-
1Academic Journal
Authors: Вахнина К.В., Пятых Е.А., Павлова К.А.
Source: Cifra: Клиническая медицина, Vol 1, Iss 1 (2024)
Subject Terms: коронавирусная инфекция, глюкокортикостероиды, тромбообразование, остеонекроз, асептический некроз головки бедренной кости, coronavirus infection, glucocorticosteroids, thrombosis, osteonecrosis, aseptic necrosis of the femoral head, Medicine
File Description: electronic resource
-
2
-
3
-
4Conference
Subject Terms: антагонисты, фибриногеновые рецепторы, тромбообразование, агрегация, иммунология
File Description: application/pdf
Access URL: http://earchive.tpu.ru/handle/11683/76638
-
5Academic Journal
Authors: B. Baigalmaa, V. O. Bitsadze, A. G. Solopova, A. E. Efanov, A. Е. Voynovskiy, Б. Байгалмаа, В. О. Бицадзе, А. Г. Солопова, А. Е. Ефанов, А. Е. Войновский
Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 648–657 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 648–657 ; 2500-3194 ; 2313-7347
Subject Terms: Парус-тест, external genital endometriosis, EGE, hemostasis, coagulopathy, thrombus formation, DAMTS-13, activated partial thromboplastin time, APTT, von Willebrand factor, vWF, D-dimer, antithrombin III, AT-III, protein C, Parus test, наружный генитальный эндометриоз, НГЭ, гемостаз, коагулопатия, тромбообразование, ADAMTS-13, активированное частичное тромбопластиновое время, АЧТВ, фактор фон Виллебранда, D-димер, антитромбин III, АТ-III, протеин C
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2226/1256; Эндометриоз. Всемирная организация здравоохранения, 2023. Режим доступа: https://www.who.int/news-room/fact-sheets/detail/endometriosis. [Дата обращения: 12.09.2024].; Rogers P.A.W., D’Hooghe T.M., Fazleabas A. et al. Priorities for endometriosis research: recommendations from an international consensus workshop. Reprod Sci. 2009;16(4):335–46. https://doi.org/10.1177/1933719108330568.; Abbas S., Ihle P., Köster I., Schubert I. Prevalence and incidence of diagnosed endometriosis and risk of endometriosis in patients with endometriosis-related symptoms: findings from a statutory health insurance-based cohort in Germany. Eur J Obstet Gynecol Reprod Biol. 2012;160(1):79–83. https://doi.org/10.1016/j.ejogrb.2011.09.041.; Ballard K.D., Seaman H.E., de Vries C.S., Wright J.T. Can symptomatology help in the diagnosis of endometriosis? Findings from a national case-control study – Part 1. BJOG. 2008;115(11):1382–91. https://doi.org/10.1111/j.1471-0528.2008.01878.x.; Eisenberg V.H., Weil C., Chodick G., Shalev V. Epidemiology of endometriosis: a large population-based database study from a healthcare provider with 2 million members. BJOG. 2018;125(1):55–62. https://doi.org/10.1111/1471-0528.14711.; Pugsley Z., Ballard K. Management of endometriosis in general practice: the pathway to diagnosis. Br J Gen Pract. 2007;57(539):470–6.; Sampson J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14(4):422–69. https://doi.org/10.1016/S0002-9378(15)30003-X.; Brosens I., Benagiano G. Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells? Fertil Steril. 2013;100(3):622–3. https://doi.org/10.1016/j.fertnstert.2013.04.046.; Burney R.O., Giudice L.C. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–9. https://doi.org/10.1016/j.fertnstert.2012.06.029.; Brosens I.A. Endometriosis – a disease because it is characterized by bleeding. Am J Obstet Gynecol. 1997;176(2):263–7. https://doi.org/10.1016/s0002-9378(97)70482-4.; Sharma R.P., Delly F., Marin H., Sturza S. Endometriosis causing lower extremity deep vein thrombosis – case report and review of the literature. Int J Angiol. 2011;18(4):199–202. https://doi.org/10.1055/s-0031-1278354.; Chiaramonte R., Castorina S., Castorina E.G. et al. Thrombosis of iliac vessels, a rare complication of endometriosis: Case report and review of literature. J Adv Res. 2017;8(1):1–5. https://doi.org/10.1016/j.jare.2016.10.007.; Ding D., Liu X., Guo S.W. Further evidence for hypercoagulability in women with ovarian endometriomas. Reprod Sci. 2018;25(11):1540–8. https://doi.org/10.1177/1933719118799195.; Ding S., Lin Q., Zhu T. et al. Is there a correlation between inflammatory markers and coagulation parameters in women with advanced ovarian endometriosis? BMC Womens Health. 2019;19:169. https://doi.org/10.1186/s12905-019-0860-9.; Chen Z.Y., Zhang L.F., Zhang Y.Q. et al. Blood tests for prediction of deep endometriosis: а case-control study. World J Clin Cases. 2021;9(35):10805–15. https://doi.org/10.12998/wjcc.v9.i35.10805.; Seckin B., Ates M.C., Kirbas A., Yesilyurt H. Usefulness of hematological parameters for differential diagnosis of endometriomas in adolescents/young adults and older women. Int J Adolesc Med Health. 2018;33(2). https://doi.org/10.1515/ijamh-2018-0078.; Turgut A., Hocaoglu M., Ozdamar O. et al. Could hematologic parameters be useful biomarkers for the diagnosis of endometriosis? Bratisl Lek Listy. 2019;120(12):912–8. https://doi.org/10.4149/BLL_2019_153.; Viganò P., Ottolina J., Sarais V. et al. Coagulation status in women with endometriosis. Reprod Sci. 2018;25(4):559–65. https://doi.org/10.1177/1933719117718273.; Wu Q., Ding D., Liu X., Guo S.W. Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci. 2015;22(9):1107–14. https://doi.org/10.1177/1933719115572478.; Сорокина А.В. Эндометриоз. Медицинская сестра. 2010;(8):21–2.; Мягченкова К.И., Хащенко Е.П., Уварова Е.В. Психоэмоциональные особенности и болевая симптоматика у пациенток, страдающих генитальным эндометриозом в раннем репродуктивном возрасте. Репродуктивное здоровье детей и подростков. 2021;17(2):41–50. https://doi.org/10.33029/1816-2134-2020-17-2-41-50.; Chang H.-H., Chiang B.-L. The diagnosis and classification of autoimmune coagulopathy: an updated review. Autoimmun Rev. 2014;13(4–5):587–90. https://doi.org/10.1016/j.autrev.2014.01.032.; Bacon J.L. Abnormal uterine bleeding: current classification and clinical management. Obstet Gynecol Clin North Am. 2017;44(2):179–93. https://doi.org/10.1016/j.ogc.2017.02.012.; Williams B., Zou L., Pittet J.F., Chao W. Sepsis-induced coagulopathy: a comprehensive narrative review of pathophysiology, clinical presentation, diagnosis, and management strategies. Anesth Analg. 2024;138(4):696–711. https://doi.org/10.1213/ANE.0000000000006888.; Хасанова Ю.В., Нелаева А.А., Галкина А.Б., Медведева И.В. Роль коагуляции и воспаления в развитии диабетической нефропатии у больных сахарным диабетом 2 типа. Сахарный диабет. 2012;(1):31–4. https://doi.org/10.14341/2072-0351-5976.; Колосков А.В., Мангушло А.А. Металлопротеаза Adamts-13. Гематология и трансфузиология. 2019;64(4):471–82. https://doi.org/10.35754/0234-5730-2019-64-4-471-482.; Zhao K., Qu P. Noninvasive evaluation of ovarian endometriosis: a single-center experience. Ann Palliat Med. 2021;10(4):4728–35. https://doi.org/10.21037/apm-21-481.; Ling X., Wang T. Diagnostic and prognostic value of coagulation-related factors in endometriosis. Am J Transl Res. 2022;14(11):7924–31.; Metcalf R.L., Fry D.J., Swindell R. et al. Thrombosis in ovarian cancer: a case control study. Br J Cancer. 2014;110(5):1118–24. https://doi.org/10.1038/bjc.2014.3.; Greco P.S., Bazzi A.A., McLean K. et al. Incidence and timing of thromboembolic events in patients with ovarian cancer undergoing neoadjuvant chemotherapy. Obstet Gynecol. 2017;129(6):979–85. https://doi.org/10.1097/AOG.0000000000001980.; Мансурова А.С., Красильников С.Э., Войцицкий В.Е. Двойная угроза. Рак яичников и тромботические осложнения. Российский онкологический журнал. 2021;26(3):101–6. https://doi.org/10.17816/onco107326.; Луговской Э.В., Колесникова И.Н., Платонова Т.Н. и др. Одновременное количественное определение растворимого фибрина и D-димера в плазме крови для оценки угрозы тромбообразования. Клиническая медицина. 2013;91(11):38–44.; https://www.gynecology.su/jour/article/view/2226
-
6Academic Journal
Authors: S. G. Kanorskii, С. Г. Канорский
Source: Siberian Journal of Clinical and Experimental Medicine; Том 38, № 4 (2023); 46-54 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 4 (2023); 46-54 ; 2713-265X ; 2713-2927
Subject Terms: тромбообразование на устройстве, left atrial appendage, endovascular left atrial appendage closure, oral anticoagulant therapy, antiplatelet therapy, device-related thrombosis, ушко левого предсердия, эндоваскулярная окклюзия ушка левого предсердия, пероральная антикоагулянтная терапия, антитромбоцитарная терапия
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2051/891; Elliott A.D., Middeldorp M.E., Van Gelder I.C., Albert C.M., Sanders P. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 2023;20(6):404–417. DOI:10.1038/s41569-022-00820-8.; Escudero-Martínez I., Morales-Caba L., Segura T. Atrial fibrillation and stroke: A review and new insights. Trends Cardiovasc. Med. 2023;33(1):23–29. DOI:10.1016/j.tcm.2021.12.001.; Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021;42(5):373-498. DOI:10.1093/eurheartj/ehaa612.; Saw J., Holmes D.R., Cavalcante J.L., Freeman J.V., Goldsweig A.M., Kavinsky C.J. et al. SCAI/HRS expert consensus statement on transcatheter left atrial appendage closure. Heart Rhythm. 2023;20(5):e1– e16. DOI:10.1016/j.hrthm.2023.01.007.; Glikson M., Wolff R., Hindricks G., Mandrola J., Camm A.J., Lip G.Y.H. et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion an update. Europace. 2020;22(2):184. DOI:10.1093/europace/euz258.; January C.T., Wann L.S., Calkins H., Chen L.Y., Cigarroa J.E., Cleveland J.C.Jr. et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ ACC/HRS Guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–e151. DOI:10.1161/CIR.0000000000000665.; Whitlock R.P., Belley-Cote E.P., Paparella D., Healey J.S., Brady K., Sharma M. et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N. Engl. J. Med. 2021;384(22):2081–2091. DOI:10.1056/NEJMoa2101897.; Reddy V.Y., Sievert H., Halperin J., Doshi S.K., Buchbinder M., Neuzil P. et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: a randomized clinical trial. JAMA. 2014;312(19):1988–1998. DOI:10.1001/jama.2014.15192.; Holmes D.R.Jr., Kar S., Price M.J., Whisenant B., Sievert H., Doshi S.K. et al. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J. Am. Coll. Cardiol. 2014;64(1):1–12. DOI:10.1016/j.jacc.2014.04.029.; Reddy V.Y., Doshi S.K., Kar S., Gibson D.N., Price M.J., Huber K. et al. 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. J. Am. Coll. Cardiol. 2017;70(24):2964–2975. DOI:10.1016/j.jacc.2017.10.021.; Boersma L.V., Ince H., Kische S., Pokushalov E., Schmitz T., Schmidt B. et al. Efficacy and safety of left atrial appendage closure with WATCHMAN in patients with or without contraindication to oral anticoagulation: 1-Year follow-up outcome data of the EWOLUTION trial. Heart Rhythm. 2017;14(9):1302–1308. DOI:10.1016/j.hrthm.2017.05.038.; Berti S., Santoro G., Brscic E., Montorfano M., Vignali L., Danna P. et al. Left atrial appendage closure using AMPLATZER™ devices: A large, multicenter, Italian registry. Int. J. Cardiol. 2017;248:103–107. DOI:10.1016/j.ijcard.2017.07.052.; Landmesser U., Tondo C., Camm J., Diener H.C., Paul V., Schmidt B. et al. Left atrial appendage occlusion with the AMPLATZER Amulet device: one-year follow-up from the prospective global Amulet observational registry. EuroIntervention. 2018;14(5):e590–e597. DOI:10.4244/EIJ-D-18-00344.; Osmancik P., Herman D., Neuzil P., Hala P., Taborsky M., Kala P. et al. 4-year outcomes after left atrial appendage closure versus nonwarfarin oral anticoagulation for atrial fibrillation. J. Am. Coll. Cardiol. 2022;79(1):1–14. DOI:10.1016/j.jacc.2021.10.023.; Busu T., Khan S.U., Alhajji M., Alqahtani F., Holmes D.R., Alkhouli M. Observed versus expected ischemic and bleeding events following left atrial appendage occlusion. Am. J. Cardiol. 2020;125(11):1644–1650. DOI:10.1016/j.amjcard.2020.02.041.; Alkhouli M., Friedman P.A. ischemic stroke risk in patients with nonvalvular atrial fibrillation: JACC review topic of the week. J. Am. Coll. Cardiol. 2019;74(24):3050–3065. DOI:10.1016/j.jacc.2019.10.040.; Lakkireddy D., Thaler D., Ellis C.R., Swarup V., Sondergaard L., Carroll J. et al. Amplatzer Amulet left atrial appendage occluder versus Watchman device for stroke prophylaxis (Amulet IDE): A randomized, controlled trial. Circulation. 2021;144(19):1543–1552. DOI:10.1161/CIRCULATIONAHA.121.057063.; Dukkipati S.R., Kar S., Holmes D.R., Doshi S.K., Swarup V., Gibson D.N. et al. Device-related thrombus after left atrial appendage closure: incidence, predictors, and outcomes. Circulation. 2018;138(9):874–885. DOI:10.1161/CIRCULATIONAHA.118.035090.; Alkhouli M., Busu T., Shah K., Osman M., Alqahtani F., Raybuck B. Incidence and clinical impact of device-related thrombus following percutaneous left atrial appendage occlusion: a meta-analysis. JACC Clin. Electrophysiol. 2018;4(12):1629–1637. DOI:10.1016/j.jacep.2018.09.007.; Kar S., Doshi S.K., Sadhu A., Horton R., Osorio J., Ellis C. et al. Primary Outcome evaluation of a next-generation left atrial appendage closure device: results from the PINNACLE FLX trial. Circulation. 2021;143(18):1754–1762. DOI:10.1161/CIRCULATIONAHA.120.050117.; Simard T., Jung R.G., Lehenbauer K., Piayda K., Pracoń R., Jackson G.G. et al. Predictors of device-related thrombus following percutaneous left atrial appendage occlusion. J. Am. Coll. Cardiol. 2021;78(4):297–313. DOI:10.1016/j.jacc.2021.04.098.; Sedaghat A., Vij V., Al-Kassou B., Gloekler S., Galea R., Fürholz M. et al. Device-related thrombus after left atrial appendage closure: data on thrombus characteristics, treatment strategies, and clinical outcomes from the EUROC-DRT-Registry. Circ. Cardiovasc. Interv. 2021;14(5):e010195. DOI:10.1161/CIRCINTERVENTIONS.120.010195.; Simard T.J., Hibbert B., Alkhouli M.A., Abraham N.S., Holmes D.R.Jr. Device-related thrombus following left atrial appendage occlusion. EuroIntervention. 2022;18(3):224–232. DOI:10.4244/EIJ-D-21-01010.; Asmarats L., Cruz-González I., Nombela-Franco L., Arzamendi D., Peral V., Nietlispach F. et al. recurrence of device-related thrombus after percutaneous left atrial appendage closure. Circulation. 2019;140(17):1441–1443. DOI:10.1161/CIRCULATIONAHA.119.040860.; Tan B.E., Boppana L.K.T., Abdullah A.S., Chuprun D., Shah A., Rao M. et al. Safety and feasibility of same-day discharge after left atrial appendage closure with the WATCHMAN device. Circ. Cardiovasc. Interv. 2021;14(1):e009669. DOI:10.1161/CIRCINTERVENTIONS.120.009669.; Saw J., Nielsen-Kudsk J.E., Bergmann M., Daniels M.J., Tzikas A., Reisman M. et al. Antithrombotic therapy and device-related thrombosis following endovascular left atrial appendage closure. JACC Cardiovasc. Interv. 2019;12(11):1067–1076. DOI:10.1016/j.jcin.2018.11.001.; Saliba W.I., Kawai K., Sato Y., Kopesky E., Cheng Q., Ghosh S.K.B. et al. Enhanced thromboresistance and endothelialization of a novel fluoropolymer-coated left atrial appendage closure device. JACC Clin. Electrophysiol. 2023;9(8Pt2):1555–1567. DOI:10.1016/j.jacep.2023.04.013.; Tan B.E., Wong P.Y., Lee J.Z., Tan N.Y., Rao M., Cheung J.W. Direct oral anticoagulant versus warfarin after left atrial appendage closure with WATCHMAN: updated systematic review and meta-analysis. Curr. Probl. Cardiol. 2022;47(11):101335. DOI:10.1016/j.cpcardiol.2022.101335.; Patti G., Pengo V., Marcucci R., Cirillo P., Renda G., Santilli F. et al. The left atrial appendage: from embryology to prevention of thromboembolism. Eur. Heart J. 2017;38(12):877–887. DOI:10.1093/eurheartj/ehw159.; Hildick-Smith D., Landmesser U., Camm A.J., Diener H.C., Paul V., Schmidt B. et al. Left atrial appendage occlusion with the Amplatzer™ Amulet™ device: full results of the prospective global observational study. Eur. Heart J. 2020;41(30):2894–2901. DOI:10.1093/eurheartj/ehaa169.; Bergmann M.W., Ince H., Kische S., Schmitz T., Meincke F., Schmidt B. et al. Real-world safety and efficacy of WATCHMAN LAA closure at one year in patients on dual antiplatelet therapy: results of the DAPT subgroup from the EWOLUTION all-comers study. EuroIntervention. 2018;13(17):2003–2011. DOI:10.4244/EIJ-D-17-00672.; Duthoit G., Silvain J., Marijon E., Ducrocq G., Lepillier A., Frere C. et al. Circ. Cardiovasc. Interv. 2020;13(7):e008481. DOI:10.1161/CIRCINTERVENTIONS.119.008481.; Della Rocca D.G., Magnocavallo M., Di Biase L., Mohanty S., Trivedi C., Tarantino N. et al. Half-dose direct oral anticoagulation versus standard antithrombotic therapy after left atrial appendage occlusion. JACC Cardiovasc. Interv. 2021;14(21):2353–2364. DOI:10.1016/j.jcin.2021.07.031.; Li X., Zhang X., Jin Q., Xue Y., Lu W., Ge J. et al. clinical efficacy and safety comparison of rivaroxaban and dabigatran for nonvalvular atri al fibrillation patients undergoing percutaneous left atrial appendage closure operation. Front. Pharmacol. 2021;12:614762. DOI:10.3389/fphar.2021.614762.; Patti G., Sticchi A., Verolino G., Pasceri V., Vizzi V., Brscic E. et al. Safety and efficacy of single versus dual antiplatelet therapy after left atrial appendage occlusion. Am. J. Cardiol. 2020;134:83–90. DOI:10.1016/j.amjcard.2020.08.013.; Patti G., Ghiglieno C. Indications, evidence, and controversy in the closure of the left atrial appendage. Eur. Heart J. Suppl. 2023;25(Suppl. B):B126–B130. DOI:10.1093/eurheartjsupp/suad091.; Bing S., Chen R.R. Clinical efficacy and safety comparison of Watchman device versus ACP/Amulet device for percutaneous left atrial appendage closure in patients with nonvalvular atrial fibrillation: A study-level meta-analysis of clinical trials. Clin. Cardiol. 2023;46(2):117–125. DOI:10.1002/clc.23956.; Lakkireddy D., Thaler D., Ellis C.R., Swarup V., Gambhir A., Hermiller J. et al. 3-year outcomes from the amplatzer Amulet left atrial appendage occluder randomized controlled trial (Amulet IDE). JACC Cardiovasc Interv. 2023;16(15):1902–1913. DOI:10.1016/j.jcin.2023.06.022.; https://www.sibjcem.ru/jour/article/view/2051
-
7Academic Journal
Authors: Tverdovsky, I.V.
Source: МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 8.103 (2019); 66-71
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 8.103 (2019); 66-71
EMERGENCY MEDICINE; № 8.103 (2019); 66-71Subject Terms: облітеруючий атеросклероз, тромбоутворення, гемостаз, 03 medical and health sciences, 0302 clinical medicine, облитерирующий атеросклероз, тромбообразование, obliterating atherosclerosis, thrombosis, hemostasis, 3. Good health
File Description: application/pdf
-
8Academic Journal
Authors: Sukhonos, R.E.
Source: EMERGENCY MEDICINE; № 1.96 (2019); 101-106
МЕДИЦИНА НЕОТЛОЖНЫХ СОСТОЯНИЙ; № 1.96 (2019); 101-106
МЕДИЦИНА НЕВІДКЛАДНИХ СТАНІВ; № 1.96 (2019); 101-106Subject Terms: 2. Zero hunger, ожирение, тромбообразование, гемостаз, эноксапарин, пентоксифиллин, 03 medical and health sciences, ожиріння, тромбоутворення, еноксапарин, пентоксифілін, 0302 clinical medicine, obesity, thrombosis, hemostasis, enoxaparin, pentoxifylline, 3. Good health
File Description: application/pdf
-
9Academic Journal
Authors: N. V. Spiridonova, T. A. Gritsenko, E. F. Khurtova, Н. В. Спиридонова, Т. А. Гриценко, Е. Ф. Хуртова
Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 5 (2023); 597-606 ; Акушерство, Гинекология и Репродукция; Vol 17, No 5 (2023); 597-606 ; 2500-3194 ; 2313-7347
Subject Terms: тромбообразование, pregnancy, platelets, platelet indices, thrombogenesis, беременность, тромбоциты, тромбоцитарные индексы
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/1825/1153; Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association. Eur Heart J. 2020;41(19):1858. https://doi.org/1010.1093/eurheartj/ehaa254.; Helms J., Tacquard C., Severac F. et al.; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Rе search in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–98. https://doi.org/10.1007/s00134-020-06062-x.; Klok F.A., Kruip M.J.H.A, van der Meer N.J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–7. https://doi.org/10.1016/j.thromres.2020.04.013.; Pazos M., Sperling R.S., Moran T.M., Kraus T.A. The influence of pregnancy on systemic immunity. Immunol Res. 2012;54(1–3);254–61. https://doi.org/10.1007/s12026-012-8303-9.; Kraus T.A., Engel S.M., Sperling R.S. et al. Characterizing the pregnancy immune phenotype: results of the Viral Immunity and Pregnancy (VIP) Study. J Clin Immunol. 2012;32(2):300–11. https://doi.org/10.1007/s10875-011-9627-2.; Jamieson D.J., Theiler R.N., Rasmussen S.A. Emerging infections and pregnancy. Emerg Infect Dis. 2006;12(11):1638–43. https://doi.org/10.3201/eid1211.060152.; Mor G., Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–33. https://doi.org/10.1111/j.1600-0897.2010.00836.x.; Sappenfield E., Jamieson D.J., Kourtis A.P. Pregnancy and susceptibility to infectious diseases. Infect Dis Obstet Gynecol. 2013;2013:752852. https://doi.org/10.1155/2013/752852.; Гончарова М.А., Петров Ю.А. Новая коронавирусная инфекция SARS-CoV-2: влияние на течение беременности. Главный врач Юга России. 2020;(4):27–31.; Адамян Л.В., Вечорко В.И., Конышева О.В., Харченко Э.И. Беременность и COVID-19: актуальные вопросы (обзор литературы). Проблемы репродукции. 2021;27(3):70–7. https://doi.org/10.17116/repro20212703170.; Wastnedge E.A.N., Reynolds R.M., van Boeckel S.R. et al. Pregnancy and COVID-19. Physiol Rev. 2021;101(1):303–18. https://doi.org/10.1152/physrev.00024.2020.; Subbaraman N. Pregnancy and COVID: what the data say. Nature. 2021;7849(591):193–5. https://doi.org/10.1038/d41586-021-00578-y.; Долгов В.В., Свирин П.В. Лабораторная диагностика нарушений гемостаза. М.–Тверь: ООО «Издательство «Триада», 2005. 227 с.; Шмаков Р.Г., Кирющенков П.А., Пырегов А.В. и др. Исследование системы гемостаза во время беременности и после родов. Краткий протокол. Акушерство и гинекология. 2015;(4):1–2.; Лелевич С.В. Клинико-лабораторные особенности периода беременности: учебно-методическое пособие для студентов лечебного, педиатрического факультетов и врачей. Гродно: ГрГМУ, 2010. 52 с. Режим доступа: http://www.grsmu.by/files/file/university/cafedry/klinicheskayaimmynologiya/files/ychebno-metod/2.pdf. [Дата обращения: 30.06.2023].; Ящук А.Г., Масленников А.В., Галимо Ш.Н. и др. Система гемостаза при беременности: признаки нормы и патологии. Уфа: ООО «Первая типография», 2018. 74 с.; Servante J., Swallow G., Thornton J.G. et al. Haemostatic and thromboembolic complications in pregnant women with COVID-19: a systematic review and critical analysis. BMC Pregnancy Childbirth. 2021;21(1):108. https://doi.org/10.1186/s12884-021-03568-0.; Петрова О.В., Шашин С.А., Тарасов Д.Г. Значение определения тромбоцитарных индексов у больных после коронарного шунтирования. Кардиология и сердечно-сосудистая хирургия. 2014;7(3):58–62.; Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID-19. Акушерство, Гинекология и Репродукция. 2021;15(5):499–514. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.247.; Артеменко Е.О., Свешникова А.Н., Пантелеев М.А. Программируемая клеточная смерть тромбоцитов при их сверхактивации. Онкогематология. 2014;(3):63–6. https://doi.org/10.17650/1818-8346-2014-9-3-63-66.; Jackson S.P., Schoenwaelder S.M. Procoagulant platelets: are they necrotic? Blood. 2010;116(12):2011–8. https://doi.org/10.1182/blood-2010-01-261669.; Koupenova M., Freedman J.E. Platelets and immunity: going viral. Arterioscler Thromb Vasc Biol. 2020;40(7):1605–7. https://doi.org/10.1161/ATVBAHA.120.314620.; Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020;506:145–8. https://doi.org/10.1016/j.cca.2020.03.022.; Vandershuren S., De Werdt A., Malbrain M. et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2020;28(6):1871–6. https://doi.org/10.1097/00003246-200006000-00031.; Akca S., Hadji-Michael P., de Mendonza A. et al. Time course of platelet count in critically ill patients. Crit Care Med. 2002;30(4):753–6. https://doi.org/10.1097/00003246-200204000-00005.; Khurana D., Deoke S.A. Thrombocytopenia in critically ill patients: clinical and laboratorial behavior and its correlation with short-term outcome during hospitalization. Indian J Crit Care Med. 2017;21(12):861–4. https://doi.org/10.4103/ijccm.IJCCM_279_17.; Zou Z., Yang Y., Chen J. et al. Prognostic factors for severe acute respiratory syndrome: a clinical analysis of 165 cases. Clin Infect Dis. 2004;38(4):483–9. https://doi.org/10.1086/380973.; Цикаленко Е.А., Дорн О.Ю., Степанова Е.Г. и др. Фракция больших тромбоцитов как маркер активации тромбоцитарного гемостаза при беременности. Медицина и образование в Сибири. 2014;(2):17.; Güçlü E., Kocayiğit H., Okan H.D. et al. Effect of COVID-19 on platelet count and its indices. Rev Assoc Med Bras (1992). 2020;66(8):1122–7. https://doi.org/10.1590/1806-9282.66.8.1122.; https://www.gynecology.su/jour/article/view/1825
-
10Academic Journal
Authors: I. D. Magamedov, L. P. Pivovarova, S. A. Platonov, S. V. Ordynets, S. P. Nokhrin, O. B. Ariskina, I. V. Osipova, K. N. Fomin, A. B. Kurilov, A. I. Tomchenko, V. N. Zhigalo, S. L. Potskhor-ogly, L. V. Kolichenko, O. I. Dyko, T. V. Kopylova, T. A. Isaev, И. Д. Магамедов, Л. П. Пивоварова, С. А. Платонов, С. В. Ордынец, С. П. Нохрин, О. Б. Арискина, И. В. Осипова, К. Н. Фомин, А. Б. Курилов, А. И. Томченко, В. Н. Жигало, С. Л. Поцхор-оглы, Л. В. Количенко, О. И. Дыко, Т. В. Копылова, Т. А. Исаев
Source: Medical Immunology (Russia); Том 25, № 4 (2023); 977-984 ; Медицинская иммунология; Том 25, № 4 (2023); 977-984 ; 2313-741X ; 1563-0625
Subject Terms: дексаметазон, adhesion molecules, fibrinogen, thrombus formation, dexamethasone, молекулы адгезии, фибриноген, тромбообразование
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2803/1812; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11760; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11761; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11762; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11763; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11764; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11765; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11766; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/11767; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/12197; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/12198; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/12199; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2803/12233; Baran K.W., Nguyen M., McKendall G.R. Lambrew C.T., Dykstra G., Palmeri S.T., Gibbons R.J., Borzak S., Sobel B.E., Gurlay S.G., Rundle A.C., Gibson K.M., Barron H.V. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction: limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation, 2001, Vol. 104, pp. 2778-2783.; Carlos T.M., Harlan J.M. Leukocyte-endothelial adhesion molecules. Blood, 1994, Vol. 84, no. 7, pp. 2068-2101.; Charlson M.E., Pompei P., Ales K.L., McKenzie C.R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chron. Dis., 1987, Vol. 40, no. 5, pp. 373-383.; Faxon D., Gibbons R.J., Chronos N.A.F., Gurbel P.A., Sheehan F. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J. Am. Coll. Cardiol., 2002, Vol. 40, pp. 1199-1204.; Gonzalez-Amaro R., Sanchez-Madrid F. Drugs, inflammation and cell adhesion receptors. Expert Opin. Pharmacother., 2001, Vol. 2, pp. 3-17.; Harlan J.M, Winn R.K. Leukocyte-endothelial interactions: clinical trials of anti-adhesion therapy. Crit. Care Med., 2002, Vol. 30, no. 5, Suppl., pp. S214-S219.; Magamedov I.D., Pivovarova L.P., Nokhrin S.P., Ariskina O.B. Soroka V.V. Markers of inflammation and oxidative stress in the treatment of acute ischemia of the lower extremities. Russian Journal of Immunology, 2019, Vol. 13 (22), no. 2, pp. 1054-1056. (In Russ.); Magamedov I.D., Pivovarova L.P., Ariskina O.B., Nokhrin S.P., Soroka V.V., Ryazanov A.N., Belousov E.Yu., Kurilov A.B., Malinovsky Yu .P., Magomedov S.B., Radjabov I.M., Gaipov M.M., Goncharova O.V. The development of oxidative stress in acute ischemia of the lower extremities in elderly and senile patients. Electronic Journal of Clinical and Experimental Surgery, 2019, no. 4, pp. 23-31. (In Russ.); Moskalets O.V. Cell adhesion molecules ICAM-1 and VCAM-1 in infectious pathology. Pacific Medical Journal, 2018, no. 2, pp. 21-25. (In Russ.); Pitzalis C., Pipitone N., Perretti M., Pitzalis C. Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann. N. Y. Acad. Sci., 2002, Vol. 966, pp. 108-118.; Sherman D.G., Bes A., Easton J.D., Hacke W. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, 2001, Vol. 57, no. 8, pp. 1428-1434.; Suchkov I.A., Pshennikov A.S., Gerasimov A.A., Agapov A.B., Kamaev A.A. Prevention of restenosis in reconstructive surgery of the main arteries. Eruditio Juvenium, 2013, Vol. 2, pp. 12-19.; Ulbrich H., Eriksson E.E., Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol. Sci., 2003, Vol. 24, no. 12, pp. 640-647.; Ye W., Liu C.W., Ricco J.B., Mani K., Zeng R., Jiang J. Early and late outcomes of percutaneous treatment of TransAtlantic Inter-Society Consensus class C and D aorto-iliac lesions. J. Vasc. Surg., 2011, Vol. 53, no. 6, pp. 1728-1737; https://www.mimmun.ru/mimmun/article/view/2803
-
11Academic Journal
Authors: V. M. Vdovin, I. I. Shakhmatov, A. P. Momot
Source: Бюллетень сибирской медицины, Vol 21, Iss 4, Pp 20-28 (2023)
Subject Terms: тромбообразование, гипокоагуляция, концентрат факторов протромбинового комплекса, эптаког альфа (активированный), фибрин-мономер, варфарин, дабигатрана этексилат, Medicine
Relation: https://bulletin.ssmu.ru/jour/article/view/5017; https://doaj.org/toc/1682-0363; https://doaj.org/toc/1819-3684; https://doaj.org/article/228d3c77f0d1494980b186976869e321
-
12
-
13Academic Journal
Source: Медицинский совет, Vol 0, Iss 5-6, Pp 11-16 (2019)
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, свертывание крови, кровь, тромбообразование, Medicine, протромбиновый комплекс
Access URL: https://www.med-sovet.pro/jour/article/download/3471/3086
https://doaj.org/article/8529f05488a74d2ebc93a810b57dc94c
https://cyberleninka.ru/article/n/vvedenie-v-gemostaz-sovremennye-preparaty-krovi-i-ih-vliyanie-na-koagulyatsiyu-1
https://cyberleninka.ru/article/n/vvedenie-v-gemostaz-sovremennye-preparaty-krovi-i-ih-vliyanie-na-koagulyatsiyu-1/pdf
https://www.med-sovet.pro/jour/article/viewFile/3471/3086 -
14Academic Journal
Authors: Karpenko, Olena
Source: ScienceRise: Medical Science; № 4 (31) (2019); 4-8
ScienceRise. Medical Science; № 4 (31) (2019); 4-8Subject Terms: 03 medical and health sciences, 0302 clinical medicine, УДК 616.127-005.8:616.379-008.64:616.151.5, сахарный диабет, плазменный гемостаз, острая ишемическая болезнь сердца, тромбообразование, diabetes mellitus, plasma hemostasis, acute ischemic heart disease, thrombotic formation, цукровий діабет, плазмовий гемостаз, гостра ішемічна хвороба серця, тромбоутворення, 3. Good health
File Description: application/pdf
-
15Academic Journal
Authors: I. M. Kuzmina, D. S. Markhuliya, K. A. Popugayev, K. V. Kiselev, И. М. Кузьмина, Д. С. Мархулия, К. А. Попугаев, К. В. Киселев
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 4 (2021); 769-777 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 4 (2021); 769-777 ; 2541-8017 ; 2223-9022
Subject Terms: деэскалация, STE-ACS, NSTE-ACS, thrombosis, antiplatelet therapy, dual antiplatelet therapy (DAPT), escalation, de-escalation, ОКСспST, ОКСбпST, тромбообразование, антиагрегантная терапия, двойная антитромбоцитарная терапия (ДАТТ), эскалация
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1282/1004; https://www.jnmp.ru/jour/article/view/1282/1106; Camm AJ, Lüscher TF, Maurer G, Serruys PW. (eds.) ESC CardioMed. 3rd ed. Oxford University Press; 2018. https://doi.org/10.1093/med/978019 8784906.001.0001; Здравоохранение в России 2015: статистический сборник. Москва: Росстат; 2015.; Braunwald E, Morrow DA. Unstable Angina: Is It Time for a Requiem? Circulation. 2013;127(24):2452–2457. PMID: 23775194 https://doi.org/10.1161/CIRCULATIONAHA113.001258; Sheridan PJ, Crossman DC. Critical review of unstable angina and nonST elevation myocardial infarction. Postgrad Med J. 2002;78(926):717– 726. PMID: 12509688 https://doi.org/10.1136/pmj.78.926.717; Basit H, Malik A, Huecker MR. Non ST Segment Elevation (NSTEMI) Myocardial Infarction. [Last Update: September 6, 2021]. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/ NBK513228/ [Accessed November 22, 2021].; Goyal A, Zeltser R. Unstable Angina. [Last Update: July 26, 2021]. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK442000/ [Accessed November 22, 2021].; Akbar H, Foth C, Kahloon RA, Mountfort S. Acute ST Elevation Myocardial Infarction. [Last Update: August 9, 2021]. StatPearls [Internet]. Available at: https://www.ncbi.nlm.nih.gov/books/NBK532281/ [Accessed November 22, 2021].; Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40(3):237–269. https://doi.org/10.1093/eurheartj/ehy462; Falk E, Shah PK, Fuster V. Coronary Plaque Disruption. Circulation. 1995;92(3):657–671. PMID: 7634481 https://doi.org/10.1161/01. CIR.92.3.657; Карагодин В.П., Бобрышев Ю.В., Орехов А.Н. Воспаление, иммунокомпетентные клетки, цитокины — роль в атерогенезе. Патогенез. 2014;12(1):21–35.; Аронов Д.М., Лупанов В.П. Некоторые аспекты патогенеза атеросклероза. Атеросклероз и дислипидемии. 2011;1(2):48–56.; Crea F, Libby P. Acute Coronary Syndromes: The Way Forward From Mechanisms to Precision Treatmen. Circulation. 2017;136(12):1155– 1166. PMID: 28923905 https://doi.org/10.1161/CIRCULATIONAHA.117.029870; O’Gara PT, Kushner FG, Ascheim DD, Casey Jr DE, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of STelevation myocardial infarction: a report of the ACCF/AMA Task Force on Practice Guidelines. Circulation. 2013;127(4):e362–e425. PMID: 23247304 https://doi.org/10.1161/CIR.0b013e3182742cf6; Mekaj Y, Daci F, Mekaj A. New insights into the mechanisms of action of aspirin and its use in the prevention and treatment of arterial and venous thromboembolism. Ther Clin Risk Manag. 2015;11:1449–1456. PMID: 26445544 https://doi.org/10.2147/TCRM.S92222; Layne K, Ferro A. Antiplatelet Therapy in Acute Coronary Syndrome. Eur Cardiol. 2017;12(1):33–37. PMID: 30416549 https://doi.org/10.15420/ecr.2016:34:2; Cattaneo M. ADP receptor antagonists. In: Michelson AD. (ed.) Platelets. 2nd ed. San Diego: Elsevier/Academic Press; 2007. Prt.5, Ch.61. p.1127– 1144. https://doi.org/10.1016/B978-012369367-9/50823-5; Mehta SR, Yusuf S, Peters RJ, Bertrand ME, Lewis BS, Natarajan MK, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet. 2001;358(9281):527–533. PMID: 11520521 https://doi.org/10.1016/s0140-6736(01)05701-4; Chen ZM, Jiang LX, Chen YP, Xie JX, Pan HC, Peto R, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366(9497):1607– 1621. PMID: 16271642 https://doi.org/10.1016/S0140-6736(05)67660-X; Shuvanan R. Clopidogrel resistance: the way forward. Indian Heart J. 2014;66(5):530–534. PMID: 25443607 https://doi.org/10.1016/j.ihj.2014.08.012; Storey RF, Angiolillo DJ, Patil SB, Desai B, Ecob R, Husted S, et al. Inhibitory effects of ticagrelor compared with clopidogrel on platelet function in patients with acute coronary syndromes: the PLATO (PLATelet inhibition and patient Outcomes) PLATELET substudy. J Am Coll Cardiol. 2010;56(18):1456–1462. PMID: 20832963 https://doi.org/10.1016/j.jacc.2010.03.100; Granger CB, Berger PB. Understanding the Adverse Effects of Ticagrelor in Practice. JAMA Cardiol. 2016;1(4):381–383. PMID: 27438332 https://doi.org/10.1001/jamacardio.2016.1018; Dellborg M, Bonaca MP, Storey RF, Steg PG, Kyung AI, Cohen M, et al. Efficacy and safety with ticagrelor in patients with prior myocardial infarction in the approved European label: insights from PEGASUSTIMI 54. Eur Heart J Cardiovasc Pharmacother. 2019;5(4):200–206. PMID: 31218354 https://doi.org/10.1093/ehjcvp/pvz020; Jakubowski JA, Winters KJ, Naganuma H, Wallentin L. Prasugrel: a novel thienopyridine antiplatelet agent. A review of preclinical and clinical studies and the mechanistic basis for its distinct antiplatelet profile. Cardiovasc Drug Rev. 2007;25(4):357–374. PMID: 18078435 https://doi.org/10.1111/j.1527-3466.2007.00027.x; Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–2015. PMID:17982182 https://doi.org/10.1056/NEJMoa0706482; De Luca L, Capranzano P, Patti G, Parodi G. Switching of platelet P2Y12 receptor inhibitors in patients with acute coronary syndromes undergoing percutaneous coronary intervention: Review of the literature and practical considerations. Am Heart J. 2016;176:44–52. PMID: 27264219 https://doi.org/10.1016/j.ahj.2016.03.006; Deerhake ME, Tricoci P. Vorapaxar: The Drug and its Applications. May 18, 2016. American college of cardiology. Available at: https://www.acc.org/latest-in-cardiology/articles/2016/05/18/13/58/vorapaxar [Accessed November 23, 2021].; Offermanns S. Activation of platelet function through G proteincoupled receptors. Circ Res. 2006;99(12):1293–1304. PMID: 17158345 https://doi.org/10.1161/01.RES.0000251742.71301.16; Roffi M, Chew DP, Mukherjee D, Bhatt DL, White JA, Moliterno DJ, et al. Platelet glycoprotein IIb/IIIa inhibition in acute coronary syndromes. Gradient of benefit related to the revascularization strategy. Eur Heart J. 2002;23(18):1441–1448. PMID: 12208224 https://doi.org/10.1053/euhj.2002.3160; Quinn MJ, Plow EF, Topol EJ. Platelet Glycoprotein IIb/IIIa Inhibitors, Recognition of a Two-Edged Sword? Circulation. 2002;106(3):379–385. PMID: 12119257 https://doi.org/10.1161/01.CIR.0000019581.22812.B2; Eisen A, Bhatt DL Optimal duration of dual antiplatelet therapy after acute coronary syndromes and coronary stenting. Heart. 2017;103(11):871–884. PMID: 27888209 https://doi.org/10.1136/ heartjnl-2015-309022; Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–177. PMID: 28886621 https://doi.org/10.1093/eurheartj/ehx393; Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001;345(7):494–502. PMID: 11519503 https://doi.org/10.1056/NEJMoa010746; Costa F, van Klaveren D, James S, Heg D, Räber L, Feres F, et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet. 2017;389(10073):1025–1034. PMID: 28290994 https://doi.org/10.1016/S0140-6736(17)30397-5; Yeh RW, Secemsky EA, Kereiakes DJ, Normand S-LT, Gershlick AH, Cohen DJ, et al. Development and Validation of a Prediction Rule for Benefit and Harm of Dual Antiplatelet Therapy Beyond 1 Year After Percutaneous Coronary Intervention. JAMA. 2016;315(16):1735–1749. PMID: 27022822 https://doi.org/10.1001/jama.2016.3775; Sabouret P, Rushton-Smith SK, Kerneis M, Silvan J, Collet J-P, Montalescot G. Dual antiplatelet therapy: optimal timing, management, and duration. Eur Heart J Cardiovasc Pharmacother. 2015;1(3):198–204. PMID: 27533996 https://doi.org/10.1093/ehjcvp/pvv015; Wilson SJ, Newby DE, Dawson D, Irving J, Berry C. Duration of dual antiplatelet therapy in acute coronary syndrome. Heart. 2017;103(8):573–580. PMID: 28249994 https://doi.org/10.1136/heartjnl-2016-309871; Valgimigli M, Costa F, Lokhnygina Y, Clare RM, Wallentin L, Moliterno DJ, et al. Trade-off of myocardial infarction vs. bleeding types on mortality after acute coronary syndrome: lessons from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) randomized trial. Eur Heart J. 2017;38(11):804– 810. PMID: 28363222 https://doi.org/10.1093/eurheartj/ehw525; Шамраев Р.Л., Илюхин О.В., Иваненко В.В., Мерзляков С.Г., Лопатин Ю.М. Последствия эскалации и де-эскалации двойной антитромбоцитарной терапии у больных с острым коронарным синдромом в условиях реальной клинической практики. Российский кардиологический журнал. 2019;24(3):90–97. http://dx.doi.org/10.15829/1560-4071-2019-3-90-97; Kupka D, Sibbing D. De-Escalation of P2Y12 Receptor Inhibitor Therapy after Acute Coronary Syndromes in Patients Undergoing Percutaneous Coronary Intervention. Korean Сirc J. 2018;48(10):863–872. https://doi.org/10.4070/kcj.2018.0255; Angiolillo DJ, Rollini F, Storey RF, Bhatt DL, James S, Schneider DJ, et al. International Expert Consensus on Switching Platelet P2Y12 ReceptorInhibiting Therapies. Circulation. 2017;136(20):1955–1975. PMID: 29084738 https://doi.org/10.1161/CIRCULATIONAHA.117.031164; Deharo P, Quilici J, Camoin-Jau L, Johnson TW, Bassez C, Bonnet G. Benefit of Switching Dual Antiplatelet Therapy After Acute Coronary Syndrome According to On-Treatment Platelet Reactivity: The TOPICVASP Pre-Specified Analysis of the TOPIC Randomized Study. JACC Cardiovasc Interv. 2017;10(24):2560–2570. PMID: 29268886 https://doi.org/10.1016/j.jcin.2017.08.044; Angiolillo DJ, Saucedo JF, Deraad R, Frelinger AL, Gurbel PA, Costigan TM, et al. Increased platelet inhibition after switching from maintenance clopidogrel to prasugrel in patients with acute coronary syndromes: results of the SWAP (SWitching Anti Platelet) study. J Am Coll Cardiol. 2010;56(13):1017–1023. PMID: 20846599 https://doi.org/10.1016/j.jacc.2010.02.072; Gurbel PA, Bliden KP, Butler K, Antonino MJ, Wei C, Teng R, et al. Response to ticagrelor in clopidogrel nonresponders and responders and effect of switching therapies: the RESPOND study. Circulation. 2010;121(10):1188–1199. PMID: 20194878 https://doi.org/10.1161/CIRCULATIONAHA.109.919456; Bagai A, Wang Y, Wang TY, Curtis JP, Gurm HS, Shah B, et al. Inhospital switching between clopidogrel and prasugrel among patients with acute myocardial infarction treated with percutaneous coronary intervention: insights into contemporary practice from the national cardiovascular data registry. Circ Cardiovasc Interv. 2014;7(4):585–593. PMID: 25097196 https://doi.org/10.1161/CIRCINTERVENTIONS.114.00 1555; Kim H-S, Kang J, Hwang D, Han J-K, Yang H-M, Kang H-J, et al. Prasugrelbased de-escalation of dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (HOSTREDUCE-POLYTECH-ACS): an open-label, multicentre, non-inferiority randomised trial. Lancet. 2020;396(10257):1079–1089. PMID: 32882163 https://doi.org/10.1016/S0140-6736(20)31791-8; Zettler ME, Peterson ED, McCoy LA, Effron MB, Anstrom KJ, Henry TD, et al. Switching of adenosine diphosphate receptor inhibitor after hospital discharge among myocardial infarction patients: Insights from the Treatment with Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) observational study. Am Heart J. 2017;183:62–68. PMID: 27979043 https://doi.org/10.1016/j.ahj.2016.10.006; https://www.jnmp.ru/jour/article/view/1282
-
16Academic Journal
Authors: O. N. Ogurkova, M. A. Dragunova, T. E. Suslova, Yu. G. Lugacheva, R. E. Batalov, О. Н. Огуркова, М. А. Драгунова, Т. Е. Суслова, Ю. Г. Лугачева, Р. Е. Баталов
Source: Medical Immunology (Russia); Том 24, № 6 (2022); 1255-1264 ; Медицинская иммунология; Том 24, № 6 (2022); 1255-1264 ; 2313-741X ; 1563-0625
Subject Terms: тромбомодулин, thromboembolism, inflammation, thrombosis, CD40-40L system, thrombomodulin, тромбоэмболия, воспаление, тромбообразование, система CD40-40L
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2532/1620; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9638; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9639; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9640; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9641; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9642; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9643; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9644; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2532/9645; Бондарь И.А., Климонтов В.В. Система CD40 – лиганд CD40 в развитии сахарного диабета и его осложнений // Сахарный диабет, 2011. Т. 14, № 3. С. 21-25.; Евтушенко А.В., Евтушенко В.В., Петлин К.А., Беленкова Е.М. Способ достижения трансмуральности повреждения миокарда предсердий при лечении наджелудочковых аритмий и устройство для его осуществления. Патент на изобретение RU 2394522 C2.; Евтушенко А.В., Евтушенко В.В., Павлюкова Е.Н., Попов С.В. Монополярная радиочастотная аблация длительно персистирующей фибрилляции предсердий у пациентов с пороками сердца и хронической сердечной недостаточностью. Томск: НИИ кардиологии, Томский НИМЦ, 2019. 238 с.; Загидуллин Н.Ш., Michels G., Загидуллин Ш.З. Статины и их антиаритмическая активность // Кардиоваскулярная терапия и профилактика, 2007. Т. 6, № 8. С. 116-121.; Огуркова О.Н., Суслова Т.Е., Левашкина Е.А., Кулагина И.В., Кошельская О.А. Исследование влияния аторвастатина на уровень лептина, инсулина, С-реактивного белка и показатели липидного спектра в сыворотке крови женщин с ишемической болезнью сердца и ожирением // Сибирский медицинский журнал, 2010. Т. 25, № 2, Вып. 2. С. 25-29.; Ревишвили А.Ш., Бойцов С.А., Давтян К.В., Зенин С.А., Кузнецов В.А., Купцов В.В., Лебедев Д.С., Ломидзе Н.Н., Медведев М.М., Недоступ А.В., Неминущий Н.М., Певзнер А.В., Покушалов Е.А., Рзаев Ф.Г., Татарский Б.А., Термосесов С.А., Тюрина Т.В., Шубик Ю.В., Яшин С.М. Клинические рекомендации по проведению электрофизиологических исследований, катетерной абляции и применению имплантируемых антиаритмических устройств. 2017. С. 466-595. [Электронный ресурс]. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/vnoa.pdf; Шевченко О.П., Природова О.Ф., Шевченко А.О. Клиническое значение растворимого CD40 лиганда у больных ишемической болезнью сердца // Кардиоваскулярная терапия и профилактика, 2006. Т. 5, № 7. С. 101-111.; Aloui C., Prigent A., Sut C., Tariket S., Hamzeh-Cognasse H., Pozzetto B., Richard Y., Cognasse F., Laradi S., Garraud O. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int. J. Mol. Sci., 2014, Vol. 15, no. 12, pp. 22342-22364.; Anand S.X., Viles-Gonzalez J.F., Badimon J.J., Cavusoglu E., Marmur J.D. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb. Haemost., 2003, Vol. 90, no. 3, pp. 377-384.; Giri H., Cai X., Panicker S.R., Biswas I., Rezaie A.R. Thrombomodulin regulation of mitogen-activated protein kinases. Int. J. Mol. Sci., 2019, Vol. 20, no. 8, 1851. doi:10.3390/ijms20081851.; Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C., Boriani G., Castella M., Dan G.-A., Dilaveris P.E., Fauchier L., Filippatos G., Kalman J.M., La Meir M., Lane D.A., Lebeau J.-P., Lettino M., Lip G.Y.H., Pinto F.J., Thomas G.N., Valgimigli M., Van Gelder I.C., Van Putte B.P., Watkins C.L., ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J., 2021, Vol. 42, Iss. 5, pp. 373-498.; Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B., Castella M., Diener H.-C., Heidbuchel H., Hendriks J., Hindricks G., Manolis A.S., Oldgren J., Popescu B.A., Schotten U., Van Putte B., Vardas P., Agewall S., Camm J., Esquivias G.B., Budts W., Carerj S., Casselman F., Coca A., de Caterina R., Deftereos S., Dobrev D., Ferro J.M., Filippatos G., Fitzsimons D., Gorenek B., Guenoun M., Hohnloser S.H., Kolh P., Lip G.Y.H., Manolis A., McMurray J., Ponikowski P., Rosenhek R., Ruschitzka F., Savelieva I., Sharma S., Suwalski P., Tamargo J.L., Taylor C.J., Van Gelder I.C., Voors A.A., Windecker S., Zamorano J.L., Zeppenfeld K. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Left atrial volume predicts cardiovascular events in patients originally diagnosed with lone atrial fibrillation: three-decade follow-up. Eur. Heart J., 2016, Vol. 37, Iss. 38, pp. 2893-2962.; Okuda A., Ogura T., Imanishi M., Miyano A., Nishioka N., Higuchi K. Clinical impact of recombinant soluble thrombomodulin for disseminated intravascular coagulation associated with severe acute cholangitis. Gut Liver, 2018, Vol. 12, no. 4, pp. 471-477.; https://www.mimmun.ru/mimmun/article/view/2532
-
17Academic Journal
Authors: Боднар, П.Я., Боднар, Я.Я., Боднар, Т.В., Боднар, Л.П.
Source: Reproductive health of woman; No. 6 (2021); 32-37 ; Reproductive health of woman; № 6 (2021); 32-37 ; Репродуктивне здоров'я жінки; № 6 (2021); 32-37 ; 2708-8731 ; 2708-8723
Subject Terms: тромбоэмболия легочной артерии, тромбообразование, неопластическая интоксикация, онкологические заболевания, pulmonary embolism, thrombosis, neoplastic intoxication, cancer, тромбоемболія легеневої артерії, тромбоутворення, неопластична інтоксикація, онкологічні захворювання
File Description: application/pdf
-
18Academic Journal
Source: Репродуктивне здоров'я жінки; № 6 (2021); 32-37
Reproductive health of woman; № 6 (2021); 32-37
Reproductive health of woman; No. 6 (2021); 32-37Subject Terms: неопластическая интоксикация, pulmonary embolism, тромбоутворення, онкологічні захворювання, неопластична інтоксикація, тромбообразование, cancer, тромбоэмболия легочной артерии, тромбоемболія легеневої артерії, neoplastic intoxication, thrombosis, 3. Good health, онкологические заболевания
File Description: application/pdf
Access URL: http://repro-health.com.ua/article/view/244374
-
19Academic Journal
Authors: M. V. Filonova, E. P. Fedorova, T. Yu. Dubskaya, O. V. Neupokoeva, A. A. Churin, М. В. Филонова, Е. П. Федорова, Т. Ю. Дубская, О. В. Неупокоева, А. А. Чурин
Source: Siberian journal of oncology; Том 19, № 3 (2020); 109-115 ; Сибирский онкологический журнал; Том 19, № 3 (2020); 109-115 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-3
Subject Terms: тромбообразование, outbred mice, outbred rats, coagulative hemostasis, thrombus formation, аутбредные мыши, аутбредные крысы, коагуляционный гемостаз
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1494/753; Donnellan E., Khorana A.A. Cancer and Venous Thromboembolic Disease: A Review. Oncologist. 2017; 22(2): 199–207. doi:10.1634/ theoncologist.2016-0214.; Сомонова О.В., Маджуга А.В., Елизарова А.Л. Тромбозы и тромбоэмболии в онкологии. Современный взгляд на проблему. Злокачественные опухоли. 2014; 3(10): 172–176.; Khorana A.A., Kuderer N.M., Culakova E., Lyman G.H., Francis C.W. Development and validation of a predictive model for chemotherapyassociated thrombosis. Blood. 2008; 111(10): 4902–07. doi:10.1182/blood-2007-10-116327.; Olgun D.C., Bakan S., Samanci C., Tutar O., Demiryas S., Korkmazer B., Kantarci F. Simultaneous thrombosis of superior mesenteric artery and superior mesenteric vein following chemotherapy: MDCT findings. Jpn J Radiol. 2014 Feb; 32(2): 113–6. doi:10.1007/s11604-013-0273-x.; Khosla S., Kennedy L., Abdulaal Y. Cisplatin induced acutemesenteric ischaemia: Acase report and review of the literature. International journal of surgery case reports. 2017; 41: 347–351. doi:10.1016/j.ijscr.2017.11.007.; Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014; 740: 364–78. doi:10.1016/j.ejphar.2014.07.025.; Topal İ., Özbek Bilgin A., Keskin Çimen F., Kurt N., Süleyman Z., Bilgin Y., Özçiçek A., Altuner D. The effect of rutin on cisplatin-induced oxidative cardiac damage in rats. Anatol J Cardiol. 2018 Sep; 20(3): 136–142. doi:10.14744/AnatolJCardiol.2018.32708.; Lü C.F., Yu H.J., Hou J.X., Zhou J. Increased procoagulant activity of red blood cells in the presence of cisplatin. Chin Med J (Engl). 2008; 121(18): 1775–80.; Sato C., Okuda K., Tamiya H., Yamamoto K., Hoshina K., Narumoto O., Urushiyama H., Noguchi S., Amano Y., Watanabe K., Mitani A., Kage H., Tanaka G., Yamauchi Y., Takai D., Nagase T. Acute Arterial Thrombosis during Postoperative Adjuvant Cisplatin-based Chemotherapy for Completely Resected Lung Adenocarcinoma. Intern Med. 2018 Feb 15; 57(4): 557–561. doi:10.2169/internalmedicine.8996-17.; European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes [Internet]. URL: https://www.coe.int/ru/web/conventions/full-list/conventions/rms/090000168007a67b (cited 30.04.2019).; Gong C., Qian L., Yang H., Ji L.L., Wei H., Zhou W.B., Qi C., Wang C.H. Hepatotoxicity and pharmacokinetics of cisplatin in combination therapy with a traditional Chinese medicine compound of Zengmian Yiliu granules in ICR mice and SKOV-3-bearing nude mice. BMC Complement Altern Med. 2015 Aug 18; 15: 283. doi:10.1186/s12906-015-0799-9.; Omar H.A., Mohamed W.R., Arab H.H., Arafa el-S.A. Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis. PLoS One. 2016; 11(3): e0151649. doi:10.1371/journal.pone.0151649.; Quintanilha J.C.F., de Sousa V.M., Visacri M.B., Amaral L.S., Santos R.M.M., Zambrano T., Salazar L.A., Moriel P. Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity. Cancer Chemother Pharmacol. 2017 Aug; 80(2): 223–233. doi:10.1007/s00280-017-3358-x.; Минов А.Ф., Дзядзько А.М., Руммо О.О. Нарушения гемостаза при заболеваниях печени. Вестник трансплантологии и искусственных органов. 2010; 12(2): 82–91.; Floyd J., Mirza I., Sachs B., Perry M.C. Hepatotoxicity of chemotherapy. Semin Oncol. 2006 Feb; 33(1): 50–67. doi:10.1053/j. seminoncol.2005.11.002.; Heinrich N., Born M., Hoebert E., Verrel F., Simon A., Bode U., Fleischhack G. Aortobifemoral embolism in an 18-year old patient following cisplatin and 5-fluorouracil chemotherapy for nasopharyngeal carcinoma. Vasa. 2010 Aug; 39(3): 271–3. doi:10.1024/0301-1526/a000042.; Dkhil M.A., Al-Quraishy S., Aref A.M., Othman M.S., El-Deib K.M., Abdel Moneim A.E. The potential role of Azadirachta indica treatment on cisplatin-induced hepatotoxicity and oxidative stress in female rats. Oxid Med Cell Longev. 2013; 2013: 741817. doi:10.1155/2013/741817.; Галстян Г.М., Суханова Г.А. Введение в гемостаз, современные препараты крови и их влияние на коагуляцию. Медицинский совет. 2013; 5–6: 11–16.; https://www.siboncoj.ru/jour/article/view/1494
-
20Academic Journal
Authors: N. V. Vorobjeva, Н. В. Воробьева
Contributors: Работа выполнена в рамках проекта «Молекулярные и клеточные основы иммунитета» (госбюджет, раздел 0110 (для тем по госзаданию), номер 21-1-16, номер ЦИТИС АААА-А16-116021660081-0).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 75, № 4 (2020); 210-225 ; Вестник Московского университета. Серия 16. Биология; Том 75, № 4 (2020); 210-225 ; 0137-0952
Subject Terms: сепсис, neutrophil extracellular traps, NETosis, NADPH oxidase, reactive oxygen species, thrombosis, sepsis, нейтрофильные внеклеточные ловушки, НЕТоз, NADPHоксидаза, активные формы кислорода, тромбообразование
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/931/527; Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria // Science. 2004. Vol. 303. N 5663. P. 1532–1535.; Steinberg B.E., Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death // Sci. STKE. 2007. Vol. 2007. N 379: pe11.; Papayannopoulos V. Neutrophil extracellular traps in immunity and disease // Nat. Rev. Immunol. 2018. Vol. 18. N 2. P. 134–147.; Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., Schmid I., Straumann A., Reichenbach J., Gleich G.J., Simon H.U. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense // Nat. Med. 2008. Vol. 14. N 9. P. 949–953.; Morshed M., Hlushchuk R., Simon D., Walls A.F., Obata-Ninomiya K., Karasuyama H., Djonov V., Eggel A., Kaufmann T., Simon H.U., Yousefi S. NADPH oxidaseindependent formation of extracellular DNA traps by basophils // J. Immunol. 2014. Vol. 192. N 11. P. 5314–5323.; von Köckritz-Blickwede M., Goldmann O., Thulin P., Heinemann K., Norrby-Teglund A., Rohde M., Medina E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation // Blood. 2008. Vol. 111. N 6. P. 3070–3080.; Ingelsson B., Söderberg D., Strid T., Söderberg A., Bergh A.C., Loitto V., Lotfi, K., Segelmark M., Spyrou G., Rosén A. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of Class C // Proc. Natl. Acad. Sci. U.S.A. 2018. Vol. 115. N 3. P. E478–E487.; Granger V., Faille D., Marani V., Noël B., Gallais Y., Szely N., Flament H., Pallardy M., Chollet-Martin S., de Chaisemartin L. Human blood monocytes are able to form extracellular traps // J. Leukoc. Biol. 2017. Vol. 102. N 3. P. 775–781.; Chow O.A., von Köckritz-Blickwede M., Bright A.T., Hensler M.E., Zinkernagel A.S., Cogen A.L., Gallo R.L., Monestier M., Wang Y., Glass C.K., Nizet V. Statins enhance formation of phagocyte extracellular traps // Cell Host Microbe. 2010. Vol. 8. N 5. P. 445–454.; Zhang X., Zhuchenko O., Kuspa A., Soldati T. Social amoebae trap and kill bacteria by casting DNA nets // Nat. Commun. 2016. Vol. 7: 10938.; Hawes M., Allen C., Turgeon B.G., CurlangoRivera G., Minh Tran T., Huskey D.A., Xiong Z. Root border cells and their role in plant defense // Annu. Rev. Phytopathol. 2016. Vol. 54. P. 143–161.; Belambri S.A., Rolas L., Raad H., Hurtado-Nedelec M., Dang P.M., El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits // Eur. J. Clin. Invest. 2018. Vol. 48. Suppl. 2: e12951.; Hakkim A., Fuchs T.A., Martinez N.E., Hess S., Prinz H., Zychlinsky A., Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation // Nat. Chem. Biol. 2011. Vol. 7. N 2. P. 75–77.; Bianchi M., Hakkim A., Brinkmann V., Siler U., Seger R.A., Zychlinsky A., Reichenbach J. Restoration of NET formation by gene therapy in CGD controls aspergillosis // Blood. 2009. Vol. 114. N 13. P. 2619–2622.; Metzler K.D., Fuchs T.A., Nauseef W.M., Reumaux D., Roesler J., Schulze I., Wahn V., Papayannopoulos V., Zychlinsky A. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity // Blood. 2011. Vol. 117. N 3. P. 953–959.; Metzler K.D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. A myeloperoxidasecontaining complex regulates neutrophil elastase release and actin dynamics during NETosis // Cell Rep. 2014. Vol. 8. N 3. P. 883–896.; Anzilotti C., Pratesi F., Tommasi C., Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease // Autoimmun. Rev. 2010. Vol. 9. N 3. P. 158–160.; Sollberger G., Choidas A., Burn G.L., Habenberger P., Di Lucrezia R., Kordes S., Menninger S., Eickhoff J., Nussbaumer P., Klebl B., Krüger R., Herzig A., Zychlinsky A. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps // Science Immunol. 2018. Vol. 3: eaar6689.; Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity // Autoimmun. Rev. 2015. Vol. 14. N 7. P. 633–640.; Li P., Li M., Lindberg M.R., Kennett M.J., Xiong N., Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps // J. Exp. Med. 2010. Vol. 207. N 9. P. 1853–1862.; Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 9. P. 2817–2822.; Mahomed A.G., Anderson R. Activation of human neutrophils with chemotactic peptide, opsonized zymosan and the calcium ionophore A23187, but not with a phorbol ester, is accompanied by efflux and store-operated influx of calcium // Inflammation. 2000. Vol. 24. N 6. P. 559–569.; Hu T.H., Bei L., Qian Z.M., Shen X. Intracellular free calcium regulates the onset of the respiratory burst of human neutrophils activated by phorbol myristate acetate // Cell. Signal. 1999. Vol. 11. N 5. P. 355–360.; Vorobjeva N.V., Chernyak B.V. NADPH oxidase modulates Ca2+-dependent formation of neutrophil extracellular traps // Moscow Univ. Biol. Sci. Bull. 2020. Vol. 75. N 3. P. 104–109.; Shishikura K., Horiuchi T., Sakata N., Trinh D.A., Shirakawa R., Kimura T., Asada Y., Horiuchi H. Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP // Br. J. Pharmacol. 2016. Vol. 173. N 2. P. 319–331.; Healy L.D., Puy C., Fernández J.A, Mitrugno A., Keshari R.S., Taku N.A., Chu T.T., Xu X., Gruber A., Lupu F., Griffin J.H., McCarty O.J.T. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo // J. Biol. Chem. 2017. Vol. 292. N 21. P. 8616–8629.; Amulic B., Knackstedt S.L., Abu Abed U., Deigendesch N., Harbort C.J., Caffrey B.E., Brinkmann V., Heppner F.L., Hinds P.W., Zychlinsky A. Cell-cycle proteins control production of neutrophil extracellular traps // Dev. Cell. 2017. Vol. 43. N 4. P. 449–462.e5.; Kenny E.F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P.R., Brinkmann V., Bernuth H.V., Zychlinsky A. Diverse stimuli engage different neutrophil extracellular trap pathways // eLife. 2017. Vol. 6: e24437.; Neeli I., Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release // Front. Immunol. 2013. Vol. 4: 38.; Lood C., Blanco L.P., Purmalek M.M., CarmonaRivera C., De Ravin S.S., Smith C.K., Malech H.L., Ledbetter J.A., Elkon K.B., Kaplan M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease // Nat. Med. 2016. Vol. 22. N 2. P. 146–153.; Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils // Biochim. Biophys. Acta. Mol. Basis. Dis. 2020. Vol. 1866. N 5: 165664.; Geiszt M., Kapus A., Ligeti E. Chronic granulomatous disease: more than the lack of superoxide? // J. Leukoc. Biol. 2001. Vol. 69. N 2. P. 191–196.; Bernardi P., Rasola A., Forte M., Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology // Physiol. Rev. 2015. Vol. 95. P. 1111–1155.; Wildhagen K.C., García de Frutos P., Reutelingsperger C.P., Schrijver R., Aresté C., OrtegaGómez A., Deckers N.M., Hemker H.C., Soehnlein O., Nicolaes G.A. Nonanticoagulant heparin prevents histonemediated cytotoxicity in vitro and improves survival in sepsis // Blood. 2014. Vol. 123. N 7. P. 1098–1101.; Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications // Cell Res. 2011. Vol. 21. N 3. P. 381–395.; Lewis H.D., Liddle J., Coote J.E., et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation // Nat. Chem. Biol. 2015. Vol. 11. N 3. P. 189–191.; Hamam H.J., Khan M.A., Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation // Biomolecules. 2019. Vol. 9. N 1: 32.; Clark S.R., Ma A.C., Tavener S.A., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood // Nat. Med. 2007. Vol. 13. N 4. P. 463–469.; Yipp B.G., Petri B., Salina D., Jenne C.J., Scott B.N.V., Zbytnuik L.D., Pittman K., Asaduzzaman M., Wu K., Meijndert H.C., Malawista S.E., de Boisfleury Chevance A., Zhang K., Conly J., Kubes P. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo // Nat. Med. 2012. Vol. 18. N 9. P. 1386–1393.; Pilsczek F.H., Salina D., Poon K.K., Fahey C., Yipp B.G., Sibley C.D., Robbins S.M., Green F.H.Y., Surette M.G., Sugai M., Bowden M.G., Hussain M., Zhang K., Kubes P. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus // J. Immunol. 2010. Vol. 185. N 12. P. 7413–7425.; Yousefi S., Mihalache C., Kozlowski E., Schmid I., Simon H.U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps // Cell. Death. Differ. 2009. Vol. 16. N 11. P. 1438–1444.; Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens // Nat. Immunol. 2014. Vol. 15. N 11. P. 1017–1025.; Wartha F., Beiter K., Albiger B., Fernebro J., Zychlinsky A., Normark S., Henriques-Normark B. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps // Cell. Microbiol. 2007. Vol. 9. N 5. P. 1162–1171.; Wilton M., Halverson T.W.R., CharronMazenod L., Parkins M.D., Lewenza S. Secreted phosphatase and deoxyribonuclease are required by Pseudomonas aeruginosa to defend against neutrophil extracellular traps // Infect. Immun. 2018. Vol. 86. N 9: e00403-18.; Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process // J. Immunol. 2013. Vol. 191. N 5. P. 2647–2656.; Cortjens B., de Boer O.J., de Jong R., Antonis A.F., Sabogal Pineros Y.S., Lutter R., van Woensel J.B., Reinout A., Bem R.A. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease // J. Pathol. 2016. Vol. 238. N 3. P. 401–411.; Hamaguchi S., Seki M., Yamamoto N., Hirose T., Matsumoto N., Irisawa T., Takegawa R., Shimazu T., Tomono K. Case of invasive nontypable Haemophilus influenzae respiratory tract infection with a large quantity of neutrophil extracellular traps in sputum // J. Inflamm. Res. 2012. Vol. 5. P. 137–140.; Dicker A.J., Crichton M.L., Pumphrey E.G., et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease // J. Allergy Clin. Immunol. 2018. Vol. 141. N 1. P. 117–127.; Papayannopoulos V., Staab D., Zychlinsky A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy // PLoS One. 2011. Vol. 6. N 12: e28526.; Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., Toy P., Werb Z., Looney M.R. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury // J. Clin. Invest. 2012. Vol. 122. N 7. P. 2661–2671.; Bendib I., de Chaisemartin L., Granger V., Schlemmer F., Maitre B., Hüe S., Surenaud M., BeldiFerchiou A., Carteaux G., Razazi K., Chollet-Martin S., Dessap A.M., de Prost N. Neutrophil extracellular traps are elevated in patients with pneumonia-related acute respiratory distress syndrome // Anesthesiology. 2019. Vol. 130. N 4. P. 581–591.; Lv X., Wen T., Song J., Xie D., Wu L., Jiang X., Jiang P., Wen Z. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome // Respir. Res. 2017. Vol. 18. N 1: 165.; Pedersen S.F., Ho Y.C. SARS-CoV-2: a storm is raging // J. Clin. Invest. 2020. Vol. 130. N 5. P. 2202–2205.; Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J., HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395. N 10229. P. 1033–1034.; Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., Blair C.N., Weber A., Barnes B.J., Egeblad M., Woods R.J., Kanthi Y., Knight J.S. Neutrophil extracellular traps in COVID-19 // JCI Insight. 2020. Vol. 5. N 11: e138999.; Martinod K., Wagner D.D. Thrombosis: tangled up in NETs // Blood. 2014. Vol. 123. N 18. P. 2768–2776.; Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA traps promote thrombosis // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 36. P. 15880–15885.; Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., Bhandari A.A., Wagner D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice // J. Thromb. Haemost. 2012. Vol. 10. N 1. P. 136–144.; Jimenez-Alcazar M., Kim N., Fuchs T.A. Circulating extracellular DNA: cause or consequence of thrombosis? // Semin. Thromb. Hemost. 2017. Vol. 43. N 6. P. 553–561.; Novotny J., Oberdieck P., Titova A., et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction // Neurology. 2020. Vol. 94. N 22. P. e2346–e2360.; Gloude N.J., Khandelwal P., Luebbering N., Lounder D.T., Jodele S., Alder M.N., Lane A., Wilkey A., Lake K.E., Litts B., Davies S.M. Circulating dsDNA, endothelial injury, and complement activation in thrombotic microangiopathy and GVHD // Blood. 2017. Vol. 130. N 10. P. 1259–1266.; Borissoff J.I., Joosen I.A., Versteylen M.O., Brill A., Fuchs T.A., Savchenko A.S., Gallant M., Martinod K., Ten Cate H., Hofstra L., Crijns H.J., Wagner D.D., Kietselaer B.L.J.H. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33. N 8. P. 2032–2040.; Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Nunez-Alvarez C., Hernandez-Ramirez D., Bockenstedt P.L., Liaw P.C., Cabral A.R., Knight J.S. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome // Arthritis Rheumatol. 2015. Vol. 67. N 11. P. 2990–3003.; Leppkes M., Maueroder C., Hirth S., et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis // Nat. Commun. 2016. Vol. 7: 10973.; Merza M., Hartman H., Rahman M., Hwaiz R., Zhang E., Renstrom E., Luo L., Morgelin M., Regner S., Thorlacius H. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis // Gastroenterology. 2015. Vol. 149. N 7. P. 1920–1931.e8.; Schauer C., Janko C., Munoz L.E., et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines // Nat. Med. 2014. Vol. 20. N 5. P. 511–527.; Park J., Wysocki R.W., Amoozgar Z., et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps // Sci. Transl. Med. 2016. Vol. 8. N 361: 361ra138.; Levi M. Management of cancer-associated disseminated intravascular coagulation // Thromb. Res. 2016. Vol. 140. Suppl. 1. P. S66–S70.; Guglietta S., Chiavelli A., Zagato E., Krieg C., Gandini S., Ravenda P.S., Bazolli B., Lu B., Penna G., Rescigno M. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis // Nat. Commun. 2016. Vol. 7: 11037.; Breitbach C.J., De Silva N.S., Falls T.J., et al. Targeting tumor vasculature with an oncolytic virus // Mol. Ther. 2011. Vol. 19. N 5. P. 886–894.; Gupta S., Kaplan M.J. The role of neutrophils and NETosis in autoimmune and renal diseases // Nat. Rev. Nephrol. 2016. Vol. 12. N 7. P. 402–413.; Moore S., Juo H.H., Nielsen C.T., Tyden H., Bengtsson A.A., Lood C. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus // J. Rheumatol. 2019. Vol. 47. N 10: 190875.; Pratesi F., Dioni I., Tommasi C., Alcaro M.C., Paolini I., Barbetti F., Boscaro F., Panza F., Puxeddu I., Rovero P., Migliorini P. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps // Ann. Rheum. Dis. 2014. Vol. 73. N 7. P. 1414–1422.; Falk R.J., Jennette J.C. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis // N. Engl. J. Med. 1988. Vol. 318. N 25. P. 1651–1657.; Al-Mayouf S.M., Sunker A., Abdwani R., et al. Lossof-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus // Nat. Genet. 2011. Vol. 43. N 12. P. 1186–1188.; Carmona-Rivera C., Carlucci P.M., Moore E., et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis // Sci. Immunol. 2017. Vol. 2. N 10: eaag3358.; Hakkim A., Furnrohr B.G., Amann K., Laube B., Abed U.A., Brinkmann V., Herrmann M., Voll R.E., Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 21. P. 9813–9818.; O’Sullivan K.M., Lo C.Y., Summers S.A., Elgass K.D., McMillan P.J., Longano A., Ford S.L., Gan P.Y., Kerr P.G., Kitching A.R., Holdsworth S.R. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis // Kidney Int. 2015. Vol. 88. N 5. P. 1030–1046.; Kumar S.V., Kulkarni O.P., Mulay S.R., Darisipudi M.N., Romoli S., Thomasova D., Scherbaum C.R., Hohenstein B., Hugo C., Müller S., Liapis H., Anders H.J. Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN // J. Am. Soc. Nephrol. 2015. Vol. 26. N 10. P. 2399–2413.; Park S.Y., Shrestha S., Youn Y.J., et al. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis // Am. J. Respir. Crit. Care Med. 2017. Vol. 196. N 5. P. 577–589.; Meng W., Paunel-Görgülü A., Flohé S., Hoffmann A., Witte I., MacKenzie C., Baldus S.E., Windolf J., Lögters T.T. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice // Crit. Care. 2012. Vol. 16. N 4: R137.; Saffarzadeh M., Juenemann C., Queisser M.A., Lochnit G., Barreto G., Galuska S.P., Lohmeyer J., Preissner K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones // PLoS One. 2012. Vol. 7. N 2: e32366.; Weber C. Liver: neutrophil extracellular traps mediate bacterial liver damage // Nat. Rev. Gastroenterol. Hepatol. 2015. Vol. 12. N 5: 251.; Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F., Taylor F.B., Esmon N.L., Lupu F., Esmon C.T. Extracellular histones are major mediators of death in sepsis // Nat. Med. 2009. Vol. 15. N 11. P. 1318–1321.; Czaikoski P.G., Mota J.M., Nascimento D.C., Sonego F., Castanheira F.V., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O., Pazin-Filho A., Figueiredo F., Alves-Filho J.C., Cunha F.Q. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis // PLoS One. 2016. Vol. 11. N 2: e0148142.; Pietronigro E.C., Bianca V.D., Zenaro E., Constantin G. NETosis in Alzheimer’s disease // Front. Immunol. 2017. Vol. 8: 211.; Lachowicz-Scroggins M.E., Dunican E.M., Charbit A.R., et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma // Am. J. Respir. Crit. Care Med. 2019. Vol. 199. N 9. P. 1076–1085.; Zhang T., Mei Y., Dong W., Wang J., Huang F., Wu J. Evaluation of protein arginine deiminase-4 inhibitor in TNBS-induced colitis in mice // Int. Immunopharmacol. 2020. Vol. 84: 106583.; Dinallo V., Marafini I., Di Fusco D., Laudisi F., Franzè E., Di Grazia A., Figliuzzi M.M., Caprioli F., Stolfi C., Monteleone I., Monteleone G. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis // J. Crohns Colitis. 2019. Vol. 13. N 6. P. 772–784.; Gupta A.K., Hasler P., Holzgreve W., Gebhardt S., Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia // Hum. Immunol. 2005. Vol. 66. N 11. P. 1146–1154.; Vecchio F, Lo Buono N, Stabilini A, et al. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes // JCI Insight. 2018. Vol. 3. N 18: e122146.; Zhou J., Yang Y., Gan T., Li Y., Hu F., Hao N., Yuan B., Chen Y., Zhang M. Lung cancer cells release high mobility group box 1 and promote the formation of neutrophil extracellular traps // Oncol. Lett. 2019. Vol. 18. N 1. P. 181–188.; Short K.R., von Köckritz-Blickwede M., Langereis J.D., Chew K.Y., Job E.R., Armitage C.W., Hatcher B., Fujihashi K., Reading P.C., Hermans P.W., Wijburg O.L., Diavatopoulos D.A. Antibodies mediate formation of neutrophil extracellular traps in the middle ear and facilitate secondary pneumococcal otitis media // Infect. Immun. 2014. Vol. 82. N 1. P. 364–370.; Hwang J.W., Kim J.H., Kim H.J., Choi I.H., Han H.M., Lee K.J., Kim T.H., Lee S.H. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier // Clin. Exp. Allergy. 2019. Vol. 49. N 10. P. 1306–1320.; Tibrewal S., Ivanir Y., Sarkar J., NayebHashemi N., Bouchard C.S., Kim E., Jain S. Hyperosmolar stress induces neutrophil extracellular trap formation: implications for dry eye disease // Invest. Ophthalmol. Vis. Sci. 2014. Vol. 55. N 12. P. 7961–7969.; Shan Q., Dwyer M., Rahman S., Gadjeva M. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity // Infect. Immun. 2014. Vol. 82. N 10. P. 4135–4143.; Jin X., Zhao Y., Zhang F., Wan T., Fan F., Xie X., Lin Z. Neutrophil extracellular traps involvement in corneal fungal infection // Mol. Vis. 2016. Vol. 22. P. 944–952.; Magán-Fernández A., Al-Bakri S.M., O’Valle F., Benavides-Reyes C., Abadía-Molina F., Mesa F. Neutrophil extracellular traps in periodontitis // Cells. 2020. Vol. 9. N 6: E1494.; Menegazzo L., Ciciliot S., Poncina N., Mazzucato M., Persano M., Bonora B., Albiero M., de Kreutzenberg S.V., Avogaro A., Fadini G.P. NETosis is induced by high glucose and associated with type 2 diabetes // Acta Diabetol. 2015. Vol. 52. N 3. P. 497–503.
Availability: https://vestnik-bio-msu.elpub.ru/jour/article/view/931