-
1Academic Journal
Source: Информатика и автоматизация, Vol 19, Iss 4, Pp 803-828 (2020)
Subject Terms: эволюционное моделирование, декларативное программирование нейронных сетей, китайская комната, репликативный нейроподобный модуль, модель колонки неокортекса, Electronic computers. Computer science, QA75.5-76.95
File Description: electronic resource
-
2Academic Journal
Authors: Лупанов, П. Е., Хохлова, М. Н., Шиманов, В. Л.
Source: System Analysis in Science and Education = Sistemnyj analiz v nauke i obrazovanii; No. 3 (2012): №3 (2012); 11-36 ; Системный анализ в науке и образовании; № 3 (2012): №3 (2012); 11-36 ; 2071-9612
Subject Terms: сетецентрические системы управления, управление знаниями, гиперграф хохловой, архитектура информационных систем, семантическая интероперабельность, языки моделирования, эволюционное моделирование, объектно-ориентированные подходы в проектировании, интеграция информационных систем, жизненный цикл информационных систем, автоматическое программирование, «Электронный бюджет», электронное правительство, программно-целевые методы управления, бюджетирование, ориентированное на результат, network-centric management systems, knowledge management, khokhlova’s hypergraph, information systems architecture, semantic interoperability, modeling languages, evolutionary modeling, object-oriented approaches in designing, information systems integration, information systems lifecycle, automatic programming, «E-Budget», e-government, program-objective management practices
File Description: application/pdf
Relation: https://sanse.ru/index.php/sanse/article/view/308/266; https://sanse.ru/index.php/sanse/article/view/308
Availability: https://sanse.ru/index.php/sanse/article/view/308
-
3Academic Journal
Authors: Ashot G. Tamrazyan, Anatoly V. Alekseytsev
Source: Vestnik MGSU, Vol 14, Iss 7, Pp 819-830 (2019)
Subject Terms: evolutionary modelling, optimization, risk, reliability of structures, structural safety, emergency actions, removal of supports, life cycle, эволюционное моделирование, оптимизация, риск, надежность, безопасность, аварийные ситуации, устранение связей, жизненный цикл, Architecture, NA1-9428, Construction industry, HD9715-9717.5
Relation: http://vestnikmgsu.ru/ru/component/sjarchive/issue/article.download/2019/7/819-830; https://doaj.org/toc/1997-0935; https://doaj.org/article/e662417b0e21443bab42237b40fd0294
-
4Academic Journal
Authors: South Ural State University
Subject Terms: моделирование сложных систем, геном, оптимизация функций, эволюционное моделирование, популяция, УДК 519.873, Высшая школа электроники и компьютерных наук
File Description: application/pdf
Access URL: http://dspace.susu.ru/xmlui/handle/0001.74/41076
-
5Academic Journal
Source: МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. 8:22-23
Subject Terms: data protection, генетический алгоритм, средства защиты информации, information security tools, threats to information security, simulation, имитационное моделирование, эволюционное моделирование, genetic algorithm, конфигурация системы защиты, evolutionary modeling, защита данных, угрозы информационной безопасности, security system configuration
-
6Academic Journal
Authors: Кобцев Михаил Андреевич, Mikhail A. Kobtsev
Source: Relevant lines of scientific research: development prospects; № 2; 174-175 ; Актуальные направления научных исследований: перспективы развития; № 2; 174-175
Subject Terms: генетические алгоритмы, genetic algorithms, эволюционное моделирование, генетическое программирование, Evolutionary modeling, genetic programming
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-9500562-3-9; https://interactive-plus.ru/e-articles/418/Action418-463080.pdf; 1. Букатова И.Л. Эволюционное моделирование и его приложения / И.Л. Букатова. – М.: Наука, 1979. – 232 с.; 2. Аверченков В.И. Эволюционное моделирование и его применение: Монография / В.И. Аверченков, П.В. Казаков. – 3-е изд., стереотип. – М.: Флинта, 2016. – 200 с.
-
7Academic Journal
Authors: A. I. Klimenko, Z. S. Mustafin, A. D. Chekantsev, R. K. Zudin, Yu. G. Matushkin, S. A. Lashin, А. И. Клименко, З. С. Мустафин, А. Д. Чеканцев, Р. К. Зудин, Ю. Г. Матушкин, С. А. Лашин
Source: Vavilov Journal of Genetics and Breeding; Том 19, № 6 (2015); 745-752 ; Вавиловский журнал генетики и селекции; Том 19, № 6 (2015); 745-752 ; 2500-3259
Subject Terms: прокариоты, ecological simulation, evolutionary modeling, prokaryotes, экологическое моделирование, эволюционное моделирование
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/493/821; Гимельфарб А.А., Гинзбург Л.Р., Полуэктов Р.А., Пых Ю.А., Ратнер В.А. Динамическая теория биологических популяций. Наука, 1974.; Колмакова О.В. Современные методы определения видоспецифичных биогеохимических функций бактериопланктона. Журнал сибирского федерального ун-та. Сер. биол. 2013;6(1): 73-95.; Лихошвай В.А., Хлебодарова Т.М., Ратушный А.В., Лашин С.А., Турнаев И.И., Подколодная О.А., Ананько Е.А., Смирнова О.Г., Ибрагимова С.С., Колчанов Н.А. Компьютерный генетический конструктор: математическое моделирование генетических и метаболических подсистем E. сoli. Роль микроорганизмов в функционировании живых систем: фундаментальные проблемы и биоинженерные приложения. Ред. В.В. Власов, А.Г. Дегерменджи, Н.А. Колчанов, В.Н. Пармон, Е.А. Репин. Новосибирск: Изд-во СО РАН, 2010.; Логофет Д.О., Белова И.Н. Неотрицательные матрицы как инструмент моделирования динамики популяций: классические модели и современные обобщения. Фундаментальная и прикладная математика. 2007;13:145-164.; Нетрусов А.И., Котова И.Б. Микробиология. М.: Академия, 2007.; Ризниченко Г.Ю. Математические модели в биофизике и экологии. М.; Ижевск: Институт компьютерных исследований, 2003.; Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М.: Изд-во МГУ, 1993.; Чернавский Д.С., Иерусалимский Н.Д. К вопросу об определяющем звене в системе ферментативных реакций. Изв. АН СССР. Сер. биол. 1965;5:665-672.; Adler J. Chemotaxis in bacteria. J. Supramol. Struct. 1976;4:305-317. DOI 10.1146/annurev.bi.44.070175.002013; Beardmore R.E., Gudelj I., Lipson D.A., Hurst L.D. Metabolic tradeoffs and the maintenance of the fittest and the flattest. Nature. 2011;472:342-346. DOI 10.1038/nature09905; Beslon G., Parsons D.P., Sanchez-Dehesa Y., Peсa J.-M., Knibbe C. Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness? Biosystems. 2010;102:32-40. DOI 10.1016/j.biosystems.2010.07.009; Chewapreecha C. Your gut microbiota are what you eat. Nat. Rev. Microbiol. 2013;12:8. DOI 10.1038/nrmicro3186; Comolli L.R. Intra- and inter-species interactions in microbial communities. Front. Microbiol. 2014;5:1-3. DOI 10.3389/fmicb.2014.00629; Covert M.W., Schilling C.H., Famili I., Edwards J.S., Goryanin I.I., Selkov E., Palsson B.O. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 2001;26:179-186. DOI 10.1016/S0968- 0004(00)01754-0; De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 2002;9:67-103. DOI 10.1089/10665270252833208; De Roy K., Marzorati M., Van den Abbeele P., Van de Wiele T., Boon N. Synthetic microbial ecosystems: An exciting tool to understand and apply microbial communities. Environ. Microbiol. 2013;16:1472- 1481. DOI 10.1111/1462-2920.12343; DeAngelis D.L., Mooij W.M. Individual-based modeling of ecological and evolutionary processes 1. Annu. Rev. Ecol. Evol. Syst. 2005;36:147-168. DOI 10.1146/annurev.ecolsys.36.102003.152644; Durot M., Bourguignon P.-Y., Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 2009;33:164-190. DOI 10.1111/j.1574-6976.2008.00146.x; Emonet T., Macal C.M., North M.J., Wickersham C.E., Cluzel P. Agent-Cell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics. 2005;21:2714-2721. DOI 10.1093/bioinformatics/bti391; Esteban P.G., Rodríguez-Patón A. Simulating a Rock-Scissors-Paper Bacterial Game with a Discrete Cellular Automaton. New Challenges on Bioinspired Applications, Lecture Notes in Computer Science. Eds J.M. Ferràndez, J.R. Álvarez Sànchez, F. de la Paz, F.J. Toledo. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. DOI 10.1007/978-3-642-21326-7; Faust K., Raes J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 2012;10:538-550. DOI 10.1038/nrmicro2832; Frey E. Evolutionary game theory: Theoretical concepts and applications to microbial communities. Phys. A Stat. Mech. its Appl. 2010; 389:4265-4298. DOI 10.1016/j.physa.2010.02.047; Fuhrman J.A. Microbial community structure and its functional implications. Nature. 2009;459:193-199. DOI nature08058 [pii]n10.1038/nature08058 [doi]; Ginovart M., López D., Valls J. INDISIM, an individual-based discrete simulation model to study bacterial cultures. J. Theor. Biol. 2002; 214:305-319. DOI 10.1006/jtbi.2001.2466; Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S.K., Huse G., Huth A., Jepsen J. U., Jørgensen C., Mooij W.M., Müller B., Pe’er G., Piou C., Railsback S.F., Robbins A.M., Robbins M.M., Rossmanith E., Rüger N., Strand E., Souissi S., Stillman R. a., Vabø R., Visser U., DeAngelis D.L. A standard protocol for describing individual-based and agent-based models. Ecol. Modell. 2006;198:115-126. DOI 10.1016/j.ecolmodel.2006.04.023; Halfen L.N., Castenholz R.W. Gliding motility in the blue-green alga oscillatoria princeps. 1971.; Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: Data integration in dynamic models–A review. Biosystems. 2009;96:86-103. DOI 10.1016/j.biosystems.2008.12.004; Henrichsen J. Bacterial Surface Translocation: a Survey and a Classification. Bacteriol. Rev. 1972;36:478-503.; Henson M.A., Hanly T.J. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 2014;8:214-229. DOI 10.1049/iet-syb.2013.0021; Ishii N., Robert M., Nakayama Y., Kanai A., Tomita M. Toward largescale modeling of the microbial cell for computer simulation. J. Biotechnol. 2004;113:281-294. DOI 10.1016/j.jbiotec.2004.04.038; Karr J.R., Sanghvi J.C., MacKlin D.N., Gutschow M.V., Jacobs J.M., Bolival B., Assad-Garcia N., Glass J.I., Covert M.W. A wholecell computational model predicts phenotype from genotype. Cell. 2012;150:389-401. DOI 10.1016/j.cell.2012.05.044; Karunakaran E., Mukherjee J., Ramalingam B., Biggs C.A. «Biofilmology »: a multidisciplinary review of the study of microbial biofilms. Appl. Microbiol. Biotechnol. 2011;90:1869-1881. DOI 10.1007/s00253-011-3293-4; Klimenko A.I., Matushkin Y.G., Kolchanov N.A., Lashin S.A. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor. BMC Evol. Biol. 2015;15:S3. DOI 10.1186/1471-2148-15-S1-S3; Klitgord N., Segre D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 2010;101:1435-1439. DOI 10.1371/Citation; Knibbe C., Fayard J.-M., Beslon G. The topology of the protein network influences the dynamics of gene order: from systems biology to a systemic understanding of evolution. Artif. Life. 2008;14:149-156. DOI 10.1162/artl.2008.14.1.149; Kutalik Z., Razaz M., Baranyi J. Connection between stochastic and deterministic modelling of microbial growth. J. Theor. Biol. 2005;232:285-299. DOI 10.1016/j.jtbi.2004.08.013; Larsen P., Hamada Y., Gilbert J. Modeling microbial communities: Current, developing, and future technologies for predicting microbial community interaction. J. Biotechnol. 2012;160:17-24. DOI 10.1016/j.jbiotec.2012.03.009; Laspidou C.S., Rittmann B.E. Evaluating trends in biofilm density using the UMCCA model. Water Res. 2004;38:3362-33672. DOI 10.1016/j.watres.2004.04.051; Lencastre Fernandes R., Nierychlo M., Lundin L., Pedersen A.E., Puentes Tellez P.E., Dutta A., Carlquist M., Bolic A., Schäpper D., Brunetti A.C., Helmark S., Heins A.L., Jensen A.D., Nopens I., Rottwitt K., Szita N., van Elsas J.D., Nielsen P.H., Martinussen J., Sørensen S.J., Lantz A.E., Gernaey K.V. Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol. Adv. 2011;29:575-599. DOI 10.1016/j.biotechadv.2011.03.007; Leslie P.H. On the use of matrices in certain population mathematics. Biometrika. 1945. DOI 10.2307/2332297; Likhoshvai V.A., Ratushny A.V. Generalized Hill function method for modeling molecular processes. J. Bioinform. Comput. Biol. 2007;05: 521-531. DOI 10.1142/S0219720007002837; Mahadevan R., Henson M.A. Genome-based modeling and design of metabolic interactions in microbial communities. Comput. Struct. Biotechnol. J. 2012;3:1-7. DOI 10.5936/csbj.201210008; Mburu N., Rousseau D.P.L., Stein O.R., Lens P.N.L. Simulation of batch-operated experimental wetland mesocosms in AQUASIM biofilm reactor compartment. J. Environ. Manage. 2014;134:100-108. DOI 10.1016/j.jenvman.2014.01.005; Monod J. La technique de culture continue. Theorie et applications. Ann. Inst. Pasteur. 1950;79:391-410.; Niu B., Wang H., Duan Q., Li L. Biomimicry of quorum sensing using bacterial lifecycle model. BMC Bioinformatics. 2013;14(Suppl. 8): S8. DOI 10.1186/1471-2105-14-S8-S8; O’Donnell A.G., Young I.M., Rushton S.P., Shirley M.D., Crawford J. W. Visualization, modelling and prediction in soil microbiology. Nat. Rev. Microbiol. 2007;5:689-699. DOI 10.1038/nrmicro1714; Oberhardt M.A., Palsson B.Ø., Papin J.A. Applications of genomescale metabolic reconstructions. Mol. Syst. Biol. 2009;5. DOI 10.1038/msb.2009.77; Pfeiffer T., Schuster S. Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 2005;30: 20-25. DOI 10.1016/j.tibs.2004.11.006; Price N.D., Reed J.L., Palsson B.Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2004;2:886-897. DOI 10.1038/nrmicro1023; Ramkrishna D. Population Balances: Theory and Applications to Particulate Systems in Engineering, Chemical Engineering. 2000.; Rudge T.J., Steiner P.J., Phillips A., Haseloff J. Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology 2012;1(8): 345-352. DOI 10.1021/sb300031n; Salli K.M., Ouwehand A.C. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J. Oral Microbiol. 2015;7. DOI 10.3402/jom.v7.26149; Sauer U., Heinemann M., Zamboni N. GENETICS: getting closer to the whole picture. Science. 2007;316:550-551. DOI 10.1126/science.1142502; Scheffer M., Baveco J.M., DeAngelis D.L., Rose K.A., van Nes E.H. Super-individuals a simple solution for modelling large populations on an individual basis. Ecol. Modell. 1995;80:161-170. DOI 10.1016/0304-3800(94)00055-M; Scheibe T.D., Mahadevan R., Fang Y., Garg S., Long P.E., Lovley D.R. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2009;2:274-286. DOI 10.1111/j.1751-7915.2009.00087.x; Schuster S., Fell D.A., Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 2000;18:326-332. DOI 10.1038/73786; Segrè D., Vitkup D., Church G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA. 2002;99: 15112-15117. DOI 10.1073/pnas.232349399; Shrout J.D. A fantastic voyage for sliding bacteria. Trends Microbiol. 2015;23:244-246. DOI 10.1016/j.tim.2015.03.001; Song H.-S., Cannon W., Beliaev A., Konopka A. Mathematical modeling of microbial community dynamics: a methodological review. Processes. 2014;2:711-752. DOI 10.3390/pr2040711; Stauffer D., Kunwar A., Chowdhury D. Evolutionary ecology in silico: Evolving food webs, migrating population and speciation. Physica A. 2005;352:202-215. DOI 10.1016/j.physa.2004.12.036; Tang Y., Valocchi A.J. An improved cellular automaton method to model multispecies biofilms. Water Res. 2013;47:5729-5742. DOI 10.1016/j.watres.2013.06.055; Tindall M.J., Maini P.K., Porter S.L., Armitage J.P. Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations. Bull. Math. Biol. 2008a. DOI 10.1007/s11538-008-9322-5; Tindall M.J., Porter S.L., Maini P.K., Gaglia G., Armitage J.P. Overview of mathematical approaches used to model bacterial chemotaxis I: The single cell. Bull. Math. Biol. 2008b. DOI 10.1007/s11538-008-9321-6; Tomita M. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol. 2001;19:205-210. DOI 10.1016/S0167-7799(01)01636-5; Tomita M., Hashimoto K., Takahashi K., Shimizu T., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J., Hutchison C. E-CELL: software environment for whole-cell simulation. Bioinformatics. 1999;15:72-84. DOI 10.1093/bioinformatics/15.1.72; Turing A.M. The chemical theory of morphogenesis. Phil. Trans. Roy.Soc. 1952;13:1.; Wanner O., Morgenroth E. Biofilm modeling with AQUASIM. Water Sci. Technol. 2004;49:137-144.; Wimpenny J., Manz W., Szewzyk U. Heterogeneity in biofilms. FEMS Microbiol. Rev. 2000. DOI 10.1016/S0168-6445(00)00052-8; Wimpenny J.W.T., Colasanti R. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol. Ecol. 1997. DOI 10.1016/S0168-6496(96)00078-5; Wolfe B.E., Dutton R.J. Review fermented foods as experimentally tractable microbial ecosystems. Cell. 2015;161:49-55. DOI 10.1016/j.cell.2015.02.034; Wooley J.C., Godzik A., Friedberg I. A primer on metagenomics. PLoS Comput. Biol. 2010. DOI 10.1371/journal.pcbi.1000667; Zomorrodi A.R., Islam M.M., Maranas C.D. D-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 2014;3:247-257. DOI 10.1021/sb4001307; Zomorrodi A.R., Maranas C.D. OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 2012;8. DOI 10.1371/journal.pcbi.1002363; https://vavilov.elpub.ru/jour/article/view/493
-
8Academic Journal
Source: Visnyk of Vinnytsia Politechnical Institute; No. 3 (2016); 13-20 ; Вестник Винницкого политехнического института; № 3 (2016); 13-20 ; Вісник Вінницького політехнічного інституту; № 3 (2016); 13-20 ; 1997-9274 ; 1997-9266
Subject Terms: evolutionary modeling, genetic algorithm, fitness function, automatic fire fighting system, automotive materiel, еволюційне моделювання, генетичні алгоритми, функція пристосованості, автоматична система пожежогасіння, автотранспортна техніка, эволюционное моделирование, генетические алгоритмы, функция приспособленности, автоматическая система пожаротушения, автотранспортная техника
File Description: application/pdf
-
9Academic Journal
Authors: КРАСНОСКУЛОВ А.
File Description: text/html
-
10Academic Journal
Authors: ХЛОПКОВА О. А
Subject Terms: НЕЙРОЭВОЛЮЦИЯ,ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ,НЕЙРОННЫЕ СЕТИ,ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ,ВЫЧИСЛИТЕЛЬНЫЙ ИНТЕЛЛЕКТ
File Description: text/html
-
11Academic Journal
Subject Terms: продолжительность строительства, эволюционное моделирование, организационные ожидания, срывы поставок ресурсов, оптимизация, календарный график
File Description: text/html
-
12Academic Journal
Subject Terms: ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ,ЭВОЛЮЦИОННЫЕ АЛГОРИТМЫ,ЭВОЛЮЦИОННЫЙ МЕТОД,СХОДЯЩИЕСЯ АЛГОРИТМЫ,ОПТИМАЛЬНЫЙ ПУТЬ
File Description: text/html
-
13Academic Journal
Authors: Зайцева, Н., Шур, П., Атискова, Нина, Шараева, А., Романенко, К., Фокин, В.
Subject Terms: ГАРМОНИЗАЦИЯ ГИГИЕНИЧЕСКИХ НОРМАТИВОВ, СРЕДНЕГОДОВАЯ ПДК, ЭПИДЕМИОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ, РЕПЕРНЫЙ УРОВЕНЬ, ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ, ФАКТОР НЕОПРЕДЕЛЕННОСТИ
File Description: text/html
-
14Academic Journal
Authors: Меженин, Михаил Григорьевич
Source: Computational Mathematics and Software Engineering; Том 3, № 1 (2014); 44-54 ; Вычислительная математика и информатика; Том 3, № 1 (2014); 44-54 ; 2410-7034 ; 2305-9052
Subject Terms: procedural content generation, evolutionary computation, content personalization, процедурная генерация контента, эволюционное моделирование, персонализация контента
File Description: application/pdf
-
15Academic Journal
Authors: V. A. Ivanuk, K. N. Andropov, В. А. Иванюк, К. Н. Андропов
Source: Business Strategies; № 2 (2013); 76-79 ; Стратегии бизнеса; № 2 (2013); 76-79 ; 2311-7184 ; 10.17747/2311-7184-2013-2
Subject Terms: инструменты инвестиционного портфеля, investment, evolutionary modeling, tools of investment portfolio, инвестиции, эволюционное моделирование
File Description: application/pdf
Relation: https://www.strategybusiness.ru/jour/article/view/47/42; Рухлов А. Принципы портфельного инвестирования – Финансы. Ценные бумаги. -2005; Шарп У.,Александер Г., Бейли Дж. Инвестиции. – М.:Инфра-М, - 2006; http://www.finam.ru; https://www.strategybusiness.ru/jour/article/view/47; undefined
Availability: https://www.strategybusiness.ru/jour/article/view/47
-
16Academic Journal
Authors: ЗАЙЦЕВА Н.В., АЛЕКСЕЕВ В.Б., ШУР П.З., КИРЬЯНОВ Д.А., ШЛЯПНИКОВ Д.М., ЧИГВИНЦЕВ В.М.
File Description: text/html
-
17Academic Journal
Authors: Кирьянов, Д., Камалтдинов, М.
Subject Terms: ОЦЕНКА ДОПОЛНИТЕЛЬНОЙ ЗАБОЛЕВАЕМОСТИ И СМЕРТНОСТИ, ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ, РИСК НАРУШЕНИЯ ФУНКЦИЙ ОРГАНОВ И СИСТЕМ
File Description: text/html
-
18Academic Journal
Authors: Камчатова, Екатерина
Subject Terms: ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ, ДОМИНИРУЮЩЕЕ ПОЛОЖЕНИЕ, ИННОВАЦИОННАЯ ДЕЯТЕЛЬНОСТЬ, ВЛИЯНИЕ ФАКТОРОВ ВНЕШНЕЙ И ВНУТРЕННЕЙ СРЕДЫ
File Description: text/html
-
19Academic Journal
Authors: Жуликов, Сергей, Попов, Владимир
Subject Terms: ЭВОЛЮЦИОННОЕ МОДЕЛИРОВАНИЕ, ГЕНЕТИЧЕСКИЕ АЛГОРИТМЫ, ВЫБОР РОДИТЕЛЕЙ, СКРЕЩИВАНИЕ, МУТАЦИЯ, ОТБОР,
"УМНЫЙ МУРАВЕЙ", "SMART ANT" File Description: text/html
-
20Academic Journal
Authors: Меженин, Михаил
File Description: text/html