - Введ. 2013.01.01 – М.: Стандарт информ, 2014. – 10 с. – (Система стандартов по информации, библиотечному и издательскому делу).; Gruber S., Nickel A. Toxic or not toxic? The specifications of the standard ISO 10993-5 are not explicit enough to yield comparable results in the cytotoxicity assessment of an identical medical device. Front. Med. Technol. 2023;5:1195529. https://doi.org/10.3389/fmedt.2023.1195529.; Bellucci D., Salvatori R., Anesi A., Chiarini L., Cannillo V. SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: Three paradigmatic cases. Materials Science and Engineering: C. 2019;96:757-764. https://doi.org/10.1016/j.msec.2018.12.006.; Braun K., Stürzel C.M., Biskupek J., Kaiser U., Kirchhoff F., Lindén M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in Vitro. 2018;52:214-221. https://doi.org/10.1016/j.tiv.2018.06.019.; Diemer F., Stark H., Helfgen E.H., Enkling N., Probstmeier R., Winter J., Kraus D. In vitro cytotoxicity of different dental resin-cements on human cell lines. J Mater Sci Mater Med. 2021;32(1):4. https://doi.org/10.1007/s10856-020-06471-w.; Wang Y., Ma B., Yin A., Zhang B., Luo R., Pan J., Wang Y. Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. J Control Release. 2020;320:226-238. https://doi.org/10.1016/j.jconrel.2020.01.043.; Zhou J., Wang M., Wei T., Bai L., Zhao J., Wang K., Feng Y. Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Appl Mater Interfaces. 2021;13(14):16097-16105. https://doi.org/10.1021/acsami.1c01869.; Kabirian F., Brouki Milan P., Zamanian A., Heying R., Mozafari M. Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomater. 2019;92:82-91. https://doi.org/10.1016/j.actbio.2019.05.002.; Lee S.J., Kim M.E., Nah H., Seok J.M., Jeong M.H., Park K., Kwon I.K., Lee J.S., Park S.A. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci. 2019;537:333-344. https://doi.org/10.1016/j.jcis.2018.11.039.; Daum R., Visser D., Wild C., Kutuzova L., Schneider M., Lorenz G., et al. Fibronectin adsorption on electrospun synthetic vascular grafts attracts endothelial progenitor cells and promotes endothelialization in dynamic in vitro culture. Cells. 2020;9(3):778. https://doi.org/10.3390/cells9030778.; Guan G., Yu C., Xing M., Wu Y., Hu X., Wang H., Wang L. Hydrogel small-diameter vascular graft reinforced with a braided fiber strut with improved mechanical properties. Polymers. 2019;11:810. https://doi.org/10.3390/polym11050810.; Jirofti N., Mohebbi-Kalhori D., Samimi A., Hadjizadeh A., Kazemzadeh G.H. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater. 2018;13(5):055014. https://doi.org/10.1088/1748-605X/aad4b5.; Fiqrianti I.A., Widiyanti P., Manaf M.A., Savira C.Y., Cahyani N.R., Bella F.R. Poly-L-lactic Acid (PLLA)-chitosan-collagen electrospun tube for vascular graft Application. J Funct Biomater.2018;9(2):32. https://doi.org/10.3390/jfb9020032.; Rosellini E., Barbani N., Lazzeri L., Cascone M.G. Biomimetic and bioactive small diameter tubular scaffolds for vascular tissue engineering. Biomimetics (Basel). 2022;7(4):199. https://doi.org/10.3390/biomimetics7040199.; Jaffe E.A., Nachman R.L., Becker C.G., Minick C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Clin Invest. 1973; 52: 2745–2756. https://doi.org/10.1172/JCI107470.; Ghasemi M., Turnbull T., Sebastian S., Kempson I. The MTT Assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021;22:12827. https://doi.org/10.3390/ijms222312827.; Великанова Е.А., Матвеева В.Г., Ханова М.Ю., Антонова Л.В. Влияние напряжения сдвига на свойства колониеформирующих эндотелиальных клеток в сравнении с эндотелиальными клетками коронарных артерий. Комплексные проблемы сердечно-сосудистых заболеваний. 2022; 11(4):90-97. https://doi.org/10.17802/2306-1278-2022-11-4-90-97.; Li W., Zhou J., Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617-620. https://doi.org/10.3892/br.2015.481.

  4. 4
    Academic Journal

    Contributors: This study was supported by the State funding allocated to the Pavlov Institute of Physiology Russian Academy of Sciences (No. 1021062411784-3-3.1.8)., Работа поддержана средствами федерального бюджета в рамках государственного задания ФГБУН Институт физиологии им. И.П.Павлова РАН (№1021062411784-3-3.1.8).

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 315-321 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 315-321 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1439/704; Clària J., Arroyo V., Moreau R. Roles of systemic inflammatory and metabolic responses in the pathophysiology of acute-on-chronic liver failure. JHEP Rep. 2023;5(9):100807.; Lee K.-S., Yoon S.-H., Hwang I., Ma J.-H., Yang E., Kim R.H., Kim E., Yu J.-W. Hyperglycemia enhances brain susceptibility to lipopolysaccharide-induced neuroinflammation via astrocyte reprogramming. J. Neuroinflammation. 2024;21(1):137.; Markousis-Mavrogenis G., Pepe A., Lupi A., Apostolou D., Argyriou P., Velitsista S., Vartela V., Quaia E., Mavrogeni S.I. Combined brain-heart MRI identifies cardiac and white matter lesions in patients with systemic lupus erythematosus and/or antiphospholipid syndrome: A pilot study. Eur. J. Radiol. 2024;8(176):111500.; Ju Y.-N., Zou Z.-W., Jia B.-W. Ac2-26 activated the AKT1/GSK3β pathway to reduce cerebral neurons pyroptosis and improve cerebral function in rats after cardiopulmonary bypass. BMC Cardiovasc. Disord. 2024;24(1):266.; Otsuka S., Matsuzaki R., Kakimoto S., Tachibe Y., Kawatani T., Takada S., Tani A., Nakanishi K., Matsuoka T., Kato Y., Inadome M., Nojima N., Sakakima H., Mizuno K., Matsubara Y., Maruyama I. Ninjin’yoeito reduces fatigue-like conditions by alleviating inflammation of the brain and skeletal muscles in aging mice. PLoS One. 2024;19(5):e0303833.; Белобородова Н.В., Острова И.В. Сепсис-ассоциированная энцефалопатия (обзор). Общая реаниматология. 2017;13(5):121–139. https://doi.org/10.15360/1813-9779-2017-5-121-139.; Fruekilde S.K., Bailey C.J., Lambertsen K.L., Clausen B.H., Carlsen J., Xu N-L., Drasbek K.R., Gutiérrez-Jiménez E. Disturbed microcirculation and hyperaemic response in a murine model of systemic inflammation. J. Cereb. Blood Flow Metab. 2022;42(12):2303–2317.; Lorenzini L., Zanella L., Sannia M., Baldassarro V.A., Moretti M., Cescatti M., Quadalti C., Baldi S., Bartolucci G., Di Gloria L., Ramazzotti M., Clavenzani P., Costanzini A., De Giorgio R., Amedei A., Calzà L., Giardino L. Experimental colitis in young Tg2576 mice accelerates the onset of an Alzheimer’s-like clinical phenotype. Alzheimers Res. Ther. 2024;16(1):116.; Li L., Xing M., Wang L., Zhao Y. Maresin 1 alleviates neuroinflammation and cognitive decline in a mouse model of cecal ligation and puncture. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024;49(6):890–902.; Zhou Y., Deng Q., Vong C.T., Khan H., Cheang W.S. Oxyresveratrol reduces lipopolysaccharide-induced inflammation and oxidative stress through inactivation of MAPK and NF-κB signaling in brain endothelial cells. Biochem. Biophys. Rep. 2024;40:101823.; Yin X.-Y., Tang X.-H., Wang S.-X., Zhao Y.-C., Jia M., Yang J.-J., Ji M.-H., Shen J.-C. HMGB1 mediates synaptic loss and cognitive impairment in an animal model of sepsis-associated encephalopathy. J. Neuroinflammation. 2023;20(1):69.; Robledo-Montaña J., Díaz-García C., Martí- nez M., Ambrosio N., Montero E., Marín M.J., Virto L., Muñoz-López M., Herrera D., Sanz M., Leza J.C., García-Bueno B., Figuero E., Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J. Neuroinflammation. 2024;21(1):219.; Никифорова Л.Р., Крышень К.Л., Боровкова К.Е. Обзор доклинических моделей сепсиса и септического шока. Лабораторные животные для научных исследований. 2021;4:17–28.; Петрищев Н.Н., Беркевич О.А., Власов Т.Д., Волкова Е.В., Зуева Е.Е., Мозговая Е.В. Диагностическая ценность определения дескваминированных эндотелиальных клеток в крови. Клиническая лабораторная диагностика. 2001;1:50–52.; Вдовин В.А., Муравьев А.В., Певзнер А.А. Способ определения степени агрегации клеток крови. Ярославский педагогический вестник (Естественные науки). 2012;III(3):151–154.; Предтеченский В.Е., Боровская В.М., Марголина Л.Т. Лабораторные методы исследования. Ред. Л.Г. Смирнова, Л.А. Кост. М.: Медгиз. 1950. 804 с.; Sokolova I.B. Effects of metabolic disorders and streptozotocin-induced diabetes on cerebral circulation in rats on a hight-fat diet. J. Evol. Biochem. Physiol. 2022;58(3):915–921.; Scott J.A., Machoun M., McCormack D.G. Inducible nitric oxide synthase and vascular reactivity in rat thoracic aorta: effect of aminoguanidine. J. Appl. Physiol. 1996;80(1):271–277.; Tabernero A., Nadaud S., Corman B., Atkinson J., Capdeville-Atkinson C. Effects of chronic and acute aminoguanidine treatment on tail artery vasomotion in ageing rats. Br. J. Pharmacol. 2000;131(6):1227–1235.; Misko T.P., Moore W.M., Kasten T.P., Nickols G.A., Corbett J.A., Tilton R.G., McDaniel M.L., Williamson J.R., Currie M.G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol. 1993;233(1):119–125.; Zamora R., Vodovotz Y., Billiar T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 2000;6(5):347–373.; Галагудза М.М., Бельский Ю.П., Бельская Н.В. Индуцибельная NO-синтаза как фармакологическая мишень противовоспалительной терапии: надежда не потеряна? Сибирский журнал клинической и экспериментальной медицины. 2023;38(1):13–20.; Cinelli M.A., Do H.T., Miley G.P., Silverman R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020;40(1):158–189. https://doi.org/10.1002/med.21599.; Abalenikhina Y.V., Kosmachevskaya O.V., Topunov A.F. Peroxynitrite: Toxic agent and signaling molecule. Appl. Biochem. Microbiol. 2020;56(6):611–623.; Герасимов Л.В., Мороз В.В., Исакова А.А. Микрореологические нарушения при критических состояниях. Общая реаниматология. 2010;1(1):74–78.; Vallon M., Chang J., Zhang H., Kuo C.J. Developmental and pathological angiogenesis in the central nervous system. Cell. Mol. Life Sci. 2014;71(18):3489–3506.; Evans L.E., Taylor J.L., Smith C.J., Pritchard H.A.T., Greenstein A.S., Allan S.M. Cardiovascular comorbidities, inflammation, and cerebral small vessel disease. Cardiovascular Res. 2021;117:2575–2588.; Godo S., Shimokawa H. Endothelial functions. Arterioscler. Thromb. Vasc. Biol. 2017;37(9):e108–e114.; Ritson M., Wheeler-Jones C., Stolp H.B. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J. Neuroimmunol. 2024;391:578363.

  5. 5
  6. 6
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 145-155 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 145-155 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1789/1620; https://journal.transpl.ru/vtio/article/view/1789/1659; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1610; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1611; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1612; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1613; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1614; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1615; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1616; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1617; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1618; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1619; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1620; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1621; https://journal.transpl.ru/vtio/article/downloadSuppFile/1789/1622; Das D, Noh I. Overviews of Biomimetic Medical Materials. Adv Exp Med Biol. 2018; 1064: 3–24. doi:10.1007/978-981-13-0445-3_1.; Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissueengineered vascular grafts. Acta Biomater. 2022 Jan 15; 138: 92–111. doi:10.1016/j.actbio.2021.11.012.; Wesolowski SA, Fries CC, Karlson KE, De Bakey M, Sawyer PN. Porosity: primary determinant of ultimate fate of synthetic vascular grafts. Surgery. 1961; 50: 91–96.; Лебедев ЛВ, Плотник ЛЛ, Смирнов АД. Протезы кровеносных сосудов. Л.: Медицина, 1981; 192.; Guan G, Yu C, Fang X, Guidoin R, King MW, Wang H, Wang L. Exploration into practical significance of integral water permeability of textile vascular grafts. J Appl Biomater Funct Mater. 2021; 22808000211014007. doi:10.1177/22808000211014007.; Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol. 2019; 7: 166. doi:10.3389/fbioe.2019.00166.; Fortin W, Bouchet M, Therasse E, Maire M, Héon H, Ajji A et al. Negative In Vivo Results Despite Promising In Vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res. 2022; 279: 491– 504. doi:10.1016/j.jss.2022.05.032.; Huang F, Sun L, Zheng J. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Artif Organs. 2008; 12: 932–941. doi:10.1111/j.15251594.2008.00655.x.; Lee JH, Kim WG, Kim SS, Lee JH, Lee HB. Development and characterization of an alginate-impregnated polyester vascular graft. J Biomed Mater Res. 1997; 36: 200–208. doi:10.1002/(sici)1097-4636(199708)36:23.0.co;2-o.; Lisman A, Butruk B, Wasiak I, Ciach T. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis. J Biomater Appl. 2014; 28: 1386–1396. doi:10.1177/0885328213509676.; Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater. 2013; 101: 506–519. doi:10.1002/jbm.b.32851.; Немец ЕА, Панкина АП, Сургученко ВА, Севастьянов ВИ. Биостабильность и цитотоксичность медицинских изделий на основе сшитых биополимеров. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 79–85.; Глушкова ТВ, Овчаренко ЕА, Рогулина НВ, Клышников КЮ, Кудрявцева ЮА, Барбараш ЛС. Дисфункции эпоксиобработанных биопротезов клапанов сердц а. Кардиология. 2019; 59 (10): 49–59.; Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002; 54: 13–36. doi:10.1016/s0169-409x(01)00240-x.; Новикова СП, Салохединова РР, Лосева СВ, Николашина ЛН, Левкина АЮ. Анализ физико-механических и структурных характеристик протезов кровеносных сосудов. Грудная и сердечно-сосудистая хирургия. 2012; 54 (4): 27–33.; Попова ИВ, Степанова АО, Сергеевичев ДС, Акулов АЕ, Захарова ИС, Покушалов АА и др. Сравнительное исследование трех типов протезов, изготовленных методом электроспиннинга, в эксперименте in vitro и in vivo. Патология кровообращения и кардиохирургия. 2015; 19 (4): 63–71.; Chen X, Yao Y, Liu S, Hu Q. An integrated strategy for designing and fabricating triple-layer vascular graft with oriented microgrooves to promote endothelialization. J Biomater Appl. 2021; 36: 297–310. doi:10.1177/08853282211001006.; Huang R, Gao X, Wang J, Chen H, Tong C, Tan Y, Tan Z. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning. Ann Biomed Eng. 2018; 46 (9): 1254–1266. doi:10.1007/s10439-0182065-z.; Liu K, Wang N, Wang W, Shi L, Li H, Guo F et al. A bioinspired high strength three-layer nanofiber vascular graft with structure guided cell growth. J Mater Chem B. 2017; 5 (20): 3758–3764. doi:10.1039/c7tb00465f.; Nemets EA, Surguchenko VA, Belov VYu, Xajrullina AI, Sevastyanov VI. Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood Vessels. Inorganic Materials: Applied Research. 2023; 14: 400– 407. doi:10.1134/S2075113323020338.; Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro: ГОСТ ISO 109935-2023. М.: Российский институт стандартизации, 2023.; Blache U, Guerrero J, Güven S, Klar AS, Scherberich A. Microvascular networks and models: in vitro formation. W. Holnthoner, A. Banfi, J. Kirkpatrick, H. Redleds. Vascularization for tissue engineering and regenerative medicine. Reference series in biomedical engineering. Springer, Cham. 2021: 345–383. doi:10.1007/978-3319-54586-8.; Григорьев АМ, Басок ЮБ, Кириллова АД, Сургученко ВА, Шмерко НП, Кулакова ВК и др. Криогенноструктурированный гидрогель на основе желатина как резорбируемая макропористая матрица для биомедицинских технологий. Вестник трансплантологии и искусственных органов. 2022; 24 (2): 83–93. doi:10.15825/1995-1191-2022-2-83-93.; Rampersad SN. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012; 12: 12347– 12360. doi:10.3390/s120912347.; Wang Z, Liu S, Guidoin R, Kodama M. Polyurethane vascular grafts with thorough porosity: does an internal or an external membrane wrapping improve their in vivo blood compatibility and biofunctionality? Artif Cells Blood Substit Immobil Biotechnol. 2004; 32 (3): 463– 484. doi:10.1081/bio-200027524.; Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T et al. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(Llactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis. 2014; 237 (2): 684–691. doi:10.1016/j.atherosclerosis.2014.09.030.; https://journal.transpl.ru/vtio/article/view/1789

  7. 7
    Academic Journal

    Contributors: Исследование выполнено при поддержке гранта Российского научного фонда № 22-15-00107 «Патологические последствия и молекулярные механизмы воздействия кальций-фосфатных бионов (кальципротеиновых частиц) на форменные элементы крови», https://rscf.ru/project/22-15-00107/.

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 167-181 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 167-181 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1399/926; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1476; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1477; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1478; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1479; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1486; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1487; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1399/1490; Kutikhin A.G., Feenstra L., Kostyunin A.E., Yuzhalin A.E., Hillebrands J.L., Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol. 2021;41(5):1607-1624. doi:10.1161/ATVBAHA.120.315697.; Heiss A., Eckert T., Aretz A., Richtering W., van Dorp W., Schäfer C., Jahnen-Dechent W. Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem. 2008;283(21):14815-25. doi:10.1074/jbc.M709938200.; Heiss A., DuChesne A., Denecke B., Grötzinger J., Yamamoto K., Renné T., Jahnen-Dechent W. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem. 2003;278(15):13333-41. doi:10.1074/jbc.M210868200.; Shishkova D.K., Velikanova E.A., Bogdanov L.A., Sinitsky M.Y., Kostyunin A.E., Tsepokina A.V., Gruzdeva O.V., Mironov A.V., Mukhamadiyarov R.A., Glushkova T.V., Krivkina E.O., Matveeva V.G., Hryachkova O.N., Markova V.E., Dyleva Y.A., Belik E.V., Frolov A.V., Shabaev A.R., Efimova O.S., Popova A.N., Malysheva V.Y., Kolmykov R.P., Sevostyanov O.G., Russakov D.M., Dolganyuk V.F., Gutakovsky A.K., Zhivodkov Y.A., Kozhukhov A.S., Brusina E.B., Ismagilov Z.R., Barbarash O.L., Yuzhalin A.E., Kutikhin A.G. Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. Int J Mol Sci. 2021;22(22):12458. doi:10.3390/ijms222212458.; Shishkova D., Markova V., Sinitsky M., Tsepokina A., Velikanova E., Bogdanov L., Glushkova T., Kutikhin A. Calciprotein Particles Cause Endothelial Dysfunction under Flow. Int J Mol Sci. 2020;21(22):8802. doi:10.3390/ijms21228802.; Kutikhin A.G., Velikanova E.A., Mukhamadiyarov R.A., Glushkova T.V., Borisov V.V., Matveeva V.G., Antonova L.V., Filip'ev D.E., Golovkin A.S., Shishkova D.K., Burago A.Y., Frolov A.V., Dolgov V.Y., Efimova O.S., Popova A.N., Malysheva V.Y., Vladimirov A.A., Sozinov S.A., Ismagilov Z.R., Russakov D.M., Lomzov A.A., Pyshnyi D.V., Gutakovsky A.K., Zhivodkov Y.A., Demidov E.A., Peltek S.E., Dolganyuk V.F., Babich O.O., Grigoriev E.V., Brusina E.B., Barbarash O.L., Yuzhalin A.E. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci Rep. 2016;6:27255. doi:10.1038/srep27255.; Feenstra L., Kutikhin A.G., Shishkova D.K., Buikema H., Zeper L.W., Bourgonje A.R., Krenning G., Hillebrands J.L. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol. 2023;43(3):443-455. doi:10.1161/ATVBAHA.122.318420.; Shishkova D., Lobov A., Zainullina B., Matveeva V., Markova V., Sinitskaya A., Velikanova E., Sinitsky M., Kanonykina A., Dyleva Y., Kutikhin A. Calciprotein Particles Cause Physiologically Significant Pro-Inflammatory Response in Endothelial Cells and Systemic Circulation. Int J Mol Sci. 2022;23(23):14941. doi:10.3390/ijms232314941.; Kutikhin A.G. Pathophysiological and clinical significance of mineral homeostasis disorders in the development of cardiovascular disease. Fundamental and Clinical Medicine. 2021;6(2):82-102. doi:10.23946/2500-0764-2021-6-1-82-102. (In Russian); Lutsey P.L., Alonso A., Michos E.D., Loehr L.R., Astor B.C., Coresh J., Folsom A.R. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2014;100(3):756-64. doi:10.3945/ajcn.114.085167.; Rohrmann S., Garmo H., Malmstrom H., Hammar N., Jungner I., Walldius G., Van Hemelrijck M. Association between serum calcium concentration and risk of incident and fatal cardiovascular disease in the prospective AMORIS study. Atherosclerosis. 2016;251:85-93. doi:10.1016/j.atherosclerosis.2016.06.004.; Reid I.R., Gamble G.D., Bolland M.J. Circulating calcium concentrations, vascular disease and mortality: a systematic review. J Intern Med. 2016;279(6):524-40. doi:10.1111/joim.12464.; Kobylecki C.J., Nordestgaard B.G., Afzal S. Plasma Ionized Calcium and Risk of Cardiovascular Disease: 106 774 Individuals from the Copenhagen General Population Study. Clin Chem. 2021;67(1):265-275. doi:10.1093/clinchem/hvaa245.; Shishkova D.K., Matveeva V.G., Markova V.E., Khryachkova O.N., Indukaeva E.V., Shabaev А.R., Frolov A.V., Kutikhin A.G. Quantification of the initial levels of calciprotein particles as a screening marker of mineral homeostasis in patients with cardiovascular disease and in patients with chronic kidney disease. Russian Journal of Cardiology. 2022;27(12):5064. doi:10.15829/1560-4071-2022-5064. (In Russioan); Kutikhin A.G., Shishkova D.K., Khryachkova O.N., Frolov A.V., Osyaev N.Yu., Indukaeva E.V., Gruzdeva O.V., Shabaev A.R., Zagorodnikov N.I., Markova V.E., Bogdanov L.А. Formation of calcium phosphate bions in patients with carotid and coronary atherosclerosis. Russian Journal of Cardiology. 2020;25(12):3881. (In Russian); Xie W.M., Ran L.S., Jiang J., Chen Y.S., Ji H.Y., Quan X.Q. Association between fetuin-A and prognosis of CAD: A systematic review and meta-analysis. Eur J Clin Invest. 2019;49(5):e13091. doi:10.1111/eci.13091.; Ronit A., Kirkegaard-Klitbo D.M., Dohlmann T.L., Lundgren J., Sabin C.A., Phillips A.N., Nordestgaard B.G., Afzal S. Plasma Albumin and Incident Cardiovascular Disease: Results From the CGPS and an Updated Meta-Analysis. Arterioscler Thromb Vasc Biol. 2020;40(2):473-482. doi:10.1161/ATVBAHA.119.313681.; Seidu S., Kunutsor S.K., Khunti K. Serum albumin, cardiometabolic and other adverse outcomes: systematic review and meta-analyses of 48 published observational cohort studies involving 1,492,237 participants. Scand Cardiovasc J. 2020;54(5):280-293. doi:10.1080/14017431.2020.1762918.; Heiss A., Pipich V., Jahnen-Dechent W., Schwahn D. Fetuin-A is a mineral carrier protein: small angle neutron scattering provides new insight on Fetuin-A controlled calcification inhibition. Biophys J. 2010;99(12):3986-95. doi:10.1016/j.bpj.2010.10.030.; Koeppert S., Ghallab A., Peglow S., Winkler C.F., Graeber S., Büscher A., Hengstler J.G., Jahnen-Dechent W. Live Imaging of Calciprotein Particle Clearance and Receptor Mediated Uptake: Role of Calciprotein Monomers. Front Cell Dev Biol. 2021;9:633925. doi:10.3389/fcell.2021.633925.; Herrmann M., Schäfer C., Heiss A., Gräber S., Kinkeldey A., Büscher A., Schmitt M.M., Bornemann J., Nimmerjahn F., Herrmann M., Helming L., Gordon S., Jahnen-Dechent W. Clearance of fetuin-A--containing calciprotein particles is mediated by scavenger receptor-A. Circ Res. 2012;111(5):575-84. doi:10.1161/CIRCRESAHA.111.261479.; Köppert S., Büscher A., Babler A., Ghallab A., Buhl E.M., Latz E., Hengstler J.G., Smith E.R., Jahnen-Dechent W. Cellular Clearance and Biological Activity of Calciprotein Particles Depend on Their Maturation State and Crystallinity. Front Immunol. 2018;9:1991. doi:10.3389/fimmu.2018.01991.; Kutikhin A.G., Shishkova D.K., Velikanova E.A., Sinitsky M.Y., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi:10.1134/S0022093022030139.; Shishkova D.K., Sinitskaya A.V., Sinitsky M.Yu., Matveeva V.G., Velikanova E.A., Markova V.E., Kutikhin A.G. Spontaneous endothelial-to-mesenchymal transition in human primary umbilical vein endothelial cells. Complex Issues of Cardiovascular Diseases. 2022;11(3):97-114. doi:10.17802/2306-1278-2022-11-3-97-114 (In Russian)]; Liberale L., Montecucco F., Tardif J.C, Libby P., Camici G.G. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41(31):2974-2982. doi:10.1093/eurheartj/ehz961.

  8. 8
    Academic Journal

    Contributors: Исследования по влиянию адипонектина на функцию эндотелиальных клеток и макрофагов выполнены при поддержке гранта РНФ (проект № 22-25-00366).

    Source: Complex Issues of Cardiovascular Diseases; Том 13, № 1 (2024); 179-195 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 1 (2024); 179-195 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1365/850; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1365/1394; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1365/1395; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1365/1396; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1365/1397; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1365/1398; Libby P., Bonow, R.O., Mann D.L., Tomaselli G.F., Bhatt D., Solomon S.D., Braunwald E. Braunwald's Heart Disease, 12th ed. Elsevier Inc.; 2022.; Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-298. doi:10.1038/s41574-019-0176-8.; Maya-Ramos L., Gillette T.G., Hill J.A., Scherer P.E. The Role of Adipose Tissue in Cardiovascular Pathophysiology. Cardiometab Syndr J. 2023;3(1):52-63. https://doi.org/10.51789/cmsj.2023.3.e9; Kern P.A., Di Gregorio G.B., Lu T., Rassouli N., Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003;52(7):1779-85. doi:10.2337/diabetes.52.7.1779.; Fu Y., Luo N., Klein R.L., Garvey W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46(7):1369-79. doi:10.1194/jlr.M400373-JLR200.; Kim J.Y., van de Wall E., Laplante M., Azzara A., Trujillo M.E., Hofmann S.M., Schraw T., Durand J.L., Li H., Li G., Jelicks L.A., Mehler M.F., Hui D.Y., Deshaies Y., Shulman G.I., Schwartz G.J., Scherer P.E. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621-37. doi:10.1172/JCI31021.; Matsuura F., Oku H., Koseki M., Sandoval J.C., Yuasa-Kawase M., Tsubakio-Yamamoto K., Masuda D., Maeda N., Tsujii K., Ishigami M., Nishida M., Hirano K., Kihara S., Hori M., Shimomura I., Yamashita S. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem Biophys Res Commun. 2007;358(4):1091-5. doi:10.1016/j.bbrc.2007.05.040.; Wang X., Chen Q., Pu H., Wei Q., Duan M., Zhang C., Jiang T., Shou X., Zhang J., Yang Y. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis. 2016;15:33. doi:10.1186/s12944-016-0202-y.; Tsao T.S. Assembly of adiponectin oligomers. Rev Endocr Metab Disord. 2014;15(2):125-36. doi:10.1007/s11154-013-9256-6.; Takemura Y., Ouchi N., Shibata R., Aprahamian T., Kirber M.T., Summer R.S., Kihara S., Walsh K. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest. 2007;117(2):375-86. doi:10.1172/JCI29709.; Yamauchi T., Iwabu M., Okada-Iwabu M., Kadowaki T. Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab. 2014;28(1):15-23. doi:10.1016/j.beem.2013.09.003.; Scherer P.E., Williams S., Fogliano M., Baldini G., Lodish H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995;270(45):26746-9. doi:10.1074/jbc.270.45.26746.; Ding M., Carrão A.C., Wagner R.J., Xie Y., Jin Y., Rzucidlo E.M., Yu J., Li W., Tellides G., Hwa J., Aprahamian T.R., Martin K.A. Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype. J Mol Cell Cardiol. 2012;52(2):474-84. doi:10.1016/j.yjmcc.2011.09.008.; Wong W.T., Tian X.Y., Xu A., Yu J., Lau C.W., Hoo R.L., Wang Y., Lee V.W., Lam K.S., Vanhoutte P.M., Huang Y. Adiponectin is required for PPARγ-mediated improvement of endothelial function in diabetic mice. Cell Metab. 2011;14(1):104-15. doi:10.1016/j.cmet.2011.05.009.; Wedellová Z., Dietrich J., Siklová-Vítková M., Kološtová K., Kováčiková M., Dušková M., Brož J., Vedral T., Stich V., Polák J. Adiponectin inhibits spontaneous and catecholamine-induced lipolysis in human adipocytes of non-obese subjects through AMPK-dependent mechanisms. Physiol Res. 2011;60(1):139-48. doi:10.33549/physiolres.931863.; Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., Mori Y., Ide T., Murakami K., Tsuboyama-Kasaoka N., Ezaki O., Akanuma Y., Gavrilova O., Vinson C., Reitman M.L., Kagechika H., Shudo K., Yoda M., Nakano Y., Tobe K., Nagai R., Kimura S., Tomita M., Froguel P., Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941-6. doi:10.1038/90984.; Bruce C.R., Mertz V.A., Heigenhauser G.J.F., Dyck D.J. The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes. 2005;54:3154-3160. doi:10.2337/diabetes.54.11.3154.; Tanyanskiy D.A., Shavva V.S., Dizhe E.B., Oleinikova G.N., Lizunov A.V., Nekrasova E.V., Mogilenko D.A., Larionova E.E., Orlov S.V., Denisenko A.D. Adiponectin Stimulates Apolipoprotein A-1 Gene Expression in HepG2 Cells via AMPK, PPARα, and LXRs Signaling Mechanisms. Biochemistry (Mosc). 2022;87(11):1252-1259. doi:10.1134/S0006297922110049.; Tschritter O., Fritsche A., Thamer C., Haap M., Shirkavand F., Rahe S., Staiger H., Maerker E., Häring H., Stumvoll M. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes. 2003;52(2):239-43. doi:10.2337/diabetes.52.2.239.; Zhou L., Deepa S.S., Etzler J.C., Ryu J., Mao X., Fang Q., Liu D.D., Torres J.M., Jia W., Lechleiter J.D., Liu F., Dong L.Q. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284(33):22426-22435. doi:10.1074/jbc.M109.028357.; Mao X., Kikani C.K., Riojas R.A., Langlais P., Wang L., Ramos F.J., Fang Q., Christ-Roberts C.Y., Hong J.Y., Kim R.Y., Liu F., Dong L.Q. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516-23. doi:10.1038/ncb1404.; Yoon Y.S., Ryu D., Lee M.W., Hong S., Koo S.H. Adiponectin and thiazolidinedione targets CRTC2 to regulate hepatic gluconeogenesis. Exp Mol Med. 2009;41(8):577-583. https://doi.org/10.3858/emm.2009.41.8.063; Hug C., Wang J., Ahmad N.S., Bogan J.S., Tsao T.S., Lodish H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A. 2004;101(28):10308-13. doi:10.1073/pnas.0403382101.; Matsuda K., Fujishima Y., Maeda N., Mori T., Hirata A., Sekimoto R., Tsushima Y., Masuda S., Yamaoka M., Inoue K., Nishizawa H., Kita S., Ranscht B., Funahashi T., Shimomura I. Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology. 2015;156(3):934-46. doi:10.1210/en.2014-1618.; Wang Y., Zheng A., Yan Y., Song F., Kong Q., Qin S., Zhang D. Association between HMW adiponectin, HMW-total adiponectin ratio and early-onset coronary artery disease in Chinese population. Atherosclerosis. 2014;235(2):392-7. doi:10.1016/j.atherosclerosis.2014.05.910.; Wu Z.J., Cheng Y.J., Gu W.J., Aung L.H. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism. 2014;63(9):1157-66. doi:10.1016/j.metabol.2014.05.001.; Okamoto Y., Kihara S., Ouchi N., Nishida M., Arita Y., Kumada M., Ohashi K., Sakai N., Shimomura I., Kobayashi H., Terasaka N., Inaba T., Funahashi T., Matsuzawa Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106(22):2767-70. doi:10.1161/01.cir.0000042707.50032.19.; Yamauchi T., Kamon J., Waki H., Imai Y., Shimozawa N., Hioki K., Uchida S., Ito Y., Takakuwa K., Matsui J., Takata M., Eto K., Terauchi Y., Komeda K., Tsunoda M., Murakami K., Ohnishi Y., Naitoh T., Yamamura K., Ueyama Y., Froguel P., Kimura S., Nagai R., Kadowaki T. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 2003;278(4):2461-8. doi:10.1074/jbc.M209033200.; van Stijn C.M., Kim J., Barish G.D., Tietge U.J., Tangirala R.K. Adiponectin expression protects against angiotensin II-mediated inflammation and accelerated atherosclerosis. PLoS One. 2014;9(1):e86404. doi:10.1371/journal.pone.0086404.; Li L., Cai X.J., Feng M., Rong Y.Y., Zhang Y., Zhang M. Effect of adiponectin overexpression on stability of preexisting plaques by inducing prolyl-4-hydroxylase expression. Circ J. 2010;74(3):552-9. doi:10.1253/circj.cj-09-0304.; Okamoto Y., Folco E.J., Minami M., Wara A.K., Feinberg M.W., Sukhova G.K., Colvin R.A., Kihara S., Funahashi T., Luster A.D., Libby P. Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ Res. 2008;102(2):218-25. doi:10.1161/CIRCRESAHA.107.164988.; Nawrocki A.R., Hofmann S.M., Teupser D., Basford J.E., Durand J.L., Jelicks L.A., Woo C.W., Kuriakose G., Factor S.M., Tanowitz H.B., Hui D.Y., Tabas I., Scherer P.E. Lack of association between adiponectin levels and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2010;30(6):1159-65. doi:10.1161/ATVBAHA.109.195826.; Li C.J., Sun H.W., Zhu F.L., Chen L., Rong Y.Y., Zhang Y., Zhang M. Local adiponectin treatment reduces atherosclerotic plaque size in rabbits. J Endocrinol. 2007;193(1):137-45. doi:10.1677/JOE-06-0173.; Cai X., Li X., Li L., Huang X.Z., Liu Y.S., Chen L., Zhang K., Wang L., Li X., Song J., Li S., Zhang Y., Zhang M. Adiponectin reduces carotid atherosclerotic plaque formation in ApoE-/- mice: roles of oxidative and nitrosative stress and inducible nitric oxide synthase. Mol Med Rep. 2015;11(3):1715-21. doi:10.3892/mmr.2014.2947.; Gasbarrino K., Zheng H., Hafiane A., Veinot J.P., Lai C., Daskalopoulou S.S. Decreased Adiponectin-Mediated Signaling Through the AdipoR2 Pathway Is Associated With Carotid Plaque Instability. Stroke. 2017;48(4):915-924. doi:10.1161/STROKEAHA.116.015145.; Tanyanskiy D.A., Pigarevskii P.V., Maltseva S.V., Denisenko A.D. Immunohistochemical analysis of adiponectin in atherosclerotic lesions of human aorta. ARYA Atheroscler. 2019; 15(4): 179-84. doi:10.22122/arya.v15i4.1873.; Танянский Д.А., Пигаревский П.В., Мальцева С.В., Малашичева А.Б., Докшин П.М., Успенский В.Е., Лизунов А.В., Орлов С.В., Мальцева О.Н., Агеева Е.В., Денисенко А.Д. Адипонектин в нормальной и атеросклеротически измененной интиме аорты человека. Архив патологии. 2022;84(6):16 22. doi:10.17116/patol20228406116.; Kostopoulos C.G., Spiroglou S.G., Varakis J.N., Apostolakis E., Papadaki H.H. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis? Cardiovasc Pathol. 2014;23(3):131-8. doi:10.1016/j.carpath.2014.02.003.; Xu S.Q., Mahadev K., Wu X., Fuchsel L., Donnelly S., Scalia R.G., Goldstein B.J. Adiponectin protects against angiotensin II or tumor necrosis factor alpha-induced endothelial cell monolayer hyperpermeability: role of cAMP/PKA signaling. Arterioscler Thromb Vasc Biol. 2008;28(5):899-905. doi:10.1161/ATVBAHA.108.163634.; Танянский Д.А., Мальцева О.Н., Трулев А.С., Сагинбаев У.Р., Евстигнеева П.Е., Воронкина И.В., Смагина Л.В., Иванова А.А., Дмитриева А.А., Агеева Е.В., Салль Т.С., Денисенко А.Д. Влияние адипонектина на транспорт липопротеинов низкой плотности через монослой эндотелиальных клеток человека in vitro. Бюллетень экспериментальной биологии и медицины. 2023;176(8): 192-197. doi:10.47056/0365-9615-2023-176-8-192-197.; Hattori Y., Hattori S., Kasai K. Globular adiponectin activates nuclear factor-kappaB in vascular endothelial cells, which in turn induces expression of proinflammatory and adhesion molecule genes. Diabetes Care. 2006;29(1):139-41. doi:10.2337/diacare.29.1.139.; Addabbo F. Nacci C., De Benedictis L., Leo V., Tarquinio M., Quon M.J., Montagnani M. Globular adiponectin counteracts VCAM-1-mediated monocyte adhesion via AdipoR1/NF-κB/COX-2 signaling in human aortic endothelial cells. Am J Physiol Endocrinol Metab. 2011;301(6):E1143-54. doi:10.1152/ajpendo.00208.2011.; Lee Y.A., Ji H.I., Lee S.H., Hong S.J., Yang H.I., Chul Yoo M., Kim K.S. The role of adiponectin in the production of IL-6, IL-8, VEGF and MMPs in human endothelial cells and osteoblasts: implications for arthritic joints. Exp Mol Med. 2014;46(1):e72. doi:10.1038/emm.2013.141.; Wang Y., Wang X., Lau W.B., Yuan Y., Booth D., Li J.J., Scalia R., Preston K., Gao E., Koch W., Ma X.L. Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ Res. 2014;114(5):792-805. doi:10.1161/CIRCRESAHA.114.302439.; Bråkenhielm E., Veitonmäki N., Cao R., Kihara S., Matsuzawa Y., Zhivotovsky B., Funahashi T., Cao Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004;101(8):2476-81. doi:10.1073/pnas.0308671100.; Mahadev K., Wu X., Donnelly S., Ouedraogo R., Eckhart A.D., Goldstein B.J. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc Res. 2008;78(2):376-84. doi:10.1093/cvr/cvn034.; Ouchi N., Kobayashi H., Kihara S., Kumada M., Sato K., Inoue T., Funahashi T., Walsh K. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem. 2004;279(2):1304-9. doi:10.1074/jbc.M310389200.; Shibata R., Ouchi N., Kihara S., Sato K., Funahashi T., Walsh K. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem. 2004;279(27):28670-4. doi:10.1074/jbc.M402558200.; Alvarez G., Visitación Bartolomé M., Miana M., Jurado-López R., Martín R., Zuluaga P., Martinez-Martinez E., Nieto M.L., Alvarez-Sala L.A., Millán J., Lahera V., Cachofeiro V. The effects of adiponectin and leptin on human endothelial cell proliferation: a live-cell study. J Vasc Res. 2012;49(2):111-22. doi:10.1159/000332332.; Adya R., Tan B.K., Chen J., Randeva H.S. Protective actions of globular and full-length adiponectin on human endothelial cells: novel insights into adiponectin-induced angiogenesis. J Vasc Res. 2012;49(6):534-43. doi:10.1159/000338279.; Tian L., Luo N., Zhu X., Chung B.H., Garvey W.T., Fu Y. Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 2012;221(1):66-75. doi:10.1016/j.atherosclerosis.2011.12.014.; Tsubakio-Yamamoto K., Matsuura F., Koseki M., Oku H., Sandoval J.C., Inagaki M., Nakatani K., Nakaoka H., Kawase R., Yuasa-Kawase M., Masuda D., Ohama T., Maeda N., Nakagawa-Toyama Y., Ishigami M., Nishida M., Kihara S., Shimomura I., Yamashita S. Adiponectin prevents atherosclerosis by increasing cholesterol efflux from macrophages. Biochem Biophys Res Commun. 2008;375(3):390-4. doi:10.1016/j.bbrc.2008.08.009.; Haugen F., Drevon C.A. Activation of nuclear factor-kappaB by high molecular weight and globular adiponectin. Endocrinology. 2007;148(11):5478-86. doi:10.1210/en.2007-0370.; Kyriazi E., Tsiotra P.C., Boutati E., Ikonomidis I., Fountoulaki K., Maratou E., Lekakis J., Dimitriadis G., Kremastinos D.T., Raptis S.A. Effects of adiponectin in TNF-α, IL-6, and IL-10 cytokine production from coronary artery disease macrophages. Horm Metab Res. 2011;43(8):537-44. doi:10.1055/s-0031-1277227.; Folco E.J., Rocha V.Z., López-Ilasaca M., Libby P. Adiponectin inhibits pro-inflammatory signaling in human macrophages independent of interleukin-10. J Biol Chem. 2009;284(38):25569-75. doi:10.1074/jbc.M109.019786.; Lovren F., Pan Y., Quan A., Szmitko P.E., Singh K.K., Shukla P.C., Gupta M., Chan L., Al-Omran M., Teoh H., Verma S. Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am J Physiol Heart Circ Physiol. 2010;299(3):H656-63. doi:10.1152/ajpheart.00115.2010.; Mandal P., Pratt B.T., Barnes M., McMullen M.R., Nagy L.E. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem. 2011;286(15):13460-9. doi:10.1074/jbc.M110.204644.; Bi Y., Chen J., Hu F., Liu J., Li M., Zhao L. M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment. Neural Plast. 2019;2019:6724903. doi:10.1155/2019/6724903.; Kumada M., Kihara S., Ouchi N., Kobayashi H., Okamoto Y., Ohashi K., Maeda K., Nagaretani H., Kishida K., Maeda N., Nagasawa A., Funahashi T., Matsuzawa Y. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 2004;109(17):2046-9. doi:10.1161/01.CIR.0000127953.98131.ED.; Summer R., Little F.F., Ouchi N., Takemura Y., Aprahamian T., Dwyer D., Fitzsimmons K., Suki B., Parameswaran H., Fine A., Walsh K. Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1035-42. doi:10.1152/ajplung.00397.2007.; Matsuda M., Shimomura I., Sata M., Arita Y., Nishida M., Maeda N., Kumada M., Okamoto Y., Nagaretani H., Nishizawa H., Kishida K., Komuro R., Ouchi N., Kihara S., Nagai R., Funahashi T., Matsuzawa Y. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem. 2002;277(40):37487-91. doi:10.1074/jbc.M206083200.; Motobayashi Y., Izawa-Ishizawa Y., Ishizawa K., Orino S., Yamaguchi K., Kawazoe K., Hamano S., Tsuchiya K., Tomita S., Tamaki T. Adiponectin inhibits insulin-like growth factor-1-induced cell migration by the suppression of extracellular signal-regulated kinase 1/2 activation, but not Akt in vascular smooth muscle cells. Hypertens Res. 2009;32(3):188-93. doi:10.1038/hr.2008.19.; Zhang W., Shu C., Li Q., Li M., Li X. Adiponectin affects vascular smooth muscle cell proliferation and apoptosis through modulation of the mitofusin-2-mediated Ras-Raf-Erk1/2 signaling pathway. Mol Med Rep. 2015;12(3):4703-4707. doi:10.3892/mmr.2015.3899.; Ding M., Xie Y., Wagner R.J., Jin Y., Carrao A.C., Liu L.S., Guzman A.K., Powell R.J., Hwa J., Rzucidlo E.M., Martin K.A. Adiponectin induces vascular smooth muscle cell differentiation via repression of mammalian target of rapamycin complex 1 and FoxO4. Arterioscler Thromb Vasc Biol. 2011;31(6):1403-10. doi:10.1161/ATVBAHA.110.216804.; Tanabe H., Fujii Y., Okada-Iwabu M., Iwabu M., Nakamura Y., Hosaka T., Motoyama K., Ikeda M., Wakiyama M., Terada T., Ohsawa N., Hato M., Ogasawara S., Hino T., Murata T., Iwata S., Hirata K., Kawano Y., Yamamoto M., Kimura-Someya T., Shirouzu M., Yamauchi T., Kadowaki T., Yokoyama S. Crystal structures of the human adiponectin receptors. Nature. 2015;520(7547):312-316. doi:10.1038/nature14301; Otvos L. Jr, Haspinger E., La Russa F., Maspero F., Graziano P., Kovalszky I., Lovas S., Nama K., Hoffmann R., Knappe D., Cassone M., Wade J., Surmacz E. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol. 2011;11:90. doi:10.1186/1472-6750-11-90.; Sung H.K., Mitchell P.L., Gross S., Marette A., Sweeney G. ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. Am J Physiol Cell Physiol. 2022;322(2):C151-C163. doi:10.1152/ajpcell.00603.2020.; Sun L., Yang X., Li Q., Zeng P., Liu Y., Liu L., Chen Y., Yu M., Ma C., Li X., Li Y., Zhang R., Zhu Y., Miao Q.R., Han J., Duan Y. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol. 2017;37(7):1290-1300. doi:10.1161/ATVBAHA.117.309630.; Xu H., Zhao Q., Song N., Yan Z., Lin R., Wu S., Jiang L., Hong S., Xie J., Zhou H., Wang R., Jiang X. AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis. Nat Commun. 2020;11(1):5807. doi:10.1038/s41467-020-19668-y.; Lee I.K., Kim G., Kim D.H., Kim B.B. PEG-BHD1028 Peptide Regulates Insulin Resistance and Fatty Acid β-Oxidation, and Mitochondrial Biogenesis by Binding to Two Heterogeneous Binding Sites of Adiponectin Receptors, AdipoR1 and AdipoR2. Int J Mol Sci. 2021;22(2):884. doi:10.3390/ijms22020884.; Okada-Iwabu M., Yamauchi T., Iwabu M., Honma T., Hamagami K., Matsuda K., Yamaguchi M., Tanabe H., Kimura-Someya T., Shirouzu M., Ogata H., Tokuyama K., Ueki K., Nagano T., Tanaka A., Yokoyama S., Kadowaki T. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503(7477):493-9. doi:10.1038/nature12656.; Iwabu M., Okada-Iwabu M., Tanabe H., Ohuchi N., Miyata K., Kobori T., Odawara S., Kadowaki Y., Yokoyama S., Yamauchi T., Kadowaki T. AdipoR agonist increases insulin sensitivity and exercise endurance in AdipoR-humanized mice. Commun Biol. 2021;4(1):45. doi:10.1038/s42003-020-01579-9.; Zhang Y., Zhao J., Li R., Lau W.B., Yuan Y.X., Liang B., Li R., Gao E.H., Koch W.J., Ma X.L., Wang Y.J. AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings. Am J Physiol Endocrinol Metab. 2015;309(3):E275-82. doi:10.1152/ajpendo.00577.2014.; Clain J., Couret D., Planesse C., Krejbich-Trotot P., Meilhac O., Lefebvre d’Hellencourt C., Viranaicken W., Diotel N. Distribution of Adiponectin Receptors in the Brain of Adult Mouse: Effect of a Single Dose of the Adiponectin Receptor Agonist, AdipoRON, on Ischemic Stroke. Brain Sciences. 2022;12(5):680. https://doi.org/10.3390/brainsci12050680; Herder C., Peltonen M., Svensson P.A., Carstensen M., Jacobson P., Roden M., Sjöström L., Carlsson L. Adiponectin and bariatric surgery: associations with diabetes and cardiovascular disease in the Swedish Obese Subjects Study. Diabetes Care. 2014;37(5):1401-9. doi:10.2337/dc13-1362.; Ohashi T., Shibata R., Morimoto T., Kanashiro M., Ishii H., Ichimiya S., Hiro T., Miyauchi K., Nakagawa Y., Yamagishi M., Ozaki Y., Kimura T., Daida H., Murohara T., Matsuzaki M. Correlation between circulating adiponectin levels and coronary plaque regression during aggressive lipid-lowering therapy in patients with acute coronary syndrome: subgroup analysis of JAPAN-ACS study. Atherosclerosis. 2010;212(1):237-42. doi:10.1016/j.atherosclerosis.2010.05.005.s; Gastaldelli A., Sabatini S., Carli F., Gaggini M., Bril F., Belfort-DeAguiar R., Positano V., Barb D., Kadiyala S., Harrison S., Cusi K. PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH. Liver Int. 2021;41(11):2659-2670. doi:10.1111/liv.15005.; Nezu U., Tsunoda S., Yoshimura H., Kuwabara T., Tomura S., Seki Y., Kaneshiro M., Kamiyama H., Harada Y., Shigematsu E., Aoki K., Yamakawa T., Ohshige K., Natsumeda Y., Terauchi Y. Pravastatin potentiates increases in serum adiponectin concentration in dyslipidemic patients receiving thiazolidinedione: the DOLPHIN study. J Atheroscler Thromb. 2010;17(10):1063-9. doi:10.5551/jat.5033.; Li M., Xu A., Lam K.S., Cheung B.M., Tse H.F. Impact of combination therapy with amlodipine and atorvastatin on plasma adiponectin levels in hypertensive patients with coronary artery disease: combination therapy and adiponectin. Postgrad Med. 2011;123(6):66-71. doi:10.3810/pgm.2011.11.2496.; Jin H., Liu Y., Schweikert B., Hahman H., Wang L., Imhof A., Muche R., König W., Steinacker J.M. Serial Changes in Exercise Capacity, NT-proBNP, and Adiponectin in Patients with Acute Coronary Syndrome before and after Phase II Rehabilitation as well as at the 12-Month Follow-Up. Cardiol Res Pract. 2022;2022:6538296. doi:10.1155/2022/6538296.; Фирова Э.М., Танянский Д.А. Адипонектин плазмы как предиктор эффективности терапии ишемической болезни сердца у пациентов с метаболическим синдромом. Обзоры по клинической фармакологии и лекарственной терапии. 2023;21(2):179-189. doi:10.17816/RCF321745; Ishida M., Shimabukuro M., Yagi S., Nishimoto S., Kozuka C., Fukuda D., Soeki T., Masuzaki H., Tsutsui M., Sata M. MicroRNA-378 regulates adiponectin expression in adipose tissue: a new plausible mechanism. PLoS One. 2014;9(11):e111537. doi:10.1371/journal.pone.0111537.

  9. 9
    Academic Journal

    Contributors: Работа выполнена при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0546-2019-0002 «Патогенетическое обоснование разработки имплантатов для сердечно-сосудистой хирургии на основе биосовместимых материалов, с реализацией пациент-ориентированного подхода с использованием математического моделирования, тканевой инженерии и геномных предикторов».

    Source: Complex Issues of Cardiovascular Diseases; Том 11, № 4 (2022); 90-97 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 4 (2022); 90-97 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1243/717; Melly L., Torregrossa G., Lee T., Jansens J., Puskas J. Fifty years of coronary artery bypass grafting. J Thorac Dis. 2018; 10(3): 1960–1967. doi:10.21037/jtd.2018.02.43; Ong C.S., Zhou X., Huang C.Y., Fukunishi T., Zhang H., Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Rev Med Devices. 2017; 14(5): 383-392. doi:10.1080/17434440.2017.1324293.; Pashneh-Tala S., MacNeil S., Claeyssens F. The TissueEngineered Vascular Graft—Past, Present, and Future. Tissue Eng Part B Rev. 2016; 22(1): 68–100. doi:10.1089/ten.teb.2015.0100; Sanchez P.F., Brey E.M., Briceno J.C. Endothelialization Mechanisms in Vascular Grafts. J. Tissue Eng. Regen. Med. 2018; 12: 2164–2178. doi:10.1002/term.2747; Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M.R., Dehghani F., Khademhosseini A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014; 10(1): 11-25. doi:10.1016/j.actbio.2013.08.022.; Dimitrievska S., Niklason L.E. Historical Perspective and Future Direction of Blood Vessel Developments. Cold Spring Harb Perspect Med. 2018; 8(2): a025742. doi:10.1101/cshperspect.a025742.; Peters E.B. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues. Tissue Eng Part B Rev. 2018; 24(1): 1–24. doi:10.1089/ten.teb.2017.0127; Matveeva V, Khanova M, Sardin E, Antonova L, Barbarash O. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018; 19(11): 3453. doi:10.3390/ijms19113453; Kolbe M., Dohle E., Katerla D., Kirkpatrick C.J., Fuchs S. Enrichment of outgrowth endothelial cells in high and low colony-forming cultures from peripheral blood progenitors. Tissue Eng Part C Methods. 2010; 16(5): 877-886; Fang Y., Wu D., Birukov K.G. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol. 2019; 9(2): 873–904. doi:10.1002/cphy.c180020; Yamamoto K., Takahashi T., Asahara T., Ohura N., Sokabe T., Kamiya A., Ando J. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J. Appl. Physiol. 2003; 95(5): 2081–2088. doi:10.1152/japplphysiol.00232.2003; Fisher A.B., Chien S., Barakat A.I., Nerem R.M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell Mol. Physiol. 2001; 281(3): L529–L533. doi:10.1152/ajplung.2001.281.3.L529.; Roux E., Bougaran P., Dufourcq P., Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol. 2020; 11: 861. doi:10.3389/fphys.2020.00861; Liu H., Gong X., Jing X., Ding X., Yao Y., Huang Y., Fan Y. Shear stress with appropriate time-step and amplification enhances endothelial cell retention on vascular grafts. J Tissue Eng Regen Med. 2017; 11(11): 2965-2978. doi:10.1002/term.2196; Melchiorri A.J., Bracaglia L.G., Kimerer L.K., Hibino N., Fisher J.P. In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng Part C Methods. 2016; 22(7): 663-70. doi:10.1089/ten.tec.2015.0562; Obi S., Masuda H., Shizuno T., Sato A., Yamamoto K., Ando J., Abe Y., Asahara T. Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells. Am J Physiol Cell Physiol. 2012; 303(6): C595-606. doi:10.1152/ajpcell.00133.2012; Egorova A.D., DeRuiter M.C., De Boer H.C., Van De Pas S., Gittenberger-De Groot A.C., Van Zonneveld A.J., Poelmann R.E., Hierck B.P. Endothelial colony-forming cells show a mature transcriptional response to shear stress . Vitr. Cell. Dev. Biol. - Anim. 2012; 48(1): 21.; Brown R.A., Shantsila E., Varma C., Lip G.Y. Current Understanding of Atherogenesis. Am J Med. 2017; 130 (3): 268-282; Choi S.J., Lillicrap D. A sticky proposition: The endothelial glycocalyx and von Willebrand factor. J Thromb Haemost. 2020; 18(4): 781-785. doi:10.1111/jth.14743.; Shim K., Anderson P.J., Tuley E.A., Wiswall E., Evan Sadler J. Platelet–VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood. 2008; 111(2): 651–657. doi:10.1182/blood-2007-05-093021; Starke R.D., Ferraro F., Paschalaki K.E., Dryden N.H., McKinnon T.A., Sutton R.E., Payne E.M., Haskard D.O., Hughes A.D., Cutler D.F., Laffan M.A., Randi A.M. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011; 117(3): 1071–1080. doi:10.1182/blood-2010-01-264507; Stratman A.N., Davis G.E. Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: Influence on vascular tube remodeling, maturation and stabilization. Microsc Microanal. 2012; 18(1): 68–80. doi:10.1017/S1431927611012402

  10. 10
    Academic Journal

    Contributors: Исследование выполнено при поддержке гранта Российского научного фонда № 22-25-00821, https://rscf.ru/project/22-25-00821/.

    Source: Complex Issues of Cardiovascular Diseases; Том 12, № 4 (2023); 120-132 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4 (2023); 120-132 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1324/841; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1320; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1321; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1322; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1323; Dang H., Ye Y., Zhao X., Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20(1): 320. doi:10.1186/s12872-020-01596-w; Cabac-Pogorevici I., Muk B., Rustamova Y., Kalogeropoulos A., Tzeis S., Vardas P. Ischaemic cardiomyopathy. Pathophysiological insights, diagnostic management and the roles of revascularisation and device treatment. Gaps and dilemmas in the era of advanced technology Eur J Heart Fail. 2020; 22(5): 789-799. doi:10.1002/ejhf.1747; Ali H.R., Michel C.R., Lin Y.H., McKinsey T.A., Jeong M.Y., Ambardekar A.V., et all. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. Mol Cell Cardiol. 2020; 138: 304-317. doi:10.1016/j.yjmcc.2019.11.159; Mallick R., Ylä-Herttuala S. Therapeutic Potential of VEGF-B in Coronary heart disease and heart failure: dream or vision? Cells. 2022; 11(24): 4134. doi:10.3390/cells11244134; Cavalcante S.L., Lopes S., Bohn L., Cavero-Redondo I., Álvarez-Bueno C., Viamonte S., Santos M., Oliveira J., Ribeiro F. Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Meta-Analysis Rev Port Cardiol (Engl Ed). 2019; 38(11): 817-827. doi:10.1016/j.repc.2019.02.016; Botts S.R., Fish J.E., Howe K.L. Dysfunctional vascular endothelium as a driver of atherosclerosis: emerging insights into pathogenesis and treatment. Front Pharmacol. 2021; 12: 787541. doi:10.3389/fphar.2021.787541; Ungvari Z., Tarantini S., Kiss T., Wren J.D., Giles C.B., Griffin C.T., Murfee W.L., Pacher P., Csiszar A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018; 15(9): 555–565. doi:10.1038/s41569-018-0030-z; Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022; 23(2): 73. doi:10.31083/j.rcm2302073; Gimbrone M.A., García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016; 118(4): 620–636. doi:10.1161/CIRCRESAHA.115.306301; Топузова М.П., Алексеева Т.М., Вавилова Т.В., Сироткина О.В., Клочева Е.Г. Циркулирующие эндотелиоциты и их предшественники как маркер дисфункции эндотелия у больных артериальной гипертензией, перенесших ишемический инсульт (Обзор). Артериальная гипертензия. 2018; 24(1): 57-64. doi:10.18705/1607-419X-2018-24-1-57-64; Lopes J., Teixeira M., Cavalcante S., Gouveia M., Duarte A., Ferreira M.,et al. Reduced levels of circulating endothelial cells and endothelial progenitor cells in patients with heart failure with reduced ejection fraction. Arch Med Res. 2022; 53(3): 289-295. doi:10.1016/j.arcmed.2022.02.001; Jaipersad A.S., Lip G.Y.H., Silverman S., Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014; 63(1): 1-11. doi:10.1016/j.jacc.2013.09.019; Elsheikh E., Uzunel M., He Z., Holgersson J., Nowak G., Sumitran-Holgersson S. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood. 2005; 106(7): 2347-55. doi:10.1182/blood-2005-04-1407; Yan F., Liu X., Ding H., Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022; 124(1): 151833. doi:10.1016/j.acthis.2021.151833; Куртукова М.О., Бугаева И.О., Иванов А.Н. Факторы, регулирующие ангиогенез. Современные проблемы науки и образования. 2015; 5: 246.; Braile M., Marcella S., Cristinziano L., Galdiero M.R., Modestino L., Ferrara A.L., Varricchi G., Marone G., Loffredo S. VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci. 2020; 21(15): 5294. doi:10.3390/ijms21155294; Grismaldo A., Sobrevia L., Morales L. Role of platelet-derived growth factor c on endothelial dysfunction in cardiovascular diseases. Biochim Biophys Acta Gen Subj. 2022; 1866(10): 130188. doi:10.1016/j.bbagen.2022.130188; Oprescu N., Micheu M.M., Scafa-Udriste A., Popa-Fotea N-M., Dorobantu M. Inflammatory markers in acute myocardial infarction and the correlation with the severity of coronary heart disease. Ann Med. 2021; 53(1): 1040–1046. doi:10.1080/07853890.2021.1916070; Гордеева К., Каде А.Х. Изменение цитокинового статуса при стабильной стенокардии напряжения напряжения. Медицинский вестник Юга России. Обзоры. 2016; 1: 15-21. doi:10.21886/2219-8075-2016-1-15-21; Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. Journal of the American College of Cardiology. 2002; 39 (2): 208–210. doi:10.1016/s0735-1097(01)01738-7; Shantsila E., Blann A.D., Lip G.Y.H. Circulating endothelial cells: from bench to clinical practice. J Thromb Haemost. 2008; 6(5): 865-868. doi:10.1111/j.1538-7836.2008.02918.x; Valgimigli M., Rigolin G.M., Fucili A., Porta M.D., Soukhomovskaia O., Malagutti P., Bugli A.M., Bragotti L.Z., Francolini G., Mauro E., Castoldi G., Ferrari R. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation. 2004; 110: 1209–1212. doi:10.1161/01.CIR.0000136813.89036.21; Morrone D., Picoi M.E.L., Felice F., Martino A.D., Scatena C., Spontoni P., Naccarato A.G., Di Stefano R., Bortolotti U., Dal Monte M., Pini S., Abelli M., Balbarini A. Endothelial progenitor cells: an appraisal of relevant data from bench to bedside. Int. J. Mol. Sci. 2021; 22: 12874. doi:10.3390/ijms222312874; Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L., Mihu C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018, 59(2): 455–467; Zhou Y., Zhu X, Cui H., Shi J., Yuan G., Shi S., Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med. 2021; 8: 738325. doi:10.3389/fcvm.2021.738325.; Сергеенко И.В., Семенова А.Е., Масенко В.П., Хабибуллина Л.И., Габрусенко С.А., Кухарчук В.В., Беленков Ю.Н. Влияние реваскуляризации миокарда на динамику сосудистого эндотелиального и трансформирующего факторов роста у больных ишемической болезнью сердца. Кардиоваскуляр-ная терапия и профилактика. 2007; 6(5); 12-17.; Прасолов А.В., Князева Л.А., Князева Л.И., Жукова Л.А. Изменение показателей цитокинового статуса у больных ИБС: стабильной стенокардией напряжения II-III функционального класса в зависимости от терапии. Вестник новых медицинских технологий. 2009; 14(2); 146-147.; Goumans M-J., Dijke P.T. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol. 2018; 10(2): a022210. doi:10.1101/cshperspect.a022210; Rajendran S., Shen X., Glawe J., Kolluru G.K., Kevil C.G. Nitric oxide and hydrogen sulfide regulation of ischemic vascular growth and remodeling. Compr Physiol. 2019; 9(3): 1213–1247. doi:10.1002/cphy.c180026; Li J-H., Li Y., Huang D., Yao M. Role of stromal cell-derived factor-1 in endothelial progenitor cell-mediated vascular repair and regeneration. Tissue Eng Regen Med. 2021; 18(5): 747–758. doi:10.1007/s13770-021-00366-9

  11. 11
  12. 12
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 25, № 3 (2023); 87-96 ; Вестник трансплантологии и искусственных органов; Том 25, № 3 (2023); 87-96 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1669/1512; https://journal.transpl.ru/vtio/article/view/1669/1528; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1382; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1383; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1384; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1385; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1386; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1387; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1388; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1389; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1390; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1391; https://journal.transpl.ru/vtio/article/downloadSuppFile/1669/1392; Протезы кровеносных сосудов. Общие технические требования. Методы испытаний: ГОСТ 31514-2012. Дата введения 01.01.2015. М.: Стандартинформ, 2015.; Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B. Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev. 2011; 63: 209–220.; Новикова СП, Салохединова РР, Лосева СВ, Николашина ЛН, Левкина АЮ. Анализ физико-механических и структурных характеристик протезов кровеносных сосудов. Грудная и сердечно-сосудистая хирургия. 2012; 54: 27–33.; Wesolowski SA, Fries CC, Karlson KE, De Bakey M, Sawyer PN. Porosity: primary determinant of ultimate fate of synthetic vascular grafts. Surgery. 1961; 50: 91–96.; Лебедев ЛВ, Плотник ЛЛ, Смирнов АД. Протезы кровеносных сосудов. Л.: Медицина, 1981; 192.; Guan G, Yu C, Fang X, Guidoin R, King MW, Wang H, Wang L. Exploration into practical significance of integral water permeability of textile vascular grafts. J Appl Biomater Funct Mater. 2021; 19: 22808000211014007. doi:10.1177/22808000211014007.; Yates SG, Barros D’Sa AA, Berger K, Fernandez LG, Wood SJ, Rittenhouse EA et al. The preclotting of porous arterial prostheses. Ann Surg. 1978; 188: 611–622.; Joseph J, Domenico Bruno V, Sulaiman N, Ward A, Johnson TW, Baby HM et al. A novel small diameter nanotextile arterial graft is associated with surgical feasibility and safety and increased transmural endothelial ingrowth in pig. J Nanobiotechnology. 2022; 20: 71. doi:10.1186/s12951-022-01268-1.; Hisagi M, Nishimura T, Ono M, Gojo S, Nawata K, Kyo S. New pre-clotting method for fibrin glue in a nonsealed graft used in an LVAD: the KYO method. J Artif Organs. 2010; 13: 174–177. doi:10.1007/s10047-010- 0504-1.; Weadock KS, Goggins JA. Vascular graft sealants. J Long Term Eff Med Implants. 1993; 3: 207–22.; Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol. 2019; 7: 166. doi:10.3389/fbioe.2019.00166.; Zdrahala RJ. Small caliber vascular grafts. Part I: state of the art. J Biomater Appl. 1996; 10: 309–329. doi:10.1177/088532829601000402.; Drury JK, Ashton TR, Cunningham JD, Maini R, Pollock JG. Experimental and clinical experience with a gelatin impregnated Dacron prosthesis. Ann Vasc Surg. 1987; 1: 542–547.; Fortin W, Bouchet M, Therasse E, Maire M, Héon H, Ajji A et al. Negative In Vivo Results Despite Promising In vitro Data With a Coated Compliant Electrospun Polyurethane Vascular Graft. J Surg Res. 2022; 279: 491– 504. doi:10.1016/j.jss.2022.05.032.; Huang F, Sun L, Zheng J. In vitro and in vivo characterization of a silk fibroin-coated polyester vascular prosthesis. Artif Organs. 2008; 12: 932–941. doi:10.1111/j.1525- 1594.2008.00655.x.; Lee JH, Kim WG, Kim SS, Lee JH, Lee HB. Development and characterization of an alginate-impregnated polyester vascular graft. J Biomed Mater Res. 1997; 36: 200–208. doi:10.1002/(sici)1097-4636(199708)36:23.0.co;2-o.; Lisman A, Butruk B, Wasiak I, Ciach T. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis. J Biomater Appl. 2014; 28: 1386–1396. doi:10.1177/0885328213509676.; Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W. Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater. 2013; 101: 506–519. doi:10.1002/jbm.b.32851.; Немец ЕА, Панкина АП, Сургученко ВА, Севастьянов ВИ. Биостабильность и цитотоксичность медицинских изделий на основе сшитых биополимеров. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 79–85. doi:10.15825/1995-1191-2018-1-79-85.; Глушкова ТВ, Овчаренко ЕА, Рогулина НВ, Клышников КЮ, Кудрявцева ЮА, Барбараш ЛС. Дисфункции эпоксиобработанных биопротезов клапанов сердца. Кардиология. 2019; 59 (10): 49–59. doi:10.18087/cardio.2019.10.n327.; Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002; 54: 13–36. doi:10.1016/s0169-409x(01)00240-x.; Chernonosova VS, Laktionov PP. Structural Aspects of Electrospun Scaffolds Intended for Prosthetics of Blood Vessels. Polymers (Basel). 2022; 14: 1698. doi:10.3390/polym14091698.; Fioretta ES, Simonet M, Smits AI, Baaijens FP, Bouten CV. Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules. 2014; 15: 821–829. doi:10.1021/bm4016418.; Azimi B, Nourpanah P, Rabiee M, Arbab SJ. Poly (ε-caprolactone) Fiber: An Overview. Engineered Fibers Fabrics. 2014; 9: 74–90. doi:10.1177/155892501400900309.; Reid JA, McDonald A, Callanan A. Electrospun fibre diameter and its effects on vascular smooth muscle cells. J Mater Sci Mater Med. 2021; 32: 131. doi:10.1007/s10856-021-06605-8.; Nemets EA, Surguchenko VA, Belov VYu, Xajrullina AI, Sevastyanov VI. Porous Tubular Scaffolds for Tissue Engineering Structures of Small Diameter Blood Vessels. Inorganic Materials: Applied Research. 2023; 14: 400– 407. doi:10.1134/S2075113323020338.; Лебедев АВ, Бойко АИ. Зависимость прочности сваренных кровеносных сосудов от диаметра, толщины и модуля Юнга стенки. Биомедицинская инженерия и электроника. 2014; 2: 54–61.; https://journal.transpl.ru/vtio/article/view/1669

  13. 13
    Academic Journal

    Contributors: The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Agreement on the provision of grants from the federal budget in the form of subsidies in accordance with paragraph 4 of Article 78.1 of the Budget Code of the Russian Federation № 075-15-2022-1202 dated September 30, 2022, concluded to implement the Order of the Russian Federation Government dated May 11, 2022 No. 1144-r., Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках Соглашения о предоставлении из федерального бюджета грантов в форме субсидий в соответствии с п. 4 ст. 78.1 Бюджетного кодекса Российской Федерации № 075-15-2022-1202 от 30 сентября 2022 г., заключенного в целях реализации Распоряжения Правительства Российской Федерации от 11 мая 2022 г. № 1144-р.

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 160-166 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 160-166 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1724/800; Mathers C.D., Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. DOI:10.1371/journal.pmed.0030442.; Pashneh-Tala S., MacNeil S., Claeyssens F. The tissue-engineered vascular graft – past, present, and future. Tissue Eng. Part. B.: Rev. 2016;22(1):68–100. DOI:10.1089/ten.teb.2015.0100.; Elliott M.B., Ginn B., Fukunishi T., Bedja D., Suresh A., Chen T. et al. Regenerative and durable small-diameter graft as an arterial conduit. Proc. Natl. Acad. Sci. USA. 2019;116(26):12710–12719. DOI:10.1073/pnas.1905966116.; Shoji T., Shinoka T. Tissue engineered vascular grafts for pediatric cardiac surgery. Transl. Pediatr. 2018;7(2):188–195. DOI:10.21037/tp.2018.02.01.; Abdulhannan P., Russell D.A., Homer-Vanniasinkam S. Peripheral arterial disease: a literature review. Br. Med. Bull. 2012;104:21–39. DOI:10.1093/bmb/lds027.; Ardila D.C., Liou J.J., Maestas D., Slepian M.J., Badowski M., Wagner W.R. et al. Surface Modification of Electrospun Scaffolds for Endothelialization of Tissue-Engineered Vascular Grafts Using Human Cord Blood-Derived Endothelial Cells. J. Clin. Med. 2019;8(2):185. DOI:10.3390/jcm8020185.; Assmann A., Delfs C., Munakata H., Schiffer F., Horstkötter K., Huynh K. et al. Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials. 2013;34:6015–6026. DOI:10.1016/j.biomaterials.2013.04.037.; Conklin B.S., Wu H., Lin P.H., Lumsden A.B., Chen C. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft. Artif. Organs. 2004;28:668–675. DOI:10.1111/j.1525-1594.2004.00062.x.; Flameng W., De Visscher G., Mesure L., Hermans H., Jashari R., Meuris B. Coating with fibronectin and stromal cell–derived factor-1α of decellularized homografts used for right ventricular outflow tract reconstruction eliminates immune response–related degeneration. J. Thorac. Cardiovasc. Surg. 2014;147(4):1398–1404.e2. DOI:10.1016/j.jtcvs.2013.06.022.; Ханова М.Ю., Великанова Е.А., Глушкова Т.В., Матвеева В.Г. Создание персонифицированного клеточно-заселенного сосудистого протеза in vitro. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(2):89–93. DOI:10.17802/2306-1278-2021-10-2S-89-93.; Copes F., Pien N., Vlierberghe S.V., Boccafoschi F., Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front. Bioeng. Biotechnol. 2019;7:166. DOI:10.3389/fbioe.2019.00166.; Lynn A.K., Yannas I.V., Bonfield W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. Part B. Appl. Biomater. 2004; 71:343–354. DOI:10.1002/jbm.b.30096.; Smethurst P.A., Onley D J., Jarvis G.E., O’Connor M.N., Knight C.G., Herr A. B. et al. Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J. Biol. Chem. 2007;282(2):1296–1304. DOI:10.1074/jbc.M606479200.; Dietrich M., Heselhaus J., Wozniak J., Weinandy S., Mela P., Tschoeke B. et al. Fibrin-based tissue engineering: Comparison of different methods of autologous fibrinogen isolation. Tissue Engineering. Part C: Methods. 2013;19(3):216–226. DOI:10.1089/ten.tec.2011.0473.; Park C.H., Woo K.M. Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. Adv. Exp. Med. Biol. 2018;1064:253–261. DOI:10.1007/978-981-13-0445-3_16.; Podolnikova N.P., Yakovlev S., Yakubenko V.P., Wang X., Gorkun O.V., Ugarova T.P. The interaction of integrin αIIbβ3 with fibrin occurs through multiple binding sites in the αIIb β-propeller domain. J. Biol. Chem. 2014;289(4):2371–2383. DOI:10.1074/jbc.M113.518126.; https://www.sibjcem.ru/jour/article/view/1724

  14. 14
  15. 15
    Academic Journal

    Contributors: Исследование выполнено за счет гранта Российского научного фонда № 22-25-20038 (https://rscf.ru/project/22-25-20038/), а так же средств Администрации Томской области (договор с РОО «ТПС» № 22-04 от 28.06.2022 в рамках реализации регионального проекта РНФ № 22-25-20038).

    Source: Complex Issues of Cardiovascular Diseases; Том 11, № 3 (2022); 84-96 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 3 (2022); 84-96 ; 2587-9537 ; 2306-1278

    File Description: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1164/698; Adhyapak S.M., Parachuri V.R. Tailoring therapy for ischemic cardiomyopathy: is Laplace's law enough? Ther Adv Cardiovasc Dis. 2017; 11 (9): 231–234. doi:10.1177/1753944717718719.; Шипулин В.М., Пряхин А.С., Андреев С.Л., Шипулин В.В., Чумакова С.П., Рябова Т.Р., Стельмашенко А.И., Беляева С.А., Лелик Е.В. Современные клинико-фундаментальные аспекты в диагностике и лечении пациентов с ишемической кардиомиопатией (обзор). Сибирский журнал клинической и экспериментальной медицины. 2021; 36 (1): 20–29. doi:10.29001/2073-8552-2021-36-1-20-29.; Dang H, Ye Y, Zhao X, Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20 (1): 320. doi:10.1186/s12872-020-01596-w.; Gyöngyösi M., Winkler J., Ramos I., Do QT., Firat H., McDonald K., González A., Thum T., Díez J., Jaisser F., Pizard A., Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017; 19 (2): 177–191. doi:10.1002/ejhf.696.; Kaski J.-C., Crea F., Gersh B. J., Camici P.G. Reappraisal of Ischemic Heart Disease. Fundamental Role of Coronary Microvascular Dysfunction in the Pathogenesis of Angina Pectoris. Circulation. 2018; 138: 1463-1480 doi:10.1161/CIRCULATIONAHA.118.031373; Poston R.N. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab. 2019; 8 (2): 51–61. doi:10.1097/XCE.0000000000000172.; Мельникова Ю.С., Макарова Т.П. Эндотелиальная дисфункция как центральное звено патогенеза хронических болезней. Казан.мед.жур. 2015; 96 (4): 659–665. doi:10.17750/KMJ2015-65.; Eligini S., Cosentino N., Fiorelli S., Fabbiocchi F., Niccoli G., Refaat H., Camera M., Calligaris G., De Martini S., Bonomi A., Veglia F., Fracassi F., Crea F., Marenzi G., Tremoli E. Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology. Sci Rep. 2019; 9 (1): 8680. doi:10.1038/s41598-019-44847-3.; Xu H., Jiang J., Chen W., Li W., Chen Z. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019: 4354786. doi:10.1155/2019/4354786.; Moroni F., Ammirati E., Norata G.D., Magnoni M., Camici P.G. The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm. 2019: 7434376. doi:10.1155/2019/7434376.; Dick S.A., Zaman R. Epelman S. Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Front Immunol. 2019; 10: 2146. doi:10.3389/fimmu.2019.02146; Hamers A.A.J., Dinh H.Q., Thomas G.D., Marcovecchio P., Blatchley A., Nakao C.S., Kim C., McSkimming C., Taylor A.M., Nguyen A.T., McNamara C.A., Hedrick C.C. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol. 2019; 39 (1): 25–36. doi:10.1161/ATVBAHA.118.311022; Rojas J., Salazar J., Martínez M.S., Palmar J., Bautista J., Chávez-Castillo M., Gómez A., Bermúdez V. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Scientifica (Cairo). 2015; 2015: 851252. doi:10.1155/2015/851252.; Jaipersad A.S., Lip G.Y., Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014; 63 (1): 1–11. doi:10.1016/j.jacc.2013.09.019; Li D.W., Liu Z.Q., Wei J., Liu Y., Hu L.S. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 2012; 30 (5): 1000-1006. doi:10.3892/ijmm.2012.1108; Esquiva G., Grayston A., Rosell A. Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol. 2018; 315 (5): 664–674. doi:10.1152/ajpcell.00200.2018.; Ozkok A., Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res. 2018; 43 (3): 701–718. doi:10.1159/000489745.; Денисенко О.А., Чумакова С.П., Уразова О.И. Эндотелиальные прогениторные клетки: происхождение и роль в ангиогенезе при сердечно-сосудистой патологии. Сибирский журнал клинической и экспериментальной медицины. 2021; 36 (2): 23–29. doi:10.29001/2073-8552-2021-36-2-23-29.; Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. Journal of the American College of Cardiology. 2002; 39 (2): 208–210. doi:10.1016/s0735-1097(01)01738-7.; Mitruţ R., Stepan A.E., Mărgăritescu C., Andreiana B.C., Kesse A.M., Simionescu C.E., Militaru C. Immunoexpression of MMP-8, MMP-9 and TIMP-2 in dilated cardiomyopathy. Rom J Morphol Embryol. 2019; 60 (1): 119–124.; Shahid F., Gregory Y., Lip H., Shantsila E. Role of Monocytes in Heart Failure and Atrial Fibrillation J Am Heart Assoc. 2018; 7 (3) doi:10.1161/JAHA.117.007849.; Lin N., Simon M.C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J Clin Invest. 2016; 126 (10): 3661–3671. doi:10.1172/JCI84426.; Чумакова С.П., Уразова О.И., Винс М.В., Шипулин В.М., Пряхин А.С., Букреева Е.Б., Буланова А.А., Кошель А.П., Новицкий В.В. Содержание гипоксия-индуцируемых факторов и медиаторов иммуносупрессии в крови при заболеваниях, ассоциированных с гипоксией. Бюллетень сибирской медицины. 2020; 19 (3): 105–112. doi:10.20538/1682-0363-2020-3-105-112.; Lafuse W.P., Wozniak D.J., Rajaram M.V.S. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells. 2020; 10 (1): 51. doi:10.3390/cells10010051.; Колотов К.А., Распутин П.Г. Моноцитарный хемотаксический протеин-1 в физиологии и медицине. Пермский медицинский журнал. 2018; 35 (4): 99–105. doi:10.17816/pmj35399-105.

  16. 16
    Academic Journal

    Contributors: Исследование выполнено за счёт гранта Российского научного фонда № 22-25-00821 (https://rscf.ru/project/22-25-00821/).

    Source: Acta Biomedica Scientifica; Том 7, № 5-2 (2022); 21-30 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3822/2424; Chen C, Tian J, He Z, Xiong W, He Y, Liu S. Identified three interferon induced proteins as novel biomarkers of human ischemic cardiomyopathy. Int J Mol Sci. 2021; 22(23): 13116. doi:10.3390/ijms222313116; Dang H, Ye Y, Zhao X, Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20(1): 320. doi:10.1186/s12872-020-01596-w; Зюзенков М.В. Ишемическая кардиомиопатия. Военная медицина. 2013; 1: 35-36.; Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021; 22(8): 3850. doi:10.3390/ijms22083850; Xue M, Qiqige C, Zhang Q, Zhao H, Su L, Sun P, et al. Effects of tumor necrosis factor α (TNF-α) and interleukina 10 (IL-10) on intercellular cell adhesion molecule-1 (ICAM-1) and cluster of differentiation 31 (CD31) in human coronary artery endothelial cells. Med Sci Monit. 2018; 24: 4433-4439. doi:10.12659/MSM.906838; Cui S, Men L, Li Y, Zhong Y, Yu S, Li F, et al. Selenoprotein S attenuates tumor necrosis factor-α-induced dysfunction in endothelial cells. Mediators Inflamm. 2018; 2018: 1625414. doi:10.1155/2018/1625414; Lopes-Coelho F, Silva F, Gouveia-Fernandes S, Martins C, Lopes N, Domingues G, et al. Monocytes as endothelial progenitor cells (EPCs), another brick in the wall to disentangle tumor angiogenesis. Cells. 2020; 9(1): 107. doi:10.3390/cells9010107; Peplow PV. Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization. Neural Regen Res. 2014; 9(15): 1425-1429. doi:10.4103/1673-5374.139457; Prisco AR, Prisco MR, Carlson BE, Greene AS. TNF-α increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity. Am J Physiol Heart Circ Physiol. 2015; 308(11): 1368-1381. doi:10.1152/ajpheart.00496.2014; Qiu Y, Zhang C, Zhang G, Tao J. Endothelial progenitor cells in cardiovascular diseases. Aging Med (Milton). 2018; 1(2): 204-208. doi:10.1002/agm2.12041; Li D-W, Liu Z-Q, Wei J, Liu Y, Hu L-S. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 2012; 30(5): 1000-1006. doi:10.3892/ijmm.2012.1108; Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021; 101(Pt B): 107598. doi:10.1016/j.intimp.2021.107598; Коваль С.Н., Милославский Д.К., Снегурская И.А., Щенявская Е.Н. Факторы ангиогенеза при заболеваниях внутренних органов (обзор литературы). Вiсник проблем бiологii i медицини. 2012; 3, 2(95): 11-15.; Sinha SK, Miikeda A, Fouladian Z, Mehrabian M, Edillor C, Shih D, et al. Local macrophage colony-stimulating factor expression regulates macrophage proliferation and apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2021; 41(1): 220-233. doi:10.1161/ATVBAHA.120.315255; Денисенко O.A., Чумакова С.П., Уразова О.И. Эндотелиальные прогениторные клетки: происхождение и роль в ангиогенезе при сердечно-сосудистой патологии. Сибирский журнал клинической и экспериментальной медицины. 2021; 36(2): 23-29. doi:10.29001/2073-8552-2021-36-2-23-29; Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002; 39(2): 210-218. doi:10.1016/s0735-1097(01)01738-7; Mudyanadzo TA. Endothelial progenitor cells and cardiovascular correlates. Cureus. 2018; 10(9): e3342. doi:10.7759/cureus.3342; Lin C-P, Lin F-Y, Huang P-H, Chen Y-L, Chen W-C, Chen H-Y, et al. Endothelial progenitor cell dysfunction in cardiovascular diseases: Role of reactive oxygen species and inflammation. Biomed Res Int. 2013; 2013: 845037. doi:10.1155/2013/845037; Nova-Lamperti E, Zúñiga F, Ormazábal V, Escudero C, Aguayo C. Vascular regeneration by endothelial progenitor cells in health and diseases. In: Lenasi H (ed.). Microcirculation Revisited. From Molecules to Clinical Practice. 2016: 231-258.; Ha X-Q, Li J, Mai C-P, Cai X-L, Yan C-Y, Jia C-X, et al. The decrease of endothelial progenitor cells caused by high altitude may lead to coronary heart disease. Eur Rev Med Pharmacol Sci. 2021; 25(19): 6101-6108. doi:10.26355/eurrev_202110_26888; George AL, Bangalore-Prakash P, Rajoria S, Suriano R, Shanmugam A, Mittelman A, et al. Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol. 2011; 4: 24. doi:10.1186/1756-8722-4-24; Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, et al. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J. 2019; 33(7): 7929-7941. doi:10.1096/fj.201802650RR; Naserian S, Abdelgawad ME, Bakshloo MA, Ha G, Arouche N, Cohen JL, et al. The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Commun Signal. 2020; 18(1): 94. doi:10.1186/s12964-020-00564-3; Goukassian DA, Qin G, Dolan C, Murayama T, Silver M, Curry C, et al. Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation. 2007; 115(6): 752-762. doi:10.1161/CIRCULATIONAHA.106.647255; https://www.actabiomedica.ru/jour/article/view/3822

  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 23, № 3 (2021); 101-114 ; Вестник трансплантологии и искусственных органов; Том 23, № 3 (2021); 101-114 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1334/1161; https://journal.transpl.ru/vtio/article/view/1334/1251; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/781; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/782; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/783; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/784; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/785; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/786; https://journal.transpl.ru/vtio/article/downloadSuppFile/1334/787; Song HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell. 2018; 22 (3): 340–354. doi:10.1016/j.stem.2018.02.009.; Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering. 2020; 7 (4): 160. doi:10.3390/bioengineering7040160.; Ardila DC, Liou JJ, Maestas D, Slepian MJ, Badowski M, Wagner WR et al. Surface Modification of Electrospun Scaffolds for Endothelialization of Tissue-Engineered Vascular Grafts Using Human Cord Blood-Derived Endothelial Cells. J Clin Med. 2019; 8 (2): 185. doi:10.3390/jcm8020185.; Braghirolli DI, Helfer VE, Chagastelles PC, Dalberto TP, Gamba D, Pranke P. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor inctease the proliferation of endothelial progenitor cells. Biomed Mater. 2017; 12 (2): 025003. doi:10.1088/1748-605X/aa5bbc.; Антонова ЛВ, Севостьянова ВВ, Кутихин АГ, Великанова ЕА, Матвеева ВГ, Глушкова ТВ и др. Влияние способа модифицирования трубчатого полимерного матрикса биомолекулами bFGF, SDF-1α и VEGF на процессы формирования in vivo тканеинженерного кровеносного сосуда малого диаметра. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 96–109. doi:10.15825/1995-1191-2018-1-96-109.; Ando J, Yamamoto K. Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal. 2011; 15 (5): 1389–1403. doi:10.1089/ars.2010.3361.; Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007; 292 (3): H1209-24. doi:10.1152/ajpheart.01047.2006.; Bilodeau K, Mantovani D. Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng. 2006; 12 (8): 2367–2383. doi:10.1089/ten.2006.12.2367.; Plein A, Fantin A, Denti L, Pollard J, Ruhrberg C. Erythromieloid progenitors contribute endothelial cells to blood vessels. Nature. 2018; 562 (7726): 223–228. doi:10.1038/s41586-018-0552-x.; Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000; 105 (1): 71–77. doi:10.1172/JCI8071.; Estes ML, Mund JA, Ingram DA, Case J. Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr Protoc Cytom. 2010; 52 (1): 9.33.1–9.33.11. doi:10.1002/0471142956.cy0933s52.; Lee PS, Poh KK. Endothelial progenitor cells in cardiovascular diseases. World J Stem Cells. 2014; 6 (3): 355–366. doi:10.4252/wjsc.v6.i3.355.; Krawiec JT, Liao HT, Lily Kwan LY, D’Amore A, Weinbaum JS, Rubin JP et al. Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft. J Vasc Surg. 2017; 66 (3): 883–890.e1. doi:10.1016/j.jvs.2016.09.034.; Luo J, Qin L, Zhao L, Gui L, Ellis VW, Huang Y et al. Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell. 2020; 26 (2): 251–261.e8. doi: 10/1016/j.stem.2019.12.012.; Fukunishi T, Best CA, Ong CS, Groehl T, Reinhardt J, Yi T et al. Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Engineering Part A. 2018; 24 (1–2): doi:10.1089/ten.TEA.2017.0044.; Matveeva VG, Khanova MYu, Sardin ES, Antonova LV, Barbarash OL. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018; 19 (11): 3453. doi:10.3390/ijms19113453.; Aper T, Kolster M, Hilfiker A, Teebken OE, Haverich A. Fibrinogen Preparations for Tissue Engineering Approaches. J Bioengineer & Biomedical Sci. 2012; 2 (3): 115. doi:10.4172/2155-9538.1000115.; Великанова ЕА, Кутихин АГ, Матвеева ВГ, Тупикин АЕ, Кабилов МР, Антонова ЛВ. Сравнение профиля генной экспрессии колониеформирующих эндотелиальных клеток из периферической крови человека и эндотелиальных клеток коронарной артерии. Комплексные проблемы сердечно-сосудистых заболеваний. 2020; 9 (2): 74–81. doi:10.17802/2306-1278-2020-9-2-74-81.; Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009; 6 (1): 16–26. doi:10.1038/ncpcardio1397.; Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005; 437 (7057): 426–431. doi:10.1038/nature03952.; Nayak L, Lin Z, Jain MK. «Go With the Flow»: How Krüppel-Like Factor 2 Regulates the Vasoprotective Effects of Shear Stress. Antioxidants & Redox Signaling. 2011; 15 (5): 1449–1461. doi:10.1089/ars.2010.3647.; Yazdani SK, Tillman BW, Berry JL, Soker S, Geary RL. The fate of an endothelium layer after preconditioning. J Vasc Surg. 2010; 51 (1): 174–183. doi:10.1016/j.jvs.2009.08.074.; Melchiorri AJ, Bracaglia LG, Kimerer LK, Hibino N, Fisher JP. In Vitro Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor. Tissue Eng Part C Methods. 2016; 22 (7): 663–670. doi:10.1089/ten.TEC.2015.0562.; Tondreau MY, Laterreur V, Gauvin R, Vallières K, Bourget JM, Lacroix D et al. Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomater. 2015; 18: 176–185. doi:10.1016/j.actbio.2015.02.026.; Liu J-X, Yan Z-P, Zhang Y-Y, Wu J, Liu X-H, Zeng Y. Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell Mol Biol. 2016; 62 (8): 28–34. doi:10.14715/cmb/2016.62.8.5.; Zhou J, Li Y-S, Chien S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014; 34 (10): 2191–2198. doi:10.1161/ATVBAHA.114.303422.; Tzima E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ Res. 2006; 98 (2): 176–185. doi:10.1161/01.RES.0000200162.94463.d7.; Burridge K, Wittchen ES. The tension mounts: Stress fibers as force-generating mechanotransducers. J Cell Biol. 2013; 200 (1): 9–19. doi:10.1083/jcb.201210090.; Murphy KN, Brinkworth AJ. Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci. 2021; 22 (3): 1358. doi:10.3390/ijms22031358.; Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004; 1692 (2–3): 103–119. doi:10.1016/j.bbamcr.2004.04.007.; Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010; 11 (9): 633–643. doi:10.1038/nrm2957.; Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010; 468 (7323): 580–584. doi:10.1038/nature09621.; https://journal.transpl.ru/vtio/article/view/1334