Showing 1 - 20 results of 26 for search '"тромботическая тромбоцитопеническая пурпура"', query time: 0.86s Refine Results
  1. 1
  2. 2
    Academic Journal
  3. 3
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 4 (2024); 603-611 ; Акушерство, Гинекология и Репродукция; Vol 18, No 4 (2024); 603-611 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2168/1244; https://www.gynecology.su/jour/article/view/2168/1245; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21-4.; Singer K., Bornstein F.P., Wile S.A. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542-54.; Amorosi E.L., Ultmann J.E. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine (Baltimore). 1966;45(02):139-60.; Von Willebrand E.A. Hereditar pseudohemofili. Finska Lakarsallskapets Handl. 1926;67:7-112. (In Swedish).; Thachil J., Lassila R. What can historical literature on von Willebrand disease teach us? Res Pract Thromb Haemost. 2023;7(8):102244. https://doi.org/10.1016/j.rpth.2023.102244.; Upshaw J.D. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350-2.; Gasser C., Gautier E., Steck A. et al. Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia. Schweiz Med Wochenschr. 1955;85(38-39):905-9. (In German).; Gasser C. The hemolytic-uremic syndrome. Ther Umsch. 1968;25(8):433-7. (In German).; Karmali M.A., Steele B.T., Petric M., Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;1(8325):619-20. https://doi.org/10.1016/s0140-6736(83)91795-6.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432-5. https://doi.org/10.1056/NEJM198212023072306.; Wagner D.D. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost. 1993;70(1):105-10.; Arya M., Anvari B., Romo G.M. et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood. 2002;99(11):3971-7. https://doi.org/10.1182/blood-2001-11-0060.; Furlan M., Robles B.L.B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223-34.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235-44. https://doi.org/10.1182/blood.v87.10.4235.blood-journal87104235.; Furlan M7., Robles R., Solenthaler M. et al. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood. 1997;89(9):3097-103.; Gerritsen H.E., Robles R., Lammle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654-61. https://doi.org/10.1182/blood.v98.6.1654.; Soejima K., Mimura N., Hirashima M. et al. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem. 2001;130(4):475-80. https://doi.org/10.1093/oxfordjournals.jbchem.a003009.; Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood. 2001;98(6):1662-6. https://doi.org/10.1182/blood.v98.6.1662.; Zheng X., Chung D., Takayama T.K. et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276(44):41059-63. https://doi.org/10.1074/jbc.C100515200.; Tsai H.M., Lian E.C. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585-94. https://doi.org/10.1056/NEJM199811263392203.; Furlan M., Robles R., Galbusera M. et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339(22):1578-84. https://doi.org/10.1056/NEJM199811263392202.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528-34. https://doi.org/10.1182/blood-2005-03-1087.; Plaimauer B., Zimmermann K., Volkel D. et al. Cloning, expression, and functional characterization of the von Willebrand factor - cleaving protease (ADAMTS13). Blood. 2002;100(10):3626-32. https://doi.org/10.1182/blood-2002-05-1397.; Antoine G., Zimmermann K., Plaimauer B.et al. ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant human ADAMTS13. Br J Haematol. 2003;120(5):821-4. https://doi.org/10.1046/j.1365-2141.2003.04183.x.; Rubinstein M.A., Kagan B.M., MacGillviray M.H. et al. Unusual remission in a case of thrombotic thrombocytopenic purpura syndrome following fresh blood exchange transfusions. Ann Intern Med. 1959;51:1409-19. https://doi.org/10.7326/0003-4819-51-6-1409.; Shepard K.V., Bukowski R.M. The treatment of thrombotic thrombocytopenic purpura with exchange transfusions, plasma infusions, and plasma exchange. Semin Hematol. 1987;24(3): 178-93.; Rock G.A., Shumak K.H., Buskard N.A. et al.; Canadian Apheresis Study Group. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N Engl J Med. 1991;325(6):393-7. https://doi.org/10.1056/NEJM199108083250604.; Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398-403. https://doi.org/10.1056/NEJM199108083250605.; Miner P.E., Nutt R.L., Thomas M.E. Thrombotic thrombocytopenic purpura occurring in pregnancy. Am J Obstet Gynecol. 1955;70(3):611-7. https://doi.org/10.1016/0002-9378(55)90355-0.; Макацария А.Д., Бицадзе В.О., Акиньшина С.В., Андреева М.Д. Патогенез и профилактика осложнений беременности, обусловленных тромботической микроангиопатией. Вопросы гинекологии, акушерства и перинатологии. 2013;12(6):63-73.; Макацария А.Д., Акиньшина С.В., Бицадзе В.О. Преэклампсия и HELLP-синдром как проявление тромботической микроангиопатии. Акушерство и гинекология. 2014;(4):4-10.; Макацария А.Д., Бицадзе В.О., Хирзоева Д.Х., Акиньшина С.В. Тромботические микроангиопатии в акушерской практике. М.: ГЭОТАР-Медиа, 2017. 304 с.; Antman K.H., Skarin A.T., Mayer R.J. et al. Microangiopathic hemolytic anemia and cancer: a review. Medicine. 1979;58(5):377-84. https://doi.org/10.1097/00005792-197909000-00004.; Terrell D.R., Williams L.A., Vesely S.K. et al. The incidence of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: all patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency. J Thromb Haemost. 2005;3(7):1432-6. https://doi.org/10.1111/j.1538-7836.2005.01436.x.; Макацария А.Д., Элалами И., Воробьев А.В. и др. Тромботическая микроангиопатия у онкологических больных. Вестник РАМН. 2019;74(5):323-32. https://doi.org/10.15690/vramn1204.; Deford C.C., Reese J.A., Schwartz L.H. et al. Multiple major morbidities and increased mortality during long-term follow-up after recovery from thrombotic thrombocytopenic purpura. Blood. 2013;122(12):2023-9. https://doi.org/10.1182/blood-2013-04-496752.; Falter T., Boschen S., Schepers M. et al. Influence of personality, resilience and life conditions on depression and anxiety in 104 patients having survived acute autoimmune thrombotic thrombocytopenic purpura. J Clin Med. 2021;10(2):365. https://doi.org/0.3390/jcm10020365.; Riva S., Mancini I., Maino A. et al. Long-term neuropsychological sequelae, emotional wellbeing and quality of life in patients with acquired thrombotic thrombocytopenic purpura. Haematologica. 2020;105(7):1957-62. https://doi.org/10.3324/haematol.2019.22642.; Westwood J.P., Scully M. Management of acquired, immune thrombocytopenic purpura (iTTP): beyond the acute phase. Ther Adv Hematol. 2022;13:20406207221112216. https://doi.org/10.1177/20406207221112217.; Woods A.I., Paiva J., Dos Santos C. et al. From the discovery of ADAMTS13 to current understanding of its role in health and disease. Semin Thromb Hemost. 2023;49(3):284-94. https://doi.org/10.1055/s-0042-1758059.; Scully M., Antun A., Cataland S.R. et al.; cTTP Phase 3 Study Investigators. Recombinant ADAMTS13 in congenital thrombotic thrombocytopenic purpura. N Engl J Med. 2024;390(17):1584-96. https://doi.org/10.1056/NEJMoa2314793.; Asmis L.M., Serra A., Krafft A. et al. Recombinant ADAMTS13 for hereditary thrombotic thrombocytopenic purpura. N Engl J Med. 2022;387(25):2356-61. https://doi.org/10.1056/NEJMoa2211113.; Bendapudi P.K., Foy B.H., Mueller S.B. et al. Recombinant ADAMTS13 for immune thrombotic thrombocytopenic purpura. N Engl J Med. 2024;390(18):1690-8. https://doi.org/10.1056/NEJMoa2402567.; Dekimpe C., Roose E., Sakai K. et al. Toward gene therapy for congenital thrombotic thrombocytopenic purpura. J Thromb Haemost. 2023;21(5):1090-9. https://doi.org/10.1016/j.jtha.2022.12.018.; https://www.gynecology.su/jour/article/view/2168

  4. 4
    Academic Journal

    Contributors: Исследование проведено без спонсорской поддержки

    Source: Acta Biomedica Scientifica; Том 9, № 2 (2024); 50-57 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4727/2759; Акиньшина С.В., Бицадзе В.О., Гадаева З.К., Макацария А.Д. Значение тромботической микроангиопатии в патогенезе акушерских осложнений. Акушерство, гинекология и репродукция. 2015; 9(2): 62-71. doi:10.17749/2070-4968.2015.9.2.062-71; Филатов Л.Б. Тромботические микроангиопатии. Онкогематология. 2008; (4): 366-376.; Mancini I, Pontiggia S, Palla R, Artoni A, Valsecchi C, Ferrari B, et al. Clinical and laboratory features of patients with acquired thrombotic thrombocytopenic purpura: Fourteen years of the Milan TTP registry. Thromb Haemost. 2019; 119(5): 695-704. doi:10.1055/s-0039-1679907; Бадосова Т.В., Романова Т.А., Чернявская Е.К. Редкое клиническое наблюдение тромботической тромбоцитопенической пурпуры у больной 16 лет. Научные ведомости Белгородского государственного университета. 2016; 19(240): 188-193.; Авидзба А.Р., Саскин В.А., Недашковский Э.В. Тромботическая тромбоцитопеническая пурпура – редкая этиопатогенетическая причина инфаркта головного мозга и экстрацеребрального тромбоза. Вестник анестезиологии и реаниматологии. 2021; 18(4): 90-94. doi:10.21292/2078-56582021-18-4-90-94; Галстян Г.М., Шмаков Р.Г., Клебанова Е.Е., Троицкая В.В., Двирнык В.Н., Сурин В.Л., и др. Тромботическая тромбоцитопеническая пурпура у беременных: родоразрешать нельзя прерывать. Где поставить запятую? Гематология и трансфузиология. 2022; 67(1): 42-61. doi:10.35754/0234-57302022-67-1-42-61; Provan D, Stasi R, Newland AC, Blanchette VS, BoltonMaggs P, Bussel JB, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010; 115(2): 168-186. doi:10.1182/blood-2009-06-225565; Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001; 276(44): 41059-41063. doi:10.1074/jbc.C100515200; Huang F, Li XP, Xu Y, Li XY, Li DR, Hao Y, et al. Clinical characteristics and outcomes of adult patients with acquired thrombotic thrombocytopenic purpura: A single center retrospective study. Ann Palliat Med. 2021; 10(5): 5351-5358. doi:10.21037/apm-21-759; Rottenstreich A, Dor S, Keren-Politansky A, Sarig G, Nadir Y, Ellis M, et al. Pregnancy and non-pregnancy related immune thrombotic thrombocytopenic purpura in women of reproductive age. J Thromb Thrombolysis. 2021; 51(1): 187-193. doi:10.1007/s11239-020-02133-4; Gupta M, Feinberg BB, Burwick RM. Thrombotic microangiopathies of pregnancy: Differential diagnosis. Pregnancy Hypertens. 2018; 12: 29-34. doi:10.1016/j.preghy.2018.02.007; Al-Husban N, Al-Kuran O. Post-partum thrombotic thrombocytopenic purpura (TTP) in a patient with known idiopathic (immune) thrombocytopenic purpura: A case report and review of the literature. J Med Case Rep. 2018; 12(1): 147. doi:10.1186/s13256-018-1692-1; Nonaka T, Yamaguchi M, Nishijima K, Moriyama M, Takakuwa K, Enomoto T. A successfully treated case of an acute presentation of congenital thrombotic thrombocytopenic purpura (Upshaw – Schulman syndrome) with decreased ADAMTS13 during late stage of pregnancy. J Obstet Gynaecol Res. 2021; 47(5): 18921897. doi:10.1111/jog.14737; Kasht R, Borogovac A, George JN. Frequency and severity of pregnancy complications in women with hereditary thrombotic thrombocytopenic purpura. Ame J Hematol. 2020; 95(11): E316E318. doi:10.1002/ajh.25964; Vendramin C, Thomas M, Westwood J-P, Scully M. Bethesda assay for detecting inhibitory anti-ADAMTS13 antibodies in immune-mediated thromboticthrombocytopenic purpura. TH Open. 2018; 2(3): e329-e333. doi:10.1055/s-0038-1672187; Gerritsen HE, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2021; 98: 1654-1166. doi:10.1182/blood.v98.6.1654; de Souza VR Jr, Cavalcante de Oliveira AB, Vanderlei AM, Queiroz da Mota Silveira Aroucha A, Pontes Duarte B, Nunes Machado A, et al. Inherited thrombotic thrombocytopenic purpura mimicking immune thrombocytopenic purpura dur ing pregnancy: A case report. J Med Case Rep. 2018; 12(1): 15. doi:10.1186/s13256-017-1545-3; Nelson-Piercy C. Manual CTO de medicina obstétrica. Complicationes en el embarazo. Madrid; 2019.; Галстян Г.М., Спирин М.В. Сосудистый доступ в гематологии. М.: Практика; 2021.; Sakai K, Fujimura Y, Nagata Y, Higasa S, Moriyama M, Isonishi A, et al. Success and limitations of plasma treatment in pregnant women with congenital thrombotic thrombocytopenic purpura. J Thromb Haemost. 2020; 18(11): 2929-2941. doi:10.1111/jth.15064; https://www.actabiomedica.ru/jour/article/view/4727

  5. 5
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 18, № 4 (2021); 90-94 ; Вестник анестезиологии и реаниматологии; Том 18, № 4 (2021); 90-94 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/559/508; Галстян Г. М., Клебанова Е. Е. Диагностика тромботической тромбоцитопенической пурпуры // Терапевтический архив. - 2020. - Т. 92, № 12. - С. 207-217. doi:10.26442/00403660.2020.12.200508.; Клинические рекомендации по ведению больных с ишемическим инсуль­том и транзиторными ишемическими атаками / под ред. проф. Л. В. Стаховской. - М.: МЕДпресс-информ, 2017. - 208 с.; Кузник Б. И., Стуров В. Г., Левшин Н. Ю., Максимова О. Г., Кудлай Д. А. Геморрагические и тромботические заболевания и синдромы у детей и подростков: Патогенез, клиника, диагностика, терапия и профилактика. - Новосибирск: Наука, 2018. - 524 с.; Фомин А. М., Зацепина А. А., Голенков А. К. и др. Обменный плазмаферез в лечении тромботической тромбоцитопенической пурпуры // Гематология и трансфузиология. - 2017. - Т. 62, № 2. - С. 96-100. doi:10.18821/0234-5730-2017-62-2-96-100.; Amorosi E. L., Ultmann, John E. M. D., F. A.C.P. Thrombotic thrombocytopenic purpura // Medicine. - 1966. - Vol. 45, Is. 2. - P. 139-160. doi:10.12691/ajmcr-3-11-6.; Azoulay E., Bauer P. R., Mariotte E. et al. Expert statement on the ICU management of patients with thrombotic thrombocytopenic purpura // Intens. Care Med. - 2019. - Vol. 45, № 11. - P. 1518-1539. doi:10.1007/s00134-019-05736-5.; Bendapudi P. K., Hurwitz S., Fry A., Marques M. B. et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study // Lancet Haematol. - 2017. - Vol. 4, № 4. - Р. e157-e164. doi:10.1016/S2352-3026(17)30026-1.; Blombery P., Kivivali L., Pepperell D. et al. Diagnosis and management of thrombotic thrombocytopenic purpura (TTP) in Australia: Findings from the first 5 years of the Australian TTP/thrombotic microangiopathy registry // Intern. Med. J. - 2016. - Vol. 46. - P. 71-79. doi:10.1111/imj.12935.; Cataland S. R., Kourlas P. J., Yang S. et al. Cyclosporine or steroids as an adjunct to plasma exchange in the treatment of immune-mediated thrombotic thrombocytopenic purpura // Blood Adv. - 2017. - Vol. 23, № 1. - P. 2075-2082. doi:10.1182/bloodadvances.2017009308.; Jang M. J., Chong S. Y., Kim I. H. et al. Clinical features of severe acquired ADAMTS13 deficiency in thrombotic thrombocytopenic purpura: the Korean TTP registry experience // Int. J. Hematol. - 2011. - Vol. 93, № 2. - P. 163-169. doi:10.1007/s12185-011-0771-5.; Kremer Hovinga J. A., Paul Coppo P. et al. Thrombotic thrombocytopenic purpura // Nat. Rev. Dis. Primers. - 2017. - Vol. 6, № 3. - P. 1-17 doi:10.1038/nrdp.2017.20.; Mariotte E., Azoulay E., Galicier L. et al. Epidemiology and pathophysiology of adulthood-onset thrombotic microangiopathy with severe ADAMTS13 deficiency (thrombotic thrombocytopenic purpura): a cross-sectional analysis of the French national registry for thrombotic microangiopathy // Lancet Haematol. - 2016. - Vol. 3, № 5. - Р. e237e245. (ISSN: 2352-3026) doi:10.1016/S2352-3026(16)30018-7.; Miesbach W., Menne J., Bommer M. et al. Incidence of acquired thrombotic thrombocytopenic purpura in Germany: a hospital level study // Orphanet J. Rare Dis. - 2019. - Vol. 14. - P. 260-270. doi:10.1186/s13023-019-1240-0.; Miller D. P., Kaye J. A., Shea K. et al. Incidence of thrombotic thrombocytopenic purpura/hemolytic uremic syndrome // Epidemiology. - 2004. - Vol. 15, № 2. - P. 208-215. (ISSN: 1044-3983) doi:10.1097/01.ede.0000113273.14807.53.; Powers W. J., Rabinstein A. A., Ackerson T. et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association // Stroke. - 2018. - Vol. 49, № 3. - P. e46-e99. doi:10.1161/STR.0000000000000158.; Rock G. A., Shumak K. H., Buskard N. A. et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group // N. Engl. J. Med. - 1991. - Vol. 8, № 325. - P. 393-397. doi:10.1056/NEJM199108083250604.; Rottenstreich A., Hochberg-Klein S., Rund D. et al. The role of N-acetylcysteine in the treatment of thrombotic thrombocytopenic purpura // J. Thromb. Thrombolysis. - 2016. - Vol. 41, № 4. - P. 678-683. doi:10.1007/s11239-015-1259-6.; Saha M., McDaniel J. K., Zheng X. L. et al. Thrombotic thrombocytopenic purpura: pathogenesis, diagnosis and potential novel therapeutics // J. Thromb. Haemostasis. - 2017. - Vol. 15. - P. 1889-1900. doi:10.1111/jth.13764.; Scully M., Yarranton H., Liesner R. et al. Regional UK TTP registry: Correlation with laboratory ADAMTS 13 analysis and clinical features // Br. J. Haematol. - 2008. - Vol. 142. - P. 819-826. doi:10.1111/j.1365-2141.2008.07276.x.; Scully M., McDonald V., Cavenagh J. et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura // Blood. - 2011. - Vol. 18, № 118. - P. 1746-1753. doi:10.1182/blood-2011-03-341131.; Scully M., Cataland S. R., Peyvandi F. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura // N. Engl. J. Med. - 2019. - Vol. 24, № 380 (4). - P. 335-346. doi:10.1056/NEJMoa1806311.; Scully M., Hunt B. J., Benjamin S. et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies // Brit. J. Haematology. - 2012. - Vol. 158. - P. 323-335. doi:10.1111/j.1365-2141.2012.09167.x.; Sukumar S., Lammle B., Cataland S. R. Thrombotic thrombocytopenic purpura: pathophysiology, diagnosis, and management // J. Clin. Med. - 2021. - Vol. 10, № 3. - P. 536. doi:10.3390/jcm10030536.; Terrell D. R., Williams L. A., Vesely S. K. et al. The incidence ofthrombotic thrombocytopenic purpura-hemolytic uremic syndrome: all patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency // J. Thromb. Haemost. - 2005. - Vol. 3. - P. 1432-1436. doi:10.1111/j.1538-7836.2005.01436.x.; Wun T. Thrombotic Thrombocytopenic Purpura (TTP) // MedScape. - [Элек­тронный ресурс]. URL:https://emedicine.medscape.com/article/206598 (дата обращения: 07.05.2020).

  6. 6
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 15, No 1 (2021); 93-106 ; Акушерство, Гинекология и Репродукция; Vol 15, No 1 (2021); 93-106 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/936/895; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21-4.; Moschcowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries: an undescribed disease. Am J Med. 1952;13(5):567-9. https://doi.org/10.1016/0002-9343(52)90022-3.; SoRelle R. Clopidogrel-associated thrombotic thrombocytopenic purpura identified. Circulation. 2000;101(18):Е9036-7. https://doi.org/10.1161/01.cir.101.18.e9036.; Schulman I., Pierce M., Lukens A., Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943-57.; Upshaw J.D. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350-2. https://doi.org/10.1056/NEJM197806152982407.; Rennard S., Abe S. Decreased cold-insoluble globulin in congenital thrombocytopenia (Upshaw-Schulman syndrome). N Engl J Med. 1979;300(7):368. https://doi.org/10.1056/NEJM197902153000718.; Kinoshita S., Yoshioka A., Park Y.D. et al. Upshaw-Schulman syndrome revisited: a concept ofcongenital thrombotic thrombocytopenic purpura. Int J Hematol. 2001;74(1):101-8. https://doi.org/10.1007/BF02982558.; Amorosi E., Ultmann J. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139-60. https://doi.org/10.1097/00005792-196603000-00003.; Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398-403. https://doi.org/10.1056/NEJM199108083250605.; Tsai H.M., Lian E.C. 1998. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339:1585-94. https://doi.org/10.1056/NEJM199811263392203.; Rock G.A., Shumak K.H., Buskard N.A. et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393-7. https://doi.org/10.1056/NEJM199108083250604.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;(23)307:1432-5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Solenthaler M. et al. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood. 1997;89(9):3097-103.; Tsai H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235-44.; Furlan M., Robles R., Solenthaler M., Lammle B. Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood. 1998;91(8):2839-46.; Furlan M., Robles R., Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223-34.; Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood. 2001;98(6):1662-6. https://doi.org/10.1182/blood.v98.6.1662.; Gerritsen H.E., Robles R., Lammle B., Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654-61. https://doi.org/10.1182/blood.v98.6.1654.; Zheng X., Chung D., Takayama T.K. et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276(44):41059-63. https://doi.org/10.1074/jbc.C100515200.; Plaimauer B., Zimmermann K., Volkel D. et al. Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood. 2002;100(10):3626-32. https://doi.org/10.1182/blood-2002-05-1397.; Zheng X., Nishio K., Majerus E.M. et al. 2003. Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease ADAMTS13. J Biol Chem. 2003;278(32):30136-41. https://doi.org/10.1074/jbc.M305331200.; Plautz W.E., Raval J.S., Dyer M.R. et al. ADAMTS13: origins, applications and prospects. Transfusion. 2018;58(10):2453-62. https://doi.org/10.1111/trf.14804.; South K., Luken B.M., Crawley J.T. et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A. 2014;111(52):18578-83. https://doi.org/10.1073/pnas.1411979112.; South K., Freitas M.O., Lane D.A. A model for the conformational activation of the structurally quiescent metalloprotease ADAMTS13 by von Willebrand factor. J Biol Chem. 2017;292(14):5760-9. https://doi.org/10.1074/jbc.M117.776732.; Sadler J.E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395-424. https://doi.org/10.1146/annurev.biochem.67.1.395.; Roth G.J., Titani K., Hoyer L.W. et al. Localization of binding sites within human von Willebrand factor for monomeric type III collagen. Biochemistry. 1986;25(26):8357-61. https://doi.org/10.1021/bi00374a004.; Tsai H.-M. Shear stress and von Willebrand factor in health and disease. Semin Thromb Hemost. 2003;29(5):479-88. https://doi.org/10.1055/s-2003-44556.; Sadler J.E. Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Blood. 2008;112(1):11-8. https://doi.org/10.1182/blood-2008-02-078170.; Hobbs W.E., Moore E.E., Penkala R.A. et al. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler Thromb Vasc Biol. 2013;33(6):1230-7. https://doi.org/10.1161/ATVBAHA.113.301436.; de Groot R., Bardhan A., Ramroop N. et al. Essential role of the disintegrin-like domain in ADAMTS13 function. Blood. 20098;113(22):5609-16. https://doi.org/10.1182/blood-2008-11-187914.; de Groot R., Lane D.A., Crawley J.T. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis. Blood. 2015;125(12):1968-7. https://doi.org/10.1182/blood-2014-08-594556.; Schaller M., Studt J.D., Voorberg J., Kremer Hovinga J.A. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie. 2013;33(2):121-30. https://doi.org/10.5482/HAMO-12-12-0023.; Molvarec A., Rigo J., Boze T. et al. Increased plasma von Willebrand factor antigen levels but normal von Willebrand factor cleaving protease (ADAMTS13) activity in preeclampsia. Thromb Haemost. 2009;101(2):305-11.; Sanchez-Luceros A., Meschengieser S.S., Marchese C. et al. Factor VIII and von Willebrand factor changes during normal pregnancy and puerperium. Blood Coagul Fibrinolysis. 2003;14(7):647-5. https://doi.org/10.1097/00001721-200310000-00005.; Aref S., Goda H. Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology. 2013;18(4):237-41. https://doi.org/10.1179/1607845412Y.0000000070.; Stepanian A., Cohen-Moatti M., Sanglier T. et al. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31(7):1703-9. https://doi.org/10.1161/ATVBAHA.111.223610.; Laurence J. Atypical hemolytic uremic syndrome (aHUS): making the diagnosis. Clin Adv Hematol Oncol. 2012;10(10 Suppl 17):1-12.; Levi M., van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38-44. https://doi.org/10.1016/j.thromres.2016.11.007.; Schwameis M., Schorgenhofer C., Assinger A. et al. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(3):708-18. https://doi.org/10.1160/TH14-09-0731.; Bockmeyer C.L., Claus R.A., Budde U et al. Inflammation-associated ADAMTS-13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica. 2008;93(1):137-40. https://doi.org/10.3324/haematol.11677.; Turner N.A., Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis thrombosis. PLoS One. 2013;8(3):e59372. https://doi.org/10.1371/journal.pone.0059372.; Xu J., Zhang X., Pelayo R. et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318-21. https://doi.org/10.1038/nm.2053.; Kim J.E., Lee N., Gu J.-Y. et al. Circulating levels of DNA-histone complex and dsDN are independent prognostic factors of disseminated intravascular coagulation. Thromb Res. 2015;135(6):1064-9. https://doi.org/10.1016/j.thromres.2015.03.014.; Fuchs T.A., Kremer Hovinga J.A., Schatzberg D. et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood. 2012;120(6):1157-64. https://doi.org/10.1182/blood-2012-02-412197.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS-13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528-34. https://doi.org/10.1182/blood-2005-03-1087.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS-13 by thrombin and plasmin. Blood. 2005;105(3)1085-93. https://doi.org/10.1182/blood-2004-03-1101.; Bernardo A., Ball C., Nolasco L. et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104(1):100-6. https://doi.org/10.1182/blood-2004-01-0107.; Bonnefoy A., Daenens K., Feys H.B. et al. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS-13. Blood. 2006;10(3):955-64. https://doi.org/10.1182/blood-2004-12-4856.; Schwameis M., Schorgenhofer C., Assinger A. et al. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(4):708-18. https://doi.org/10.1160/TH14-09-0731.; Habe K., Wada H., Ito-Habe N. et al. Plasma ADAMTS-13, von Willebrand factor (VWF) and VWF propeptide profiles in patients with DIC and related diseases. Thromb Res. 2012;129(5):598-602. https://doi.org/10.1016/j.thromres.2011.10.011.; Kremer Hovinga J.A., Zeerleder S., Kessler P. et al. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost. 2007;5(11):2284-90. https://doi.org/10.1111/j.1538-7836.2007.02743.x.; Peigne V., Azoulay E., Coquet I. et al. The prognostic value of ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Crit Care. 2013;17(6):R273. https://doi.org/10.1186/cc13115.; Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. https://doi.org/10.1111/jth.14810.; McGonagle D., O'Donnell J.S., Sharif K. et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. https://doi.org/10.1016/S2665-9913(20)30121-1.; Driggin E., Madhavan M.V., Bikdeli B. et al. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic. J Am Coll Cardiol. 2020;75(18):2352-71. https://doi.org/10.1016/j.jacc.2020.03.031.; Rotzinger D.C., Beigelman-Aubry C., von Garnier C., Qanadli S.D. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. Thromb Res. 2020;190:58-9. https://doi.org/10.1016/j.thromres.2020.04.011.; Wang J., Hajizadeh N., Moore E.E. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost. 2020;18(7):1752-5. https://doi.org/10.1111/jth.14828.; Wang T, Chen R., Liu C., et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020;7(5):e362-3. https://doi.org/10.1016/S2352-3026(20)30109-5.; Tang N., Bai H., Chen X. et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9. https://doi.org/10.1111/jth.14817.; Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. 2020;41(19):1858. https://doi.org/10.1093/eurheartj/ehaa254.; Nguyen T.C., Liu A., Liu L. et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92(1):121-4. https://doi.org/10.3324/haematol.10262.; Morici N., Bottiroli M., Fumagalli R. et al. Role of von Willebrand factor and ADAMTS-13 in the pathogenesis of thrombi in SARS-CoV-2 infection: time to rethink. Thromb Haemost. 2020;120(9):1339-42. https://doi.org/10.1055/s-0040-1713400.; Tiscia G.L., Favuzzi G., De Laurenzo A. et al. Reduction of ADAMTS13 levels predicts mortality in SARS-CoV-2 patients. TH Open. 2020;4(3):e203-6. https://doi.org/10.1055/s-0040-1716379.; Bazzan M., Montaruli B., Sciascia S. et al. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients. Intern Emerg Med. 2020;15(5):861-3. https://doi.org/10.1007/s11739-11020-02394-11730.; Iba T., Levi M., Levy J.H. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb Hemost. 2020;46(1):89-95. https://doi.org/10.1055/s-0039-1694995.; Schonrich G., Raftery M.J., Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020;77:100741. https://doi.org/10.1016/j.jbior.2020.100741.; Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020 Apr 14;2020.04.09.20059626. https://doi.org/10.1101/2020.04.09.20059626.Preprint.; He Y., Yang F.-Y., Sun E.-W. Neutrophil extracellular traps in autoimmune diseases. Chin Med J (Engl). 2018;131(13):1513-9. https://doi.org/10.4103/0366-6999.235122.; Cao W., Krishnaswamy S., Camire R.M. et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS-13. Proc Natl Acad Sci U S A. 2008;105(21):7416-21. https://doi.org/10.1073/pnas.0801735105.; Gavriilaki E., Chrysanthopoulou A., Sakellari I. et al. Linking complement activation, coagulation, and neutrophils in transplant-associated thrombotic microangiopathy. Thromb Haemost. 2019;119(9):1433-40. https://doi.org/10.1055/s-0039-1692721.; Rutten B., Maseri A., Cianflone D. et al. Plasma levels of active Von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: a multicenter and multiethnic study. Eur Heart J Acute Cardiovasc Care. 2015;4(1):64-74. https://doi.org/10.1177/2048872614534388.; Maino A., Siegrink B., Lotta L.A. et al. Plasma ADAMTS-13 levels and the risk of myocardial infarction: an individual patient data meta-analysis. J Thromb Haemost. 2015;13(8):1396-404. https://doi.org/10.1111/jth13032.; Horii M., Uemura S., Uemura M., M. Matsumoto et al. Acute myocardial infarction as a systemic prothrombotic condition evidenced by increased von Willebrand factor protein over ADAMTS13 activity in coronary and systemic circulation. Heart Vessels. 2008;23(5):301-7. https://doi.org/10.1007/s00380-008-1053-x.; Anderson H.M., Siegerink B., Luken B.M. et al. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood. 2012;119(6):1555-60. https://doi.org/10.1182/blood-2011-09-380618.; Zhao B.Q., Chauhan A.K., Canault M., et al. von Willebrand factorcleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood. 2009;114(15):3329-34. https://doi.org/10.1182/blood-2009-03-213264.; Fujioka M., Hayakawa K., Mishima K. et al. ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating postischemic hypoperfusion. Blood. 2010;115(8):1650-3. https://doi.org/10.1182/blood-2009-06-230110.; Akyol O., Akyol S., Chen C.-H. et al. Update on ADAMTS13 and VWF in cardiovascular and hematological disorders. Clin Chim Acta. 2016;463:109-18. https://doi.org/10.1016/j.cca.2016.10.017.; Lambers M., Goldenberg N.A., Kenet G. et al. Role of reduced ADAMTS13 in arterial ischemic stroke: a pediatric cohort study. Ann Neurol. 2013;73(1):58-64. https://doi.org/10.1002/ana.23735.; Sonneveld M., de Maat M.P.M, Leebeek F.W.G. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systemic review and meta-analysis. Blood Rev. 2014;28(4):167-78. https://doi.org/10.1016/j.blre.2014.04.003.; Folsom A.R., Rosamond W.D., Shahar E. et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation. 1999;100(7):736-42. https://doi.org/10.1161/01.cir.100.7.736.; Tzoulaki I., Murray G.M., Lee A.J. et al. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation. 2007;115(16):2119-27. https://doi.org/10.1161/CIRCULATIONAHA.106.635029.; Gottesman R.F., Cummiskey C., Chambless L. et al. Hemostatic factors and subclinical brain infarction in a community-based sample: the ARIC study. Cerebrovasc Dis. 2009;28(6):589-94. https://doi.org/10.1159/000247603.; Knuiman M.W., Folsom A.R., Chambless L.E. et al. Association of hemostatic variables with MRI-detected cerebral abnormalities: the atherosclerosis risk in communities study. Neuroepidemiology. 2001;20(2):96-104. https://doi.org/10.1159/000054767.; Kozuka K., Kohriyama T., Nomura E. et al. Endothelial markers and adhesion molecules in acute ischemic stroke - sequential change and differences in stroke subtype. Atherosclerosis. 2002;161(1):161-8. https://doi.org/10.1016/s0021-9150(01)00635-9.; Hanson E., Jood K., Karlsson S. et al. Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke. J Thromb Haemost. 2011;9(2):275-81. https://doi.org/10.1111/j.1538-7836.2010.04134.x.; Jansson J.H., Nilsson T.K., Johnson O. von Willebrand factor, tissue plasminogen activator, and dehydroepiandrosterone sulphate predict cardiovascular death in a 10 year follow up survivors of acute myocardial infarction. Heart. 1998;80(4):334-7. https://doi.org/10.1136/hrt.80.4.334.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165-72.; Andrew M., Vegh P., Johnston M. et al. Maturation of the hemostatic system during childhood. Blood. 1992;80(8):1998-2005.; Andrew M., Paes B., Milner R. et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72(5):1651-7.; Ehrenforth S., Junker R., Koch H.G. et al. Multicentre evaluation of combined prothrombotic defects associated with thrombophilia in childhood. Childhood Thrombophilia Study Group. Eur J Pediatr. 1999;158(Suppl 3):S97-104. https://doi.org/10.1007/pl00014359.; Thomas K.B., Sutor A.H., Altinkaya N. et al. von Willebrand factor-collagen binding activity is increased in newborns and infants. Acta Paediatr. 1995;84(6):697-9. https://doi.org/10.1111/j.1651-2227.1995.tb13733.x.; Hellstrom-Westas L., Ley D., Berg A.C. et al. VWF-cleaving protease (ADAMTS13) in premature infants. Acta Paediatr. 2005;94(2):205-10. https://doi.org/10.1111/j.1651-2227.2005.tb01892.x.; Feys H.B., Canciani M.T., Peyvandi F. et al. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138(4):534-40. https://doi.org/10.1111/j.1365-2141.2007.06688.x.; Kavakli K., Canciani M.T., Mannucci P.M. Plasma levels of the von Willebrand factor-cleaving protease in physiological and pathological conditions in children. Pediatr Hematol Oncol. 2002;19(7):467-73. https://doi.org/10.1080/08880010290097288.; Mannucci P.M., Canciani M.T., Forza I. et al. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood. 2001;98(9):2730-5. https://doi.org/10.1182/blood.v98.9.2730.; Schmugge M., Dunn M.S., Amankwah K.S. et al. The activity of the von Willebrand factor cleaving protease ADAMTS-13 in newborn infants. J Thromb Haemost. 2004;2:228-33. https://doi.org/10.1046/j.1538-7933.2003.00575.x.; Tsai H.M., Sarode R., Downes K.A. Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical cord blood. Thromb Res. 2002;108(2-3):121-5. https://doi.org/10.1016/s0049-3848(02)00396-1.; Reiter R.A., Varadi K., Turecek P.L. et al. Changes in ADAMTS13 (vonWillebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb Haemost. 2005;93(3):554-8. https://doi.org/10.1160/TH04-08-0467.; Levitan N., Dowlati A., Remick S.C. et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore). 1999;78:285-91. https://doi.org/10.1097/00005792-199909000-00001.; Pabinger I, Thaler J, Ay C. Biomarkers for prediction of venous thromboembolism in cancer. Blood. 2013;122(12):2011-8. https://doi.org/10.1182/blood-2013-04-460147.; Koo B.H., Oh D., Chung S.Y. et al. Deficiency of von Willebrand factorcleaving protease activity in the plasma of malignant patients. Thromb Res. 2002;105(6):471-6. https://doi.org/10.1016/S0049-3848(02)00053-1.; Wang W.S., Lin J.K., Lin T.C. et al. Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma. World J Gastroenterol. 2005;11(14):2166-70. https://doi.org/10.3748/wjg.v11.i14.2166.; Nossent A.Y., VAN Marion V., VAN Tilburg N.H. et al. von Willebrand factor and its propeptide: the influence of secretion and clearance on protein levels and the risk of venous thrombosis. J Thromb Haemost. 2006;4(12):2556-62. https://doi.org/10.1111/j.1538-7836.2006.02273.x.; Koster T., Blann A.D., Briet E. et al. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep vein thrombosis. Lancet. 1995;345(8943):152-5. https://doi.org/10.1016/s0140-6736(95)90166-3.; Lancellotti S., Basso M., Veca V. et al. Presence of portal vein thrombosis in liver cirrhosis is strongly associated with low levels of ADAMTS-13: a pilot study. Intern Emerg Med. 2016;11(7):959-67. https://doi.org/10.1007/s11739-016-1467-x.; Mazetto B.M., Orsi F.L., Barnabe A. et al. Increased ADAMTS13 activity in patients with venous thromboembolism. Thromb Res. 2012;130(6):889-93. https://doi.org/10.1016/j.thromres.2012.09.009.; Franchini M., Montagnana M., Targher G., Lippi G. Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies and other diseases. Semin Thromb Hemost. 2007;33(8):787-77. https://doi.org/10.1055/s-2007-1000365.; Lotta L.A., Tuana G., Yu J. et al. Next generation sequencing study finds an excess of rare, coding single nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. J Thromb Haemost. 2013;11(7):1228-39. https://doi.org/10.1111/jth.12291.; Bittar L.F., de Paula E.V., Mello T.B. et al. Polymorphisms and mutations in vWF and ADAMTS13 genes and their correlation with plasma levels of FVIII and vWF in patients with deep venous thrombosis. Clin Appl Thromb Hemost. 2011;17(5):514-8. https://doi.org/10.1177/1076029610375815.; Dean S.A., Mathis B., Litzky L.A., Hood I.C. Sudden death by occult metastatic carcinoma. J Forensic Sci. 2015;60(6):1637-9. https://doi.org/10.1111/1556-4029.12837.; Abe H., Hino R., Fukayama M. Platelet-derived growth factor-A and vascular endothelial growth factor-C contribute to the development of pulmonary tumor thrombotic microangiopathy in gastric cancer. Virchows Arch. 2013;462(5):523-31. https://doi.org/10.1007/s00428-013-1403-7.; Hotta M., Ishida M., Kojima F. et al. Pulmonary tumor thrombotic microangiopathy caused by lung adenocarcinoma: case report with review of theliterature. Oncol Lett. 2011;2(3):435-7. https://doi.org/10.3892/ol.2011.270.; Zwicker J.I., Liebman H.A., Neuberg D. et al. Tumor-derived tissue factorbearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830-40. https://doi.org/10.1158/1078-0432.CCR-09-0371.; Grange S., Coppo P.; Centre de reference des microangiopathies thrombotiques (CNR-MAT). Thrombotic microangiopathies and antineoplastic agents. Nephrol Ther. 2017;13(Suppl 1):S109-13. https://doi.org/10.1016/j.nephro.2017.01.016.; Izzedine H., Escudier B., Lhomme C. et al. Kidney disease associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center. Medicine (Baltimore). 2014;93(24):333-9. https://doi.org/10.1097/MD.0000000000000207.; Griffin P.T., Jaglal M. Metastatic prostate cancer mimicking thrombotic thrombocytopenic pupura. Blood. 2015;125(8):1349. https://doi.org/10.1182/blood-2014-11-608828.; Al-Nouri Z.L., Reese J.A., Terrell D.R. et al. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood. 2015;125(4):616-8. https://doi.org/10.1182/blood-2014-11-611335.; https://www.gynecology.su/jour/article/view/936

  7. 7
    Academic Journal

    Contributors: The review was funded by RFBR, project number 20-04-60274., Обзор выполнен при финансовой поддержке РФФИ в рамках научного проекта РФФИ №20-04-60274.

    Source: Obstetrics, Gynecology and Reproduction; Vol 15, No 6 (2021); 639-657 ; Акушерство, Гинекология и Репродукция; Vol 15, No 6 (2021); 639-657 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1138/963; https://www.gynecology.su/jour/article/view/1138/983; Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3.; Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8. https://doi.org/10.1056/NEJMoa2015432.; Cao W., Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020;30(5):367–9. https://doi.org/10.1038/s41422-020-0327-4.; Zhang Y., Xiao M., Zhang S. et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. https://doi.org/10.1056/NEJMc2007575.; Beyrouti R., Adams M.E., Benjamin L. et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889–91. https://doi.org/10.1136/jnnp2020-323586.; George J.N., Nester C.M. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654–66. https://doi.org/10.1056/NEJMra1312353.; Hovinga J.A.K., Vesely S.K., Terrell D.R. et al. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010;115(8):1500–11; quiz 1662. https://doi.org/10.1182/blood-2009-09-243790.; Ridolfi R.L., Bell W.R. Thrombotic thrombocytopenic purpura: report of 25 cases and review of the literature. Medicine (Baltimore). 1981;60(6):413–28.; Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc NY Pathol Soc. 1924;24:21–24.; Singer K., Bornstein F.P., Wile S.A. Thrombotic thrombocytopenic purpura: hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542–54.; Amorosi E.L., Ultmann J.E. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45(2):139–60.; Bukowski R.M., Hewlett J.S., Harris J.W. et al. Exchange transfusions in the treatment of thrombotic thrombocytopenic purpura. Semin Hematol. 1976;13(3):21932.; Bukowski R.M., King J.W., Hewlett J.S. Plasmapheresis in the treatment of thrombotic thrombocytopenic purpura. Blood. 1977;50(3):413–7.; Byrnes J.J., Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. N Engl J Med. 1977;297(25):1386–9. https://doi.org/10.1056/NEJM197712222972507.; Moake J.L., Rudy C.K., Troll J.H. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982;307(23):1432–5. https://doi.org/10.1056/NEJM198212023072306.; Furlan M., Robles R., Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–32.; Furlan M., Robles R., Solenthaler M. et al. Deficient activity of von Willebrand factor–cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood. 1997;89(9):3097–103.; Tsai H.M., Lian E.C. Antibodies to von Willebrand factor–cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94. https://doi.org/10.1056/NEJM199811263392203.; Zheng X., Chung D., Takayama TK. et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276(44):41059–63. https://doi.org/10.1074/jbc.C100515200.; Levy G.G., Nichols W.C., Lian E.C. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413(6855):488–94. https://doi.org/10.1038/35097008.; Scheiflinger F., Knöbl P., Trattner B. et al. Nonneutralizing IgM and IgG antibodies to von Willebrand factor–cleaving protease (ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura. Blood. 2003;102(9):3241–3. https://doi.org/10.1182/blood-2003-05-1616.; Bianchi V., Robles R., Alberio L. et al. Von Willebrand factor–cleaving protease (ADAMTS13) in thrombocytopenic disorders: a severely deficient activity is specific for thrombotic thrombocytopenic purpura. Blood. 2002;100(2):710–3. https://doi.org/10.1182/blood2002-02-0344.; Pereira A., Mazzara R., Monteagudo J. et al. Thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: a multivariate analysis of factors predicting the response to plasma exchange. Ann Hematol. 1995;70(6):319–23. https://doi.org/10.1007/BF01696619.; Picod A., Provôt F., Coppo P. Therapeutic plasma exchange in thrombotic thrombocytopenic purpura. Presse Med. 2019;48(11 Pt 2):319–27. https://doi.org/10.1016/j.lpm.2019.08.024.; Schulman I., Pierce M., Lukens A., Currimbhoy Z. Studies on thrombopoiesis. I. A factor in normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943–57.; Upshaw J.D. Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350–2. https://doi.org/10.1056/NEJM197806152982407.; Zheng X.L., Sadler J.E. Pathogenesis of thrombotic microangiopathies. Annu Rev Pathol. 2008;3:249–77. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154311.; Miyata T., Kokame K., Matsumoto M., Fujimura Y. ADAMTS13 activity and genetic mutations in Japan. Haemostaseologie. 2013;33(2):131–7. https://doi.org/10.5482/HAMO-12-11-0017.; Furlan M., Lämmle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol. 2001;14(2):437–54. https://doi.org/10.1053/beha.2001.0142.; Veyradier A., Meyer D., Loirat C. Desmopressin, an unexpected link between nocturnal enuresis and inherited thrombotic thrombocytopenic purpura (Upshaw–Schulman syndrome). J Thromb Haemost. 2006;4(3):700–1. https://doi.org/10.1111/j.1538-7836.2005.01768.x.; Loirat C., Girma J.-P., Desconclois C. et al. Thrombotic thrombocytopenic purpura related to severe ADAMTS13 deficiency in children. Pediatr Nephrol. 2009;24(1):19–29. https://doi.org/10.1007/s00467-008-0863-5.; Furlan M., Robles R., Morselli B. et al. Recovery and half-life of von Willebrand factorcleaving protease after plasma therapy in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 1999;81(1):8–13.; Rock G.A., Shumak K.H., Buskard N.A. et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7. https://doi.org/10.1056/NEJM199108083250604.; Scully M., Hunt B.J., Benjamin S. et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158(3):323–35. https://doi.org/10.1111/j.1365-2141.2012.09167.x.; Scully M., Knöbl P., Kentouche K. et al. Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood. 2017;130(19):2055–63. https://doi.org/10.1182/blood-2017-06-788026.; Plaimauer B., Hovinga J.A.K., Juno C. et al. Recombinant ADAMTS13 normalizes von Willebrand factor‐cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost. 2011;9(5):936–44. https://doi.org/10.1111/j.1538-7836.2011.04224.x.; Gasser C., Gautier E., Steck A. et al. Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia. Schweiz Med Wochenschr. 1955;85(38–39):905–9. [Article in German].; Kiibel M., Barnard P. The haemolytic-uraemia syndrome: a survey in Southern Africa. S Afr Med J. 1968;42(27):692–8.; Karmali M., Petric M., Steele B., Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;321(8325):619–20. https://doi.org/10.1016/s0140-6736(83)91795-6.; O'Brien A., Lively T., Chen M. et al. Escherichia coli 0157:H7 strains associated with haemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga) like cytotoxin. Lancet. 1983;1(8326 Pt 1):702. https://doi.org/10.1016/s0140-6736(83)91987-6.; Riley L.W., Remis R.S., Helgerson S.D. et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308(12):681–5. https://doi.org/10.1056/NEJM198303243081203.; Tarr P.I., Gordon C.A., Chandler W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365(9464):1073–86. https://doi.org/10.1016/S0140-6736(05)71144-2.; Proesmans W. The role of coagulation and fibrinolysis in the pathogenesis of diarrheaassociated hemolytic uremic syndrome. Semin Thromb Hemost. 2001;27(3):201–5. https://doi.org/10.1055/s-2001-15249.; Hosler G.A., Cusumano A.M., Hutchins G.M. Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities: a review of 56 autopsy cases. Arch Pathol Lab Med. 2003;127(7):834–9. https://doi.org/10.5858/2003-127-834-TTPAHU.; Inward C.D., Howie A.J., Fitzpatrick M.M. et al. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. British Association for Paediatric Nephrology. Pediatr Nephrol. 1997;11(5):556–9. https://doi.org/10.1007/s004670050337.; Menne J., Nitschke M., Stingele R. et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104: H4 induced haemolytic uraemic syndrome: case-control study. BMJ. 2012;345;e4565. https://doi.org/10.1136/bmj.e4565.; Barnard P., Kibel M. The haemolytic-uraemic syndrome of infancy and childhood. A report of eleven cases. Cent Afr J Med. 1965;11:4–11.; Kaplan B.S., Chesney R.W., Drummond K.N. Hemolytic uremic syndrome in families. N Engl J Med. 1975;292(21):1090–3. https://doi.org/10.1056/NEJM197505222922102.; Kaplan B.S. Hemolytic uremic syndrome with recurrent episodes: an important subset. Clin Nephrol. 1977;8(6):495–8.; Thompson R., Winterborn M. Hypocomplementaemia due to a genetic deficiency of beta 1H globulin. Clin Exp Immunol. 1981;46(1):110. https://doi.org/; Warwicker P., Goodship T.H., Donne R.L. et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 1998;53(4):836–44. https://doi.org/10.1111/j.1523-1755.1998.00824.x.; Legendre C., Licht C., Muus P. et al. Terminal complement inhibitor eculizumab in atypical hemolytic–uremic syndrome. N Engl J Med. 2013;368(23):2169–81. https://doi.org/10.1056/NEJMoa1208981.; Noris M., Caprioli J., Bresin E. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59. https://doi.org/10.2215/CJN.02210310.; Lemaire M., Frémeaux-Bacchi V., Schaefer F. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6. https://doi.org/10.1038/ng.2590.; Fremeaux-Bacchi V., Fakhouri F., Garnier A. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8(4):554–62. https://doi.org/10.2215/CJN.04760512.; Fakhouri F., Roumenina L., Provot F. et al. Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol. 2010;21(5):859–67. https://doi.org/10.1681/ASN.2009070706.; Taylor C.M., Machin S., Wigmore S.J., Goodship T.H.; a working party from the Renal Association, the British Committee for Standards in Haematology and the British Transplantation Society. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010;148(1):37–47. https://doi.org/10.1111/j.1365-2141.2009.07916.x.; Noris M., Remuzzi G. Managing and preventing atypical hemolytic uremic syndrome recurrence after kidney transplantation. Curr Opin Nephrol Hypertens. 2013;22(6):704–12. https://doi.org/10.1097/MNH.0b013e328365b3fe.; Sack G.H., Levin J., Bell W.R. Trousseau's syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms: clinical, pathophysiologic, and therapeutic features. Medicine (Baltimore). 1977;56(1):1–37.; Elliott M.A., Letendre L., Gastineau D.A. et al. Cancer‐associated microangiopathic hemolytic anemia with thrombocytopenia: an important diagnostic consideration. Eur J Haematol. 2010;85(1):43–50. https://doi.org/10.1111/j.1600-0609.2010.01448.x.; Domingo-Claros A., Larriba I., Rozman M. et al. Acute erythroid neoplastic proliferations. A biological study based on 62 patients. Haematologica. 2002;87(2):148–53.; Zheng X.L., Kaufman R.M., Goodnough L.T., Sadler J.E. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura. Blood. 2004;103(11):4043–9. https://doi.org/10.1182/blood-2003-11-4035.; Hyseni A., Kemperman H., de Lange D.W. et al. Active von Willebrand factor predicts 28-day mortality in patients with systemic inflammatory response syndrome. Blood. 2014;123(14):2153–6. https://doi.org/10.1182/blood-2013-08-508093.; Kerchberger V.E., Ware L.B. The role of circulating cell-free hemoglobin in sepsisassociated acute kidney injury. Semin Nephrol. 2020;40(2):148–59. https://doi.org/10.1016/j.semnephrol.2020.01.006.; Martin K., Borgel D., Lerolle N. et al. Decreased ADAMTS-13 (A disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsisinduced organ failure. Crit Care Med. 2007;35(10):2375–82. https://doi.org/10.1097/01.ccm.0000284508.05247.b3.; Cao W., Krishnaswamy S., Camire R.M. et al. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc Natl Acad Sci U S A. 2008;105(21):7416–21. https://doi.org/10.1073/pnas.0801735105.; Mikes B., Sinkovits G., Farkas P. et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133(4):616–21. https://doi.org/10.1016/j.thromres.2014.01.034.; Crawley J.T., Lam J.K., Rance J.B. et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105(3):1085–93. https://doi.org/10.1182/blood-2004-03-1101.; Chen J., Fu X., Wang Y. et al. Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its cleavage by ADAMTS13. Blood. 2010;115(3):706–12. https://doi.org/10.1182/blood-2009-03-213967.; Lopez-Dee Z., Pidcock K., Gutierrez L.S. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm. 2011;2011. https://doi.org/10.1155/2011/296069.; Studt J.-D., Hovinga J.A.K., Antoine G. et al. Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin. Blood. 2005;105(2):542–4. https://doi.org/10.1182/blood-2004-06-2096.; Tersteeg C., de Maat S., De Meyer S.F. et al. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation. 2014;129(12):1320–31. https://doi.org/10.1161/CIRCULATIONAHA.113.006727.; Ono T., Mimuro J., Madoiwa S. et al. Severe secondary deficiency of von Willebrand factor–cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–34. https://doi.org/10.1182/blood-2005-03-1087; Kopic A.N., Hollriegl W., Plaimauer B.et al. Subcutaneous administration of ADAMTS13. US Patent App. 16/567,048; 2020.; Rossio R., Lotta L.A., Pontiggia S. et al. A novel CD46 mutation in a patient with microangiopathy clinically resembling thrombotic thrombocytopenic purpura and normal ADAMTS13 activity. Haematologica. 2015;100(3):e87–9. https://doi.org/10.3324/haematol.2014.111062.; Gianviti A., Tozzi A.E., De Petris L. et al. Risk factors for poor renal prognosis in children with hemolytic uremic syndrome. Pediatr Nephrol. 2003;18(12):1229–35. https://doi.org/10.1007/s00467-003-1262-6.; Joseph A., Cointe A., Mariani Kurkdjian P. et al. Shiga toxin-associated hemolytic uremic syndrome: a narrative review. Toxins (Basel). 2020;12(2):67. https://doi.org/10.3390/toxins12020067.; Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. https://doi.org/10.1016/j.trsl.2020.04.007.; Bilgin E., Ertenli A.I. Proposal of a new nomenclature for the underlying pathogenetic mechanism of severe coronavirus disease-19: “inflammatory thrombosis with immune endotheliitis – ITIE”. Rheumatol Int. 2021;41(3):679–80. https://doi.org/10.1007/s00296-020-04768-1.; Meizlish M.L., Pine A.B., Goshua G. et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. medRxiv. 2020;2020.06.29.20140376. https://doi.org/10.1101/2020.06.29.20140376. Preprint.; Teuwen L.-A., Geldhof V., Pasut A., Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–91. https://doi.org/10.1038/s41577-020-0343-0.; Mohamed M.M., Lukitsch I., Torres-Ortiz A.E. et al. Acute kidney injury associated with coronavirus disease 2019 in urban New Orleans. Kidney360. 2020;1:614–22. https://doi.org/10.34067/KID.0002652020.; Su H., Yang M., Wan C. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–27. https://doi.org/10.1016/j.kint.2020.04.003; Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–6. https://doi.org/10.1016/S2213-2600(20)30243-5.; Carsana L., Sonzogni A., Nasr A. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infec Dis. 2020;20(10):1135–40. https://doi.org/10.1016/S1473-3099(20)30434-5.; Rapkiewicz A.V., Mai X., Carsons S.E. et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine. 2020;24:100434. https://doi.org/10.1016/j.eclinm.2020.100434.; Menter T., Haslbauer J.D., Nienhold R. et al. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198–209. https://doi.org/10.1111/his.14134.; Jhaveri K.D., Meir L.R., Chang B.S.F. et al. Thrombotic microangiopathy in a patient with COVID-19. Kidney Int. 2020;98(2):509–12. https://doi.org/10.1016/j.kint.2020.05.025.; Sharma P., Uppal N.N., Wanchoo R. et al. COVID-19–associated kidney injury: a case series of kidney biopsy findings. J Am Soc Nephrol. 2020;31(9):1948–58. https://doi.org/10.1681/ASN.2020050699.; da Silva R.L. Viral-associated thrombotic microangiopathies. Hematol Oncol Stem Cell Ther. 2011;4(2):51–9. https://doi.org/10.5144/1658-3876.2011.51.; Hindilerden F., Yonal-Hindilerden I., Akar E., Kart-Yasar K. Covid-19 associated autoimmune thrombotic thrombocytopenic purpura: report of a case. Thromb Res. 2020;195:136–8. https://doi.org/10.1016/j.thromres.2020.07.005.; Capecchi M., Mocellin C., Abbruzzese C. et al. Dramatic presentation of acquired thombotic thrombocytopenic purpura associated with COVID-19. Haematologica. 2020;105(10):e540. https://doi.org/10.3324/haematol.2020.262345.; Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–18. https://doi.org/10.1016/S0140-6736(20)30937-5.; Nicholson P., Alshafai L., Krings T. Neuroimaging findings in patients with COVID-19. AJNR Am J Neuroradiol. 2020;41(8):1380–3. https://doi.org/10.3174/ajnr.A6630.; Bentley M.J., Lehman C.M., Blaylock R.C. et al. The utility of patient characteristics in predicting severe ADAMTS13 deficiency and response to plasma exchange. Transfusion. 2010;50(8):1654–64. https://doi.org/10.1111/j.1537-2995.2010.02653.x.; Coppo P., Schwarzinger M., Buffet M. et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS One. 2010;5(4):e10208. https://doi.org/10.1371/journal.pone.0010208.; Bendapudi P.K., Hurwitz S., Fry A. et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4):e157–e164. https://doi.org/10.1016/S2352-3026(17)30026-1.; Brocklebank V., Wood K.M., Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13(2):300–17. https://doi.org/10.2215/CJN.00620117.; Sciascia S., Yazdany J., Dall'Era M. et al. Anticoagulation in patients with concomitant lupus nephritis and thrombotic microangiopathy: a multicentre cohort study. Ann Rheum Dis. 2018;78(7):1014–6. https://doi.org/10.1136/annrheumdis-2018-214559.; Go R.S., Winters J.L., Leung N. et al. Thrombotic microangiopathy care pathway: a consensus statement for the Mayo clinic complement alternative Pathway-Thrombotic microangiopathy (CAP-TMA) Disease-Oriented group. Mayo Clin Proc. 2016;91(9):1189–211. https://doi.org/10.1016/j.mayocp.2016.05.015.; Rico-Mesa J.S., Rosas D., Ahmadian-Tehrani A. et al. The role of anticoagulation in COVID-19-induced hypercoagulability. Curr Cardiol Rep. 2020;22(7):53. https://doi.org/10.1007/s11886-020-01328-8.; Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura–hemolytic uremic syndrome: clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403. https://doi.org/10.1056/NEJM199108083250605.; Dane K., Chaturvedi S. Beyond plasma exchange: novel therapies for thrombotic thrombocytopenic purpura. Hematology Am Soc Hematol Educ Program. 2018;2018(1):539–47. https://doi.org/10.1182/asheducation-2018.1.539.; Zielińska K.A., Van Moortel L., Opdenakker G. et al. Endothelial response to glucocorticoids in inflammatory diseases. Front Immunol. 2016;7:592. https://doi.org/10.3389/fimmu.2016.00592.; Weiler J., Packard B. Methylprednisolone inhibits the alternative and amplification pathways of complement. Infect Immun. 1982;38(1):122–6. https://doi.org/10.1128/iai.38.1.122-126.1982.; Limbourg F.P., Huang Z., Plumier J.-C. et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest. 2002;110(11):1729–38. https://doi.org/10.1172/JCI15481.; Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–8. https://doi.org/10.1007/s00134-020-05991-x.; RECOVERY Collaborative Group; Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704. https://doi.org/10.1056/NEJMoa2021436.; Corral-Gudino L., Bahamonde A., Arnaiz-Revillas F. et al. GLUCOCOVID: a controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. medRxiv. June 18, 2020. Preprint. https://doi.org/10.1101/2020.06.17.20133579.; Zaki A.M., van Boheemen S., Bestebroer T.M. et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814–20. https://doi.org/10.1056/NEJMoa1211721.; Ohta R., Torii Y., Imai M. et al. Serum concentrations of complement anaphylatoxins and proinflammatory mediators in patients with 2009 H1N1 influenza. Microbiol Immunol. 2011;55(3):191–8. https://doi.org/10.1111/j.1348-0421.2011.00309.x.; Jiang Y., Zhao G., Song N. et al. Blockade of the C5a–C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg Microbes Infect. 2018;7(1):1–12. https://doi.org/10.1038/s41426-018-0063-8.; O'Brien K.B., Morrison T.E., Dundore D.Y. et al. A protective role for complement C3 protein during pandemic 2009 H1N1 and H5N1 influenza A virus infection. PLoS One. 2011;6(3):e17377. https://doi.org/10.1371/journal.pone.0017377.; Sun S., Zhao G., Liu C. et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection. Am J Respir Cell Mol Biol. 2013;49(2):221–30. https://doi.org/10.1165/rcmb.2012-0428OC.; Gralinski L.E., Sheahan T.P., Morrison T.E. et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio. 2018;9(5):e01753–18. https://doi.org/10.1128/mBio.01753-18.; Stoermer K.A., Morrison T.E. Complement and viral pathogenesis. Virology. 2011;411(2):362–73. https://doi.org/10.1016/j.virol.2010.12.045.; Diurno F., Numis F., Porta G. et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020;24(7):4040–7. https://doi.org/10.26355/eurrev_202004_20875.; Home. ClinicalTrials.gov. Available at: https://clinicaltrials.gov.; Mastaglio S., Ruggeri A., Risitano A.M. et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020;215:108450. https://doi.org/10.1016/j.clim.2020.108450.; Winters J.L. Plasma exchange in thrombotic microangiopathies (TMAs) other than thrombotic thrombocytopenic purpura (TTP). Hematology Am Soc Hematol Educ Program. 2017;2017(1):632–8. https://doi.org/10.1182/asheducation-2017.1.632.; Albiol N., Awol R., Martino R. Autoimmune thrombotic thrombocytopenic purpura (TTP) associated with COVID-19. Ann Hematol. 2020;99(7):1673–4. https://doi.org/10.1007/s00277-020-04097-0.; Khamis F., Al-Zakwani I., Al Hashmi S. et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis. 2020;99:214–8. https://doi.org/10.1016/j.ijid.2020.06.064.; Gucyetmez B., Atalan H.K., Sertdemir I. et al. Therapeutic plasma exchange in patients with COVID-19 pneumonia in intensive care unit: a retrospective study. Crit Care. 2020;24(1):492. https://doi.org/10.1186/s13054-020-03215-8.; Wang Y., Huo P., Dai R. et al. Convalescent plasma may be a possible treatment for COVID-19: a systematic review. Int Immunopharmacol. 2021;91:107262. https://doi.org/10.1016/j.intimp.2020.107262.; Casadevall A., Joyner M.J., Pirofski L.-A. A randomized trial of convalescent plasma for COVID-19 – potentially hopeful signals. JAMA. 2020;324(5):455–7. https://doi.org/10.1001/jama.2020.10218.; Rojas M., Rodríguez Y., Monsalve D.M. et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020;19(7):102554. https://doi.org/10.1016/j.autrev.2020.102554.; Guilpain P., Le Bihan C., Foulongne V. et al. Rituximab for granulomatosis with polyangiitis in the pandemic of covid-19: lessons from a case with severe pneumonia. Ann Rheum Dis. 2021;80(1):e10. https://doi.org/10.1136/annrheumdis-2020-217549.; Callewaert F., Roodt J., Ulrichts H. et al. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012;120(17):3603–10. https://doi.org/10.1182/blood-2012-04-420943.; Scully M., Cataland S.R., Peyvandi F. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.; https://www.gynecology.su/jour/article/view/1138

  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: General Reanimatology; Том 11, № 6 (2015); 61-68 ; Общая реаниматология; Том 11, № 6 (2015); 61-68 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2015-6

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1500/954; https://www.reanimatology.com/rmt/article/view/1500/1007; Campistol J.M., Arias M., Ariceta G., Blasco M., Espinosa L., Espinosa M., Grinyó J.M., Macía M., Mendizábal S., Praga M., Román E., Torra R., Valdés F., Vilalta R., Rodríguez de Córdoba S. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2015; 35 (5): 421—447. http://dx.doi.org/:10.1016/j.nefro.2015.07.005. PMID: 26456110; Козловская Н.Л., Меркушева Л.И., Кирсанова Т.В., Рунихина Н.К. Особенности течения и исхода атипичного гемолитико-уремического синдрома при беременности. Клин. нефрология. 2012; 3: 44—49.; Noris M., Giuseppe R. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2009; 361 (17): 1676—1687. http://dx.doi.org/:10.1056/ NEJMra0902814. PMID: 19846853; Châtelet V., Lobbedez T., Frémeaux-Bacchi V., Ficheux M., Ryckelynck J.P., Hurault de Ligny B. Eculizumab: safety and efficacy after 17 months of treatment in a renal transplant patient with recurrent atypical hemolytic-uremic syndrome: case report. Transplant. Proc. 2010; 42 (10): 4353—4355. http://dx.doi.org/:10.1016/j.transproceed.2010. 09.125. PMID: 21168697; Donne R.L., Abbs I., Barany P., Elinder C.G., Little M., Conlon P., Goodship T.H. Recurrence of hemolytic uremic syndrome after live related renal transplantation associated with subsequent de novo disease in the donor. Am. J. Kidney Dis. 2002; 40 (6): E22. PMID: 12460067; Zuber J., Fakhouri F., Roumenina L.T., Loirat C., Fremeaux Bacchi V.; French Study Group for aHUS/C3G. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat. Rev. Nephrol. 2012; 8 (11): 643—657. http://dx.doi.org/:10.1038/nrneph. 2012.214. PMID: 23026949; Акиньшина С.В., Бицадзе В.О., Гадаева З.К., Макацария А.Д. Значение тромботической микроангиопатии в патогенезе акушерских осложнений. Акушерство, гинекология и репродукция. 2015; 9 (2): 62—71.; Батюшин М.М. Атипичный гемолитико-уремический синдром при беременности и HELLP-синдром. Вопросы дифференциальной диагностики. Клин. нефрология. 2015; 2: 46—51.; Kavanagh D., Goodship T.H. Atypical hemolytic uremic syndrome. Curr. Opin. Hematol. 2010; 17 (5): 432—438. http://dx.doi.org/:10. 1097/MOH.0b013e32833cae86. PMID: 20613506; Шукевич Д.Л., Переделкин Д.К., Григорьев Е.В., Разумов А.С., Чурляев Ю.А., Шукевич Л.Е. Продолжительная заместительная почечная терапия при тяжелом акушерском сепсисе. Общая реаниматология. 2010; 4 (2): 21—24. http://dx.doi.org/10.15360/1813-9779-2010-2-21; Laurence J. Atypical hemolytic uremic syndrome (aHUS): making the diagnosis. Clin. Adv. Hematol. Oncol. 2012; 10 (10 Suppl 17): 1—12. PMID: 23187605; https://www.reanimatology.com/rmt/article/view/1500

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20