Showing 1 - 20 results of 264 for search '"электронейромиография"', query time: 0.93s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Contributors: This research is within the framework of the Lithuania–Russia Cross-border Cooperation Program grant 2014–2020 EC Decision C (2016)8463., Данное исследование проведено в рамках гранта Lithuania–Russia Cross-border Cooperation Programme 2014–2020 EC Decision C (2016)8463.

    Source: Russian Journal of Child Neurology; Том 18, № 4 (2023); 26-35 ; Русский журнал детской неврологии; Том 18, № 4 (2023); 26-35 ; 2412-9178 ; 2073-8803

    File Description: application/pdf

    Relation: https://rjdn.abvpress.ru/jour/article/view/449/306; Анаева Л.А., Жетишев Р.А. Современные представления о патогенезе детского церебрального паралича в обосновании внедрения программ его ранней диагностики и лечения. Кубанский научный медицинский вестник 2015;(4):7–12.; Батышева Т.Т. Детский церебральный паралич – актуальный обзор. Доктор.ру 2012;(5):40–4.; Клочкова О.А., Куренков А.Л., Кенис В.М. Формирование контрактур при спастических формах детского церебрального паралича: вопросы патогенеза. Ортопедия, травматология и восстановительная хирургия детского возраста 2018;6(1):58–66. DOI:10.17816/PTORS6158-66; Нейропсихологические методы исследования. Психодиагностические методы в педиатрии и детской психоневрологии. Учебное пособие. Под ред. Д.Н. Исаева и В.Е. Кагана. СПб.: ПМИ, 1991. C. 48–73.; Ощепкова Е.С. Оценка развития речи у детей: обзор зарубежных методик. Вопросы психолингвистики 2020;2(44):110–23.; Федеральная служба госстатистики. Положение инвалидов. Доступно по: https://rosstat.gov.ru/folder/13964.; Шейко Г. Е., Белова А.Н., Кузнецов А.Н. и др. Применение международной классификации функционирования, ограничения жизнедеятельности и здоровья детей и подростков в оценке реабилитационных мероприятий у пациентов с детским церебральным параличом. Вестник восстановительной медицины 2020;5(99):38–45.; Bischoff C., Schoenie P.W., Conrad B. Increased F-wave duration in patients with spasticity. Electromyogr Clin Neurophysiol 1992;32:449–53.; Cappellini G., Sylos-Labini F., Assenza C. et al. Clinical relevance of state-of-the-art analysis of surface electromyography in cerebral palsy. Front Neurol 2020;11:583296. DOI:10.3389/fneur.2020.583296; Colver A., Fairhurst C., Pharoah P.O. Cerebral palsy. Lancet 2014;383:1240–9.; Eisen A., Odusote K. Amplitude of the F-wave: a potential means of documenting spasticity. Neurology 1979;29:1306–9.; Graham H.K., Rosenbaum P., Paneth N. et al. Cerebral palsy. Nat Rev Dis Primers 2016;2:15082. DOI:10.1038/nrdp.2015.82; Kursa M., Rudnicki W. Feature selection with the Boruta package. J Stat Softw 2010;36(11):1–13.; Lane S.J., Ivey C.K., May-Benson T.A. Test of Ideational Praxis (TIP): Preliminary findings and interrater and test-retest reliability with preschoolers. Am J Occup Ther 2014;68(5):555–61. DOI:10.5014/ajot.2014.012542; National Early Literacy Panel 2008. Available at: https://lincs.ed.gov/earlychildhood/NELP/NELPreportCitationFormat.html.; Park E.Y. Stability of the gross motor function classification system in children with cerebral palsy for two years. BMC Neurol 2020;20:172. DOI:10.1186/s12883-020-01721-4; Pitto L., van Rossom S., Desloovere K. et al. Pre-treatment EMG can be used to model post-treatment muscle coordination during walking in children with cerebral palsy. PLoS One 2020;15(2):e0228851. DOI:10.1371/journal.pone.0228851; https://rjdn.abvpress.ru/jour/article/view/449

  6. 6
    Academic Journal

    Contributors: The results of this work were obtained using the equipment of the Center for Collective Use “Analytical Center of the Saint-Petersburg Chemical Pharmaceutical University” (agreement No. 075-15-2021-685) with financial support from the Ministry of Science and Higher Education of the Russian Federation (MSHE RF), as part of State Program SP-47 “Scientific and Technological Development of the Russian Federation” (2019–2030) (project 0113-2019-0006), and Project 95445054 of the Saint Petersburg State University. Cell cultures were obtained and maintained using the equipment of the large-scale research facility “All-Russian Collection of Cell Cultures of Higher Plants” of the IPPRAS (ARCCC HP IPPRAS) and supported by the State Project 122042700045-3 of the MSHE RF. Bioreactor cultivation of plant cell suspensions and biomass production were carried out using the equipment of the large-scale research facility “Experimental Biotechnological Facility” of the IPPRAS (EBF IPPRAS) and supported by the State Project 122042600086-7 of the MSHE RF., Работа выполнена с использованием оборудования ЦКП «Аналитический центр ФГБОУ ВО СПХФУ Минздрава России» в рамках соглашения №075-15-2021-685 от 26 июля 2021 года при финансовой поддержке Минобрнауки России, в рамках госпрограммы ГП-47 «Научно-технологическое развитие Российской Федерации» (2019–2030) (тема № 0113-2019-0006) и проекта № 95445054 Санкт-Петербургского государственного университета. Культуры клеток были получены и поддерживались с использованием оборудования УНУ «Всероссийская коллекция культур клеток высших растений» при поддержке государственного задания Министерства науки и высшего образования РФ № 122042700045-3. Выращивание культур клеток в биореакторах и получение биомассы проводили с использованием оборудований УНУ «Опытный биотехнологический комплекс ИФР РАН» при поддержке государственного задания Министерства науки и высшего образования РФ № 122042600086-7.

    Source: Drug development & registration; Том 14, № 1 (2025); 332-348 ; Разработка и регистрация лекарственных средств; Том 14, № 1 (2025); 332-348 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/2010/1364; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2010/2686; Сахарный диабет 2 типа у взрослых. Клинические рекомендации. М.: Общественная организация «Российская ассоциация эндокринологов»; 2022. 251 с.; Ye J., Wu Y., Yang S., Zhu D., Chen F., Chen J., Ji X., Hou K. The global, regional and national burden of type 2 diabetes mellitus in the past, present and future: a systematic analysis of the Global Burden of Disease Study 2019. Frontiers in Endocrinology. 2023;14:1192629. DOI:10.3389/fendo.2023.1192629.; Khan M. A. B., Hashim M. J., King J. K., Govender R. D., Mustafa H., Al Kaabi J. Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends. Journal of Epidemiology and Global Health. 2020;10(1):107–111. DOI:10.2991/jegh.k.191028.001.; Chen H., Huang X., Dong M., Wen S., Zhou L., Yuan X. The Association Between Sarcopenia and Diabetes: From Pathophysiology Mechanism to Therapeutic Strategy. Diabetes, Metabolic Syndrome and Obesity. 2023;16:1541–1554. DOI:10.2147/DMSO.S410834.; Suriano F., Vieira-Silva S., Falony G., Roumain M., Paquot A., Pelicaen R., Regnier M., Delzenne N. M., Raes J., Muccioli G. G., Hul M. V., Cain P. D. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome. 2021;9(1):147. DOI:10.1186/s40168-021-01097-8.; Sima A. A., Robertson D. M. Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks (db/db)]. Acta Neuropathologica. 1978;41(2):85–89. DOI:10.1007/BF00689757.; Sima A. A., Robertson D. M. Peripheral neuropathy in the diabetic mutant mouse. An ultrastructural study. Laboratory Investigation. 1979;40(6):627–632.; Lin-Shiau S.-Y., Liu S.-H., Lin M.-J. Use of ion channel blockers in the exploration of possible mechanisms involved in the myopathy of diabetic mice. Naunyn-Schmiedeberg's Archives of Pharmacology. 1993;348(3):311–318. DOI:10.1007/BF00169161.; Zenker J., Poirot O., de Preux Charles A. S., Arnaud E., Médard J.-J., Lacroix C., Kuntzer T., Chrast R. Altered distribution of juxtaparanodal K v 1.2 subunits mediates peripheral nerve hyperexcitability in type 2 diabetes mellitus. The Journal of Neuroscience. 2012;32(22):7493–7498. DOI:10.1523/JNEUROSCI.0719-12.2012.; Eshima H., Tamura Y., Kakehi S., Nakamura K., Kurebayashi N., Murayama T., Kakigi R., Sakurai T., Kawamori R., Watada H. Dysfunction of muscle contraction with impaired intracellular Ca 2+ handling in skeletal muscle and the effect of exercise training in male db/db mice. Journal of Applied Physiology. 2019;126(1):170-182. DOI:10.1152/japplphysiol.00048.2018.; Bayley J. S., Pedersen T. H., Nielsen O. B. Skeletal muscle dysfunction in the db/db mouse model of type 2 diabetes. Muscle & Nerve. 2016;54(3):460–468. DOI:10.1002/mus.25064.; Nguyen M.-H., Cheng M., Koh T. J. Impaired muscle regeneration in ob/ob and db/db mice. The Scientific World JOURNAL. 2011;11:1525–1535. DOI:10.1100/tsw.2011.137.; Wang X., Hu Z., Hu J., Du J., Mitch W. E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 2006;147(9):4160–4168. DOI:10.1210/en.2006-0251.; Kim K. W., Baek M.-O., Choi J.-Y., Son K. H., Yoon M.-S. Analysis of the Molecular Signaling Signatures of Muscle Protein Wasting Between the Intercostal Muscles and the Gastrocnemius Muscles in db/db Mice. International Journal of Molecular Sciences. 2019;20(23):6062. DOI:10.3390/ijms20236062.; Wang M., Pu D., Zhao Y., Chen J., Zhu S., Lu A., Liao Z., Sun Y., Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sciences. 2020;255:117823. DOI:10.1016/j.lfs.2020.117823.; Yu J., Loh K., Yang H.-Q., Du M.-R., Wu Y.-X., Liao Z.-Y., Guo A., Yang Y.-F., Chen B., Zhao Y.-X., Chen J.-L., Zhou J., Sun Y., Xiao Q. The Whole-transcriptome Landscape of Diabetes-related Sarcopenia Reveals the Specific Function of Novel lncRNA Gm20743. Communications Biology. 2022;5(1):774. DOI:10.1038/s42003-022-03728-8.; Pollari E., Prior R., Robberecht W., Van Damme P., Van Den Bosch L. In Vivo Electrophysiological Measurement of Compound Muscle Action Potential from the Forelimbs in Mouse Models of Motor Neuron Degeneration. Journal of Visualized Experiments. 2018;(136):57741. DOI:10.3791/57741.; Rutkove S. B., Chen Z.-Z., Pandeya S., Callegari S., Mourey T., Nagy J. A., Nath A. K. Surface Electrical Impedance Myography Detects Skeletal Muscle Atrophy in Aged Wildtype Zebrafish and Aged gpr27 Knockout Zebrafish. Biomedicines. 2023;11(7):1938. DOI:10.3390/biomedicines11071938.; Chugh D., Iyer C. C., Wang X., Bobbili P., Rich M. M., Arnold W. D. Neuromuscular junction transmission failure is a late phenotype in aging mice. Neurobiology of Aging. 2020;86:182–190. DOI:10.1016/j.neurobiolaging.2019.10.022.; Padilla C. J., Harrigan M. E., Harris H., Schwab J. M., Rutkove S. B., Rich M. M., Clark B. C., Arnold W. D. Profiling age-related muscle weakness and wasting: neuromuscular junction transmission as a driver of age-related physical decline. GeroScience. 2021;43(3):1265–1281. DOI:10.1007/s11357-021-00369-3.; Приходько В. А., Матузок Т. М., Оковитый С. В. Нарушения нейромышечной передачи у лептинрезистентных мышей. Биомедицина. 2023;19(3):77–81. DOI:10.33647/2074-5982-19-3-77-81.; Gregory N. S., Gibson-Corley K., Frey-Law L., Sluka K. A. Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner. Pain. 2013;154(12):2668–2676. DOI:10.1016/j.pain.2013.07.047.; Gregory N. S., Brito R. G., Oliveira Fusaro M. C. G., Sluka K. A. ASIC3 Is Required for Development of Fatigue-Induced Hyperalgesia. Molecular Neurobiology. 2016;53(2):1020–1030. DOI:10.1007/s12035-014-9055-4.; Lesnak J. B., Inoue S., Lima L., Rasmussen L., Sluka K. A. Testosterone protects against the development of widespread muscle pain in mice. Pain. 2020;161(12):2898–2908. DOI:10.1097/j.pain.0000000000001985.; Воронков А. В., Поздняков Д. И., Руковицина В. М., Оганесян Э. Т. Влияние новых производных хромон-3-альдегида на развитие мышечной дисфункции в условиях эксперимента. Крымский терапевтический журнал. 2018;4:67–71.; Maurissen J. P. J., Marable B. R., Andrus A. K., Stebbins K. E. Factors affecting grip strength testing. Neurotoxicology and Teratology. 2003;25(5):543–553. DOI:10.1016/s0892-0362(03)00073-4.; Baker C., Retzik-Stahr C., Singh V., Plomondon R., Anderson V., Rasouli N. Should metformin remain the first-line therapy for treatment of type 2 diabetes? Therapeutic Advances in Endocrinology and Metabolism. 2021;12:2042018820980225. DOI:10.1177/2042018820980225.; Lyu Q., Wen Y., He B., Zhang X., Chen J., Sun Y., Zhao Y., Xu L., Xiao Q., Deng H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2022;1868(11):166508. DOI:10.1016/j.bbadis.2022.166508.; Petrocelli J. J., McKenzie A. I., de Hart N. M. M. P., Reidy P. T., Mahmassani Z. S., Keeble A. R., Kaput K. L., Wahl M. P., Rondina M. T., Marcus R. L., Welt C. K., Holland W. L., Funai K., Fry C. S., Drummond M. J. Disuse-induced muscle fibrosis, cellular senescence, and senescence-associated secretory phenotype in older adults are alleviated during re-ambulation with metformin pre-treatment. Aging Cell. 2023;22(11):e13936. DOI:10.1111/acel.13936.; Бажанова Е. Д., Оковитый С. В., Белых М. А. Влияние 4,4'-(пропандиамидо)дибензоата натрия и метформина на динамику апоптоза и пролиферации гепатоцитов у мышей с сахарным диабетом и ожирением. Экспериментальная и клиническая фармакология. 2018;81(5):17–20. DOI:10.30906/0869-2092-2018-81-5-17-20.; Белых М. А. Влияние 4,4'-(пропандиамидо)дибензоата натрия на проявления экспериментального неалкогольного стеатогепатита. Биомедицина. 2021;17(3):95–99. DOI:10.33647/2074-5982-17-3-95-99.; Li Z., Ji G. E. Ginseng and obesity. Journal of Ginseng Research. 2018;42(1):1–8. DOI:10.1016/j.jgr.2016.12.005.; Povydysh M. N., Titova M. V., Ivanov I. M., Klushin A. G., Kochkin D. V., Galishev B. A., Popova E. V., Ivkin D. Y., Luzhanin V. G., Krasnova M. V., Demakova N. V., Nosov A. M. Effect of phytopreparations based on bioreactor-grown cell biomass of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus on carbohydrate and lipid metabolism in type 2 diabetes mellitus. Nutrients. 2021;13(11):3811. DOI:10.3390/nu13113811.; Povydysh M. N., Titova M. V., Ivkin D. Y., Krasnova M. V., Vasilevskaya E. R., Fedulova L. V., Ivanov I. M., Klushin A. G., Popova E. V., Nosov A. M. The hypoglycemic and hypocholesterolemic activity of Dioscorea deltoidea, Tribulus terrestris and Panax japonicus cell culture biomass in rats with high-fat diet-induced obesity. Nutrients. 2023;15(3):656. DOI:10.3390/nu15030656.; Titova M. V., Popova E. V., Ivanov I. M., Fomenkov A A., Nebera E. A., Vasilevskaya E. R., Tolmacheva G. S., Kotenkova E. A., Klychnikov O. I., Metalnikov P. S., Tyurina T. M., Paek K.-Y. Toxicological evaluation of ginsenoside-rich cell culture biomass of Panax japonicus produced in a large-scale bioreactor system. Industrial Crops and Products. 2024;208:117761. DOI:10.1016/j.indcrop.2023.117761.; Spruss A., Kanuri G., Stahl C., Bischoff S. C., Bergheim I. Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab Invest. 2012;92(7):1020–1032. DOI:10.1038/labinvest.2012.75.; Белых М. А., Оковитый С. В. Оценка эффективности нового производного малоновой кислоты в качестве антистеатозного средства при высокожировой диете у мышей. Экспериментальная и клиническая фармакология. 2018;81(S):28–29.; Attele A. S., Zhou Y.-P., Xie J.-T., Wu J. A., Zhang L., Dey L., Pugh W., Rue P. A., Polonsky K. S., Yuan C.-S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 2002;51(6):1851–1858. DOI:10.2337/diabetes.51.6.1851.; Приходько В. А., Алексеева Ю. С., Захлевная Д. А., Болотова В. Ц. Влияние экстракта живучки туркестанской на восстановление сократимости мышц после электростимуляционного утомления у мышей. В сб.: Пути и формы совершенствования фармацевтического образования. Актуальные вопросы разработки и исследования новых лекарственных средств: Сборник трудов IХ Международной научно-методической конференции «Фармобразование-2023». 28–29 сентября 2023. Воронеж. Воронеж: Воронежский государственный университет; 2023. С. 619–623. DOI:10.17308/978-5-9273-3827-6-2023-619-623.; Inamura N., Fujisige A., Miyake S., Ono A., Tsuchiya T. The effects of temperature on the mechanical performance in fatigued single muscle fibers of the frog induced by twitch and tetanus. The Japanese Journal of Physiology. 2000;50(1):49–57. DOI:10.2170/jjphysiol.50.49.; Fitch S., McComas A. Influence of human muscle length on fatigue. The Journal of Physiology. 1985;362(1):205–213. DOI:10.1113/jphysiol.1985.sp015671.; Bruton J., Pinniger G. J., Lännergren J., Westerblad H. The effects of the myosin-II inhibitor N-benzyl-p-toluene sulphonamide on fatigue in mouse single intact toe muscle fibres. Acta Physiologica. 2006;186(1):59–66. DOI:10.1111/j.1748-1716.2005.01499.x.; Allen D. G., Lamb G. D., Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews. 2008;88(1):287–332. DOI:10.1152/physrev.00015.2007.; Wan J.-J., Qin Z., Wang P.-Y., Sun Y., Liu X. Muscle fatigue: general understanding and treatment. Experimental & Molecular Medicine. 2017;49(10):e384. DOI:10.1038/emm.2017.194.; Germinario E., Esposito A., Midrio M., Peron S., Palade P. T., Betto R., Danieli-Betto D. High-frequency fatigue of skeletal muscle: role of extracellular Ca 2+ . European Journal of Applied Physiology. 2008;104(3):445–453. DOI:10.1007/s00421-008-0796-5.; Khairullin A. E., Teplov A. Y., Grishin S. N., Farkhutdinov A. M., Ziganshin A. U. The thermal sensitivity of purinergic modulation of contractile activity of locomotor and respiratory muscles in mice. Biophysics. 2019;64(5):812–817. DOI:10.1134/S0006350919050075.; Vesga-Castro C., Aldazabal J., Vallejo-Illarramendi A., Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. eLife. 2022;11:e77204. DOI:10.7554/eLife.77204.; Wineinger M. A., Walsh S. A., Abresch T. Muscle fatigue in animal models of neuromuscular disease. American Journal of Physical Medicine & Rehabilitation. 2002;81(11):S81–S98. DOI:10.1097/00002060-200211001-00010.; Yamada T., Ashida Y., Tamai K., Kimura I., Yamauchi N., Naito A., Tokuda N., Westerblad H., Andersson D. C., Himori K. Improved skeletal muscle fatigue resistance in experimental autoimmune myositis mice following high-intensity interval training. Arthritis Research & Therapy. 2022;24(1):156. DOI:10.1186/s13075-022-02846-2.; Lindqvist J., Pénisson-Besnier I., Iwamoto H., Li M., Yagi N., Ochala J. A myopathy-related actin mutation increases contractile function. Acta Neuropathologica. 2012;123(5):739–746. DOI:10.1007/s00401-012-0962-z.; Gineste C., De Winter J. M., Kohl C., Witt C. C., Giannesini B., Brohm K., Le Fur Y., Gretz N., Vilmen C., Pecchi E., Jubeau M., Cozzone P. J., Stienen G. J. M., Granzier H., Labeit S., Ottenheijm C. A. C., Bendahan D., Gondin J. In vivo and in vitro investigations of heterozygous nebulin knock-out mice disclose a mild skeletal muscle phenotype. Neuromuscular Disorders. 2013;23(4):357–369. DOI:10.1016/j.nmd.2012.12.011.; Gineste C., Ottenheijm C., Le Fur Y., Banzet S., Pecchi E., Vilmen C., Cozzone P. J. , Koulmann N., Hardeman E. C., Bendahan D., Gondin J. Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS ONE. 2014;9(9):e109066. DOI:10.1371/journal.pone.0109066.; Williams J. H., Ward C. W., Klug G. A. Fatigue-induced alterations in Ca2+ and caffeine sensitivities of skinned muscle fibers. Journal of Applied Physiology. 1993;75(2):586–593. DOI:10.1152/jappl.1993.75.2.586.; Moldovan M., Krarup C. Evaluation of Na + /K + pump function following repetitive activity in mouse peripheral nerve. Journal of Neuroscience Methods. 2006;155(2):161–171. DOI:10.1016/j.jneumeth.2005.12.015.; Hwang J. H., Kang S. Y., Jung H. W. Effects of American wild ginseng and Korean cultivated wild ginseng pharmacopuncture extracts on the regulation of C2C12 myoblasts differentiation through AMPK and PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports. 2022;25(6):192. DOI:10.3892/mmr.2022.12708.; Kim A., Park S.-M., Kim N. S., Lee H. Ginsenoside Rc, an Active Component of Panax ginseng, Alleviates Oxidative Stress-Induced Muscle Atrophy via Improvement of Mitochondrial Biogenesis. Antioxidants. 2023;12(8):1576. DOI:10.3390/antiox12081576.; Estaki M., Noble E. G. North American ginseng protects against muscle damage and reduces neutrophil infiltration after an acute bout of downhill running in rats. Applied Physiology, Nutrition, and Metabolism. 2014;40(2):116–121. DOI:10.1139/apnm-2014-0331.; Cristina-Souza G., Santos-Mariano A. C., Lima-Silva A. E., Costa P. L., Domingos P. R., Silva S. F., Abreu W. C., De-Oliveira F. R., Osiecki R. Panax ginseng Supplementation Increases Muscle Recruitment, Attenuates Perceived Effort, and Accelerates Muscle Force Recovery After an Eccentric-Based Exercise in Athletes. Journal of Strength and Conditioning Research. 2022;36(4):991–997. DOI:10.1519/JSC.0000000000003555.; Zhang H., Zhao C., Hou J., Su P., Yang Y., Xia B., Zhao X., He R., Wang L., Cao C., Liu T., Tian J. Red ginseng extract improves skeletal muscle energy metabolism and mitochondrial function in chronic fatigue mice. Frontiers in Pharmacology. 2022;13:1077249. DOI:10.3389/fphar.2022.1077249.; Ahmad S. S., Chun H. J., Ahmad K., Choi I. Therapeutic applications of ginseng for skeletal muscle-related disorder management. Journal of Ginseng Research. 2024;48(1):12–19. DOI:10.1016/j.jgr.2023.06.003.; Van Le T. H., Lee G. J., Long Vu H. K., Know S. W., Nguyen N. K., Park J. H., Nguyen M. D. Ginseng Saponins in Different Parts of Panax vietnamensis. Chemical and Pharmaceutical Bulletin. 2015;63(11):950–954. DOI:10.1248/cpb.c15-00369.; Jeong J.-J., Van Le T. H., Lee S.-Y., Eun S.-H., Nguyen M. D., Park J. H., Kim D.-H. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. International Immunopharmacology. 2015;28(1):700–706. DOI:10.1016/j.intimp.2015.07.025.; Tran Q. L., Adnyana I. K., Tezuka Y., Harimaya Y., Saiki I., Kurashige Y., Tran Q. K., Kadota S. Hepatoprotective effect of majonoside R2, the major saponin from Vietnamese ginseng (Panax vietnamensis). Planta Medica. 2002;68(5):402–406. DOI:10.1055/s-2002-32069.; Thu V. T., Yen N. T. H., Tung N. H., Bich P. T., Han J., Kim H. K. Majonoside-R2 extracted from Vietnamese ginseng protects H9C2 cells against hypoxia/reoxygenation injury via modulating mitochondrial function and biogenesis. Bioorganic & Medicinal Chemistry Letters. 2021;36:127814. DOI:10.1016/j.bmcl.2021.127814.; Chan H.-H., Hwang T.-L., Bhaskar Reddy M. V., Li D.-T., Qian K., Bastow K. F., Lee K.-H., Wu T.-S. Bioactive constituents from the roots of Panax japonicus var. major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. Journal of Natural Products. 2011;74(4):796–802. DOI:10.1021/np100851s.; Yousuf Y., Datu A., Barnes B., Amini-Nik S., Jeschke M. G. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Research & Therapy. 2020;11(1):18. DOI:10.1186/s13287-019-1480-x.; Kang M. J., Moon J. W., Lee J. O., Kim J. H., Jung E. J., Kim S. J., Oh J. Y., Wu S. W., Lee P. R., Park S. H., Kim H. S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. Journal of Cachexia, Sarcopenia and Muscle. 2021;13(1):605–620. DOI:10.1002/jcsm.12833.; Walton R. G., Dungan C. M., Long D. E., Tuggle S. C., Kosmac K., Peck B. D., Bush H. M., Villasante Tezanos A. G., McGwin G., Windham S. T., Ovalle F., Bamman M. M., Kern P. A., Peterson C. A. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell. 2019;18(6):e13039. DOI:10.1111/acel.13039.; Соколова А. В., Климова А. В., Драгунов Д. О., Артюнов Г. П. Оценка влияния терапии метформином на величину мышечной массы и мышечной силы у больных с и без сахарного диабета. Метаанализ 15 исследований. Российский кардиологический журнал. 2021;26(3):4331. DOI:10.15829/1560-4071-2021-4331.; Deacon R. M. J. Measuring the strength of mice. Journal of Visualized Experiments. 2013;(76):2610. DOI:10.3791/2610.; Sharma A. N., Elased K. M., Garrett T. L., Lucot J. B. Neurobehavioral deficits in db/db diabetic mice. Physiology & Behavior. 2010;101(3):381–388. DOI:10.1016/j.physbeh.2010.07.002.; Prikhodko V. A., Matuzok T. M., Okovityi S. V. Cognitive and behavioural dysfunction in leptin-resistant mice. In: Proceedings of the 29th International Annual ISBS “Stress and Behavior” Neuroscience and Biological Psychiatry Conference. 18-19 May 2023. Saint Petersburg. 2023. P. 18.; De Gregorio C., Contador D., Campero M., Ezquer M., Ezquer F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biology Open. 2018;7(9):bio036830. DOI:10.1242/bio.036830.; Roberts T. J., Gabaldón A. M. Interpreting muscle function from EMG: lessons learned from direct measurements of muscle force. Integrative and Comparative Biology. 2008;48(2):312–320. DOI:10.1093/icb/icn056.; Ingalls C. P., Warren G. L., Lowe D. A., Boorstein D. B., Armstrong R. B. Differential effects of anesthetics on in vivo skeletal muscle contractile function in the mouse. Journal of Applied Physiology. 1996;80(1):332–340. DOI:10.1152/jappl.1996.80.1.332.; Coelho Nepomuceno A., Landucci Politani E., Landucci Politani da Silva E., Salomone R., Losso Longo M. V., Grassi Salles A., Marques de Faria J. C., Gemperli R. Tibial and fibular nerves evaluation using intraoperative electromyography in rats. Acta Cirurgica Brasileira. 2016;31(8):542–548. DOI:10.1590/S0102-865020160080000007.; Hershenson M., Brouillette R. T., Olsen E., Hunt C. E. The effect of chloral hydrate on genioglossus and diaphragmatic activity. Pediatric Research. 1984;18(6):516–519. DOI:10.1203/00006450-198406000-00006.; Zealear D., Li Y., Huang S. An Implantable System For Chronic In Vivo Electromyography. Journal of Visualized Experiments. 2020;21;(158):10.3791/60345. DOI:10.3791/60345.; https://www.pharmjournal.ru/jour/article/view/2010

  7. 7
    Academic Journal

    Contributors: Авторы заявляют об отсутствии финансирования.

    Source: Medical Visualization; Том 28, № 4 (2024); 133-141 ; Медицинская визуализация; Том 28, № 4 (2024); 133-141 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1437/889; https://medvis.vidar.ru/jour/article/downloadSuppFile/1437/2301; Kallinikou D., Soldatou A., Tsentidis C. et al. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: Diagnosis, pathogenesis, and associated genetic markers. Diabetes Metab. Res. Rev. 2019; 35 (7): e3178. https://doi.org/10.1002/dmrr.3178; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021; 24 (3): 204–221. https://doi.org/10.14341/DM12759; Sloan G., Selvarajah D., Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 2021; 17: 400–420. https://doi.org/10.1038/s41574-021-00496-z; Borire A.A., Issar T., Kwai N.C. et al. Correlation between markers of peripheral nerve function and structure in type 1 diabetes. Diabetes Metab. Res. Rev. 2018; 34 (7): e3028. https://doi.org/10.1002/dmrr.3028.; Эластография сдвиговых волн. Анализ клинических примеров (практическое руководство для последипломной профессиональной переподготовки врачей): Учебное пособие для использования в учебном процессе образовательных учреждений, реализующих программы высшего образования по специальности 31.08.11 Ультразвуковая диагностика (уровень ординатуры). 2-е изд., перераб. и доп. / Под ред. А.В. Борсукова. СИМК, 2022. 468 с. ISBN 978-5-91894-102; Фомина С.В., Завадовская В.Д., Самойлова Ю.Г., Кудлай Д.А., Кошмелева М.В., Качанов Д.А., Трифонова Е.И., Зоркальцев М.А., Юн В.Э. Ультразвуковая оценка периферических нервов у пациентов с сахарным диабетом типа 1 различной длительности в детском и подростковом возрасте. Врач. 2023; 34 (12): 17–24. https://doi.org/10.29296/25877305-2023-12-04; Zakrzewski J., Zakrzewska K., Pluta K. et al. Ultrasound elastography in the evaluation of peripheral neuropathies: a systematic review of the literature. Pol. J. Radiol. 2019; 84: e581–e591. https://doi.org/10.5114/pjr.2019.91439; Wang C., Wang H., Zhou Y. et al. Evaluation of the clinical value of shear wave elastography for early detection and diagnosis of diabetic peripheral neuropathy: a controlled preliminary prospective clinical study. BMC Musculoskelet. Disord. 2022; 23 (1): 1120. https://doi.org/10.1186/s12891-022-06085-z; Никитин С.С., Муртазина А.Ф., Дружинин Д.С. Блок проведения возбуждения по периферическому нерву как электрофизиологический феномен: обзор литературы. Нервно-мышечные болезни. 2019; 9 (1): 12–23. https://doi.org/10.17650/2222-8721-2019-9-1-12-23; Aslan M., Aslan A., Emeksiz H.C. et al. Assessment of Peripheral Nerves With Shear Wave Elastography in Type 1 Diabetic Adolescents Without Diabetic Peripheral Neuropathy. J. Ultrasound Med. 2019; 38 (6): 1583–1596. https://doi.org/10.1002/jum.14848; Данилова М.Г., Салтыкова В.Г., Усенко Е.Е. Нормальная эхографическая картина периферических нервов нижних конечностей у детей. Ультразвуковая и функциональная диагностика. 2018; 2: 59–74. https://doi.org/10.24835/1607-0771-2018-2-59-74; Goyal K., Aggarwal P., Gupta M. Ultrasound evaluation of peripheral nerves of the lower limb in diabetic peripheral neuropathy. Eur. J. Radiol. 2021; 145: 110058. https://doi.org/10.1016/j.ejrad.2021.110058; https://medvis.vidar.ru/jour/article/view/1437

  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 15, Iss 3, Pp 230-235 (2019)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 15, № 3 (2019); 230-235
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 3 (2019); 230-235
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 3 (2019); 230-235

    File Description: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Neuromuscular Diseases; Том 13, № 1 (2023); 52-67 ; Нервно-мышечные болезни; Том 13, № 1 (2023); 52-67 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2023-13-1

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/526/343; Hauw F., Fargeot G., Adams D. et al. Charcot–Marie–Tooth disease misdiagnosed as chronic inflammatory demyelinating polyradiculoneuropathy: An international multicentric retrospective study. Eur J Neurol 2021;28(9):2846–54. DOI:10.1111/ene.14950; Iijima M. Phenotypes of Charcot–Marie–Tooth syndrome and differential diagnosis focused in inflammatory neuropathies. Brain Nerve 2016;68(1):31–42. DOI:10.11477/mf.1416200343; Campagnolo M., Taioli F., Cacciavillani M. et al. Sporadic hereditary neuropathies misdiagnosed as chronic inflammatory demyelinating polyradiculoneuropathy: Pitfalls and red flags. J Peripher Nerv Syst 2020;25(1):19–26. DOI:10.1111/jns.12362; Özel G., Maisonobe T., Guyant-Maréchal L. et al. Hereditary neuropathy with liability to pressure palsies mimicking chronic inflammatory demyelinating polyneuropathy. Rev Neurol (Paris) 2018;174(7–8):575–7. DOI:10.1016/j.neurol.2017.11.012; Van den Bergh P., van Doorn P., Hadden R. et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. J Peripher Nerv Syst 2021;26(3):242–68. DOI:10.1111/jns.12455; Xie Y., Lin Z., Liu L. et al. Genotype and phenotype distribution of 435 patients with Charcot–Marie–Tooth disease from central south China. Eur J Neurol 2021;28(11):3774–83. DOI:10.1111/ene.15024; Barreto L.C., Oliveira F.S., Nunes P.S. et al. Epidemiologic study of Charcot–Marie–Tooth disease: a systematic review. Neuroepidemiology 2016;46(3):157–65. DOI:10.1159/000443706; Korinthenberg R., Trollmann R., Plecko B. et al. Differential diagnosis of acquired and hereditary neuropathies in children and adolescents-consensus-based practice guidelines. Children (Basel) 2021;8(8):687. DOI:10.3390/children8080687; Grimm A., Vittore D., Schubert V. et al. Ultrasound pattern sum score, homogeneity score and regional nerve enlargement index for differentiation of demyelinating inflammatory and hereditary neuropathies. Clin Neurophysiol 2016;127(7):2618–24. DOI:10.1016/j.clinph.2016.04.009; Буланова В.А., Дружинин Д.С. Рецидивирующая невропатия малоберцовых нервов у подростка: клиническое наблюдение. Нервно-мышечные болезни 2012;(2):65–9. DOI:10.17650/2222-8721-2012-0-2-65-69; Felice K., Poole R., Blaivas M., Albers J. Hereditary neuropathy with liability to pressure palsies masquerading as slowly progressive polyneuropathy. Eur Neurol 1994;34(3):173–6. DOI:10.1159/000117033; Pareyson D., Scaioli V., Taroni F. et al. Phenotypic heterogeneity in hereditary neuropathy with liability to pressure palsies associated with chromosome 17p11.2–12 deletion. Neurology 1996;46(4):1133–7. DOI:10.1212/wnl.46.4.1133; Wong E., DeOrchis V., Stein B., Herskovitz S. Davidenkow syndrome: A phenotypic variant of hereditary neuropathy with liability to pressure palsies. Muscle Nerve 2018;57(3):E108–E110. DOI:10.1002/mus.25985; Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. 4rd edn. Oxford University Press, 2013. 1176 p.; Савицкая Н.Г., Иллариошкин С.Н., Иванова-Смоленская И.А. и др. Клинико-электрофизиологический анализ семейных случаев наследственной невропатии с предрасположенностью к параличам от сдавления. Неврологический вестник 2001;33(3–4):5–9. DOI:10.17816/nb80835; Dubourg O., Mouton P., Brice A. et al. Guidelines for diagnosis of hereditary neuropathy with liability to pressure palsies. Neuromuscul Disord 2000;10(3):206–8. DOI:10.1016/s0960-8966(99)00103-0; Robert-Varvat F., Jousserand G., Bouhour F. et al. Hereditary neuropathy with liability to pressure palsy in patients under 30 years old: Neurophysiological data and proposed electrodiagnostic criteria. Muscle Nerve 2018;57(2):217–21. DOI:10.1002/mus.25666; Gouider R., LeGuern E., Gugenheim M. et al. Clinical, electrophysiologic, and molecular correlations in 13 families with hereditary neuropathy with liability to pressure palsies and a chromosome 17p11.2 deletion. Neurology 1995;45(11):2018–23. DOI:10.1212/wnl.45.11.2018.; Hong Y., Kim M., Kim H. et al. Clinical and electrophysiologic features of HNPP patients with 17p11.2 deletion. Acta Neurol Scand 2003;108(5):352–8. DOI:10.1034/j.1600-0404.2003.00132.x; Takahashi S., Chum M., Kimpinski K. Electrodiagnostic characterization of hereditary neuropathy with liability to pressure palsies. J Clin Neuromuscul Dis 2017;18(3):119–24. DOI:10.1097/CND.0000000000000152; Andersson P., Yuen E., Parko K., So Y. Electrodiagnostic features of hereditary neuropathy with liability to pressure palsies. Neurology 2000;54(1):40–4. DOI:10.1212/wnl.54.1.40; Potulska-Chromik A., Ryniewicz B., Aragon-Gawinska K. et al. Are electrophysiological criteria useful in distinguishing childhood demyelinating neuropathies? J Peripher Nerv Syst 2016;21(1):22–6. DOI:10.1111/jns.12152; Luigetti M., Del Grande A., Conte A. et al. Clinical, neurophysiological and pathological findings of HNPP patients with 17p12 deletion: a single-centre experience. J Neurol Sci 2014;341(1–2):46–50. DOI:10.1016/j.jns.2014.03.046; Pabón Meneses R., Azcona Ganuza G., Urriza Mena J. et al. Clinical and neurophysiological findings in patients with hereditary neuropathy with liability to pressure palsy and chromosome 17p11.2 deletion. Neurologia 2019:S0213-4853(19)30054-4. DOI:10.1016/j.nrl.2019.02.005; Руденкова О.В., Шмидт И.Р., Скокова О.Н. и др. Алгоритм диагностики наследственных нейропатий со склонностью к параличам от сдавления. Вертеброневрология. Актуальные проблемы вертеброневрологии. Приложение к журналу. Казань, 2003. С. 48–49.; Attarian S., Fatehi F., Rajabally Y., Pareyson D. Hereditary neuropathy with liability to pressure palsies. J Neurol 2020;267(8):2198– 206. DOI:10.1007/s00415-019-09319-8; https://nmb.abvpress.ru/jour/article/view/526

  16. 16
    Academic Journal

    Contributors: 1

    Source: Almanac of Clinical Medicine; Vol 51, No 3 (2023); 180-191 ; Альманах клинической медицины; Vol 51, No 3 (2023); 180-191 ; 2587-9294 ; 2072-0505

    File Description: application/pdf

  17. 17
  18. 18
    Academic Journal

    Contributors: The research was carried out within the state assignment of Ministry of Science and Higher Education of Russia for Research Centre for Medical Genetics with usage of RCMG “Genome” NGS Core Unit., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова» с применением оборудования Центра коллективного пользования «Геном» ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова».

    Source: Neuromuscular Diseases; Том 12, № 3 (2022); 52-58 ; Нервно-мышечные болезни; Том 12, № 3 (2022); 52-58 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2022-12-3

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/500/329; OMIM (On-line Mendelian Inheritance in Man). Available at: https://www.ncbi.nlm.nih.gov/omim.; Washington University Neuromuscular Disease Center. Available at: https://neuromuscular.wustl.edu/.; Liu Z., Lin H., Wei Q. et al. Genetic spectrum and variability in Chinese patients with amyotrophic lateral sclerosis. Aging Dis 2019;10(6):1199–206. DOI:10.14336/AD.2019.0215; Myrianthopoulos N.C., Lane M.H., Silberberg D.H., Vincent B.L. Nerve conduction and other studies in families with Charcot–Marie–Tooth disease. Brain 1964;87:589–608. DOI:10.1093/brain/87.4.589; Chance P.F., Rabin B.A., Ryan S.G. et al. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet 1998;62:633–40. DOI:10.1086/301769; Rabin B.A., Griffin J.W., Crain B.J. et al. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 1999;122:1539–50. DOI:10.1093/brain/122.8.1539; De Jonghe P., Auer-Grumbach M., Irobi J. et al. Autosomal dominant juvenile amyotrophic lateral sclerosis and distal hereditary motor neuronopathy with pyramidal tract signs: synonyms for the same disorder? Brain 2002;125(Pt 6):1320–5. DOI:10.1093/brain/awf127; Chen Y.-Z., Bennett C.L., Huynh H.M. et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004;74:1128–35. DOI:10.1086/421054; Bennett C., Dastidar S., Ling S. et al. Senataxin mutations elicit motor neuron degeneration phenotypes and yield TDP-43 mislocalization in ALS4 mice and human patients. Acta Neuropathol 2018;136(3):425–43. DOI:10.1007/s00401-018-1852-9; Connolly O., Le Gal L., McCluskey G. et al. A systematic review of genotype-phenotype correlation across cohorts having causal mutations of different genes in ALS. J Pers Med 2020;10(3):58. DOI:10.3390/jpm10030058; Kannan A., Cuartas J., Gangwani P. et al. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 2022;awab464. DOI:10.1093/brain/awab464; HGMD (The Human Gene Mutation Database). Available at: https://portal.biobaseinternational.com/.; Руденская Г.Е., Куркина М.В., Захарова Е.Ю. Атаксии с окуломоторной апраксией: клинико-генетические характеристики и ДНК-диагностика. Журнал неврологии и психиатрии им. С.С. Корсакова 2012;112(10):58–63.; Avemaria F., Lunetta C., Tarlarini C. et al. Mutation in the senataxin gene found in a patient affected by familial ALS with juvenile onset and slow progression. Amyotroph Lateral Scler 2011;12(3):228–30. DOI:10.3109/17482968.2011.566930; Rudnik-Schöneborn S., Arning L., Epplen J.T., Zerres K. SETX gene mutation in a family diagnosed autosomal dominant proximal spinal muscular atrophy. Neuromuscul Disord 2012;22(3):258–62. DOI:10.1016/j.nmd.2011.09.00; Taniguchi T., Hokezu Y., Okada T. et al. Amyotrophic lateral sclerosis (ALS) 4 family misdiagnosed as hereditary spastic paraplegia: a case report. Rinsho Shinkeigaku 2017;57(11):685–90. DOI:10.5692/clinicalneurol.cn-000996; Ma L., Shi Y., Chen Z. et al. A novel SETX gene mutation associated with juvenile amyotrophic lateral sclerosis. Brain Behav 2018;8:e01066. DOI:10.1002/brb3.1066; Lei L., Chen H., Lu Y. et al. Unusual electrophysiological findings in a Chinese ALS 4 family with SETX-L389S mutation: a three-year follow-up. J Neurol 2021;268(3):1050–8. DOI:10.1007/s00415-020-10246-2; Kitao R., Honma Y., Hashiguchi A. et al. A case of motor and sensory polyneuropathy and respiratory failure with novel heterozygous mutation of the senataxin gene. Rinsho Shinkeigaku 2020;60(7):466–72. DOI:10.5692/clinicalneurol.60.cn-001415; Hadjinicolaou A., Ngo K.J., Conway D.Y. et al. De novo pathogenic variant in SETX causes a rapidly progressive neurodegenerative disorder of early childhood-onset with severe axonal polyneuropathy. Acta Neuropathol Commun 2021;9(1):194. DOI:10.1186/s40478-021-01277-5; Hirano M., Quinzii C., Mitsumoto H. et al. Senataxin mutations and amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011;12(3):223–7. DOI:10.3109/17482968.2010.545952; Saiga T., Tateishi T., Torii T. et al. Inflammatory radiculoneuropathy in an ALS4 patient with a novel SETX mutation. J Neurol Neurosurg Psychiatry 2012;83(7):763, 764. DOI:10.1136/jnnp-2012-302281; Tripolszki K., Török D., Goudenège D. et al. High-throughput sequencing revealed a novel SETX mutation in a Hungarian patient with amyotrophic lateral sclerosis. Brain Behav 2017;7(4):e00669. DOI:10.1002/brb3.669; Beppu S., Ikenaka K., Yabumoto T. et al. A case of sporadic amyotrophic lateral sclerosis (ALS) with senataxin (SETX) gene variant. Rinsho Shinkeigaku 2022;62(3):205–10. DOI:10.5692/clinicalneurol.cn-001675; Grunseich C., Patankar A., Amaya J. et al. Clinical and molecular aspects of senataxin mutations in amyotrophic lateral sclerosis 4. Ann Neurol 2020;87(4):547–55. DOI:10.1002/ana.25681; Rafiq M.K., Lee E., Bradburn M. et al. Creatine kinase enzyme level correlates positively with serum creatinine and lean body mass, and is a prognostic factor for survival in amyotrophic lateral sclerosis. Eur J Neurol 2016;23:1071–8. DOI:10.1111/ene.12995; Zhao Z., Chen W., Wu Z. et al. A novel mutation in the senataxin gene identified in a Chinese patient with sporadic amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009;10(2):118–22. DOI:10.1080/17482960802572673; Andreini I., Moro F., Africa L.M. et al. Rare phenotype of ALS4 associated with heterozygous missense mutation c.5842A>G/p. M1948V in helicase domain of SETX gene. Amyotroph Lateral Scler 2020;21(3–4):312, 313. DOI:10.1080/21678421.2020.1740271; Kenna K.P., McLaughlin R.L., Byrne S. et al. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013;50(11):776–83. DOI:10.1136/jmedgenet-2013-101795; https://nmb.abvpress.ru/jour/article/view/500

  19. 19
    Academic Journal

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 1 (2021); 216-223 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 1 (2021); 216-223 ; 2541-8017 ; 2223-9022 ; 10.23934/2223-9022-2021-10-1

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/1093/939; https://www.jnmp.ru/jour/article/view/1093/1034; May M, Hardin WB. Facial palsy: Interpretation of neurologic findings. Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol. 1977;84(4 Pt1):ORL710–722. PMID: 197682; Kleiss IJ, Beurskens CHG, Stalmeier PFM, Ingels KJAO, Marres HAM. Quality of life assessment in facial palsy: validation of the Dutch Facial Clinimetric Evaluation Scale. Eur Arch Otorhinolaryngol. 2015;272(8):2055–2061. PMID: 25628237 https://doi.org/10.1007/s00405-015-3508-x; Lorch M, Teach SJ. Facial nerve palsy: etiology and approach to diagnosis and treatment. Pediatr Emerg Care. 2010;26(10):763–769; quiz 770–773. PMID: 20930602 https://doi.org/10.1097/PEC.0b013e3181f3bd4a; Peitersen E. The natural history of Bell’s palsy. Am J Otol. 1982;4(2):107–111. PMID: 7148998; Esslen E. Electrodiagnosis of facial palsy. In: Miehke A. (ed.) Surgery of the Facial Nerve. W.B. Saunders, Philadelphia, PA; 1973. p. 45–51.; Salles AG, Toledo PN, Ferreira MC. Botulinum toxin injection in long-standing facial paralysis patients: Improvement of facial symmetry observed up to 6 months. Aesthetic Plast Surg. 2009;33(4):582–590. PMID: 19330369 https://doi.org/10.1007/s00266-009-9337-9; Завалий Л.Б., Петриков С.С., Рамазанов Г.Р., Чехонацкая К.И. Ботулинотерапия при невропатии лицевого нерва. Российский неврологический журнал. 2020;25(1):23–28. https://doi.org/10.30629/2658-7947-2020-25-1-23-28; Завалий Л.Б., Петриков С.С., Рамазанов Г.Р., Касаткин Д.С., Чехонацкая К.И. Современные подходы к лечению и реабилитации пациентов с невропатией лицевого нерва. Вестник восстановительной медицины. 2020;2(96):59–67. https://doi.org/10.38025/2078-1962-2020-96-2-59-67; Завалий Л.Б., Рамазанов Г.Р., Петриков С.С., Джаграев К.Р., Чехонацкая К.И., Гаджиева Ж.Х. Клинический случай лечения повреждения лицевого и тройничного нервов у пациентки с колото-резаным ранением шеи. Consilium Medicum. 2019;21(9):54–57. https://doi.org/10.26442/20751753.2019.9.190370; House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146–147. PMID: 3921901 https://doi.org/10.1177/019459988509300202; de Almeida JR, Guyatt GH, Sud S, Dorion J, Hill MD, Kolber MR, et al. Management of Bell palsy: clinical practice guideline. CMAJ. 2014;186(12):917–922. PMID: 24934895 https://doi.org/10.1503/cmaj.131801; Murakami S, Mizobuchi M, Nakashiro Y, Doi T, Hato N, Yanagihara N. Bell palsy and herpes simplex virus: identification of viral DNA in endoneurial fluid and muscle. Ann Intern Med. 1996;124(1 Pt 1):27–30. PMID: 7503474 https://doi.org/10.7326/0003-4819-124-1_part_1-199601010-00005; May M, Schaitkin B, Shapiro A. The Facial Nerve. New York: Thieme; 2001.; Garro A, Nigrovic LE. Managing Peripheral Facial Palsy. Ann Emerg Med. 2018;71(5):618–624. PMID: 29110887 https://doi.org/10.1016/j.annemergmed.2017.08.039; Николаев С.Г. Электромиография: клинический практикум. Иваново: ПресСто; 2013.; Sittel C, Guntinas-Lichius O, Streppel M, Stennert E. Variability of repeated facial nerve electroneurography in healthy subjects. Laryngoscope. 1998;108(8 Pt 1):1177–1180. PMID: 9707239 https://doi.org/10.1097/00005537-199808000-00014; Исакова Л.А., Пенина Г.О. Использование электронейромиографии для оценки тяжести параличей Белла. Бюллетень международной научной хирургической ассоциации. 2017;6(2):12–17.; Thomander L, Stalberg E. Electroneurography in the prognostication of Bell’s palsy. Acta Otolaryngol. 1981;92(3–4):221–237. PMID: 7324892 https://doi.org/10.3109/00016488109133259; Грибова Н.П., Галицкая О.С. Клинико-электромиографические характеристики невропатии лицевого нерва у детей. Журнал неврологии и психиатрии им. С.С. Корсакова. 2009;109(11):16–19.; Smouha E, Toh E, Schaitkin BM. Surgical Treatment of Bell’s Palsy: Current Attitudes. Laryngoscope. 2011;121(9):1965-1970. PMID: 22024853 https://doi.org/10.1002/lary.21906; Grosheva M, Wittekindt C, Guntinas-Lichius O. Prognostic value of electroneurography and electromyography in facial palsy. Laryngoscope. 2008;118(3):394–397. PMID: 18090862 https://doi.org/10.1097/MLG.0b013e31815d8e68; Lee DH, Chae SY, Park YS, Yeo SW. Prognostic value of electroneurography in Bell’s palsy and Ramsay-Hunt’s syndrome. Clin Otolaryngol. 2006;31(2):144–148. PMID: 16620335 https://doi.org/10.1111/j.1749-4486.2006.01165.x; Савицкая Н.Г., Супонева Н.А., Остафийчук А.В., Янкевич Д.С. Возможности электромиографии в прогнозировании восстановления при идиопатической нейропатии лицевого нерва. Нервно-мышечные болезни. 2012;(4):36–41.; Fisch U. Surgery for Bell’s palsy. Arch Otolaryngol. 1981;107(1):1–11. PMID: 7469872 https://doi.org/10.1001/archotol.1981.00790370003001; Gantz BJ, Rubinstein JT, Gidley P, Woodworth GG. Surgical management of Bell’s palsy. Laryngoscope. 1999;109(8):1177–1188. PMID: 10443817 https://doi.org/10.1097/00005537-199908000-00001; Sillman JS, Niparko JK, Lee SS, Kileny PR. Prognostic Value of Evoked and Standard Electromyography in Acute Facial Paralysis. Otolaryngol Head Neck Surg. 1992;107(3):377–381. PMID: 1408222 https://doi.org/10.1177/019459989210700306; Mamoli B. Prognostic assessment in peripheral facial nerve paralysis with particular reference to electroneurography. Wein Klin Wochenschr Suppl. 1976;53:3–28. PMID: 181919; Kasahara T, Ikeda S, Sugimoto A, Sugawara S, Koyama Y, Toyokura M, et al. Efficacy of tape feedback therapy on synkinesis following severe peripheral facial nerve palsy. Tokai J Exp Clin Med. 2017;42(3):139–142. PMID: 28871583; https://www.jnmp.ru/jour/article/view/1093

  20. 20
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 13, No 1 (2021); 51-56 ; Неврология, нейропсихиатрия, психосоматика; Vol 13, No 1 (2021); 51-56 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2021-1

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1507/1183; https://nnp.ima-press.net/nnp/article/view/1507/1184; Khoo A, Frasca J, Schultz D. Measuring disease activity and predicting response to intravenous immunoglobulin in chronic inflammatory demyelinating polyneuropathy. Biomark Res. 2019;7(1):1-8. doi:10.1186/s40364-0190154-2; Bril V, Blanchette CM, Noone JM, et al. The dilemma of diabetes in chronic inflammatory demyelinating polyneuropathy. J Diabetes Complicat. Sep-Oct 2016;30(7):1401-7. doi:10.1016/j.jdiacomp.2016.05.007. Epub 2016 May 10.; Broers MC, Bunschoten C, Nieboer D, et al. Incidence and Prevalence of Chronic Inflammatory Demyelinating Polyradiculoneuropathy: A Systematic Review and Meta-Analysis. Neuroepidemiology. 2019;52(3-4):161-72. doi:10.1159/000494291; Попова ТЕ, Шнайдер НА, Петрова ММ и др. Эпидемиология хронической воспалительной демиелинизирующей полиневропатии за рубежом и в России. Нервно-мышечные болезни. 2015;5(2):10-5. doi:10.17650/2222-8721-2015-5-2-10-15; Турсынов НИ, Григолашвили МА, Илюшина МЮ и др. Современные аспекты диагностики и лечения хронических демиелинизирующих полинейропатий. Нейрохирургия и неврология Казахстана. 2016;3(44):38-45.; Щукин ИА, Лебедева АВ, Чубыкин ВИ и др. Астения у пациентов с хроническими неврологическими заболеваниями. Клиницист. 2013;7(2):64-72. doi:10.17650/18188338-2013-2-64-72; Lawley A, Abbas A, Seri S, Rajabally YA. Clinical correlates of fatigue in chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2020;62(2):226-32. doi:10.1002/mus.26913; Van den Bergh PYK, Hadden RDM, Bouche P, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint task force of the European Federation of Neurological Societies and the Peripher. Eur J Neurol. 2010;17(3):356-63. doi:10.1111/j.1468-1331.2009.02930.x; Dyck PJ, Davies JL, Litchy WJ, O'Brien PC. Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology. 1997;49(1):229-39. doi:10.1212/wnl.49.1.229; Kleyweg RP, Meche FGA, Schmitz PIM. Interobserver agreement in the assessment of muscle strength Guillain-Barre syndrome. Muscle Nerve. 1991 Nov;14(11):1103-9. doi:10.1002/mus.880141111; Alabdali M, Abraham A, Alsulaiman A, et al. Clinical characteristics, and impairment and disability scale scores for different CIDP Disease Activity Status classes. J Neurol Sci. 2017 Jan 15;372:223-7. doi:10.1016/j.jns.2016.11.056. Epub 2016 Nov 23.; Merkies ISJ, Kieseier BC. Fatigue, pain, anxiety and depression in Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Eur Neurol. 2016;75(3-4):199-206. doi:10.1159/000445347; Gavrilov YuV, Shkilnyuk GG, Valko PO, et al. Validation of the Russian Version of the Fatigue Impact Scale and Fatigue Severity Scale in multiple sclerosis patients. Acta Neurol Scand. 2018 Nov;138(5):408-416. doi:10.1111/ane.12993. Epub 2018 Jul 9.; Chaudhuri A, Behan P. Fatigue in neurological disorders. Lancet. 2004 Mar 20;363(9413):978-88. doi:10.1016/S01406736(04)15794-2; Zwarts MJ, Bleijenberg G, van Engelen BGM. Clinical neurophysiology of fatigue. Clin Neurophysiol. 2008 Jan;119(1):2-10. doi:10.1016/j.clinph.2007.09.126. Epub 2007 Nov 26.; Kent-Braun JA, Le Blanc R. Quantitation of Central Activation Failure During Maximal Volintary Contractions in Humans. Muscle Nerve. 1996 Jul;19(7):861-9. doi:10.1002/(SICI)10974598(199607)19:73.0.CO;2-7; Garssen MPJ, Schillings ML, van Doorn PA, et al. Contributions of Central and Peripheral Factors to Residual Fatigue in Guillain-Barre Syndrome. Muscle Nerve. 2007 Jul;36(1):93-9. doi:10.1002/mus.20739; Boukhris S, Magy L, Gallouedec G, et al. Fatigue as the main presenting symptom of chronic inflammatory demyelinating polyradiculoneuropathy: A study of 11 cases. J Peripher Nerv Syst. 2005 Sep;10(3):329-37. doi:10.1111/j.1085-9489.2005.10311.x; Westblad ME, Forsberg A, Press R. Disability and health status in patients with chronic inflammatory demyelinating polyneuropathy. Disabil Rehabil. 2009;31(9):720-5. doi:10.1080/09638280802306497; Gable KL, Attarian H, Allen JA. Fatigue in chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2020 Dec;62(6):673-80. doi:10.1002/mus.27038. Epub 2020 Aug 10.; Merkies IS, Schmitz PI, Samijn JP, et al. Fatigue in immune-mediated polyneuropathies. European Inflammatory Neuropathy Cause and Treatment (INCAT) Group. Neurology. 1999;53(8):1648-54. doi:10.1212/WNL.53.8.1648; Li SH, Lloyd AR, Graham BM. Physical and mental fatigue across the menstrual cycle in women with and without generalized anxiety disorder. Horm Behav. 2020 Feb;118:104667. doi:10.1016/j.yhbeh.2019.104667. Epub 2020 Jan 8.; Garssen MP, Bussmann JB, Schmitz PI, et al. Physical training and fatigue, fitness, and quality of life in Guillain-Barrе syndrome and CIDP. Neurology. 2004 Dec 28;63(12):2393-5. doi:10.1212/01.wnl.0000148589.87107.9c; Markvardsen LK, Carstens A-KR, Knak KL, et al. Muscle Strenght and Aerobic Capacity in Patients with CIDP One Year after Participation in an Exercise Trial. J Neuromuscular Dis. 2019;6(1):93-7. doi:10.3233/JND-180344