Showing 1 - 20 results of 355 for search '"трансплантация печени"', query time: 0.91s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 17, № 2 (2025); 200-214 ; Трансплантология; Том 17, № 2 (2025); 200-214 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/1008/946; https://www.jtransplantologiya.ru/jour/article/view/1008/952; Battistella S, Grasso M, Catanzaro E, D'Arcangelo F, Corrà G, Germani G, et al. Evolution of liver transplantation indications: expanding horizons. Medicina (Kaunas). 2024;60(3):412. PMID: 38541138 htpps://doi.org/10.3390/medicina60030412; Häberle J, Siri B, Dionisi-Vici C. Quo vadis ureagenesis disorders? A journey from 90 years ago into the future. J Inherit Metab Dis. 2024;47(6):1120-1128. PMID: 38837457 https://doi.org/10.1002/jimd.12763; Krutsinger D, Pezzulo A, Blevins AE, Reed RM, Voigt MD, Eberlein M. Idiopathic hyperammonemia after solid organ transplantation: primarily a lung problem? A single-center experience and systematic review. Clin Transplant. 2017;31(5):e12957. PMID: 28295601 https://doi.org/10.1111/ctr.12957; Lichtenstein GR, Yang YX, Nunes FA, Lewis JD, Tuchman M, Tino G, et al. Fatal hyperammonemia after orthotopic lung transplantation. Ann Int Med. 2000;132(4):283–287. PMID: 10681283 https://doi.org/10.7326/0003-4819-132-4-200002150-00006; Catherine Ch, Bain KB, Iuppa JA, Yusen RD, Byers DE, Patterson GA, et al. Hyperammonemia syndrome after lung transplantation: a single center experience. Transplantation. 2016;100(3):678– 684. PMID: 26335916 https://doi.org/10.1097/TP.0000000000000868; Seethapathy H, Fenves AZ. Pathophysiology and management of hyperammonemia in organ transplant patients. Am J Kidney Dis. 2019;74(3):390–398. PMID: 31040091 https://doi.org/10.1053/j.agkd.2019.03.419; Plöchl W, Plöchl E, Pokorny H, Kozek-Langenecker S, Zacherl J, Stöckler-Ipsiroglu S, et al. Multiorgan donation from a donor with unrecognized ornithine transcarbamylase deficiency. Transplant Int. 2001;14(3):196-201. PMID: 11499911 https://doi.org/10.1007/s001479900134; Jalan R, De Chiara F, Balasubramaniyan V, Andreola F, Khetan V, Malago M, et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J Hepatol. 2016;64(4):823–833. PMID: 26654994 https://doi.org/10.1016/j.jhep.2015.11.019; Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int. 2020;140:104809. PMID: 32758585 https://doi.org/10.1016/j.neuint.2020.104809; Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495– 1511. PMID: 22921946 https://doi.org/10.1016/j.metabol.2012.07.007; Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking in liver disease. Metab Brain Dis. 2009;24(1):169– 181. PMID: 19067143 https://doi.org/10.1007/s11011-008-9122-5; Long MT, Coursin DB. Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care. 2022;70:154042. PMID: 35447602 https://doi.org/10.1016/j.jcrc.2022.154042; Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol. 2013;3(1):201–220. PMID: 23720285 https://doi.org/10.1002/cphy.c120010; Bourgeois S, Houillier P. State of knowledge on ammonia handling by the kidney. Pflugers Arch. 2024;476(4):517– 531. PMID: 38448728 https://doi.org/10.1007/s00424-024-02940-1; La M, Reid JJ. Endothelin-1 and the regulation of vascular tone. Clin Exp Pharmacol Physiol. 1995;22(5):315– 323. PMID: 7554421 https://doi.org/10.1111/j.1440-1681.1995.tb02008.x; Ghabril M, Nguyen J, Kramer D, Genco T, Mai M, Rosser BG. Presentation of an acquired urea cycle disorder post liver transplantation. Liver Transpl. 2007;13(12):1714-1716. PMID: 18044746 https://doi.org/10.1002/lt.21291; Ali R, Nagalli S. Hyperammonemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. PMID: 32491436; Chen H, Yang C, Yan S, Liu X, Zhou L, Yuan X. Sarcopenia in cirrhosis: from pathophysiology to interventional therapy. Exp Gerontol. 2024;196:112571. PMID: 39236869 https://doi.org/10.1016/j.exger.2024.112571; Weber ML, Ibrahim HN, Lake JR. Renal dysfunction in liver transplant recipients: evaluation of the critical issues. Liver Transpl. 2012;18(11):1290– 1301. PMID: 22847917 https://doi.org/10.1002/lt.23522; Hussaini T, Yoshida EM, Partovi N, Erb SR, Scudamore C, Chung S, et al. Early persistent progressive acute kidney injury and graft failure post liver transplantation. Transplant Direct. 2019;5(3):e429. PMID: 30882034 https://doi.org/10.1097/TXD.0000000000000868; Barritt AS 4th, Fried MW, Hayashi PH. Persistent portosystemic shunts after liver transplantation causing episodic hepatic encephalopathy. Dig Dis Sci. 2010;55(6):1794–1798. PMID: 19655248 https://doi.org/10.1007/s10620-009-0901-6; Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev. 2014;258(1):132–144. PMID: 24517430 https://doi.org/10.1111/imr.12146; Vicente H-R, Agusti A, Cabrera-Pastor A, Fustero S, Delgado O, Taoro-Gonzalez L, et al. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation. 2015;12:195. PMID: 26511444 https://doi.org/10.1186/s12974-015-0420-7; Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation. 2018;15(1):36. PMID: 29422059 https://doi.org/10.1186/s12974-018-1082-z; Pun CK, Huang HC, Chang CC, Hsu SJ, Huang YH, Hou MC, et al. Hepatic encephalopathy: from novel pathogenesis mechanism to emerging treatments. J Chin Med Assoc. 2024;87(3):245–251. PMID: 38109364 https://doi.org/10.1097/JCMA.0000000000001041; Phillips SM, Pouch SM, Lo DJ, Kandiah S, Lomashvili KA, Subramanian RA, et al. A case of “cryptammonia”: disseminated cryptococcal infection generating profound hyperammonemia in a liver transplant recipient. J Investig Med High Impact Case Rep. 2022;10:23247096221129467. PMID: 36214295 https://doi.org/10.1177/23247096221129467; Baker RP, Schachter M, Phillips S, Kandiah S, Farrque M, Casadevall A, et al. Host and fungal factors both contribute to cryptococcosis-associated hyperammonemia (cryptammonia). Microbiol Spectr. 2024;12(7):e0390223. PMID: 38842310 https://doi.org/10.1128/spectrum.03902-23; Kolopaking MS. Urease, gastric bacteria and gastritis. Acta Med Indones. 2022;54(1):1–2. PMID: 35398819; Mouat S, Bishop J, Glamuzina E, Chin S, Best EJ, Evans HM. Fatal hyperammonemia associated with disseminated Serratia marcescens infection in a pediatric liver transplant recipient. Pediatr Transplantation. 2018;22(4):e13180. PMID: 29624817 https://doi.org/10.1111/petr.13180; Duarte T, Fidalgo P, Karvellas CJ, Cardoso FS. What every Intensivist should know about . Ammonia in liver failure. J Crit Care. 2024;81:154456. PMID: 37945461 https://doi.org/10.1016/j.jcrc.2023.154456; Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol. 2020;73(6):1526–1547. PMID: 33097308 https://doi.org/10.1016/j.jhep.2020.07.013; Deutsch-Link S, Moon AM, Jiang Y, Barritt AS 4th, Tapper EB. Serum ammonia in cirrhosis: clinical impact of hyperammonemia, utility of testing, and national testing trends. Clin Ther. 2022;44(3):e45–e57. PMID: 35125217 https://doi.org/10.1016/j.clinthera.2022.01.008; Лазебник Л.Б., Голованова Е.В., Алексеенко С.А., Буеверов А.О., Плотникова Е.Ю., Долгушина А.И. и др. Российский консенсус «Гипераммониемии у взрослых» (Версия 2021). Экспериментальная и клиническая гастроэнтерология. 2021;(3):97–118. https://doi.org/10.31146/1682-8658-ecg-187-3-97-118; Gupta S, Fenves AZ, Hootkins R. The role of RRT in hyperammonemic patients. Clin J Am Soc Nephrol. 2016;11(10):1872–1878. PMID: 27197910 https://doi.org/10.2215/CJN.01320216; Bernal W, Lee WM, Wendon J, Larsen FS, Williams R. Acute liver failure: a curable disease by 2024? J Hepatol. 2015;62(1 Suppl):S112–120. PMID: 25920080 https://doi.org/10.1016/j.jhep.2014.12.016; Butterworth RF. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs RD. 2021;21(2):123–132. PMID: 33890246 https://doi.org/10.1007/s40268-021-00345-4; Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5(5):CD001939. PMID: 28518283 https://doi.org/10.1002/14651858.CD001939.pub4; Jalan R, O Damink SW, Deutz NE, Lee A, Hayes PC. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet. 1999;354(9185):1164–1168. PMID: 10513710 https://doi.org/10.1016/s0140-6736(98)12440-6; Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology. 2011;53(6):1995–2002. PMID: 21384402 https://doi.org/10.1002/ hep.24273; Agarwal B, Cañizares RB, Saliba F, Ballester MP, Tomescu DR, Martin D, et al. Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on-chronic liver failure. J Hepatol. 2023;79(1):79–92. PMID: 37268222 https://doi.org/10.1016/j.jhep.2023.03.013; Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975. PMID: 30651324 https://doi.org/10.1126/scitranslmed.aau7975; Song G, Kerbet A, Jones H, Arias N, Davies N, Andreola F, et al. PS-149-recombinant glutamine synthetase: a novel strategy for the treatment of hyperammonemia and consequent hepatic encephalopathy in rodent model of cirrhosis and urea cycle enzyme deficiency. J Hepatol. 2019;70(1):e93–e94. https://doi.org/10.1016/S0618-8278(19)30167-7; Lévesque R, Leblanc M, Cardinal J, Teitlebaum J, Skrobik Y, Lebrun M. Haemodialysis for severe hyperammonaemic coma complicating urinary diversions. Nephrol Dial Transplant. 1999;14(2):458–461. PMID: 10069214 https://doi.org/10.1093/ndt/14.2.458; Naorungroj T, Yanase F, Eastwood GM, Baldwin I, Bellomo R. Extracorporeal ammonia clearance for hyperammonemia in critically Ill patients: a scoping review. Blood Purif. 2021;50(4-5):453–461. PMID: 33279903 https://doi.org/10.1159/000512100; Slack AJ, Auzinger G, Willars C, Dew T, Musto R, Corsilli D, et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 2014;34(1):42–48. PMID: 23786538 https://doi.org/10.1111/liv.12221; Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R. Pre-dilution vs. post-dilution during continuous venovenous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract. 2003;94(4):c94–98. PMID: 12972719 https://doi.org/10.1159/000072492; Fisher C, Baldwin I, Fealy N, Naorungroj T, Bellomo R. Ammonia clearance with different continuous renal replacement therapy techniques in patients with liver failure. Blood Purif. 2022;51(10):840–846. PMID: 35042216 https://doi.org/10.1159/000521312; Dong V, Karvellas CJ. Liver assistive devices in acute liver failure: current use and future directions. Best Pract Res Clin Gastroenterol. 2024;73:101964. PMID: 39709218 https://doi.org/10.1016/j.bpg.2024.101964; Krisper P, Haditsch B, Stauber R, Jung A, Stadlbauer V, Trauner M, et al. In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation. J Hepatol. 2005;43(3):451–7. PMID: 16023249 https://doi.org/10.1016/j.jhep.2005.02.038; MacDonald AJ, Karvellas CJ. Emerging role of extracorporeal support in acute and acute-on-chronic liver failure: recent developments. Semin Respir Crit Care Med. 2018;39(5):625– 634. PMID: 30485892 https://doi.org/10.1055/s-0038-1675334; Maiwall R, Bajpai M, Singh A, Agarwal T, Kumar G, Bharadwaj A, et al. Standard-volume plasma exchange improves outcomes in patients with acute liver failure: a randomized controlled trial. Clin Gastroenterol Hepatol. 2022;20(4):e831–e854. PMID: 33524593 https://doi.org/10.1016/j.cgh.2021.01.036; Larsen FS, Saliba F. Liver support systems and liver transplantation in acute liver failure. Liver Int. 2025;45(3):e15633. PMID: 37288706 https://doi.org/10.1111/liv.15633; https://www.jtransplantologiya.ru/jour/article/view/1008

  5. 5
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 17, № 1 (2025); 66-75 ; Трансплантология; Том 17, № 1 (2025); 66-75 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/967/929; https://www.jtransplantologiya.ru/jour/article/view/967/933; Техника сбора и транспортирования биоматериалов в микробиологические лаборатории: методические указания МУ 4.2.2039-05. Москва; 2005. URL: https://ohranatruda.ru/upload/iblock/b8a/4293758559.pdf [Дата обращения 26 сентября 2024 г.]. Tekhnika sbora i transportirovaniya biomaterialov v mikrobiologicheskie laboratorii: metodicheskie ukazaniya MU 4.2.2039-05. Moscow; 2005. Available at: https://ohranatruda.ru/upload/iblock/b8a/4293758559.pdf [Accessed September 26, 2024]. (In Russ.).; Isenberg HD. (ed.) Clinical Microbiology. Procedures Handbook. American Sosiety for Microbiology; 1992.; Leibovici-Weissman Y, Anchel N, Nesher E, Leshno M, Shlomai A. Early post-liver transplantation infections and their effect on long-term survival. Transpl Infect Dis. 2021;23(4):e13673. PMID: 34153169 https://doi.org/10.1111/tid.13673; Heldman MR, Ngo S, Dorschner PB, Helfrich M, Ison MG. Pre- and posttransplant bacterial infections in liver transplant recipients. Transpl Infect Dis. 2019;21(5):e13152. PMID: 31355967 https://doi.org/10.1111/tid.13152; Lemos GT, Terrabuio DRB, Nunes NN, Song ATW, Oshiro ICV, D'Albuquerque LAC, et al. Pre-transplant multidrug-resistant infections in liver transplant recipients-epidemiology and impact on transplantation outcome. Clin Transplant. 2024;38(1):e15173. PMID: 37877950 https://doi.org/10.1111/ctr.15173; Liu N, Yang G, Dang Y, Liu X, Chen M, Dai F, et al. Epidemic, risk factors of carbapenem-resistant Klebsiella pneumoniae infection and its effect on the early prognosis of liver transplantation. Front Cell Infect Microbiol. 2022;12:976408. PMID: 36275019 https://doi.org/10.3389/fcimb.2022.976408eCollection2022; Guo L, Peng P, Peng WT, Zhao J, Wan QQ. Klebsiella pneumoniae infections after liver transplantation: drug resistance and distribution of pathogens, risk factors, and influence on outcomes. World J Hepatol. 2024;16(4):612624. PMID: 38689752 https://doi.org/10.4254/wjh.v16.i4.612; Osborn MA, Böltner D. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid. 2002;48(3):202– 212. PMID: 12460536 https://doi.org/10.1016/s0147-619x(02)00117-8; Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018;66(8):1290–1297. PMID: 29165604 https://doi.org/10.1093/cid/cix893; Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Sci OA. 2020;6(3):FSO438. PMID: 32140243 https://doi.org/10.2144/fsoa-2019-0098; Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal. 2022;36(12):e24743. PMID: 36347819 https://doi.org/10.1002/jcla.24743; Satlin MJ, Chen L, Gomez-Simmonds A, Marino J, Weston G, Bhowmick T, et al. Impact of a rapid molecular test for Klebsiella pneumoniae carbapene mase and ceftazidime-avibactam use on outcomes after bacteremia caused by carbapenem-resistant Enterobacterales. Clin Infect Dis. 2022;75(12):2066-2075. PMID: 35522019 https://doi.org/10.1093/cid/ciac354; Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol. 2021;12:750662. PMID: 34992583 https://doi.org/10.3389/fmicb.2021.750662eCollection2021; Chen J, Hu Q, Zhou P, Deng S. Ceftazidime-avibactam versus polymyxins in treating patients with carbapenemresistant Enterobacteriaceae infections: a systematic review and meta-analysis. Infection. 2024;52(1):19-28. PMID: 37878197 https://doi.org/10.1007/s15010-023-02108-6; Wu X, Long G, Peng W, Wan Q. Drug resistance and risk factors for acquisition of gram-negative bacteria and carbapenem-resistant organisms among liver transplant recipients. Infect Dis Ther. 2022;11(4):1461–1477. PMID: 35551638 https://doi.org/10.1007/s40121-022-00649-1; Mackow NA, van Duin D. Reviewing novel treatment options for carbapenem-resistant Enterobacterales. Expert Review of Anti-Infective Therapy. 2024;22(1–3):71–85. PMID: 38183224 https://doi.org/10.1080/14787210.2024.2303028; Lasko MJ, Nicolau DP. Carbapenemresistant Enterobacterales: considerations for treatment in the era of new antimicrobials and evolving enzymology. Curr Infect Dis Rep. 2020;22(3):6. PMID: 32034524 https://doi.org/10.1007/s11908-020-0716-3; Kuzmenkov AY, Trushin IV, Vinogradova AG, Avramenko AA, Sukhorukova MV, Malhotra-Kumar S, et al. AMRmap: an interactive web platform for analysis of antimicrobial resistance surveillance data in Russia. Front Microbiol. 2021;12:620002. PMID: 33776956 https://doi.org/10.3389/fmicb.2021.620002eCollection2021; European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) – Annual Epidemiological Report for 2022. Stockholm: ECDC; 2023. Stockholm, 17 November 2023. Available at: https://www.ecdc.europa.eu/en/publicationsdata/surveillance-antimicrobial-resistance-europe-2022 [Accessed December 26, 2024]; https://www.jtransplantologiya.ru/jour/article/view/967

  6. 6
    Academic Journal

    Source: General Reanimatology; Том 21, № 2 (2025); 42-54 ; Общая реаниматология; Том 21, № 2 (2025); 42-54 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2532/1931; https://www.reanimatology.com/rmt/article/downloadSuppFile/2532/1152; https://www.reanimatology.com/rmt/article/downloadSuppFile/2532/1153; https://www.reanimatology.com/rmt/article/downloadSuppFile/2532/1154; Bhatt H., Rao G. S. Management of acute liver failure: a pediatric perspective. Curr Pediatr Rep. 2018; 6 (3): 246–257. DOI:10.1007/s40124-018-0174-7. PMID: 32288972.; Mandato C., Vajro P. Pediatric acute liver failure. Pediatr Rep. 2023; 15 (3): 426–430. DOI:10.3390/pediatric15030039. PMID: 37489413.; Ming H., He Y., Xu H. M. Advancements in the diagnosis and treatment of pediatric acute liver failure. (Chinese). Zhongguo Dang Dai Er Ke Za Zhi. 2024; 26 (2): 194–200. DOI:10.7499/j.issn.1008-8830.2309015. PMID: 38436319.; Deep A., Tissieres P. Editorial: Acute liver failure in children. Front Pediatr. 2024: 12: 1402119. DOI:10.3389/fped.2024.1402119. PMID: 38633329.; Jagadisan B., Dhawan A. Letter to the Editor: Pediatric acute liver failure management-view from the other side of the pond. Liver Transpl. 2023; 29 (6): E9-E10. DOI:10.1097/LVT.0000000000000101. PMID: 36789651.; Mishra S., Pallavi P. Diagnosis and management of pediatric acute liver failure: ESPGHAN and NASPGHAN 2022. Indian Pediatr. 2022; 59 (4): 307–311. PMID: 35410966.; Coilly A., Samuel D. Paediatric acute liver failure: confirm the outbreak, find the cause and explore the mechanisms. United European Gastroenterol J. 2022; 10 (8): 789–790. DOI:10.1002/ueg2.12306. PMID: 36094884.; Hegarty R., Thompson R. J. Genetic aetiologies of acute liver failure. J Inherit Metab Dis. 2024; 47 (4): 582–597. DOI:10.1002/jimd.12733. PMID: 38499319.; Putra J., Ng V. L., Perez-Atayde A. R. Pediatric acute liver failure: a clinicopathological Pperspective. Pediatr Dev Pathol. 2022; 25 (4): 361–379. DOI:10.1177/10935266211067893. PMID: 35356839.; Deep A., Alexander E. C., Bulut Y., Fitzpatrick E., Grazioli S., Heaton N., Dhawan A. Advances in medical management of acute liver failure in children: promoting native liver survival. Lancet Child Adolesc Health. 2022; 6 (10): 725–737. DOI:10.1016/S2352-4642(22)00190-0. PMID: 35931098; Kim W. R., Lake J. R., Smith J. M. OPTN/SRTR 2017 annual data report: liver. Am J Transplant. 2019; 19 (Suppl 2): 184–283. DOI:10.1111/ajt.15276. PMID: 30811890.; Kwong A. J., Ebel N. H., Kim W. R., Lake J. R., Smith J. M., Schladt D. P., Skeans M., et al. OPTN/SRTR 2020 annual data report: liver. Am J Transplant. 2022; 22: 204–309. DOI:10.1111/ajt.16978. PMID: 35266621.; Kaya S., Ekşi Bozbulut N. Therapeutic plasma exchange in children with acute and acuteon-chronic liver failure: a single-center experience. Exp Clin Transplant. 2024; 22 (Suppl 1): 88–95. DOI:10.6002/ect.MESOT2023.O12. PMID: 38385381.; de Kleine R. H., Lexmond W. S., Buescher G., Sturm E., Kelly D., Lohse A. W., Lenz D., et al. Severe acute hepatitis and acute liver failure of unknown origin in children: a questionnaire-based study within 34 paediatric liver centres in 22 European countries and Israel, April 2022. Euro Surveill. 2022; 272200369. DOI:10.2807/1560-7917.ES.2022.27.19.2200369. PMID: 35551705.; Kaliciński P., Grenda R., Szymczak M., Pietraszek P., Pawłowska J. Multidisciplinary management of children with acute liver failure — Report on 104 children treated in single center. Pediatr Transplant. 2024; 28 (1): e14654. DOI:10.1111/petr.14654. PMID: 37983943.; Taylor S. A., Whitington P. F. Neonatal acute liver failure. Liver Transpl. 2016; 22 (5): 677–85. DOI:10.1002/lt.24433. PMID: 26946058.; Mann J. P., Lenz D., Stamataki Z., Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med. 2023; 29 (3): 228–240. DOI:10.1016/j.molmed.2022.11.006. PMID: 36496278.; Amatya P., Kapalavai S. K., Deep A., Sankaranarayanan S., Krupanandan R., Sadasivam K., Ramachandran B. Pediatric acute liver failure: sn experience of a pediatric intensive care unit from resource limited settings. Front Pediatr. 2022; 10: 956699. DOI:10.3389/fped.2022.956699. PMID: 36120651.; Силивончик Н. Н., Гавриленко Д. И. «Острая-на-хроническую» печеночная недостаточность. Гепатология и гастроэнтерология. 2018; 2 (2): 154–159. Silivonchik N. N., Gavrilenko D. I. «Acute-to-chronic» liver failure. Hepatology and Gastroenterology = Gepatologija i Gastrojenterologija. 2018; 2 (2): 154–159. (in Russ.); Kramarov S., Yevtushenko V., Seriakova I., Voronov O., Kyrytsia N., Zakordonets L. V., Shadrin V., et al. A case report of acute liver failure in a child with hepatitis a virus and Epstein-Barr virus coinfection on the background of autoimmune sclerosing cholangitis. Int Med Case Rep J. 2024: 17: 801–807. DOI:10.2147/IMCRJ.S477802. PMID: 39355258.; Mieli-Vergani G., Vergani D., Czaja A. J., Manns M. P., Krawitt E. L., Vierling J. M., Lohse A. W., Montano-Loza A. J., et al. Autoimmune hepatitis. Nat. Rev. Dis. Primers. 2018; 4: 18017. DOI:10.1038/nrdp.2018.17. PMID: 29644994.; Samanta A., Poddar U. Pediatric acute liver failure: current perspective in etiology and management. Indian J Gastroenterol. 2024; 43 (2): 349–360. DOI:10.1007/s12664-024-01520-6. PMID: 38466551.; Lenz D., Jørgensen M. H., Kelly D., Cardinale V., Geerts A., Costa I. G., Fichtner A., et al. Etiology and outcome of adult and pediatric acute liver failure in Europe. J Pediatr Gastroenterol Nutr. 2023; 77: 115–120. DOI:10.1097/MPG.0000000000003777. PMID: 36930963.; Di Giorgio A., Gamba S., Sansotta N., Nicastro E., Colledan M., D’antiga L. Identifying the aetiology of acute liver failure is crucial to impact positively on outcome. Children. 2023; 10: 733. DOI:10.3390/children10040733. PMID: 37189982.; Бакулин И. Г., Абациева М. П., Белоусова Л. Н., Медведев Ю. В., Немцова Е. Г. Острая печеночная недостаточность — диагностические и прогностические проблемы. Фарматека. 2018; 9: 23–29.; Alonso E. M., Horslen S. P., Behrens E. M., Doo E. Pediatric acute liver failure of undetermined cause: a research work-shop. Hepatology. 2017; 65: 1026–1037. DOI:10.1002/hep.28944. PMID: 27862115.; Schwabe R. F., Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol. Hepatol. 2018; 15: 738–752. DOI:10.1038/s41575-018-0065-y. PMID: 30250076.; Rao J., Zhang C., Wang P., Lu L., Qian X., Qin J., Pan X., et al. C/EBP homologous protein (CHOP) contributes to hepatocyte death via the promotion of ERO1α signalling in acute liver failure. Biochem J. 2015; 466: 369–378. DOI:10.1042/BJ20140412. PMID: 25387528.; Larsen F. S. Low-volume plasma exchange to treat children with acute liver failure. J Clin Exp Hepatol. 2023; 13 (2): 191–192. DOI:10.1016/j.jceh.2023.01.015. PMID: 36950484.; Paine C., Pichler R. How we treat hyperammonemia in acute liver failure. Clin J Am Soc Nephrol. 2024; 19 (2): 254–256. DOI:10.2215/CJN.0000000000000350. PMID: 37847521.; Bernal W., Wendon J. Acute liver failure. N Engl J Med. 2013; 369: 2525–2534. DOI:10.1056/NEJMra1208937. PMID: 24369077.; Интенсивная терапия острой печёночной недостаточности у детей и подростков: учеб. пособие. Быков Ю. В., Обедин А. Н., Волков Е. В., Зинченко О. В., Яцук И. В., Муравьёва А. А., Фишер В. В. и др. Ставрополь: Изд-во СтГМУ; 2024: 76.; Shanmugam N. P., Bansal S., Greenough A., Verma A., Dhawan A. Neonatal liver failure: aetiologies and management. State of the art. Eur J Pediatr. 2011; 170 (5): 573–581. DOI:10.1007/s00431-010-1309-1. PMID: 20886352.; Лебединский К. М. Острая печеночноклеточная недостаточность: патогенез и возможности коррекции. Практическая онкология. 2024; 25 (2): 102–110. DOI:10.31917/2502102.; Sabapathy D. G., Desai M. S. Acute liver failure in children. Pediatr Clin North Am. 2022; 69 (3): 465–495. DOI:10.1016/j.pcl.2022.02.003. PMID: 35667757.; Shah N. J., Royer A., John S. Acute liver failure. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. PMID: 29493996.; Abimannane A., Deepthi B., Bhowmick R., Parameswaran N. Clinical profile and outcomes of children with acute liver failure in a tertiary care center in South India: a retrospective study. Pediatr Gastroenterol Hepatol Nutr. 2024; 27 (1): 43–52. DOI:10.5223/pghn.2024.27.1.43. PMID: 38249636.; Lutfi R., Abulebda K., Nitu M. E., Molleston J. P., Bozic M. A., Subbarao G. Intensive care management of pediatric acute liver failure. J Pediatr Gastroenterol Nutr. 2017; 64 (5): 660–670. DOI:10.1097/MPG.0000000000001441. PMID: 27741059.; Kundan M., Gupta T., Sandeep G. Acute liver failure. Journal of Pediatric Critical Care. 2019; 6 (5): 67–74. DOI:10.21304/2019.0605.00535.; Bhatia V., Lodha R. Intensive care management of children with acute liver failure. Indian J Pediatr. 2010; 77 (11): 1288–1295. DOI:10.1007/s12098-010-0167-1. PMID: 20799075.; Lal B. B., Khanna R., Sood V., Alam S., Nagral A., Ravindranath A., Kumar A., et al. Diagnosis and management of pediatric acute liver failure: consensus recommendations of the Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ISPGHAN). Hepatol Int. 2024; 18 (5): 1343–1381. DOI:10.1007/s12072-024-10720-3. PMID: 39212863.; Лукашик С. П., Карпов И. А. Острая печеночная недостаточность у взрослых. Клиническая микробиология и антимикробная химиотерапия. 2019; 21 (1): 46–55.; Mekeirele M. M. M., Wilmer A. Fluid Management in Liver Failure. In: Rational use of intravenous fluids in critically ill patients. 2023: 411–425. SpringerLink. DOI:10.1007/978-3-031-42205-8_21.; Squires J. E., Alonso E. M., Ibrahim S. H., Kasper V., Kehar M., Martinez M., Squires R. H. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the diagnosis and management of pediatric acute liver failure. J Pediatr Gastroenterol Nutr. 2022; 74 (1): 138–158. DOI:10.1097/MPG.0000000000003268. PMID: 34347674.; Yang X., Liu X., Wang L., Xu J., Wen J. Hypoglycemia on admission in patients with acute on chronic liver failure: a retrospective cohort analyzing the current situation, risk factors, and associations with prognosis. Ann Palliat Med. 2023; 12 (1): 163–170. DOI:10.21037/apm-22-1422. PMID: 36747390.; Zou Y. G., Wang H., Li W. W., Dai D. L. Challenges in pediatric inherited/metabolic liver disease: focus on the disease spectrum, diagnosis and management of relatively common disorders. World J Gastroenterol. 2023; 29 (14): 2114–2126. DOI:10.3748/wjg.v29.i14.2114. PMID: 37122598.; Zechner C., Adams-Huet B., Gregory B., Neyra J. A., Rule J. A., Li X., Rakela J., et al. Hypophosphatemia in acute liver failure of a broad range of etiologies is associated with phosphaturia without kidney damage or phosphatonin elevation. Transl Res. 2021: 238: 1–11. DOI:10.1016/j.trsl.2021.07.003. PMID: 34298149.; Abenavoli L., Maurizi V., Boccuto L., Di Berardino A., Giostra N., Santori P., Scarcella M. L., et al. Nutritional support in acute liver failure. Diseases. 2022; 10 (4): 108. DOI:10.3390/diseases10040108. PMID: 36412602.; Hasse J. M., DiCecco S. R. Enteral nutrition in chronic liver disease: translating evidence into practice. Nutr Clin Pract. 2015; 30: 474–87. DOI:10.1177/0884533615591058. PMID: 26113562.; Stravitz R. T., Fontana R. J., Karvellas C., Durkalski V., McGuire B., Rule J. A., Tujios S., et al. Future directions in acute liver failure. Hepatology. 2023; 78 (4): 1266–1289. DOI:10.1097/HEP.0000000000000458. PMID: 37183883.; Стец В. В., Половников С. Г., Журавлев А. Г., Шестопалов А. Е. Нутритивно-метаболическая коррекция в интенсивной терапии перитонита. Раны и раневые инфекции. Журнал имени проф. Б. М. Костюченка. 2016; 3 (1): 25–31.; Karvellas C. J., Cavazos J., Battenhouse H., Durkalski V., Balko J., Sanders C., Leeet W. M., et al. Effects of antimicrobial prophylaxis and blood stream infections in patients with acute liver failure: a retrospective cohort study. Clin Gastroenterol Hepatol. 2014; 12 (11): 1942–9.e1. DOI:10.1016/j.cgh.2014.03.011. PMID: 24674942.; Dong Y., Sun D., Wang Y., Du Q., Zhang Y., Han R., Teng M., et al. Evaluation of the current guidelines for antibacterial therapy strategies in patients with cirrhosis or liver failure. BMC Infect Dis. 2022; 22 (1): 23. DOI:10.1186/s12879-021-07018-2. PMID: 34983426.; Liu C. C., Chen I. W., Liu P. H., Wu J. Y., Liu T. H., Huang P. Y., Yu C. H., et al. Efficacy of propofol-based anesthesia against risk of brain swelling during craniotomy: a meta-analysis of randomized controlled studies. J Clin Anesth. 2024: 92: 111306. DOI:10.1016/j.jclinane.2023.111306.; Shalimar S., Acharya S. K. Management in acute liver failure. J Clin Exp Hepatol. 2014; 5 (1): 104–115. DOI:10.1016/j.jceh.2014.11.005. PMID: 26041950.; Заболотских И. Б., Громова Е. Г., Кузовлев А. Н., Лебединский К. М., Лубнин А. Ю., Осовских В. В., Синьков С. В. с соавт. Периоперационное ведение взрослых пациентов с сопутствующими заболеваниями печени. Методические рекомендации. Анестезиология и реаниматология. 2022; 3: 5–24. DOI:10.17116/anaesthesiology20220315.; Lee W. M., Stravitz T. R., Fontana R. J. Safety and tolerability of Ornithine Phenylacetate to lower ammonia in Acute Liver Failure: Preliminary report of the STOP-ALF Trial. Hepatology. 2015; 62 (suppl): 319A.; Бойко А. В., Лукашевич Н. В. Механизмы развития и медикаментозная терапия отека головного мозга при спонтанном внутримозговом кровоизлиянии. Медицинские новости. 2022; (7): 42–45.; Диабетический кетоацидоз в педиатрической практике: учеб. пособие. Быков Ю. В., Обедин А. Н., Волков Е. В., Зинченко О. В., Яцук И. В., Муравьёва А. А., Фишер В. В. Ставрополь: Изд-во СтГМУ, 2023: 60.; Mason A., Malik A., Ginglen J. G. Hypertonic fluids. In: Stat-Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. PMID: 31194351.; Webster D. L., Fei L., Falcone R. A., Kaplan J. M. Higher-volume hypertonic saline and increased thrombotic risk in pediatric traumatic brain injury. J Crit Care. 2015; 30: 1267–1271. DOI:10.1016/j.jcrc.2015.07.022. PMID: 26307005.; Tujios S., Stravitz R. T., Lee W. M. Management of acute liver failure: update 2022. Semin Liver Dis. 2022; 42 (3): 362–378. DOI:10.1055/s-0042-1755274. PMID: 36001996.; Kochanek P. M., Carney N., Adelson P. D., Ashwal S., Bell M. J., Bratton S., Carson S., et al. Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents–second edition. Pediatr Crit Care Med. 2012; 13 (suppl 1): S1–82. DOI:10.1097/PCC.0b013e31823f435c. PMID: 22217782.; Burton L., Bhargava V., Kong M. Point-of-care ultrasound in the pediatric intensive care unit. Front Pediatr. 2022: 9: 830160. DOI:10.3389/fped.2021.830160. PMID: 35178366.; Fernández J., Bassegoda O., Toapanta D., Bernal W. Acute liver failure: a practical update. JHEP Rep. 2024; 6 (9): 101131. DOI:10.1016/j.jhepr.2024.101131. PMID: 39170946.; Leventhal T. M., Liu K. D. What a nephrologist needs to know about acute liver failure. Adv Chronic Kidney Dis. 2015; 22 (5): 376–381. DOI:10.1053/j.ackd.2015.06.006. PMID: 26311599.; Cardoso F. S., Gottfried M., Tujios S., Olson J. C., Karvellas C. J. Continuous renal replacement therapy is associated with reduced serum ammonia levels and mortality in acute liver failure. Hepatology. 2018; 67 (2): 711–720. DOI:10.1002/hep.29488. PMID: 28859230.; Jalanko H., Pakarinen M. Combined liver and kidney transplantation in children. Pediatr Nephrol (Berlin, Germany). 2014; 29 (5): 805–814. DOI:10.1007/s00467-013-2487-7. PMID: 23644898.; Nadim M. K., Sung R. S., Davis C. L., Andreoni K. A., Biggins S. W., Danovitch G. M., Feng S., et al. Simultaneous liver-kidney transplantation summit: current state and future directions. Am J Transplant. 2012; 12 (11): 2901–2908. DOI:10.1111/j.1600-6143.2012.04190.x. PMID: 22822723.; Ankawi G., Neri M., Zhang J., Breglia A., Ricci Z., Ronco C. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care. 2018; 22: 262. DOI:10.1186/s13054-018-2181-z. PMID: 30360755.; Vo L. T., Do V. C., Trinh T. H., Vu T., Nguyen T. T. Combined therapeutic plasma exchange and continuous renal replacement therapy in children with Dengue-associated acute liver failure and shock syndrome: single-center cohort from Vietnam. Pediatr Crit Care Med. 2023; 24 (10): 818–828. DOI:10.1097/PCC.0000000000003304. PMID: 37310173.; Кабанов М. Ю., Семенцов К. В., Бояринов Д. Ю., Мянзелин М. Н., Беликова М. Я., Алексеев В. В. Трудности оценки тяжести дисфункции печени при механической желтухе. Анналы хирургической гепатологии. 2021; 26 (2): 129–136. DOI:10.16931/1995-5464.2021-2-129-136.; Kim A., Niu B., Woreta T., Chen P. H. Clinical considerations of coagulopathy in acute liver failure. J Clin Transl Hepatol. 2020; 8 (4): 407–413. DOI:10.14218/JCTH.2020.00058. PMID: 33447524.; European Association for the Study of the Liver. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol. 2017; 66 (5): 1047–1081. DOI:10.1016/j.jhep.2016.12.003. PMID: 28417882.; Заболотских И. Б., Проценко Д. Н. (ред.). Интенсивная терапия: национальное руководство: в 2-х томах Т. II. 2-е издание, переработанное и дополненное М.: ГЭОТАР-Медиа; 2020: 1072. ISBN 978-5-9704-5018-5.; Pan J. J., Fontana R. J. CAQ Corner: acute liver failure management and liver transplantation. Liver Transpl. 2022; 28 (10): 1664–1673. DOI:10.1002/lt.26503. PMID: 35574981.; Agarwal B., Wright G., Gatt A., Riddell A., Vemala V., Mallett S., Chowdary P., et al. Evaluation of coagulation abnormalities in acute liver failure. J Hepatol. 2012; 57 (4): 780–786. DOI:10.1016/j.jhep.2012.06.020. PMID: 22735303.; Zoica B. S., Deep A. Extracorporeal renal and liver support in pediatric acute liver failure. Pediatr Nephrol. 2021; 36: 1119–1128. DOI:10.1007/s00467-020-04613-4. PMID: 32500250.; Jain V., Dhawan A. Extracorporeal liver support systems in paediatric liver failure. J Pediatr Gastroenterol Nutr. 2017; 64: 855–863. DOI:10.1097/MPG.0000000000001500. PMID: 28248208.; Ибадов Р. А., Исмаилов Е. Л., Ибрагимов С. Х. Применение экстракорпоральных систем протезирования функций печени при острой декомпенсированной печеночной недостаточности. Общая реаниматология. 2021; 17 (4): 12–21. DOI: 15360/1813-9779-2021-4-12-21.; Кутепов Д. Е., Пасечник И. Н., Сальников П. С. Возможности экстракорпоральных методов лечения печеночной недостаточности. Хирургия. Журнал им. Н. И. Пирогова. 2014; 2: 55–58.; Arikan A. A., Srivaths P., Himes R. W., Pekkucuksen N. T., Lam F., Nguyen N., Miloh T., et al. Hybrid extracorporeal therapies as a bridge to pediatric liver transplantation. Pediatr Crit Care Med. 2018; 19: e342–9. DOI:10.1097/PCC.0000000000001546. PMID: 29652753.; Larsen F. S., Schmidt L. E., Bernsmeier C. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2016; 64: 69–78. DOI:10.1016/j.jhep.2015.08.018. PMID: 26325537.; Hanish S. I., Stein D. M., Scalea J. R., Essien E. O., Thurman P., Hutson W. R., Bartlett S. T., et al. Molecular adsorbent recirculating system effectively replaces hepatic function in severe acute liver failure. Ann Surg. 2017; 266: 677–684. DOI:10.1097/SLA.0000000000002361. PMID: 28692474.; Lexmond W. S., Van Dael C. M., Scheenstra R., Goorhuis J. F., Sieders E., Verkade H. J., Van Rheenen P. F., et al. Experience with molecular adsorbent recirculating system treatment in 20 children listed for high-urgency liver transplantation. Liver Transpl. 2015; 21: 369–80. DOI:10.1002/lt.24037. PMID: 25366362.; Alnagar A. M., Hakeem A. R., Daradka K., Kyrana E., Methga M., Palaniswamy K., Rajwal S., et al. Long-term out-comes of pediatric liver transplantation in acute liver failure vs end-stage chronic liver disease: a retrospective observational study. World J Transplant. 2023; 13 (3): 96–106. DOI:10.5500/wjt.v13.i3.96. PMID: 36968135.; Венцловайте Н. Д., Ефремова Н. А., Горячева Л. Г., Герасимова О. А. Трансплантация печени у детей: опыт последних десятилетий, актуальные проблемы и пути их решения. Детские инфекции. 2020; 19 (2): 52–57. DOI:10.22627/2072-8107-2020-19-2-52-57.; Bartlett J. M., Yanni G., Kwon Y., Emamaullee J. Pediatric acute liver failure: reexamining key clinical features, current management, and research prospects. Liver Transpl. 2022; 28 (11): 1776–1784. DOI:10.1002/lt.26500. PMID: 35557028.; Kim W. R., Lake J. R., Smith J. M., Skeans M. A., Schladt D. P., Edwards E. B., Harper A. M., et al. OPTN/SRTR 2015 Annual Data Report: liver. Am J Transplant. 2017; 17: 174–251. DOI:10.1111/ajt.14126. PMID: 28052604.; Nulty J., Anand H., Dhawan A. Human hepatocyte transplantation: three decades of clinical experience and future perspective. Stem Cells Transl Med. 2024; 13 (3): 204–218. DOI:10.1093/stcltm/szad084. PMID: 38103170.; https://www.reanimatology.com/rmt/article/view/2532

  7. 7
  8. 8
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 27, № 1 (2025); 114-134 ; Вестник трансплантологии и искусственных органов; Том 27, № 1 (2025); 114-134 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1874/1742; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1835; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1836; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1837; https://journal.transpl.ru/vtio/article/downloadSuppFile/1874/1838; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2022 году. XV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2023; 25 (3): 8–30. doi:10.15825/1995-1191-2023-3-8-30.; Готье СВ, Хомяков СМ. Оценка потребности населения в трансплантации органов, донорского ресурса и планирование эффективной сети медицинских организаций (центров трансплантации). Вестник трансплантологии и искусственных органов. 2013; 15 (3): 11–24. doi:10.15825/1995-1191-2013-3-11-24.; Lewis A, Koukoura A, Tsianos GI, Gargavanis AA, Nielsen AA, Vassiliadis E. Organ donation in the US and Europe: The supply vs demand imbalance. Transplant Rev (Orlando). 2021; 35 (2): 100585. doi:10.1016/j.trre.2020.100585. PMID: 33071161.; Галеев ШР, Готье СВ. Риски и пути профилактики нарушения функции почек при проведении медикаментозной иммуносупрессии у реципиентов солидных органов. Вестник трансплантологии и искусственных органов. 2022; 24 (4): 24–38. doi:10.15825/1995-1191-2022-4-24-38.; Parlakpinar H, Gunata M. Transplantation and immunosuppression: a review of novel transplantrelated immunosuppressant drugs. Immunopharmacol Immunotoxicol. 2021; 43 (6): 651–665. doi:10.1080/08923973.2021.1966033. PMID: 34415233.; Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi:10.1080/14653240600855905. PMID: 16923606.; Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 2020; 11 (1): 345. doi:10.1186/s13287-020-01855-9. PMID: 32771052.; Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22. doi:10.1038/s41536-019-0083-6. PMID: 31815001.; Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022; 7 (1): 92. doi:10.1038/s41392-022-00932-0. PMID: 35314676.; Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020; 11 (5): 349. doi:10.1038/s41419-020-2542-9. PMID: 32393744.; Poomani MS, Mariappan I, Perumal R, Regurajan R, Muthan K, Subramanian V. Mesenchymal stem cell (MSCs) therapy for ischemic heart disease: a promising frontier. Glob Heart. 2022; 17 (1): 19. doi:10.5334/gh.1098. PMID: 35342702.; Li K, Li X, Shi G, Lei X, Huang Y, Bai L et al. Effectiveness and mechanisms of adipose-derived stem cell therapy in animal models of Parkinson’s disease: a systematic review and meta-analysis. Transl Neurodegener. 2021; 10: 14. doi:10.1186/s40035-021-00238-1. PMID: 33926570.; Carstens M, Haq I, Martinez-Cerrato J, Dos-Anjos S, Bertram K, Correa D. Sustained clinical improvement of Parkinson’s disease in two patients with faciallytransplanted adipose-derived stromal vascular fraction cells. J Clin Neurosci. 2020; 81: 47–51. doi:10.1016/j.jocn.2020.09.001. PMID: 33222965.; Zaripova LN, Midgley A, Christmas SE, Beresford MW, Pain C, Baildam EM et al. Mesenchymal stem cells in the pathogenesis and therapy of autoimmune and autoinflammatory diseases. Int J Mol Sci. 2023; 24 (22): 16040. doi:10.3390/ijms242216040. PMID: 38003230.; Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022; 13 (1): 101. doi:10.1186/s13287-022-02782-7. PMID: 35255979.; Cruz FF, Rocco PRM. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Rev Respir Med. 2020; 14 (1): 31–39. doi:10.1080/17476348.2020.1679628. PMID: 31608724.; Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. Mol Biomed. 2022; 3 (1): 23. doi:10.1186/s43556-022-00088-x. PMID: 35895169.; Chen F, Chen N, Xia C, Wang H, Shao L, Zhou C et al. Mesenchymal stem cell therapy in kidney diseases: potential and challenges. Cell Transplant. 2023; 32: 9636897231164251. doi:10.1177/09636897231164251. PMID: 37013255.; Deng Z, Luo F, Lin Y, Luo J, Ke D, Song C et al. Research trends of mesenchymal stem cells application in orthopedics: a bibliometric analysis of the past 2 decades. Front Public Health. 2022; 10: 1021818. doi:10.3389/fpubh.2022.1021818. PMID: 36225768.; Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA et al. Mesenchymal stem cells in the treatment of COVID-19. Int J Mol Sci. 2023; 24 (19): 14800. doi:10.3390/ijms241914800. PMID: 37834246.; Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y et al. Application of mesenchymal stem cells during machine perfusion: an emerging novel strategy for organ preservation. Front Immunol. 2021; 12: 713920. doi:10.3389/fimmu.2021.713920. PMID: 35024039.; Deo D, Marchioni M, Rao P. Mesenchymal stem/stromal cells in organ transplantation. Pharmaceutics. 2022; 14 (4): 791. doi:10.3390/pharmaceutics14040791. PMID: 35456625.; Bezstarosti S, Meziyerh S, Reinders MEJ, Voogt-Bakker K, Groeneweg KE, Roelen DL et al. HLA-DQ eplet mismatch load may identify kidney transplant patients eligible for tacrolimus withdrawal without donor-specific antibody formation after mesenchymal stromal cell therapy. HLA. 2023; 102 (1): 3–12. doi:10.1111/tan.15008. PMID: 36841928.; Kaundal U, Ramachandran R, Arora A, Kenwar DB, Sharma RR, Nada R et al. Mesenchymal stromal cells mediate clinically unpromising but favourable immune responses in kidney transplant patients. Stem Cells Int. 2022; 2022: 2154544. doi:10.1155/2022/2154544. PMID: 35211176.; Večerić-Haler Ž, Kojc N, Sever M, Zver S, Švajger U, Poženel P et al. Case report: capillary leak syndrome with kidney transplant failure following autologous mesenchymal stem cell therapy. Front Med (Lausanne). 2021; 8: 708744. doi:10.3389/fmed.2021.708744. PMID: 34368198.; Wei Y, Chen X, Zhang H, Su Q, Peng Y, Fu Q et al. Efficacy and safety of bone marrow-derived mesenchymal stem cells for chronic antibody-mediated rejection after kidney transplantation- a single-arm, two-dosing-regimen, phase I/II study. Front Immunol. 2021; 12: 662441. doi:10.3389/fimmu.2021.662441. PMID: 34248942.; Ban TH, Lee S, Kim HD, Ko EJ, Kim BM, Kim KW et al. Clinical trial of allogeneic mesenchymal stem cell therapy for chronic active antibody-mediated rejection in kidney transplant recipients unresponsive to Rituximab and intravenous immunoglobulin. Stem Cells Int. 2021; 2021: 6672644. doi:10.1155/2021/6672644. PMID: 33628269.; Casiraghi F, Perico N, Gotti E, Todeschini M, Mister M, Cortinovis M et al. Kidney transplant tolerance associated with remote autologous mesenchymal stromal cell administration. Stem Cells Transl Med. 2020; 9 (4): 427–432. doi:10.1002/sctm.19-0185. PMID: 31872574.; Erpicum P, Weekers L, Detry O, Bonvoisin C, Delbouille MH, Grégoire C et al. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I–II, open-label, clinical study. Kidney Int. 2019; 95 (3): 693–707. doi:10.1016/j.kint.2018.08.046. PMID: 30528263.; Perico N, Casiraghi F, Todeschini M, Cortinovis M, Gotti E, Portalupi V et al. Long-term clinical and immunological profile of kidney transplant patients given mesenchymal stromal cell immunotherapy. Front Immunol. 2018; 9: 1359. doi:10.3389/fimmu.2018.01359. PMID: 29963053.; Mudrabettu C, Kumar V, Rakha A, Yadav AK, Ramachandran R, Kanwar DB et al. Safety and efficacy of autologous mesenchymal stromal cells transplantation in patients undergoing living donor kidney transplantation: a pilot study. Nephrology (Carlton). 2015; 20 (1): 25–33. doi:10.1111/nep.12338. PMID: 25230334.; Perico N, Casiraghi F, Gotti E, Introna M, Todeschini M, Cavinato RA et al. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int. 2013; 26 (9): 867–878. doi:10.1111/tri.12132. PMID: 23738760.; Lee H, Park JB, Lee S, Baek S, Kim H, Kim SJ. Intra-osseous injection of donor mesenchymal stem cell (MSC) into the bone marrow in living donor kidney transplantation; a pilot study. J Transl Med. 2013; 11: 96. doi:10.1186/1479-5876-11-96. PMID: 23578110.; Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012; 307 (11): 1169–1177. doi:10.1001/jama.2012.316. PMID: 22436957.; Saadi G, Fadel F, El Ansary M, El-Hamid SA. Mesenchymal stem cell transfusion for desensitization of positive lymphocyte cross-match before kidney transplantation: outcome of 3 cases. Cell Prolif. 2013; 46 (2): 121–126. doi:10.1111/cpr.12012. PMID: 23510466.; Perico N, Casiraghi F, Introna M, Gotti E, Todeschini M, Cavinato RA et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011; 6 (2): 412–422. doi:10.2215/ CJN.04950610. PMID: 20930086.; Vanikar AV, Trivedi HL, Feroze A, Kanodia KV, Dave SD, Shah PR. Effect of co-transplantation of mesenchymal stem cells and hematopoietic stem cells as compared to hematopoietic stem cell transplantation alone in renal transplantation to achieve donor hypo-responsiveness. Int Urol Nephrol. 2011; 43 (1): 225–232. doi:10.1007/s11255-009-9659-1. PMID: 20084457.; Peng Y, Ke M, Xu L, Liu L, Chen X, Xia W et al. Donorderived mesenchymal stem cells combined with lowdose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study [published correction appears in Transplantation. 2014 Mar 27; 97 (6): e37. Pan, Guanghui [added]]. Transplantation. 2013; 95 (1): 161–168. doi:10.1097/TP.0b013e3182754c53. PMID: 23263506.; Reinders ME, de Fijter JW, Roelofs H, Bajema IM, de Vries DK, Schaapherder AF et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med. 2013; 2 (2): 107–111. doi:10.5966/sctm.2012-0114. PMID: 23349326.; Dave SD, Vanikar AV, Trivedi HL. Co-infusion of adipose tissue derived mesenchymal stem cell-differentiated insulin-making cells and haematopoietic cells with renal transplantation: a novel therapy for type 1 diabetes mellitus with end-stage renal disease. BMJ Case Rep. 2013; 2013: bcr2013009901. doi:10.1136/bcr-2013-009901. PMID: 23709153.; Vanikar AV, Trivedi HL, Gopal SC, Kumar A, Dave SD. Pre-transplant co-infusion of donor-adipose tissue derived mesenchymal stem cells and hematopoietic stem cells may help in achieving tolerance in living donor renal transplantation. Ren Fail. 2014; 36 (3): 457–460. doi:10.3109/0886022X.2013.868295. PMID: 24344734.; Vanikar AV, Trivedi HL, Kumar A, Gopal SC, Patel HV, Gumber MR et al. Co-infusion of donor adipose tissuederived mesenchymal and hematopoietic stem cells helps safe minimization of immunosuppression in renal transplantation – single center experience. Ren Fail. 2014; 36 (9): 1376–1384. doi:10.3109/0886022X.2014.950931. PMID: 25246338.; Pan GH, Chen Z, Xu L, Zhu JH, Xiang P, Ma JJ et al. Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study. Oncotarget. 2016; 7 (11): 12089–12101. doi:10.18632/oncotarget.7725. PMID: 26933811.; Dreyer GJ, Groeneweg KE, Heidt S, Roelen DL, van Pel M, Roelofs H et al. Human leukocyte antigen selected allogeneic mesenchymal stromal cell therapy in renal transplantation: The Neptune study, a phase I single-center study. Am J Transplant. 2020; 20 (10): 2905–2915. doi:10.1111/ajt.15910. PMID: 32277568.; Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Ajmone Marsan N, Bax JJ et al. Cardiovascular effects of autologous bone marrow-derived mesenchymal stromal cell therapy with early tacrolimus withdrawal in renal tranplant recipients: an analysis of the randomized TRITON study. J Am Heart Assoc. 2021; 10 (24): e023300. doi:10.1161/ JAHA.121.023300. PMID: 34913362.; Meucci MC, Reinders MEJ, Groeneweg KE, Bezstarosti S, Marsan NA, Bax JJ et al. Left atrial structural and functional response in kidney transplant recipients treated with mesenchymal stromal cell therapy and early tacrolimus withdrawal. J Am Soc Echocardiogr. 2023; 36 (2): 172–179. doi:10.1016/j.echo.2022.10.022. PMID: 36347387.; Коротков СВ, Лебедь ОА, Смольникова ВВ, Пикиреня ИИ, Щерба АЕ, Кривенко СИ, Руммо ОО. Применение мезенхимальных стволовых клеток для лечения дисфункции трансплантата печени, вызванной хроническим отторжением. Клинический случай. Хирургия. Восточная Европа. 2022; 11 (2): 271–285. doi:10.34883/PI.2022.11.2.010.; Vandermeulen M, Mohamed-Wais M, Erpicum P, Delbouille MH, Lechanteur C, Briquet A et al. Infusion of allogeneic mesenchymal stromal cells after liver transplantation: a 5-year follow-up. Liver Transpl. 2022; 28 (4): 636–646. doi:10.1002/lt.26323. PMID: 34605167.; Mora L, Alegre F, Rifón JJ, Marti P, Herrero JI. Treatment of graft-versus-host disease with mesenchymal cells as a complication of a liver transplantation. Rev Esp Enferm Dig. 2018; 110 (11): 734–736. doi:10.17235/reed.2018.5672/2018. PMID: 30284904.; Casiraghi F, Perico N, Podestà MA, Todeschini M, Zambelli M, Colledan M et al. Third-party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: a randomized controlled trial. Am J Transplant. 2021; 21 (8): 2795–2809. doi:10.1111/ajt.16468. PMID: 33370477.; Detry O, Vandermeulen M, Delbouille MH, Somja J, Bletard N, Briquet A et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: a phase I–II, open-label, clinical study. J Hepatol. 2017; 67 (1): 47–55. doi:10.1016/j.jhep.2017.03.001. PMID: 28284916.; Zhang YC, Liu W, Fu BS, Wang GY, Li HB, Yi HM et al. Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy. 2017; 19 (2): 194–199. doi:10.1016/j.jcyt.2016.11.005. PMID: 27964826.; Erasmus DB, Durand N, Alvarez FA, Narula T, Hodge DO, Zubair AC. Feasibility and safety of low-dose mesenchymal stem cell infusion in lung transplant recipients. Stem Cells Transl Med. 2022; 11 (9): 891–899. doi:10.1093/stcltm/szac051. PMID: 35881142.; Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C et al. Strategy for clinical setting of co-transplantation of mesenchymal stem cells and pancreatic islets. Cell Transplantation. 2024; 33: 9636897241259433. doi:10.1177/09636897241259433. PMID: 38877672.; Koehler N, Buhler L, Egger B, Gonelle-Gispert C. Multipotent mesenchymal stromal cells interact and support islet of Langerhans viability and function. Front Endocrinol (Lausanne). 2022; 13: 822191. doi:10.3389/fendo.2022.822191. PMID: 35222280.; Barachini S, Biso L, Kolachalam S, Petrini I, Maggio R, Scarselli M et al. Mesenchymal stem cell in pancreatic islet transplantation. Biomedicines. 2023; 11 (5): 1426. doi:10.3390/biomedicines11051426. PMID: 37239097.; Gruessner AC. A Decade of Pancreas Transplantation – A Registry Report. Uro. 2023; 3 (2): 132–150. doi:10.3390/uro3020015.; Piemonti L. Islet transplantation. South Dartmouth (MA): MDText.com; 2020.; Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue engineering. 2014; 20 (5): 455–467. doi:10.1089/ten.TEB.2013.0462. PMID: 24417705.; Sevastianov VI, Baranova NV, Kirsanova LA, Ponomareva AS, Basok YB, Nemets EA, Gautier SV. Comparative analysis of the influence of extracellular matrix biomimetics on the viability and insulin-producing function of isolated pancreatic islets. J Gene Eng Bio Res. 2021; 3 (2): 17–25.; Maffi P, Secchi A. Islet transplantation alone versus solitary pancreas transplantation: an outcome-driven choice? Curr Diab Rep. 2019; 19 (5): 26. doi:10.1007/s11892-019-1145-2. PMID: 31025188.; Chen L, Qu J, Kalyani FS, Zhang Q, Fan L, Fang Y et al. Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cell Mol Life Sci. 2022; 79 (3): 142. doi:10.1007/s00018-021-04096-y. PMID: 35187617.; Borow KM, Yaroshinsky A, Greenberg B, Perin EC. Phase 3 DREAM-HF trial of mesenchymal precursor cells in chronic heart failure. Circ Res. 2019; 125 (3): 265–281. doi:10.1161/CIRCRESAHA.119.314951. PMID: 31318648.; Rodríguez-Fuentes DE, Fernández-Garza LE, SamiaMeza JA, Barrera-Barrera SA, Caplan AI, BarreraSaldaña HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021; 52 (1): 93–101. doi:10.1016/j.arcmed.2020.08.006. PMID: 32977984.; Bonaventura G, Munafò A, Bellanca CM, La Cognata V, Iemmolo R, Attaguile GA et al. Stem cells: innovative therapeutic options for neurodegenerative diseases? Cells. 2021; 10 (8): 1992. doi:10.3390/cells10081992. PMID: 34440761.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021; 10 (7): 1729. doi:10.3390/cells10071729. PMID: 34359898.; Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022; 7 (1): 272. doi:10.1038/s41392-022-01134-4. PMID: 35933430.; Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022; 13 (1): 429. doi:10.1186/s13287-022-02985-y. PMID: 35987711.; Almeida-Porada G, Atala AJ, Porada CD. Therapeutic mesenchymal stromal cells for immunotherapy and for gene and drug delivery. Mol Ther Methods Clin Dev. 2020; 16: 204–224. doi:10.1016/j.omtm.2020.01.005. PMID: 32071924.; Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: where do we stand? J Adv Res. 2024; S2090-1232(24)00181-4. doi:10.1016/j.jare.2024.05.004. PMID: 38729561.; Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J. 2018; 18 (3): e264–e277. doi:10.18295/squmj.2018.18.03.002. PMID: 30607265.; Yang YK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018; 9 (1): 131. doi:10.1186/s13287-018-0876-3. PMID: 29751774.; Егорова ВА, Пономарева АС, Богданова НБ, Абрамов ВЮ, Севастьянов ВИ. Характеристика фенотипа мезенхимальных стволовых клеток из жировой ткани человека методом проточной цитометрии. Технологии живых систем. 2009; 6 (5): 40–46.; Hladik D, Höfig I, Oestreicher U, Beckers J, Matjanovski M, Bao X et al. Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability. Stem Cell Res Ther. 2019; 10 (1): 218. doi:10.1186/s13287-019-1334-6. PMID: 31358047.; Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 2005; 24 (7): 458–463. doi:10.1089/dna.2005.24.458. PMID: 16008514.; Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105 (4): 1815–1822. doi:10.1182/ blood-2004-04-1559. PMID: 15494428.; Rasmusson I, Ringden O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005; 305 (1): 33–41. doi:10.1016/j.yexcr.2004.12.013. PMID: 15777785.; Ma OK, Chan KH. Immunomodulation by mesenchymal stem cells: interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells. 2016; 8 (9): 268–278. doi:10.4252/wjsc.v8.i9.268. PMID: 27679683.; Zhao Z-G, Xu W, Sun L, You Y, Li F, Li Q-B et al. Immunomodulatory function of regulatory dendritic cells induced by mesenchymal stem cells. Immunol Invest. 2012; 41 (2): 183–198. doi:10.3109/08820139.2011.607877. PMID: 21936678.; Rutz S, Janke M, Kassner N, Hohnstein T, Krueger M, Scheffold A. Notch regulates IL-10 production by T helper 1 cells. Proc Natl Acad Sci USA. 2008; 105 (9): 3497–3502. doi:10.1073/pnas.0712102105. PMID: 18292228.; Cho D-I, Kim MR, Jeong H-Y, Jeong HC, Jeong MH, Yoon SH et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrowderived macrophages. Exp Mol Med. 2014; 46 (1): e70. doi:10.1038/emm.2013.135. PMID: 24406319.; Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006; 24 (1): 74–85. doi:10.1634/stemcells.2004-0359. PMID: 16099998.; Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008; 2 (2): 141–150. doi:10.1016/j.stem.2007.11.014. PMID: 18371435.; Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014; 6 (5): 552–570. doi:10.4252/wjsc.v6.i5.552. PMID: 25426252.; Gotherstrom C, Lundqvist A, Duprez IR, Childs R, Berg L, le Blanc K. Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy. 2011; 13 (3): 269–278. doi:10.3109/14653249.2010.523077. PMID: 20942778.; Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017; 9 (416): eaam7828. doi:10.1126/scitranslmed.aam7828. PMID: 29141887.; Chen W, Lv L, Chen N, Cui E. Immunogenicity of mesenchymal stromal/stem cells. Scand J Immunol. 2023; 97 (6): e13267. doi:10.1111/sji.13267. PMID: 39007962.; Боровкова НВ, Хубутия МШ, Ржевская ОН, Пинчук АВ, Васильченков ДА. Применение мультипотентных мезенхимальных стромальных клеток костного мозга при трансплантации почки. Трансплантология. 2019; 11 (1): 21–36. doi:10.23873/2074-0506-2019-11-1-21-36.; Preda MB, Rønningen T, Burlacu A, Simionescu M, Moskaug JØ, Valen G. Remote transplantation of mesenchymal stem cells protects the heart against ischemiareperfusion injury. Stem Cells. 2014; 32 (8): 2123–2134. doi:10.1002/stem.1687. PMID: 24578312.; Shi W, Zhou X, Li X, Peng X, Chen G, Li Y et al. Human umbilical cord mesenchymal stem cells protect against renal ischemia-reperfusion injury by secreting extracellular vesicles loaded with miR-148b-3p that target pyruvate dehydrogenase kinase 4 to inhibit endoplasmic reticulum stress at the reperfusion stages. Int J Mol Sci. 2023; 24 (10): 8899. doi:10.3390/ijms24108899. PMID: 37240246.; Saidi RF, Rajeshkumar B, Shariftabrizi A, Bogdanov AA, Zheng S, Dresser K et al. Human adipose-derived mesenchymal stem cells attenuate liver ischemia-reperfusion injury and promote liver regeneration. Surgery. 2014; 156 (5): 1225–1231. doi:10.1016/j.surg.2014.05.008. PMID: 25262218.; Qiao LY, Huang FJ, Zhao M, Xie JH, Shi J, Wang J et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant. 2014; 23 Suppl 1: S65–S72. doi:10.3727/096368914X684961. PMID: 25333752.; Gorman E, Millar J, McAuley D, O’Kane C. Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Rev Respir Med. 2021; 15 (3): 301–324. doi:10.1080/17476348.2021.1848555. PMID: 33172313.; Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG et al. Role of mesenchymal stem/stromal cells in modulating ischemia/reperfusion injury: current state of the art and future perspectives. Biomedicines. 2023; 11 (3): 689. doi:10.3390/biomedicines11030689. PMID: 36979668.; Giai Via A, Frizziero A, Oliva F. Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J. 2012; 2 (3): 154–162. PMID: 23738292.; Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther. 2015; 6 (1): 143. doi:10.1186/s13287-015-0144-8. PMID: 26282627.; Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transpl. 2017; 26 (9): 1520–1529. doi:10.1177/0963689717721201. PMID: 29113463.; Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med. 2018; 16 (1): 31. doi:10.1186/s12967-018-1403-0. PMID: 29448956.; Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004; 351 (26): 2715– 2729. doi:10.1056/NEJMra033540. PMID: 15616206.; Pilch NA, Bowman LJ, Taber DJ. Immunosuppression trends in solid organ transplantation: the future of individualization, monitoring, and management. Pharmacotherapy. 2021; 41 (1): 119–131. doi:10.1002/phar.2481. PMID: 33131123.; Готье СВ. Иммуносупрессия при трансплантации солидных органов. М.–Тверь: Триада, 2011; 472.; Hajkova M, Hermankova B, Javorkova E, Bohacova P, Zajicova A, Holan V et al. Mesenchymal stem cells attenuate the adverse effects of immunosuppressive drugs on distinct T cell subopulations. Stem Cell Rev Rep. 2017; 13 (1): 104–115. doi:10.1007/s12015-016-9703-3. PMID: 27866327.; Eggenhofer E, Renner P, Soeder Y, Popp FC, Hoogduijn MJ, Geissler EK et al. Features of synergism between mesenchymal stem cells and immunosuppressive drugs in a murine heart transplantation model. Transpl Immunol. 2011; 25 (2–3): 141–147. doi:10.1016/j.trim.2011.06.002. PMID: 21704160.; Tatum R, O’Malley TJ, Bodzin AS, Tchantchaleishvili V. Machine perfusion of donor organs for transplantation. Artif Organs. 2021; 45 (7): 682–695. doi:10.1111/aor.13894. PMID: 33349946.; Weissenbacher A, Vrakas G, Nasralla D, Ceresa CDL. The future of organ perfusion and re-conditioning. Transpl Int. 2019; 32 (6): 586–597. doi:10.1111/tri.13441. PMID: 30980772.; Готье СВ, Цирульникова ОМ, Пашков ИВ, Олешкевич ДО, Филатов ИА, Богданов ВК и др. Нормотермическая ex vivo перфузия изолированных легких в эксперименте с использованием отечественного перфузионного аппаратного комплекса. Вестник трансплантологии и искусственных органов. 2022; 24 (2): 94–101. doi:10.15825/1995-1191-2022-2-94-101.; Almeida S, Snyder W, Shah M, Fisher J, Marsh C, Hawkes A et al. Revolutionizing deceased donor transplantation: how new approaches to machine perfusion broadens the horizon for organ donation. Transplantation Reports. 2024; 9 (3): 100160. doi:10.1016/j.tpr.2024.100160.; Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ et al. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med. 2023; 10: 1272945. doi:10.3389/fcvm.2023.1272945. PMID: 37900569.; Brasile L, Henry N, Orlando G, Stubenitsky B. Potentiating renal regeneration using mesenchymal stem cells. Transplantation. 2019; 103 (2): 307–313. doi:10.1097/TP.0000000000002455. PMID: 30234788.; Sun D, Yang L, Zheng W, Cao H, Wu L, Song H. Protective effects of bone marrow mesenchymal stem cells (BMMSCS) combined with normothermic machine perfusion on liver grafts donated after circulatory death via reducing the ferroptosis of hepatocytes. Med Sci Monit. 2021; 27: e930258. doi:10.12659/MSM.930258. PMID: 34112750.; Nakajima D, Watanabe Y, Ohsumi A, Pipkin M, Chen M, Mordant P et al. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant. 2019; 38 (11): 1214–1223. doi:10.1016/j.healun.2019.07.006. PMID: 31474491.; Bogensperger C, Hofmann J, Messner F, Resch T, Meszaros A, Cardini B et al. Ex vivo mesenchymal stem cell therapy to regenerate machine perfused organs. Int J Mol Sci. 2021; 22 (10): 5233. doi:10.3390/ijms22105233. PMID: 34063399.; Shravage BV, Turksen K. Autophagy in stem cell maintenance and differentiation. 1st ed. Cham, Switzerland: Springer; 2022.; Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A et al. The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev Rep. 2016; 12: 621–633. doi:10.1007/s12015-016-9690-4. PMID: 27696271.; Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K et al. Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis. 2013; 4 (10): e844. doi:10.1038/cddis.2013.338. PMID: 24113178.; El Nashar EM, Alghamdi MA, Alasmari WA, Hussein MMA, Hamza E, Taha RI et al. Autophagy promotes the survival of adipose mesenchymal stem/stromal cells and enhances their therapeutic effects in cisplatin-induced liver injury via modulating TGF-β1/Smad and PI3K/ AKT signaling pathways. Cells. 2021; 10 (9): 2475. doi:10.3390/cells10092475. PMID: 34572126.; Sevastianov VI, Basok YuB. Biomimetics of extracellular matrices for cell and tissue engineered medical products. Newcastle upon Tyne, UK: Cambridge Scholars Publishing; 2023.; https://journal.transpl.ru/vtio/article/view/1874

  9. 9
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 3 (2024); 56-65 ; Вестник трансплантологии и искусственных органов; Том 26, № 3 (2024); 56-65 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1765/1665; https://journal.transpl.ru/vtio/article/downloadSuppFile/1765/1540; Готье СВ, Хомяков СМ. Донорство и трансплантация органов в Российской Федерации в 2022 году. XV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2023; 25 (3): 8–30. https://doi.org/10.15825/1995-1191-2023-3-8-30.; Статистика [НМИЦ трансплантологии и искусственных органов им. ак. В.И. Шумакова Минздрава России]. Ресурс в сети Internet (transpl.ru).; Kajdas AA, Szostak-Węgierek D, Dąbrowska-Bender M, Normann AK, Søndergaard Linde D. Immunosuppressive Therapy and Nutritional Status of Patients after Kidney Transplantation: A Protocol for a Systematic Review. J Clin Med. 2023 Nov 6; 12 (21): 6955. doi:10.3390/jcm12216955.; Хостелиди СН. Инвазивные микозы у реципиентов трансплантатов внутренних органов (обзор литературы). Проблемы медицинской микологии. 2023; 25 (4): 3–14. doi:10.24412/1999-6780-2023-4-3-14.; Перечень редких (орфанных) заболеваний. Ресурс в сети Internet [minzdrav.gov.ru].; Хостелиди СН. Тяжелые грибковые инфекции, вызванные редкими возбудителями: дис. … докт. мед. наук. Санкт-Петербург, 2023; 314.; Özbek L, Topçu U, Manay M, Esen BH, Bektas SN, Aydın S et al. COVID-19-associated mucormycosis: a systematic review and meta-analysis of 958 cases. Clin Microbiol Infect. 2023 Jun; 29 (6): 722–731. doi:10.1016/j.cmi.2023.03.008.; Skiada A, Drogari-Apiranthitou M, Pavleas I, Daikou E, Petrikkos G. Global Cutaneous Mucormycosis: A Systematic Review. J Fungi (Basel). 2022; 8 (2): 194. doi:10.3390/jof8020194.; Хостелиди СН, Шадривова ОВ, Борзова ЮВ, Десятик ЕА, Николаева НГ, Богомолова ТС и др. Клинико-лабораторные особенности мукормикоза у взрослых. Проблемы медицинской микологии. 2020; 22 (2): 22–28. doi:10.24412/1999-6780-2020-2-22-28.; Skiada A, Pavleas I, Drogari-Apiranthitou M. Epidemiology and Diagnosis of Mucormycosis: An Update. J Fungi (Basel). 2020 Nov 2; 6 (4): 265. doi:10.3390/jof6040265. PMID: 33147877; PMCID: PMC7711598.; Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019; 19 (12): e405–e421. doi:10.1016/S1473-3099(19)30312-3.; Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 10, 08.02.2021. https://static-0.minzdrav.gov.ru.; Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020; 71: 1367– 1376. doi:10.1093/cid/ciz1008.; Lanternier F, Sun HY, Ribaud P, Singh N, Kontoyiannis DP, Lortholary O. Mucormycosis in Organ and Stem Cell Transplant Recipients. Clin Infect Dis. 2012; 54 (11): 1–8. https://doi.org/10.1093/cid/cis195.; Senoner T, Breitkopf R, Treml B, Rajsic S. Invasive Fungal Infections after Liver Transplantation. J Clin Med. 2023 Apr 30; 12 (9): 3238. doi:10.3390/jcm12093238.; Pagano L, Akova M, Dimopoulos G, Herbrecht R, Drgona L, Blijlevens N. Risk assessment and prognostic factors for mould-related diseases in immunocompromised patients. J Antimicrob Chemother. 2011; 66 (1): i5–i14. https://doi.org/10.1093/jac/dkq437.; Park BJ, Pappas PG, Wannemuehler KA, Alexander BD, Anaissie EJ, Andes DR et al. Invasive non-Aspergillus mold infections in transplant recipients, United States, 2001–2006. Emerg Infect Dis. 2011 Oct; 17 (10): 1855– 1864. doi:10.3201/eid1710.110087. PMID: 22000355; PMCID: PMC3311117.; Almyroudis NG, Sutton DA, Linden P, Rinaldi MG, Fung J, Kusne S. Zygomycosis in solid organ transplant recipients in a tertiary transplant center and review of the literature. Am J Transplant. 2006; 6 (10): 2365–2374. doi:10.1111/j.1600-6143.2006.01496.x.; Lanternier F, Dannaoui E, Morizot G, Elie C, GarciaHermoso D, Huerre M et al. A Global Analysis of Mucormycosis in France: The RetroZygo Study (2005– 2007). Clin Infect Dis. 2012; 54 (1): S35–S43. https://doi.org/10.1093/cid/cir880.; Osseis М, Lim C, Salloum C, Azoulay D. Mucormycosis in liver transplantation recipients a systematic review. Surgery Open Digestive Advance. 2023; 10 (11): 100088. https://doi.org/10.1016/j.soda.2023.100088.; Rammaert B, Lanternier F, Zahar JR, Dannaoui E, Bougnoux ME, Lecuit M, Lortholary O. Healthcare-associated mucormycosis. Clin Infect Dis. 2012; 54 (1): S44–S54. doi:10.1093/cid/cir867. PMID: 22247444.; Dannaoui E, Schwarz P, Lortholary O. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob Agents Chemother. 2009; 53 (8): 3549–3551. doi:10.1128/AAC.00184-09. PMID: 19451295; PMCID: PMC2715618.; Barchiesi F, Mazzocato S, Mazzanti S, Gesuita R, Skrami E, Fiorentini A, Singh N. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. Liver Transpl. 2015; 21 (2): 204–212. doi:10.1002/lt.24032. PMID: 25348192.; Andes DR, Safdar N, Baddley JW, Alexander B, Brumble L, Freifeld A et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the TransplantAssociated Infection Surveillance Network (TRANSNET). Transpl Infect Dis. 2016; 18 (6): 921–931. doi:10.1111/tid.12613. [PubMed] [CrossRef] [Google Scholar].; Mahalmani V, Sarma P, Prakash A, Medhi B. Role of Iron Chelators in Mucormycosis. Indian J Pharmacol. 2021 Jul-Aug; 53 (4): 261–263. doi:10.4103/ijp.ijp_604_21. PMID: 34414902; PMCID: PMC8411966.; Husain S, Sole A, Alexander BD et al. The 2015 International Society for Heart and Lung Transplantation Guidelines for the management of fungal infections in mechanical circulatory support and cardiothoracic organ transplant recipients: Executive summary. J Heart Lung Transplant. 2016; 35: 261–282. doi:10.1016/j.healun.2016.01.007. [PubMed] [CrossRef] [Google Scholar].; Alameer R, Nguyen M, Samanta P. Invasive Fungal Infections Associated with COVID-19 Infections in Solid Organ Transplant Recipients. Am J Transplant. 2022; 22 (3): 645. doi: covidwho-2063410.; Singh N, Aguado JM, Bonatti H, Forrest G, Gupta KL, Safdar N et al. Zygomycosis in solid organ transplant recipients: a prospective, matched case-control study to assess risks for disease and outcome. J Infect Dis. 2009; 200 (6): 1002–1011. doi:10.1086/605445. PMID: 19659439.; Varotto A, Orsatti G, Crimì F, Cecchin D, Toffolutti T, Zucchetta P, Stramare R. Radiological Assessment of Paediatric Fungal Infections: A Pictorial Review with Focus on PET/MRI. In vivo. 2019; 33 (6): 1727–1735. https://doi.org/10.21873/invivo.11663.; Gavaldà J, Meije Y, Fortún J, Roilides E, Saliba F, Lortholary O et al. Invasive fungal infections in solid organ transplant recipients. Clin Microbiol Infect. 2014; 20 (7): 27–48. doi:10.1111/1469-0691.12660. PMID: 24810152.; Sun HY, Forrest G, Gupta KL, Aguado JM, Lortholary O, Julia MB et al. Rhino-orbital-cerebral zygomycosis in solid organ transplant recipients. Transplantation. 2010; 90 (1): 85–92. doi:10.1097/tp.0b013e3181dde8fc. PMID: 20626095.; https://journal.transpl.ru/vtio/article/view/1765

  10. 10
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания Министерства здравоохранения Российской Федерации (тема № 121040200134-6)

    Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 1 (2024); 8-19 ; Вестник трансплантологии и искусственных органов; Том 26, № 1 (2024); 8-19 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1730/1558; https://journal.transpl.ru/vtio/article/view/1730/1622; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1493; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1498; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1499; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1500; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1501; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1502; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1503; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1504; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1505; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1506; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1507; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1508; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1509; https://journal.transpl.ru/vtio/article/downloadSuppFile/1730/1510; Soares KC, Kamel I, Cosgrove DP, Herman JM, Pawlik TM. Hilar cholangiocarcinoma: diagnosis, treatment options, and management. Hepatobiliary Surg Nutr. 2014 Feb; 3 (1): 18–34. doi:10.3978/j.issn.2304-3881.2014.02.05. PMID: 24696835; PMCID: PMC3955000.; Molina V, Sampson J, Ferrer J, Sanchez-Cabus S, Calatayud D, Pavel MC et al. Klatskin Tumor: Diagnosis, Preoperative Evaluation and Surgical Considerations. Cir Esp. 2015 Nov; 93 (9): 552–60. ISSN 2173-5077. https://doi.org/10.1016/j.cireng.2015.07.002.; Nagino M, Ebata T, Yokoyama Y, Igami T, Sugawara G, Takahashi Y, Nimura Y. Evolution of surgical treatmentfor perihilar cholangiocarcinoma: a single-center 34year review of 574 consecutive resections. Ann Surg. 2013 Jul; 258 (1): 129–140.; Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BS J et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 2001 Oct; 234 (4): 507–517; discussion 517-9.; Groot Koerkamp B, Wiggers JK, Allen PJ, Besselink MG, Blumgart LH, Busch OR et al. Recurrence Rate and Pattern of Perihilar Cholangiocarcinoma after Curative Intent Resection. J Am Coll Surg. 2015 Dec; 221 (6): 1041–1049. ISSN 1072-7515. https://doi.org/10.1016/j.jamcollsurg.2015.09.005.; Руммо ОО, Щерба АЕ, Авдей ЕЛ, Федорук АМ, Дзядзько АМ, Ефимов ДЮ. Оценка эффективности различных способов хирургического лечения опухолей ворот печени. Анналы хирургической гепатологии. 2013; 18 (2): 43–49.; Heimbach JK, Haddock MG, Alberts SR, Nyberg SL, Ishitani MB, Rosen CB et al. Transplantation for hilar cholangiocarcinoma. Liver Transpl. 2004 Oct; 10 (10 Suppl 2): S65–S68. doi:10.1002/lt.20266. PMID:15382214.; Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015 Aug 20; 33 (24): 2617–2622.; Turgeon MK, Maithel SK. Cholangiocarcinoma: a sitespecific update on the current state of surgical management and multi-modality therapy. Chin Clin Oncol. 2020 Feb; 9 (1): 4.; Murakami Y, Uemura K, Sudo T, Hayashidani Y, Hashimoto Y, Nakamura H et al. Gemcitabine-based adjuvant chemotherapy improves survival after aggressive surgery for hilar cholangiocarcinoma. J Gastrointest Surg. 2009 Aug; 13 (8): 1470–1479.; Robles R, Figueras J, Turrión VS, Margarit C, Moya A, Varo E et al. Spanish experience in liver transplantation for hilar and peripheral cholangiocarcinoma. Ann Surg. 2004 Feb; 239 (2): 265–271. doi:10.1097/01.sla.0000108702.45715.81. PMID: 14745336; PMCID:PMC1356221.; Rosen CB, Heimbach JK, Gores GJ. Liver transplantation for cholangiocarcinoma. Transpl Int. 2010 Jul; 23 (7): 692–697. doi:10.1111/j.1432-2277.2010.01108.x. Epub 2010 May 20. PMID: 20497401.; Foo ML, Gunderson LL, Bender CE, Buskirk SJ. External radiation therapy and transcatheter iridium in the treatment of extrahepatic bile duct carcinoma. Int J Radiat Oncol Biol Phys. 1997 Nov 1; 39 (4): 929–935. doi:10.1016/s0360-3016(97)00299-x. PMID: 9369143.; JarnaginWR,RuoL,Little SA,KlimstraD,D’Angelica M, DeMatteo RP et al. Patterns of initial disease recurrence after resection of gallbladder carcinoma and hilar cholangiocarcinoma: implications for adjuvant therapeutic strategies. Cancer. 2003 Oct 15; 98 (8): 1689–1700. doi:10.1002/cncr.11699. PMID: 14534886.; Гранов ДА, Шаповал СВ, Гапбаров АЧ, Моисеенко АВ. Комбинация методов регионарной терапии в лечении неоперабельной опухоли Клатскина. Высокотехнологическая медицина. 2020; 4: 8–16.; Гранов ДА, Поликарпов АА, Таразов ПГ, Тимергалин ИВ, Полысалов ВН. Опухоль Клатскина, осложненная механической желтухой и холангитом, в реальной практике: нерезектабельная опухоль или инкурабельный пациент? Вестник хирургии имени И.И. Грекова. 2020; 179 (4): 9–16. https://doi.org/10.24884/0042-4625-2020-179-4-9-16.; Benson AB, D’Angelica MI, Abbott DE, Anaya DA, Anders R, Are C et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2021; 19 (5): 541–565. doi:10.6004/jnccn.2021.0022.; Бредер ВВ, Базин ИС, Косырев ВЮ, Ледин ЕВ. Практические рекомендации по лекарственному лечению билиарного рака. Злокачественные опухоли. 2021; 10 (3s2-1): 470–486. doi:10.18027/2224-5057-2020-10-3s2-26.; Бредер ВВ. Рак желчевыводящей системы. Практическая онкология. 2012; 13 (4): 269–275.; Polistina FA, Guglielmi R, Baiocchi C, Francescon P, Scalchi P, Febbraro A et al. Chemoradiation treatment with gemcitabine plus stereotactic body radiotherapy for unresectable, non-metastatic, locally advanced hilar cholangiocarcinoma. Results of a five year experience. Radiother Oncol. 2011 May; 99 (2): 120–123. ISSN 01678140. https://doi.org/10.1016/j.radonc.2011.05.016.; Ortner ME, Caca K, Berr F, Liebetruth J, Mansmann U, Huster D et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study. Gastroenterology. 2003 Nov; 125 (5): 1355–1363. doi:10.1016/j.gastro.2003.07.015. PMID:14598251.; Zoepf T, Jakobs R, Arnold JC, Apel D, Riemann JF. Palliation of nonresectable bile duct cancer: improved survival after photodynamic therapy. Am J Gastroenterol. 2005 Nov; 100 (11): 2426–2430. doi:10.1111/j.15720241.2005.00318.x. PMID: 16279895.; Lee TY, Cheon YK, Shim CS, Cho YD. Photodynamic therapy prolongs metal stent patency in patients with unresectable hilar cholangiocarcinoma. World J Gastroenterol. 2012 Oct 21; 18 (39): 5589–5594. doi:10.3748/wjg.v18.i39.5589. PMID: 23112552; PMCID:PMC3482646.; Wagner A, Kiesslich T, Neureiter D, Friesenbichler P, Puespoek A, Denzer UW et al. Photodynamic therapy for hilar bile duct cancer: clinical evidence for improved tumoricidal tissue penetration by temoporfin. Photochem Photobiol Sci. 2013 Jun; 12 (6): 1065–1073. doi:10.1039/c3pp25425a. Epub 2013 Apr 4. PMID:23558738.; Долгушин БИ, Сергеева ОН, Францев ДЮ, Кукушкин АВ, ПановВО,ВиршкеЭРи др. Внутрипротоковая фотодинамическая терапия при воротной холангиокарциноме у неоперабельных больных. Анналы хирургической гепатологии. 2016; 21 (3): 106–118. https://doi.org/10.16931/1995-5464.20163106-118.; Zhang C, Song M, Sun Z, Fang Y, Liu Y, Xu K et al. Biliary drainage combined with simultaneous 125I seed strand brachytherapy for the treatment of hilar cholangiocarcinoma. BMC Cancer. 2023 May 9; 23 (1): 418. https://doi.org/10.1186/s12885-023-10868-5.; Ito T, Butler JR, Noguchi D, Ha M, Aziz A, Agopian VG et al. A 3-Decade, Single-Center Experience of Liver Transplantation for Cholangiocarcinoma: Impact of Era, Tumor Size, Location, and Neoadjuvant Therapy. Liver Transpl. 2022 Mar; 28 (3): 386–396. doi:10.1002/lt.26285. Epub 2021 Oct 21. PMID: 34482610.; https://journal.transpl.ru/vtio/article/view/1730

  11. 11
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 3 (2024); 168-175 ; Вестник трансплантологии и искусственных органов; Том 26, № 3 (2024); 168-175 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1840/1677; Готье СВ. Трансплантология XXI века: высокие технологии в медицине и инновации в биомедицинской науке. Вестник трансплантологии и искусственных органов 2017; 19 (3): 10–32. doi:10.15825/1995-1191-2017-3-10-32.; Elisofon SA, Magee JC, Ng VL, Horslen SP, Fioravanti V, Economides J et al. Society of pediatric liver transplantation: Current registry status 2011–2018. Pediatr Transplant. 2020; 24 (1): 3. doi:10.1111/petr.13605.; Baumann U, Karam V, Adam R, Fondevila C, Dhawan A, Sokal E et al. Prognosis of Children Undergoing Liver Transplantation: A 30-Year European Study. Pediatrics. 2022; 150 (4): e2022057424. doi:10.1542/peds.2022-057424.; Tu CG, Khurana S, Couper R, Ford AW. Kasai hepatoportoenterostomy in South Australia: a case for ‘centralized decentralization’. ANZ J Surg. 2015; 85 (11): 865–868. doi:10.1111/ans.12522.; Davenport M, Muntean A, Hadzic N. Biliary Atresia: Clinical Phenotypes and Aetiological Heterogeneity. J Clin Med. 2021; 10 (23): 5675. doi:10.3390/jcm10235675.; Hellen DJ, Karpen SJ. Genetic Contributions to Biliary Atresia: A Developmental Cholangiopathy. Semin Liver Dis. 2023; 43 (3): 323–335. doi:10.1055/a-2153-8927.; Sutton H, Karpen SJ, Kamath BM. Pediatric Cholestatic Diseases: Common and Unique Pathogenic Mechanisms. Annu Rev Pathol. 2024; 19: 319–344. doi:10.1146/annurev-pathmechdis-031521-025623.; Ирышкин ОЕ, Ильинский ИМ, Цирульникова ОМ, Готье СВ. Патоморфология билиарной атрезии у детей – реципиентов донорской печени. Вестник трансплантологии и искусственных органов. 2013; 15 (4): 47–54. doi:10.15825/1995-1191-2013-4-47-54.; Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999; 8 (1): 93–97. doi:10.1093/hmg/8.1.93.; Jian ZH, Wang LC, Lin CC, Wang J. The correlation between plasma cytokine levels in jaundice-free children with biliary atresia. World J Pediatr. 2015; 11 (4): 352–357. doi:10.1007/s12519-015-0023-5.; Kurabekova R, Tsirulnikova O, Pashkova I, Gichkun O, Mozheyko N, Gautier S et al. Transforming growth factor beta 1 levels in the blood of pediatric liver recipients: Clinical and biochemical correlations. Pediatr Transplant. 2020; 24 (3): e13693. doi: 1111/petr.13693.; Shah R, Rahaman B, Hurley CK, Posch PE. Allelic diversity in the TGFB1 regulatory region: characterization of novel functional single nucleotide polymorphisms. Hum Genet. 2006; 119 (1–2): 61–74. doi:10.1007/s00439-005-0112-y.; Arrieta-Bolanos E, Madrigal JA, Shaw BE. Novel alleles of the transforming growth factor beta-1 regulatory region and exon 1. Tissue Antigens. 2015; 85 (6): 484–491. doi:10.1111/tan.12555.; Kurabekova RM, Gichkun OE, Tsirulnikova OM, Pashkova IE, Fomina VA, Shevchenko OP et al. Analysis of the Association between the TGFB1 Gene Haplotype and Liver Diseases in Children. Acta Naturae. 2023; 15 (3): 75–81. doi:10.32607/actanaturae.; Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006; 22 (15): 1928–1929. doi:10.1093/bioinformatics/btl268.; Барсова Р, Титов Б, Матвеева Н, Фаворов А, Рыбалкин И, Власик Т и др. Участие гена TGFB1 в формировании предрасположенности к инфаркту миокарда. Acta Naturae (русскоязычная версия) 2012; 4 (2): 76–82.; Iriyoda TMV, Flauzino T, Costa NT, Lozovoy MAB, Reiche EMV, Simão ANC. TGFB1 (rs1800470 and rs1800469) variants are independently associated with disease activity and autoantibodies in rheumatoid arthritis patients. Clin Exp Med. 2022; 22 (1): 37–45. doi:10.1007/s10238-021-00725-9.; Ncbi.nlm.nih.gov [Internet]. The National Center for Biotechnology Information. Bethesda: National Library of Medicine; [cited 2024 June 17]. Available from: [https://www.ncbi.nlm.nih.gov/snp/?term=TGFB1].; Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006; 24: 99–146.; Lam WY, Tang CS, So MT, Yue H, Hsu JS, Chung PH et al. Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism. EBioMedicine. 2021; 71 (103530): 27. doi:10.1016/j.ebiom.2021.; Tsai EA, Grochowski CM, Loomes KM, Bessho K, Hakonarson H, Bezerra JA et al. Replication of a GWAS signal in a Caucasian population implicates ADD3 in susceptibility to biliary atresia. Hum Genet. 2014; 133 (2): 235–243. doi:10.1007/s00439-013-1368-2.; Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB et al. Biliary atresia and other cholestatic childhood diseases: Advances and future challenges. J Hepatol. 2016; 65 (3): 631–642. doi:10.1016/j.jhep.2016.04.032.; https://journal.transpl.ru/vtio/article/view/1840

  12. 12
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 4 (2024); 33-45 ; Вестник трансплантологии и искусственных органов; Том 26, № 4 (2024); 33-45 ; 1995-1191

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1806/1700; Starzl TE, Marchioro Tl, Vonkaulla KN, Hermann G, Brittain RS, Waddell WR. Homotransplantation of the liver in humans. Surg Gynecol Obstet. 1963; 117:659-76.; Nadalin S, Bockhorn M, Malagó M, Valentin-Gamazo C, Frilling A, Broelsch CE. Living donor liver transplantation. HPB (Oxford). 2006;8(1):10-21. https://doi.org/10.1080/13651820500465626; Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E et al. Global epidemiology of cirrhosis - aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023;20(6):388-398. https://doi.org/10.1038/s41575-023-00759-2; Dunn R, Musabaev E, Razavi H, Sadirova S, Bakieva S, Razavi-Shearer K et al. Progress Toward Hepatitis B and Hepatitis C Elimination Using a Catalytic Funding Model - Tashkent, Uzbekistan, December 6, 2019-March 15, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(34):1161-1165. https://doi.org/10.15585/mmwr.mm6934a3; Akbarov M, Ismailov S, Nazirov F, Ibadov R, Bahritdinov F, Dzhanbekov T et al. Transplantology: a requirement of the time or the next evolutionary step of high-tech surgery? JESM. 2023;1:15-23 https://journals.tma.uz/index.php/jesm/article/view/285; Katsanos G, Karakasi KE, Antoniadis N, Vasileiadou S, Kofinas A, Morsi-Yeroyannis A et al. Enhanced recovery after surgery in liver transplantation: Challenges and feasibility. World J Transplant. 2022; 12(7):195-203. https://doi.org/10.5500/wjt.v12.i7.195; Semash К, Janbekov Т, Akbarov М, Usmonov А, Gaibullaev Т. Stages of preparation and examination of related liver donors and their perioperative management. Coloproc. 2023; 15(1):41-54. https://doi.org/10.56121/2181-4260-2023-1-41-54; Radulova-Mauersberger O, Weitz J, Riediger C. Vascular surgery in liver resection. Langenbecks Arch Surg. 2021; 406(7):2217-2248 . https://doi.org/10.1007/s00423-021-02310-w; Joliat GR, Kobayashi K, Hasegawa K, Thomson JE, Padbury R, Scott M et al. Guidelines for Perioperative Care for Liver Surgery: Enhanced Recovery After Surgery (ERAS) Society Recommendations 2022. World J Surg. 2023; 47(1):11-34. https://doi.org/10.1007/s00268-022-06732-5; Wong TC, Fung JYY, Cui TYS, Sin SL, Ma KW, She BWH et al. The Risk of Going Small: Lowering GRWR and Overcoming Small-For-Size Syndrome in Adult Living Donor Liver Transplantation. Ann Surg. 2021;274(6):e1260-e1268. https://doi.org/10.1097/sla.0000000000003824; Сёмаш К.О., Джанбеков Т.А., Акбаров М.М. Сосудистые осложнения после трансплантации печени – современные методы диагностики и лечения. Обзор мировой литературы. Вестник трансплантологии и искусственных органов. 2023;25(4):46-72.; Монахов АР, Джанбеков ТА, Мещеряков СВ, Сёмаш КО, Хизроев ХМ, Восканов МА. Каркасное дренирование желчных протоков при билиарной реконструкции при трансплантации левого латерального сектора печени. Вестник трансплантологии и искусственных органов. – 2020. – Т. 22, № S. – С. 74.; Raschke R.A., Reilly B.M., Guidry J.R., Fontana J.R., Srinivas S. Theweight-based heparin dosing nomogram compared with a “standard care” nomogram: A randomized controlled trial. Ann Intern Med. 1993; 119(9):874-881. https://doi.org/10.7326/0003-4819-119-9-199311010-00002; Готье С.В., Восканов М.А., Монахов А.Р., Сёмаш К.О. Роль эндоваскулярных и эндобилиарных методов в лечении осложнений после трансплантации печени. Вестник трансплантологии и искусственных органов. 2020;22(4):140148.; https://doi.org/10.15825/1995-1191-2020-4-140-148; Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187-196. https://doi.org/10.1097/SLA.0b013e3181b13ca2; Monakhov A, Mironkov B, Tsiroulnikova O, Voskanov M, Dzhanbekov T, Semash K et al. Interventional Radiology in Complication Management after Pediatric Liver Transplantation. Transplantation. 2018;102(S7). https://doi.org/10.1097/01.tp.0000542777.01469; Lai Q, Melandro F, Nowak G, Nicolini D, Iesari S, Fasolo E et al. The role of the comprehensive complication index for the prediction of survival after liver transplantation. Updates Surg. 2021;73(1):209-221. https://doi.org/10.1007/s13304-020-00878-4; Semash K, Djanbekov T, Akbarov M, Usmonov A, Shermatov M, Gaybullaev T. Interventional correction of extrahepatic portal hypertension in patient after liver transplant. The first case report in Uzbekistan. CAJM. 2023;1:87-96. https://journals.tma.uz/index.php/cajm/article/view/556; Emiroglu R, Sevmis S, Moray G, Savas N, Haberal M. Living-donor liver transplantation: results of a single center. Transplant Proc. 2007;39(4):1149-52. https://doi.org/10.1016/j.transproceed.2007.02.052.; Nizamuddin I, Gordon EJ, Levitsky J. Ethical Issues When Considering Liver Donor Versus Deceased Donor Liver Transplantation. Clin Liver Dis (Hoboken). 2021;17(2):71-74. https://doi.org/10.1002/cld.982; Yoo S, Jang EJ, Yi NJ, Kim GH, Kim DH, Lee H et al. Effect of Institutional Case Volume on In-hospital Mortality After Living Donor Liver Transplantation: Analysis of 7073 Cases Between 2007 and 2016 in Korea. Transplantation. 2019;103(5):952-958. https://doi.org/10.1097/TP.0000000000002394; Kim YJ, Yoon JH, Kim SI, Choi HJ, Choi JY, Yoon SK et al. Impact of Pretransplant Infections on Clinical Course in Liver Transplant Recipients. Transplant Proc. 2018;50(4):1153-1156. https://doi.org/10.1016/j.transproceed.2018.01.036; Kaido T, Egawa H, Tsuji H, Ashihara E, Maekawa T, Uemoto S. In-hospital mortality in adult recipients of living donor liver transplantation: experience of 576 consecutive cases at a single center. Liver Transpl. 2009;15(11):1420-5. https://doi.org/10.1002/lt.21873; Miller CM, Quintini C, Dhawan A, Durand F, Heimbach JK, Kim-Schluger HL et al. The International Liver Transplantation Society Living Donor Liver Transplant Recipient Guideline. Transplantation. 2017;101(5):938-944. https://doi.org/10.1097/TP.0000000000001571; Manas D, Burnapp L, Andrews PA. Summary of the British Transplantation Society UK Guidelines for Living Donor Liver Transplantation. Transplantation. 2016;100(6):1184-90. https://doi.org/10.1097/TP.0000000000001128; Daniel K, Said A. Early Biliary complications after liver transplantation. Clin Liver Dis (Hoboken). 2017 Sep 29;10(3):63-67. https://doi.org/10.1002/cld.654; Xiao J, Zeng RW, Lim WH, Tan DJH, Yong JN, Fu CE et al. The incidence of adverse outcome in donors after living donor liver transplantation: A meta-analysis of 60,829 donors. Liver Transpl. 2023(1):10.1097. https://doi.org/10.1097/LVT.0000000000000303; Kim PT, Testa G. Living donor liver transplantation in the USA. Hepatobiliary Surg Nutr. 2016;5(2):133-40. https://doi.org/10.3978/j.issn.2304-3881.2015.06.01; https://journal.transpl.ru/vtio/article/view/1806

  13. 13
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 4 (2024); 447-457 ; Трансплантология; Том 16, № 4 (2024); 447-457 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/938/905; https://www.jtransplantologiya.ru/jour/article/view/938/921; Mcgill DB, Rakela J, Zinsmeister AR, Ott BJ. A 21-year experience with major hemorrhage after percutaneous liver biopsy. Gastroenterology. 1990;99(5):1396-1400. PMID: 2101588 https://doi.org/10.1016/00165085(90)91167-5; Dienstag JL. The role of liver biopsy in chronic hepatitis C. Hepatology. 2002;36(5 Suppl 1):S152-160. PMID: 12407589 https://doi.org/10.1053/jhep.2002.36381; Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344(7):495-500. PMID: 11172192 https://doi.org/10.1056/NEJM200102153440706; Bedossa P, Dargere D, Paradis V. Sampling variability of liver fibro sis in chronic hepatitis C. Hepatology. 2003;38(6):1449-1457. PMID: 14647056 https://doi.org/10.1016/j.hep.2003.09.022; Goldschmidt I, Stieghorst H, Munteanu M, Poynard T, Schlue J, Streckenbach C, et al. The use of transient elastography and non-invasive serum markers of fibrosis in pediatric liver transplant recipients. Pediatr Transplant. 2013;17(6):525-534. PMID: 23802661 https://doi.org/10.1111/petr.12116; Sandrin L, Fourquet B, Hasque noph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol. 2003;29(12):1705-1713. PMID: 14698338 https://doi.org/10.1016/j.ultrasmedbio.2003.07.001; Della-Guardia B, Evangelista AS, Felga GE, Marins LV, Salvalaggio PR, Almeida MD. Diagnostic accuracy of transient elastography for detecting liver fibrosis after liver transplantation: a specific cut-off value is really needed? Dig Dis Sci. 2017; 62(1):264-272. PMID: 27785710 https://doi.org/10.1007/s10620-016-4349-1; Arena U, Vizzutti F, Corti G, Ambu S, Stasi C, Bresci S, et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepato logy. 2008;47(2):380-384. PMID: 18095306 https://doi.org/10.1002/hep.22007; Rigamonti C, Donato MF, Fraquelli M, Agnelli F, Ronchi G, Casazza G, et al. Transient elastography predicts fibrosis progression in patients with recurrent hepatitis C after liver transplantation. Gut. 2008;57(6):821-827. PMID: 18218676 https://doi.org/10.1136/gut.2007.135046; Castéra L, Vergniol J, Foucher J, Le Bail B, Chanteloup E, Haaser M, et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology. 2005;128(2):343-350. PMID: 15685546 https://doi.org/10.1053/j.gastro.2004.11.018; Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepato logy. 2005;41(1):48-54. PMID: 15690481 https://doi.org/10.1002/hep.20506; Corpechot C, El Naggar A, Poujol-Robert A, Ziol M, Wendum D, Chazouilleres O, et al. Assessment of biliary fibrosis by transient elastography in patients with PBC and PSC. Hepatology. 2006;43(5):1118-1124. PMID: 16628644 https://doi.org/10.1002/hep.21151; Millonig G, Reimann FM, Friedrich S, Fonouni H, Mehrabi A, Büchler MW, et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology. 2008;48(5):1718-1723. PMID: 18836992 https://doi.org/10.1002/hep.22577; Hopper I, Kemp W, Porapakkham P, Sata Y, Condon E, Skiba M, et al. Impact of heart failure and changes to volume status on liver stiffness: non-invasive assessment using transient elastography. Eur J Heart Fail. 2012;14(6):621- 627. PMID: 22523374 https://doi.org/10.1093/eurjhf/hfs044; Mueller S. Does pressure cause liver cirrhosis? The sinusoidal pres sure hypothesis. World J Gastroenterol. 2016;22(48):10482-10501. PMID: 28082801 https://doi.org/10.3748/wjg.v22.i48.10482; Hagan M, Asrani SK, Talwalkar J. Non-invasive assessment of liver fibrosis and prognosis. Expert Rev Gastroenterol Hepatol. 2015;9(10):1251-1260. PMID: 26377444 https://doi.org/10.1586/17474124.2015.1075391; Harada N, Soejima Y, Taketomi A, Yoshizumi T, Ikegami T, Yamashi ta Y, et al. Assessment of graft fibrosis by transient elastography in patients with recurrent hepatitis C after li ving donor liver transplantation. Transplantation. 2008;85(1):69-74. PMID: 18192914 https://doi.org/10.1097/01.tp.0000297248.18483.16; Mikolasevic I, Hauser G, Mijic M, Domislovic V, Radic-Kristo D, Krznaric Z, et al. Assessment of steatosis and fibrosis in liver transplant recipients using controlled attenuation param eter and liver stiffness measure ments. Can J Gastroenterol Hepatol. 2021;2021:6657047. PMID: 33628759 https://doi.org/10.1155/2021/6657047; Fraquelli M, Rigamonti C. Diagnosis of cirrhosis by transient elastography: what is hidden behind misleading results. Hepatology. 2007;46(1):282-283. PMID: 17596881 https://doi.org/10.1002/hep.21653; Carrión JA, Navasa M, Bosch J, Bruguera M, Gilabert R, Forns X. Transient elastography for diagnosis of advanced fibrosis and portal hypertension in patients with hepatitis C recurrence after liver transplantation. Liver Transpl. 2006;12(12):1791-1798. PMID: 16823833 https://doi.org/10.1002/lt.20857; Cholongitas E, Tsochatzis E, Goulis J, Burroughs AK. Noninvasive tests for evaluation of fibrosis in HCV recurrence after liver transplantation: a systematic review. Transpl Int. 2010;23(9):861-870. PMID: 20704691 https://doi.org/10.1111/j.1432-2277.2010.01142.x; Bhat M, Tazari M, Sebastiani G. Performance of transient elastography and serum fibrosis biomarkers for non-invasive evaluation of recurrent fibrosis after liver transplantation: a meta-analysis. PloS One. 2017;12(9):e0185192. PMID: 28953939 https://doi.org/10.1371/journal.pone.0185192; Kamphues C, Lotz K, Röcken C, Berg T, Eurich D, Pratschke J, et al. Chances and limitations of non-invasive tests in the assessment of liver fibro sis in liver transplant patients. Clin Transplant. 2010;24(5):652-659. PMID: 19925459 https://doi.org/10.1111/j.13990012.2009.01152.x; Corradi F, Piscaglia F, Flori S, D'ErricoGrigioni A, Vasuri F, Tamé MR, et al. Assessment of liver fibrosis in transplant recipients with recurrent HCV infection: usefulness of transient elastography. Dig Liver Dis. 2009;41(3):217-225. PMID: 18672413 https://doi.org/10.1016/j.dld.2008.06.009; Carrión JA, Torres F, Crespo G, Miquel R, García-Valdecasas JC, Navasa M, et al. Liver stiffness identifies two different patterns of fibrosis progression in patients with hepatitis C virus recurrence after liver transplantation. Hepatology. 2010;51(1):23-34. PMID: 19839063 https://doi.org/10.1002/hep.23240; Rigamonti C, Donato MF, Colombo M. Transient elastography in the early prediction of progressive recurrent hepatitis C following liver transplantation. Hepatology. 2010;52(2):800-801. PMID: 20683975 https://doi.org/10.1002/hep.23607; Crespo G, Lens S, Gambato M, Carrión JA, Mariño Z, Londoño MC, et al. Liver stiffness 1 year after transplantation predicts clinical outcomes in patients with recurrent hepatitis C. Am J Transplant. 2014;14(2):375-383. PMID: 24410892 https://doi.org/10.1111/ajt.12594; Yada N, Sakurai T, Minami T, Arizumi T, Takita M, Inoue T, et al. Ultrasound elastography correlates treatment response by antiviral therapy in patients with chronic hepatitis C. Oncology. 2014;87(Suppl 1):118- 123. PMID: 25427743 https://doi.org/10.1159/000368155; Forestier N, Gaus A, Herrmann E, Sarrazin C, Bojunga J, Poynard T, et al. Acoustic radiation force impulse imaging for evaluation of antiviral treatment response in chronic hepatitis C. J Gastrointestin Liver Dis. 2012;21(4):367-373. PMID: 23256119; Chan J, Gogela N, Zheng H, Lammert S, Ajayi T, Fricker Z, et al. Directacting antiviral therapy for chronic HCV infection results in liver stiffness regression over 12 months post-treatment. Dig Dis Sci. 2018;63(2):486-492. PMID: 28887750 https://doi.org/10.1007/s10620-017-4749-x; Mauro E, Crespo G, Montironi C, Londoño MC, Hernández-Gea V, Ruiz P, et al. Portal pressure and liver stiff ness measurements in the prediction of fibrosis regression after sustained virological response in recurrent hepatitis C. Hepatology. 2018;67(5):1683-1694. PMID: 28960366 https://doi.org/10.1002/hep.29557; https://www.jtransplantologiya.ru/jour/article/view/938

  14. 14
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 3 (2024); 278-290 ; Трансплантология; Том 16, № 3 (2024); 278-290 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/909/879; https://www.jtransplantologiya.ru/jour/article/view/909/896; Kim SJ, Kim JM. Prediction models of hepatocellular carcinoma recurrence after liver transplantation: a comprehensive review. Clin Mol Hepatol. 2022;28(4):739–753. PMID: 35468711 https://doi.org/10.3350/cmh.2022.0060; Гранов А.М., Гранов Д.А., Жеребцов Ф.К., Герасимова О.А., Боровик В.В., Осовских В.В. и др. Трансплантация печени в РНЦРХТ. Опыт 100 операций. Вестник трансплантологии и искусственных органов. 2012;14(4):11– 16. https://doi.org/10.15825/1995-1191-2012-4-11-16; Восканян С.Э., Сушков А.И., Артемьев А.И., Забежинский Д.А., Найденов Е.В., Башков А.Н. и др. Salvage-трансплантация печени при лечении гепатоцеллюлярной карциномы. Хирургия. Журнал им. Н.И. Пирогова. 2019;(10):21–28. https://doi.org/10.17116/hirurgia201910121; Восканян С.Э., Найденов Е.В., Артемьев А.И., Колышев И.Ю., Забежинский Д.А., Губарев К.К. и др. Отдаленные результаты трансплантации печени при гепатоцеллюлярном раке. Анналы Хирургической Гепатологии. 2021;26(2):68–82. https://doi.org/10.16931/10.16931/1995-5464.2021-2-68-82.5; Олисов О.Д., Новрузбеков М.С., Гуляев В.А., Луцык К.Н. Роль ингибиторов кальциневрина в прогрессии гепатоцеллюлярной карциномы после трансплантации печени. Трансплантология. 2022;14:292–300. https://doi.org/10.23873/2074-0506-2022-14-3-292-3006; Goldberg D, Mantero A, Newcomb C, Delgado C, Forde KA, Kaplan DE, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma using the LiTES-HCC score. J Hepatol. 2021;74(6):1398–1406. PMID: 33453328 https://doi.org/10.1016/j.jhep.2020.12.021; Mazzaferro V, Sposito C, Zhou J, Pinna AD, De Carlis L, Fan J, et al. Metroticket 2.0 model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma. Gastroenterology. 2018;154(1):128– 139. PMID: 28989060 https://doi.org/10.1053/j.gastro.2017.09.025; Humar A, Ganesh S, Jorgensen D, Tevar A, Ganoza A, Molinari M, et al. Adult living donor versus deceased donor liver transplant (LDLT Versus DDLT) at a single center: time to change our paradigm for liver transplant. Ann Surg. 2019;270(3):444–451. PMID: 31305283 https://doi.org/10.1097/SLA.0000000000003463; Goldaracena N, Gorgen A, Doyle A, Hansen BE, Tomiyama K, Zhang W, et al. Live donor liver transplantation for patients with hepatocellular carcinoma offers increased survival vs. deceased donation. J Hepatol. 2019;70(4):666– 673. PMID: 30630009 https://doi.org/10.1016/j.jhep.2018.12.029; Beumer BR, Polak WG, De Man RA, Metselaar HJ, Van Klaveren D, Labrecque J, et al. Impact of waiting time on post-transplant survival for recipients with hepatocellular carcinoma: A natural experiment randomized by blood group. JHEP Rep. 2023;5(2):100629. PMID: 36654943 https://doi.org/10.1016/j.jhepr.2022.100629; Maspero M, Yilmaz S, Cazzaniga B, Raj R, Ali K, Mazzaferro V, et al. The role of ischaemia-reperfusion injury and liver regeneration in hepatic tumour recurrence. JHEP Rep. 2023; 5(11):100846. PMID: 37771368 https://doi.org/10.1016/j.jhepr.2023.100846; Duvoux C, Roudot-Thoraval F, Decaens T, Pessione F, Badran H, Piardi T, et al. Liver transplantation for hepatocellular carcinoma: a model including α-fetoprotein improves the performance of Milan criteria. Gastroenterology. 2012;143(4):986–994.e3. PMID: 22750200 https://doi.org/10.1053/j.gastro.2012.05.052; Halazun KJ, Najjar M, Abdelmessih RM, Samstein B, Griesemer AD, Guarrera JV, et al. Recurrence after liver transplantation for hepatocellular carcinoma: a new MORAL to the story. Ann Surg. 2017;265(3):557–564. PMID: 27611615 https://doi.org/10.1097/SLA.0000000000001966; Mehta FY, Heimbach J, Harnois DM, Sapisochin G, Dodge JL, Lee D, et al. Validation of a Risk Estimation of Tumor Recurrence After Transplant (RETREAT) Score for hepatocellular carcinoma recurrence after liver transplant. JAMA Oncol. 2017;3(4):493–500. PMID: 27838698 https://doi.org/10.1001/jamaoncol.2016.5116; Lee JH, Cho Y, Kim HY, Cho EJ, Lee DH, Yu SJ, et al. Serum tumor markers provide refined prognostication in selecting liver transplantation candidate for hepatocellular carcinoma patients beyond the Milan criteria. Ann Surg. 2016;263(5):842–850. PMID: 26779979 https://doi.org/10.1097/SLA.0000000000001578; Nam K, Lee J, Bae J, Chang Y, Cho Y, Sinn D, et al. Novel model to predict HCC recurrence after liver transplantation obtained using deep learning: a multicenter study. Cancers (Basel). 2020;12(10):2791. PMID: 33003306 https://doi.org/10.3390/cancers12102791; https://www.jtransplantologiya.ru/jour/article/view/909

  15. 15
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 4 (2024); 500-506 ; Трансплантология; Том 16, № 4 (2024); 500-506 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/943/910; https://www.jtransplantologiya.ru/jour/article/view/943/914; Panzera F, Inchingolo R, Rizzi M, Biscaglia A, Schievenin MG, Tallarico E, et al. Giant splenic artery aneurysm presenting with massive upper gastrointestinal bleeding: a case report and review of literature. World J Gastroenterol. 2020;26(22):3110–3117. https://doi.org/10.3748/wjg.v26.i22.3110; Batagini NC, Constantin BD, Kirksey L, Vallentsits Estenssoro AE, PuechLeão P, De Luccia N, et al. Natural history of splanchnic artery aneurysms. Ann Vasc Surg. 2021;73:290–295. PMID: 33346122 https://doi.org/10.1016/j.avsg.2020.10.047; Leal J, Batagini NC, Stefan de Faria Oliveira I, Frederico MG, Rodrigues MS, Casella IB, et al. Comparison of splenic artery aneurysms in patients with and without portal hypertension. Ann Vasc Surg. 2024;109:232–237. PMID: 39009114 https://doi.org/10.1016/j.avsg.2024.06.010; Gupta S, Pottakkat B, Verma SK, Kalayarasan R, Chandrasekar AS, Pillai AA. Pathological abnormalities in splenic vasculature in non-cirrhotic portal hypertension: Its relevance in the management of portal hyper tension. World J Gastrointest Surg. 2020;12(1):1–8. PMID: 31984119 doi.org/10.4240/wjgs.v12.i1.1; Phan D, Furtado R, Laurence JM, Pleass H. Splenic artery aneurysm management in the cirrhotic patient listed for liver transplantation: a systematic review. Transplant Proc. 2022;54(3):706– 714. https://doi.org/10.1016/j.transproceed.2022.01.031; Wang S, Huang W, Liu J, Liu Q, Wang Z, Wang Q, et al. Selection of endovascular treatment strategies and analysis of the efficacy of different locations and types of splenic artery aneurysms. CVIR Endovasc. 2024;7(1):16. PMID: 38294662 https://doi.org/10.1186/s42155-024-00427-9; Gong C, Sun MS, Leng R, Ren H-L, Zheng K, Wang S-X, et al. Endovascular embolization of visceral artery aneurysm: a retrospective study. Sci Rep. 2023;13(1):6936. PMID: 37117396 https://doi.org/10.1038/s41598-023-33789-6; Шабунин А.В., Багателия З.А., Бедин В.В., Тавобилов М.М., Карпов А.А., Алиева Ф.Ф. и др. Морфологическое обоснование хирургического лечения пациентов с истинной аневризмой селезеночной артерии. Анналы хирургической гепатологии. 2024;29(3):100–107. https://doi.org/10.16931/1995-5464.2024-3-100107; Sun LM, Chen HJ, Jeng LB, Li TC, Wu SC, Kao CH. Splenectomy and increased subsequent cancer risk: a nationwide population-based cohort study. Am J Surg. 2015;210(2):243– 251. PMID: 25986002 https://doi.org/10.1016/j.amjsurg.2015.01.017; Шабунин А.В., Бедин В.В., Тавобилов М.М., Карпов А.А., Алиева Ф.Ф. Программа лечения больных с истинными аневризмами селезеночной артерии в хирургической клинике Боткинской больницы. Московский хирургический журнал. 2023;(3):81–89. https://doi.org/10.17238/2072-3180-2023-3-81-89; https://www.jtransplantologiya.ru/jour/article/view/943

  16. 16
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 4 (2024); 473-482 ; Трансплантология; Том 16, № 4 (2024); 473-482 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/940/907; https://www.jtransplantologiya.ru/jour/article/view/940/916; Cawich SO, Sinanan A, Deshpande RR, Gardner MT, Pearce NW, Naraynsingh V. Anatomic variations of the intra-hepatic biliary tree in the Caribbean: a systematic review. World J Gastrointest Endosc. 2021;13(6):170–183. PMID: 34163564 https://doi.org/10.4253/wjge.v13.i6.170; Sticova E, Jirsa M, Pawłowska J. New insights in genetic cholestasis: from molecular mechanisms to clinical implications. Can J Gastroenterol Hepatol. 2018;26;2018:2313675. PMID: 30148122 https://doi.org/10.1155/2018/2313675; Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis. 2009. PMID: 19133130 https://doi.org/10.1186/1750-1172-4-1; Summerskill WH, Walshe JM. Benign recurrent intrahepatic "obstructive" jaundice. Lancet. 1959;2(7105):686– 690. PMID: 13835689 https://doi.org/10.1016/s0140-6736(59)92128-2; Luketic VA, Shiffman ML. Benign recurrent intrahepatic cholestasis. Clin Liver Dis. 1999;3(3):509–528. PMID: 11291237 https://doi.org/10.1016/s10893261(05)70083-0; Folvik G, Hilde O, Helge GO. Benign recurrent intrahepatic cholestasis: review and long-term follow-up of five cases. Scand J Gastroenterol. 2012;47(4):482– 488. PMID: 22229830 https://doi.org/10.3109/00365521.2011.650191; Halawi A, Ibrahim N, Bitar R. Triggers of benign recurrent intrahepatic cholestasis and its pathophysiology: a review of literature. Acta Gastroenterol Belg. 2021;84(3):477–486. PMID: 34599573 https://doi.org/10.51821/84.3.013; Strubbe B, Geerts A, Van Vlierberghe H, Colle I. Progressive familial intrahepatic cholestasis and benign recurrent intrahepatic cholestasis: a review. Acta Gastroenterol Belg. 2012;75(4):405–410. PMID: 23402083; Cai SY, Gautam S, Nguyen T, Soroka CJ, Rahner C, Boyer JL. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology. 2009;136(3):1060–1069. PMID: 19027009 https://doi.org/10.1053/j.gastro.2008.10.025; Paulusma CC, de Waart DR, Kunne C, Mok KS, Elferink RP. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J Biol Chem. 2009;284(15):9947–9954. PMID: 19228692 https://doi.org/10.1074/jbc.M808667200; Arthur Lorio E, Valadez D, Alkhouri N, Loo N. Cholestasis in benign recurrent intrahepatic cholestasis 2. ACG Case Rep J. 2020;7(6):e00412. PMID: 3264773 https://doi.org/10.14309/crj.0000000000000412; Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progres sive familial intrahepatic cholestasis. Orphanet J Rare Dis. 2009;4:1. PMID: 19133130 https://doi.org/10.1186/17501172-4-1; van der Woerd WL, van Mil SW, Stapelbroek JM, Klomp LW, van de Graaf SF, Houwen RH. Familial cholestasis: progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis and intrahepatic cholestasis of pregnancy. Best Pract Res Clin Gastroenterol. 2010;24(5):541–553. PMID: 20955958 https://doi.org/10.1016/j.bpg.2010.07.010; Dietrich CG, Geier A. Effect of drug transporter pharmacogenetics on cholestasis. Expert Opin Drug Metab Toxicol. 2014;10(11):1533–1551. PMID: 25260651 https://doi.org/10.1517/17425255.2014.963553; Ermis F, Oncu K, Ozel M, Yazgan Y, Gurbuz AK, Demirturk L, et al. Benign recurrent intrahepatic cholestasis: late initial diagnosis in adulthood. Ann Hepatol. 2010;9(2):207–210. PMID: 20526019; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51(2):237– 267. PMID: 19501929 https://doi.org/10.1016/j.jhep.2009.04.009; Suzuki H, Arinaga-Hino T, Sano T, Mihara Y, Kusano H, Mizuochi T, et al. Case report: a rare case of benign recurrent intrahepatic cholestasis-type 1 with a novel heterozygous pathogenic variant of ATP8B1. Front Med (Lausanne). 2022;9:891659. PMID: 35572954 https://doi.org/10.3389/fmed.2022.891659; Prince MI, Burt AD, Jones DE. Hepatitis and liver dysfunction with rifampicin therapy for pruritus in primary biliary cirrhosis. Gut. 2002;50(3):436– 439. PMID: 11839728 https://doi.org/10.1136/gut.50.3.436; Helgadottir H, Folvik G, Vesterhus M. Improvement of cholestatic episodes in patients with benign recurrent intrahepatic cholestasis (BRIC) treated with rifampicin. A long-term follow-up. Scand J Gastroenterol. 2023;58(5):512–520. PMID: 36369734 https://doi.org/10.1080/00365521.2022.2143725; Kumagi T, Heathcote EJ. Successfully treated intractable pruritus with rifampin in a case of benign recurrent intrahepatic cholestasis. Clin J Gastroenterol. 2008;1(4):160–163. PMID: 26193696 https://doi.org/10.1007/s12328-0080027-y; Schoeneich K, Frimmel S, Koball S. Successful treatment of a patient with benign recurrent intrahepatic cholestasis type 1 with albumin dialysis. Artif Organs. 2020;44(3):341–342. PMID: 31642075 https://doi.org/10.1111/aor.13572; Stapelbroek JM, van Erpe cum KJ, Klomp LW, Venneman NG, Schwartz TP, van Berge Henegouwen GP, et al. Nasobiliary drainage induces long-lasting remission in benign recurrent intrahepatic cholestasis. Hepatology. 2006;43(1):51–53. PMID: 16374853 https://doi.org/10.1002/hep.20998; Choudhury A, Kulkarni AV, Sahoo B, Bihari C. Endoscopic nasobiliary drainage: an effective treatment option for benign recurrent intrahe patic cholestasis (BRIC). BMJ Case Rep. 2017;2017:bcr2016218874. PMID: 28476903 https://doi.org/10.1136/bcr2016-218874; Mezey E, Burns C, Burdick JF, Braine HG. A case of severe benign intrahepatic cholestasis treated with liver transplantation. Am J Gastroenterol. 2002;97(2):475–477. PMID: 11866291 https://doi.org/10.1111/j.15720241.2002.05458.x; https://www.jtransplantologiya.ru/jour/article/view/940

  17. 17
    Academic Journal

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 2 (2024); 244-259 ; Трансплантология; Том 16, № 2 (2024); 244-259 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/889/867; https://www.jtransplantologiya.ru/jour/article/view/889/870; Новрузбеков М.С., Балкаров А.Г., Аносова Е.Ю., Дмитриев И.В., Анисимов Ю.А., Журавель Н.С. и др. Значение оксигенации при машинной перфузии почки и печени. Трансплантология. 2023;15(4):529–540.; Schlegel A, Muller X, Dutkowski P. Machine perfusion strategies in liver transplantation. HepatoBiliary Surg Nutr. 2019;8(5):490–501. PMID: 31673538 https://doi.org/10.21037/hbsn.2019.04.04; Dutkowski P, Polak WG, Muiesan P, Schlegel A, Verhoeven CJ, Scalera I, et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015;262(5):764–771. PMID: 26583664 https://doi.org/10.1097/SLA.0000000000001473; Sarvestani FS, Azarpira N, Al-Abdullah IH, Tamaddon A-M. microRNAs in liver and kidney ischemia reperfusion injury: Insight to improve transplantation outcome. Biomed Pharmacother. 2020;133:110944. PMID: 33227704 https://doi.org/10.1016/j.biopha.2020.110944; Яремин Б.И., Новрузбеков М.С., Луцык К.Н., Олисов О.Д., Гуляев В.А., Магомедов К.М. и др. Новые факторы прогнозирования тяжести ишемически-реперфузионного повреждения трансплантата печени. Вестник трансплантологии и искусственных органов. 2022;24(S):75. URL: https://journal.transpl.ru/vtio/article/view/1572/13 [Дата обращения 6 марта 2024 г.].; Serifis N, Matheson R, Cloonan D, Rickert CG, Markmann JF, Coe TM. Machine perfusion of the liver: a review of clinical trials. Front Surg. 2021;8:625394. PMID: 33842530 https://doi.org/10.3389/fsurg.2021.625394; Hadjiyannis Y, Thomson AW. Regulatory dendritic cell therapy in organ transplantation. Curr Opin Organ Transplant. 2023;29(0):1–10. https://doi.org/10.1097/MOT.0000000000001127; Rampes S, Ma D. Hepatic ischemiareperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res. 2019;33(4):221– 234. PMID: 32383437 https://doi.org/10.7555/JBR.32.20180087; Цой Д.Л., Мойсюк Я.Г. Профилактика и лечение ишемически-реперфузионных повреждений при трансплантации печени – возможный путь к расширению донорского пула. Вестник трансплантологии и искусственных органов. 2013;15(3):102–114. https://doi.org/10.15825/1995-1191-2013-3-102114; Tran LM, Macedo C, Zahorchak AF, Gu X, Elinoff B, Singhi A, et al. Donorderived regulatory dendritic cell infusion modulates effector CD8+ T cell and NK cell responses after liver transplantation. Sci Transl Med. 2023;15(717):eadf4287. PMID: 37820009 https://doi.org/10.1126/scitranslmed.adf4287; Маляревская О.В., Намитоков А.М., Кручинова С.В., Космачева Е.Д. Ингибиторы PCSK9: роль в снижении сердечно-сосудистой заболеваемости. Южно-Российский журнал терапевтической практики. 2022;3(2):32–40.; Zhang Y, Wang Z, Jia C, Yu W, Li X, Xia N, et al. Blockade of hepatocyte PCSK9 ameliorates hepatic ischemiareperfusion injury by promoting pink1parkin-mediated mitophagy. Cell Mol Gastroenterol Hepatol. 2024;17(1):149–169. PMID: 37717824 https://doi.org/10.1016/j.jcmgh.2023.09.004; Mirzaei R, Karampoor S, Korotkova NL. The emerging role of miRNA122 in infectious diseases: Mechanisms and potential biomarkers. Pathol Res Pract. 2023;249:154725. PMID: 37544130 https://doi.org/10.1016/j.prp.2023.154725; Singh SP, Maurya V, Kumar K, Singh D, Verma P, Samanta D, et al. Serum expression level of microRNA-122 and its significance in different stages of hepatitis B virus infection. Cell Mol Biol (Noisy-le-grand). 2023;69(6):36– 40. PMID: 37605594 https://doi.org/10.14715/cmb/2023.69.6.6; Ju C, Wang M, Tak E, Kim B, Emontzpohl C, Yang Y, et al. Hypoxia-inducible factor–1α–dependent induction of miR122 enhances hepatic ischemia tolerance. J Clin Invest. 2021;131(7):e140300. PMID: 33792566 https://doi.org/10.1172/JCI140300; Huang Z, Mou T, Luo Y, Pu X, Pu J, Wan L, et al. Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB. Cell Death Dis. 2020;11(6):455. PMID: 32532961 https://doi.org/10.1038/s41419-0202648-0; Wu K, Tao G, Xu T, An Y, Yu X, Wang Y, et al. Downregulation of miR497-5p prevents liver ischemia-reperfusion injury in association with MED1/ TIMP-2 axis and the NF-κB pathway. FASEB J. 2021;35(4):e21180. PMID: 33715222 https://doi.org/10.1096/fj.202001029R; Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859. PMID: 33445067 https://doi.org/10.1016/j.redox.2021.101859; Kojima H, Kadono K, Hirao H, Dery KJ, Kupiec-Weglinski JW. CD4+ T cell NRF2 signaling improves liver transplantation outcomes by modulating T cell activation and differentiation. Antioxid Redox Signal. 2023;38(7– 9):670–683. PMID: 36070449 https://doi.org/10.1089/ars.2022.0094; Becker PD, Ratnasothy K, Sen M, Peng Q, Romano M, Bazoer J, et al. B lymphocytes contribute to indirect pathway T cell sensitization via acquisition of extracellular vesicles. Am J Transplant. 2021;21(4):1415–1426. PMID: 32483894 https://doi.org/10.1111/ajt.16088; Brandl K, Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol. 2017;33(3):128– 133. PMID: 28257306 https://doi.org/10.1097/MOG.0000000000000349; Ahmed O, Xu M, Zhou F, Wein AN, Upadhya GA, Ye L, et al. NRF2 assessment in discarded liver allografts: a role in allograft function and salvage. Am J Transplant. 2022;22(1):58–70. PMID: 34379880 https://doi.org/10.1111/ajt.16789; Zhou M, Hui J, Gao L, Liang J, Wang C, Xu J. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate acute rejection injury after liver transplantation by carrying MiR-22-3p and inducing M2 polarization of Kupffer cells. J Gene Med. 2023;25(7):e3497. PMID: 36890611 https://doi.org/10.1002/jgm.3497; Cui B, Sun J, Li SP, Zhou GP, Chen XJ, Sun LY, et al. CD80+ dendritic cell derived exosomes inhibit CD8+ T cells through down-regulating NLRP3 expression after liver transplantation. Int Immunopharmacol. 2022;109:108787. PMID: 35490667 https://doi.org/10.1016/j.intimp.2022.108787; Malhi H. Emerging role of extracellular vesicles in liver diseases. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G739–G749. PMID: 31545919 https://doi.org/10.1152/ajpgi.00183.2019; Zhang L, Song Y, Chen L, Li D, Feng H, Lu Z, et al. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J Cell Physiol. 2020;235(4):3698–3710. PMID: 31566731 https://doi.org/10.1002/jcp.29264; Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, et al. Extracellular vesicles containing MiR146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther. 2021;12(1):312. PMID: 34051870 https://doi.org/10.1186/s13287-021-02387-6; Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nature Medicine. 2011;17(11):1391– 1401. PMID: 22064429 https://doi.org/10.1038/nm.2507; Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. PMID: 22632970 https://doi.org/10.1016/j.cell.2012.03.042; Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273– 285. PMID: 28985560 https://doi.org/10.1016/j.cell.2017.09.021; ten Hove M, Lygate CA, Fischer A, Schneider JE, Sang AE, Hulbert K, et al. Reduced inotropic reserve and increased susceptibility to cardiac ischemia/ reperfusion injury in phosphocreatinedeficient guanidinoacetate-N-methyltransferase-knockout mice. Circulation. 2005;111(19):2477–2485. PMID: 15883212 https://doi.org/10.1161/01.CIR.0000165147.99592.01; Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–686. PMID: 19509317 https://doi.org/10.1124/jpet.108.149807; Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31(51):e1904197. PMID: 31595562 https://doi.org/10.1002/adma.201904197; Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–1191. PMID: 25402683 https://doi.org/10.1038/ncb3064; Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147(1):153– 159. PMID: 17707862 https://doi.org/10.1016/j.jss.2007.06.015; Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864–868. PMID: 17568748 https://doi.org/10.1038/nature05859; Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234– 245. PMID: 18355723 https://doi.org/10.1016/j.chembiol.2008.02.010; Fatokun V, Dawson L, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000– 2016. PMID: 24684389 https://doi.org/10.1111/bph.12416; Wu J, Tuo QZ, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Molr Neurosci. 2018;66(2):197–206. PMID: 30145632 https://doi.org/10.1007/s12031-0181155-6; Bochkov V, Oskolkova O, Birukov K, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12(8):1009–1059. PMID: 19686040 https://doi.org/10.1089/ars.2009.2597; Yang WS, SriRamaratnam R, We lsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–331. PMID: 24439385 https://doi.org/10.1016/j.cell.2013.12.010; Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystineglutamate exchange induces endoplasmic reticulum stress and ferroptosis. ELife. 2014;3:e02523. PMID: 24844246 https://doi.org/10.7554/eLife.02523; Bröer S, Wagner CA. Structure-function relationships of heterodimeric amino acid transporters. Cell Biochem Biophys. 2002;36(2-3):155–168. PMID: 12139401 https://doi.org/10.1385/CBB:36:2-3:155; Conrad M, Sato H. The oxidative stress-inducible cystine/glutamate antiporter, system: cystine supplier and beyond. Amino Acids. 2012;42(1):231– 246. PMID: 21409388 https://doi.org/10.1007/s00726-011-0867-5; Bridges R, Natale NR, Patel SA. System Xc- cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012;165(1):20–34. PMID: 21564084 https://doi.org/10.1111/j.1476-5381.2011.01480.x; Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chemical Biology. 2015;10(7):1604–1609. PMID: 25965523 https://doi.org/10.1021/acschembio.5b00245; Cardoso BR, Hare DJ, Bush AI, Roberts BR. Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry. 2017;22(3):328–335. PMID: 27777421 https://doi.org/10.1038/mp.2016.196; Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409–422. PMID: 29290465 https://doi.org/10.1016/j.cell.2017.11.048; Yang WS, Kim KJ, Gaschler M, Patel MS, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 2016;113(34):E4966–E4975. PMID: 27506793 https://doi.org/10.1073/pnas.1603244113; Meister A, Anderson ME. Glutathione. Ann Rev Biochem. 1983;52(1):711–760. PMID: 6137189 https://doi.org/10.1146/annurev.bi.52.070183.003431; Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 2018;29(1):61–74. PMID: 28462584 https://doi.org/10.1089/ars.2017.7115; Dolma S, Lessnick S, Hahn W, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–296. PMID: 12676586 https://doi.org/10.1016/s1535-6108(03)00050-3; Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev. 2016;36(6):983–1035. PMID: 27357603 https://doi.org/10.1002/med.21398; Li W, Li W, Leng Y, Xiong Y, Xia Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 2020;39(2):210–225. PMID: 31809190 https://doi.org/10.1089/dna.2019.5097; Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–692. PMID: 31634900 https://doi.org/10.1038/s41586-019-1705-2; Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693– 698. PMID: 31634899 https://doi.org/10.1038/s41586-019-1707-0; Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. PMID: 27159577 https://doi.org/10.1038/nchembio.2079; https://www.jtransplantologiya.ru/jour/article/view/889

  18. 18
    Academic Journal

    Contributors: The research was financially supported by the Russia, Исследование выполнено при финансовой поддержке Российского научного фонда (РНФ), проект № 23-25-00490. URL: www.rscf.ru/en/project/23-25-00490/

    Source: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 4 (2024); 458-472 ; Трансплантология; Том 16, № 4 (2024); 458-472 ; 2542-0909 ; 2074-0506

    File Description: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/939/906; https://www.jtransplantologiya.ru/jour/article/view/939/920; Levitsky J, Kandpal M, Guo K, Kleiboeker S, Sinha R, Abecassis M, et al. Donor-derived cell-free DNA levels predict graft injury in liver trans plant recipi ents. Am J Transplant. 2022;22(2):532–540. PMID: 34510731 https://doi.org/10.1111/ajt.16835; Avramidou E, Vasileiadou S, Antoniadis N. Liver transplantation and ddcfDNA: a small solution for a big problem. Livers. 2023;3(1):76–81. https://doi.org/10.3390/livers3010007; García-Fernández N, Macher HC, Suárez-Artacho G, Gómez-Bravo MÁ, Molinero P, Guerrero JM, et al. DonorSpecific Cell-Free DNA qPCR quantification as a noninvasive accurate biomarker for early rejection detection in liver transplantation. J Clin Med. 2022;12(1):36. PMID: 36614837 https://doi.org/10.3390/jcm12010036; Cheng AP, Cheng MP, Loy CJ, Lenz JS, Chen K, Smalling S, et al. Cell-free DNA profiling informs all major complications of hematopoietic cell transplantation. Proc Natl Acad Sci USA. 2022;119(4):e2113476118. PMID: 35058359 https://doi.org/10.1073/pnas.2113476118; Aljurf M, Abalkhail H, Alseraihy A, Mohamed SY, Ayas M, Alsharif F, et al. Chimerism analysis of cell-free DNA in patients treated with hematopoietic stem cell transplantation may predict early relapse in patients with hematologic malignancies. Biotechnol Res Int. 2016;2016:8589270. PMID: 27006832 https://doi.org/10.1155/2016/8589270; Pasca S, Guo MZ, Wang S, Stokvis K, Shedeck A, Pallavajjala A, et al. Cell-free DNA measurable residual disease as a predictor of postallogeneic hematopoietic cell transplant outcomes. Blood Adv. 2023;7(16):4660–4670. PMID: 37276081 https://doi.org/10.1182/bloodadvances.2023010416; Gardner McKinlay RJM, Sutherland GR, Shaffer LG, eds. Chromosome abnormalities and genetic counseling. Oxford University Press Inc.; 2011.; Lo YM, Corbetta N, Chamber lain PF, Rai V, Sargent IL, Red man CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487. PMID: 9274585 https://doi.org/10.1016/S01406736(97)02174-0; Kazakov VI, Bozhkov VM, Linde VA, Repina MA, Mikhaˇіlov VM. Extracellular DNA in the blood of pregnant women. Cytology. 1995;37(3):232–236. (In Russ.).; Jeon YJ, Zhou Y, Li Y, Guo Q, Chen J, Quan S, et al. The feasibility study of noninvasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform. PLoS One. 2014;9(10):e110240. PMID: 25329639 https://doi.org/10.1371/journal.pone.0110240; Thung DT, Beulen L, Hehir-Kwa J, Faas BH. Implementation of whole genome massively parallel sequencing for noninvasive prenatal testing in laboratories. Expert Rev Mol Diagn. 2015;15(1):111–124. PMID: 25347354 https://doi.org/10.1586/14737159.2015.973857; Grunt M, Hillebrand T, Schwarzenbach H. Clinical relevance of size selection of circulating DNA. Transl Cancer Res. 2018;7(Suppl 2):S171–84. https://doi.org/10.21037/tcr.2017.10.10; Schwarzenbach H, Pantel K. Circulating DNA as biomarker in breast cancer. Breast Cancer Res. 2015;17(1):e136. PMID: 26453190 https://doi.org/10.1186/s13058-015-0645-5; Page K, Hava N, Ward B, Brown J, Guttery DS, Ruangpratheep C, et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br J Cancer. 2011;104(8):1342– 1348. PMID: 21427727 https://doi.org/10.1038/bjc.2011.89; Page K, Powles T, Slade MJ, Tamburo De Bella M, Walker RA, Coombes RC, et al. The importance of careful blood processing in isolation of cell-free DNA. Ann N Y Acad Sci. 2006;1075:313–317. PMID: 17108226 https://doi.org/10.1196/annals.1368.0; Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. Factors that influence quality and yield of circulating-free DNA: a systematic review of the methodology literature. Heliyon. 2018;4(7):e00699. PMID: 30094369 https://doi.org/10.1016/j.heliyon.2018.e00699; Barton DE. DNA prep for eukaryotic cells (macrophages)? 1995. Available at: http://www.bio.net/bionet/mm/methods-and-reagents/1995-July/031231.html [Accessed August 6, 2024].; Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quan titative polymerase chain reaction. Blood. 2002;99(12):4618–4625. PMID: 12036896 https://doi.org/10.1182/blood.V99.12.4618; Thierry AR, Messaoudi SEl, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35(3):347–376. PMID: 27392603 https://doi.org/10.1007/s10555-0169629-x; Fernández-Galán E, Badenas C, Fondevila C, Jiménez W, Navasa M, PuigButillé JA, et al. Monitoring of donorderived cell-free DNA by short tandem repeats: concentration of total cell-free DNA and fragment size for acute rejection risk assessment in liver transplantation. Liver Transpl. 2022;28(2):257– 268. PMID: 34407295 https://doi.org/10.1002/lt.26272; Zhao D, Zhou T, Luo Y, Wu C, Xu D, Zhong C, et al. Preliminary clinical experience applying donor-derived cell-free DNA to discern rejection in pediat ric liver transplant recipients. Sci Rep. 2021;11(1):1138. PMID: 33441886 https://doi.org/10.1038/s41598-020-80845-6; Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, et al. Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci. 2019;20(18):4450. PMID: 31509957 https://doi.org/10.3390/ijms20184450; Duque-Afonso J, Waterhouse M, Pfeifer D, Follo M, Duyster J, Bertz H, et al. Cell-free DNA characteristics and chimerism analysis in patients after allogeneic cell transplantation. Clin Biochem. 2018;52:137–141. PMID: 29180242 https://doi.org/10.1016/j.clin-biochem.2017.11.015; Waterhouse M, Pennisi S, Pfeifer D, Scherer F, Zeiser R, Duyster J, et al. Monitoring of measurable residual disease using circulating DNA after allogeneic hematopoietic cell transplantation. Cancers (Basel). 2022;14(14):3307. PMID: 35884368 https://doi.org/10.3390/cancers14143307; Смирнова С.Ю., Никулина Е.Е., Габеева Н.Г., Королева Д.А., Татарникова С.А., Смольянинова А.К. и др. Свободно циркулирующая ДНК в плазме у пациентов с диффузной В-крупноклеточной лимфомой и В-клеточной лимфомой высокой степени злокачественности («Double hit»/«Triple hit»). Клиническая онкогематология. 2023;16(2):200–208. https://doi.org/10.21320/2500-2139-2023-16-2200-208; Soloveva M, Solovev M, Yakutik I, Biderman B, Nikulina E, Risin skaya N, et al. RAS-ERK pathway genes mutations in the lesions from various tumour loci in multiple myeloma. EMJ Hematol. 2023;11(1):35–36. https://doi.org/10.33590/emjhematol/10305683; Catarino R, Ferreira MM, Rodrigues H, Coelho A, Nogal A, Sousa A, et al. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 2008;27(8):415–421. PMID: 18694299 https://doi.org/10.1089/dna.2008.0744; Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154. PMID: 23197571 https://doi.org/10.1126/scitranslmed.3004742; Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–586. PMID: 24449238 https://doi.org/10.1200/jCO.2012.45.2011; Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 2008;263(2):170–181. PMID: 18395974 https://doi.org/10.1016/j.canlet.2008.03.021; Chan KCA, Zhang J, Hui ABY, Wong N, Lau TK, Leung TN, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004;50(1):88–92. PMID: 14709639 https://doi.org/10.1373/clinchem.2003.024893; Hou Y, Yang J, Deng F, Wang F, Peng H, Guo F, et al. Association between cell-free DNA fetal fraction and pregnant character: a retrospective cohort study of 27,793 maternal plasmas. Sci Rep. 2023;13(1):11420. PMID: 37452067 https://doi.org/10.1038/s41598-02338151-4; Benn P, Borrell A, Chiu RWK, Cuckle H, Dugoff L, Faas B, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn. 2015;35(8):725–734. PMID: 25970088 https://doi.org/10.1002/pd.4608; Lu Y-S, Chen Y-Y, Ding S-Y, Zeng L, Shi L-C, Li Y-J, et al. Performance analy sis of non-invasive prenatal testing for trisomy 13, 18, and 21: a large-scale retrospective study (2018–2021). Heliyon. 2024;10(13):e33437. PMID: 39040373 https://doi.org/10.1016/j.heliyon.2024.e33437; Kwon H-J, Yun S, Joo J, Park D, Do W-J, Lee S, et al. Improving the accuracy of noninvasive prenatal testing through size-selection between fetal and maternal cfDNA. Prenat Diagn. 2023;43(13):1581–1592. PMID: 37975672 https://doi.org/10.1002/pd.6464; Шубина Е., Янкевич Т., Гольцов А.Ю., Мукосей И.С., Кочеткова Т.О., Быстрицкий А.А. и др. Определение доли плодовой ДНК в плазме крови беременной женщины с помощью высокопроизводительного секвенирования набора частотных однонуклеотидных полиморфизмов. Вестник российского государственного медицинского университета. 2018;7(3):30–34. https://doi.org/10.24075/brsmu.2018.031; https://www.jtransplantologiya.ru/jour/article/view/939

  19. 19
    Academic Journal

    Source: Surgery and Oncology; Том 14, № 4 (2024); 31-42 ; Хирургия и онкология; Том 14, № 4 (2024); 31-42 ; 2949-5857

    File Description: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/754/482; Osterlund P., Salminen T., Soveri L.-M. et al. Repeated centralized multidisciplinary team assessment of resectability, clinical behavior, and outcomes in 1086 Finnish metastatic colorectal cancer patients (RAXO): A nationwide prospective intervention study. Lancet Reg Health Eur 2021;3:100049. DOI:10.1016/j.lanepe.2021.100049; Chow F.C., Chok K.S. Colorectal liver metastases: an update on multidisciplinary approach. World J Hepatol 2019;11(2):150–72. DOI:10.4254/wjh.v11.i2.150; Bregni G., Giasafaki P., Leurquin B. et al. 5MO – Individual patient data (IPD) meta-analysis of randomized phase III trials (RP3) of chemotherapy for resectable colorectal cancer liver metastases (CRCLM): EORTC RP-2145. Ann of Oncol 2024:35(Suppl_1):S1–74. DOI:10.1016/annonc/annonc1477; Rahbari N.N., Reissfelder C., Schulze-Bergkamen H. et al. Adjuvant therapy after resection of colorectal liver metastases: the predictive value of the MSKCC clinical risk score in the era of modern chemotherapy. BMC Cancer 2014;14:174. DOI:10.1186/1471-2407-14-174; Ros J., Salva F., Dopazo C. et al. Liver transplantation in metastatic colorectal cancer: are we ready for it? Br J Cancer 2023;128(10):1797–806. DOI:10.1038/s41416-023-02213-1; Sasaki K., Ruffolo L.I., Kim M.H. et al. The current state of liver transplantation for colorectal liver metastases in the United States: A call for standardized reporting. Ann Surg Oncol 2023;30(5):2769–77. DOI:10.1245/s10434-023-13147-6; Adam R., Piedvache C., Chiche L. et al. Liver transplantation plus chemotherapy versus chemotherapy alone in patients with permanently unresectable colorectal liver metastases (TransMet): results from a multicentre, open-label, prospective, randomised controlled trial. Lancet 2024;404(10458):1107–18. DOI:10.1016/S0140-6736(24)01595-2; Цуканов А.С., Шелыгин Ю.А., Семенов Д.А. и др. Синдром Линча. Современное состояние проблемы. Медицинская генетика 2017;16(2):11–8.; Ciardiello D., Bielo L.B., Napolitano S. et al. Comprehensive genomic profiling by liquid biopsy captures tumor heterogeneity and identifies cancer vulnerabilities in patients with RAS/BRAFV600E wild-type metastatic colorectal cancer in the CAPRI 2-GOIM trial. Ann Oncol 2024:S0923-7534(24)03914-0. DOI:10.1016/j.annonc.2024.08.2334; Федянин М.Ю., Эльснукаева Х.Х.-М., Демидова И.А. и др. Колоректальный рак с мутацией в гене BRAF в Российской Федерации: эпидемиология и клинические особенности. Результаты многоцентрового исследования. Медицинский совет 2021;(S4):52–63. DOI:10.21518/2079-701X-2021-4S-52-63; Kotani D., Bando H., Taniguchi H. et al. Efficacy and safety of combination therapy with binimetinib, encorafenib, and cetuximab for BRAF non-V600E mutated metastatic colorectal cancer: Results from a phase 2 BIG BANG trial (EPOC1703). J Clin Oncol 2024;42(16_suppl):3585. DOI:10.1200/JCO.2024.42.16_suppl.3585; Mulkidjan R.S., Saitova E.S., Preobrazhenskaya E.V. et al. ALK, ROS1, RET and NTRK1-3 gene fusions in colorectal and noncolorectal microsatellite-unstable cancers. Int J Mol Sci 2023;24(17):13610. DOI:10.3390/ijms241713610; Wang F., Zhao Q., Wang Y.-N. et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol 2019;5(10):1504–6. DOI:10.1001/jamaoncol.2019.2963.; Shiu K., André T., Kim T.W. et al. Pembrolizumab versus chemotherapy in microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) metastatic colorectal cancer (mCRC): 5-year follow-up of the randomized phase III KEYNOTE-177 study. Annals of Oncology 2023;34(suppl_2):S1254–335. DOI:10.1016/S0923-7534(23)04149-2; Lenz H.-J., Lonardi S., Elez E. et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs chemotherapy (chemo) as first-line (1L) treatment for microsatellite instability-high/mismatch repairdeficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Expanded efficacy analysis from CheckMate 8HW. J Clin Oncol 2024;42(16_suppl). DOI:10.1200/JCO.2024.42.16_suppl.3503; Chen M., Wang Z., Liu Z. et al. PD-1/PD-L1 Inhibitor plus chemotherapy versus PD-1/PD-L1 inhibitor in microsatellite instability gastrointestinal cancers: A multicenter retrospective study. JCO Precis Oncol 2023:7:e2200463. DOI:10.1200/PO.22.00463; de Langen A.J., Johnson M.L., Mazieres J. et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, open-label, phase 3 trial. Lancet 2023;401(10378):733–46. DOI:10.1016/S0140-6736(23)00221-0; Fakih M.G., Salvatore L., Esaki T. et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRASG12C. N Engl J Med 2023;389(23):2125–39. DOI:10.1056/NEJMoa2308795; Siena S., Yamaguchi K., Rodriguez J.C.R. et al. Sotorasib (soto), panitumumab (pani) and FOLFIRI in the first-line (1L) setting for KRASG12C–mutated metastatic colorectal cancer (mCRC): Safety and efficacy analysis from the phase Ib CodeBreaK 101 study. Annals of Oncol 2024;35(suppl_2):S428–81. DOI:10.1016/annonc/annonc1588; Yaeger R., Weiss J., Pelster M.S. et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRASG12C. N Engl J Med 2023;388(1):44–54. DOI:10.1056/NEJMoa2212419; Raghav K., Siena S., Takashima A. et al. Trastuzumab deruxtecan in patients with HER2-positive advanced colorectal cancer (DESTINY-CRC02): primary results from a multicentre, randomised, phase 2 trial. Lancet Oncol 2024;25(9):1147–62. DOI:10.1016/S1470-2045(24)00380-2; Tabernero J., Grothey A., Van Cutsem E. et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol 2021;39(4):273–84. DOI:10.1200/JCO.20.02088; Kopetz S., Yoshino T., Kim T.W. et al. BREAKWATER safety leadin (SLI): Encorafenib + cetuximab (EC) ± chemotherapy for firstline (1L) treatment (tx) of BRAF V600E-mutant (BRAF V600E) metastatic colorectal cancer (mCRC). J Clin Oncol 2022; 40(4_suppl):134. DOI:10.1200/JCO.2022.40.4_suppl.134; Cherny N.I., Dafni U., Bogaerts J. et al. ESMO-magnitude of clinical benefit scale version 1.1. Ann Oncol 2017;28(10):2340–66. DOI:10.1093/annonc/mdx310.; Krech R., Peters S., Kroemer H. et al. Tobacco cessation and the role of ESMO and medical oncologists: addressing the specific needs of cancer patients in times of the COVID-19 pandemic. ESMO Open 2023;8(3):101579. DOI:10.1016/j.esmoop.2023.101579; Shields P.G., Bierut L., Arenberg D. et al. Smoking cessation, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2023;21(3):297–322. DOI:10.6004/jnccn.2023.0013; Choy K.T., Lam K., Kong J.C. Exercise and colorectal cancer survival: an updated systematic review and meta-analysis. Int J Colorectal Dis 2022;37(8):1751–8. DOI:10.1007/s00384-022-04224-5; Agirre-Elordui S., Fernández-Landa J., Olasagasti-Ibargoien J. et al. Physical activity maintenance in colorectal cancer survivors after an exercise intervention applying behaviour change techniques: a systematic review and meta-analysis. J Cancer Surviv 2024. DOI:10.1007/s11764-024-01654-8; Walter V., Jansen L., Hoffmeister M., Brenner H. Smoking and survival of colorectal cancer patients: systematic review and meta-analysis. Ann Oncol 2014;25(8):1517–25. DOI:10.1093/annonc/mdu040; Alwers E., Carr P.R., Banbury B. Smoking behavior and prognosis after colorectal cancer diagnosis: a pooled analysis of 11 studies. JNCI Cancer Spectr 2021;5(5):p.pkab077. DOI:10.1093/jncics/pkab077; Badiani S., Diab J., Woodford E.R. Impact of preoperative smoking on patients undergoing right hemicolectomies for colon cancer. Langenbecks Arch Surg 2022;407(5):2001–9. DOI:10.1007/s00423-022-02486-9. Erratum in: Langenbecks Arch Surg 2022;407(8):3889. DOI:10.1007/s00423-022-02528-2; Park E.R., Perez G.K., Regan S. et al. Effect of sustained smoking cessation counseling and provision of medication vs shorter-term counseling and medication advice on smoking abstinence in patients recently diagnosed with cancer: A randomized clinical trial. JAMA 2020;324(14):1406–18. DOI:10.1001/jama.2020.14581; Scholten P.R., Stalpers L.J., Bronsema I. et al. The effectiveness of smoking cessation interventions after cancer diagnosis: a systematic review and meta-analysis. J Cancer Policy 2024;39:100463. DOI:10.1016/j.jcpo.2023.100463; Haussmann H.J., Fariss M.W. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se. Critical reviews in toxicology 2016;46(8):701–34. DOI:10.1080/10408444.2016.1182116; Hartmann-Boyce J., McRobbie H., Butler A.R. et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev 2022;9:CD010216. DOI:10.1002/14651858.CD010216.pub5; Lindson N., Butler A.R., McRobbie H. et al. Electronic cigarettes for smoking cessation. Cochrane Database of Syst Rev 2024;1(1):CD010216. DOI:10.1002/14651858.CD010216.pub8; Ansari S.M., Hession P.S., David M. et al. Impact of switching from cigarette smoking to tobacco heating system use on biomarkers of potential harm in a randomized trial. Biomarkers 2024;29(5):298–314. DOI:10.1080/1354750X.2024.2358318; Hatsukami D.K., Benowitz N.L., Rennard S.I. et al. Biomarkers to assess the utility of potential reduced exposure tobacco products. Nicotine Tob Res 2006;8(4):600–22. DOI:10.1080/14622200600858166; Xue J., Yang S., Seng S. Mechanisms of cancer induction by tobacco-specific NNK and NNN. Cancers (Basel) 2014;6(2):1138–56. DOI:10.3390/cancers6021138; Yuan J.M., Butler L.M., Stepanov I., Hecht S.S. Urinary tobacco smoke-constituent biomarkers for assessing risk of lung cancer. Cancer Res 2014;74(2):401–11. DOI:10.1158/0008-5472.CAN-13-3178; Hoang T., Kim H., Kim J. Dietary intake in association with allcause mortality and colorectal cancer mortality among colorectal cancer survivors: A systematic review and meta-analysis of prospective studies. Cancers (Basel) 2020;12(11):3391. DOI:10.3390/cancers12113391; Chan D.S.M., Cariolou M., Markozannes G. et al. Post-diagnosis dietary factors, supplement use and colorectal cancer prognosis: A Global Cancer Update Programme (CUP Global) systematic literature review and meta-analysis. Int J Cancer 2024;155(3): 445–70. DOI:10.1002/ijc.34906

  20. 20
    Academic Journal

    Source: Medical Herald of the South of Russia; Том 15, № 3 (2024); 97-105 ; Медицинский вестник Юга России; Том 15, № 3 (2024); 97-105 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2024-15-3

    File Description: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/1963/1054; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/980; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/981; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/982; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/983; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/984; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/985; https://www.medicalherald.ru/jour/article/downloadSuppFile/1963/986; Винницкая Е.В., Абдулхаков С.Р., Абдурахманов Д.Т., Алиханов Р.Б., Бакулин И.Г., и др. Актуальные вопросы диагностики и лечения первичного склерозирующего холангита (по материалам Российского Консенсуса по диагностике и лечению первичного склерозирующего холангита. Москва, 2018 г.). Терапевтический архив. 2019;91(2):9-15. https://doi.org/10.26442/00403660.2019.02.000075; Байкова О.А., Николаева Н.Н., Грищенко Е.Г., Николаева Л.В., Саламатова М.М., Макаркин А.А. Клинический случай сочетанного течения первичного склерозирующего холангита и болезни Крона. Медикофармацевтический журнал «Пульс». 2020;22(4):13-21. https://doi.org/10.26787/nydha-2686-6838-2020-22-4-13-21; Никитин А.А., Волынец Г.В. Склерозирующий холангит и воспалительные заболевания кишечника: что первично? Российский вестник перинатологии и педиатрии. 2021;66(1):39-46. https://doi.org/10.21508/1027-4065-2021-66-1-39-46; Сюткин В.Е., Салиенко А.А., Олисов О.Д., Новрузбеков М.С. Возврат аутоиммунных болезней после трансплантации печени. Трансплантология. 2022;14(4):421-431. https://doi.org/10.23873/2074-0506-2022-14-4-421-431; Хатьков И.Е., Аванесян Р.Г., Ахаладзе Г.Г., Бебурешвили А.Г., Буланов А.Ю., и др. Диагностические и терапевтические аспекты лечения больных с синдромом механической желтухи: по следам Российского консенсуса. Терапевтический архив. 2021;93(2):138-144. https://doi.org/10.26442/00403660.2021.02.200619; Khoshpouri P, Habibabadi RR, Hazhirkarzar B, Ameli S, Ghadimi M, et al. Imaging Features of Primary Sclerosing Cholangitis: From Diagnosis to Liver Transplant Follow-up. Radiographics. 2019;39(7):1938-1964. https://doi.org/10.1148/rg.2019180213; Подставкина И.С., Мордасова В.И., Коротких Н.Н., Трунова П.А., Тимченко И.В. и др. Влияние трансплантации печени на течение язвенного колита у пациентов с первичным склерозирующим холангитом - язвенным колитом на клинических примерах. Фармакология & Фармакотерапия. 2023;(2):26-36. https://doi.org/10.46393/27132129_2023_2_26; Никитин А.В., Хавкин А.И., Скворцова Т.А., Волынец Г.В., Атамеева А.О. Сочетание язвенного колита с циррозом печени в исходе первичного склерозирующего холангита. Экспериментальная и клиническая гастроэнтерология. 2020;174(5):104-107. https://doi.org/10.31146/1682-8658-ecg-177-5-104-107; Цыркунов В.М., Прокопчик Н.И., Андреев В.П. Аутоиммунные холестатические поражения желчных протоков. Гепатология и гастроэнтерология. 2021;5(2):99-100. https://doi.org/10.25298/2616-5546-2021-5-2-99-100; Chen C, Ke R, Yang F, Cai Q, Liu J, et al. Risk factors for recurrent autoimmune liver diseases after liver transplantation: A meta-analysis. Medicine (Baltimore). 2020;99(20):e20205. https://doi.org/10.1097/MD.0000000000020205; Gumm A, Perez-Atayde A, Wehrman A. Posttransplant considerations in autoimmune liver disease: Recurrence of disease and de novo. Clin Liver Dis (Hoboken). 2022;20(4):130-135. https://doi.org/10.1002/cld.1239; Райхельсон К.Л., Пазенко Е.В., Марченко Н.В. Первичный склерозирующий холангит: обзор рекомендаций по диагностике и лечению заболевания. Consilium Medicum. 2017;19(8):121–130. https://doi.org/10.26442/2075-1753_19.8.121-130; Полунина Т.Е. Холестаз: алгоритмы диагностики и лечения. Академия медицины и спорта. 2021;2(4):28-36. https://doi.org/10.15829/2712-7567-2021-43; Хатьков И.Е., Маев И.В., Бордин Д.С., Кучерявый Ю.А., Абдулхаков С.Р., и др. Российский консенсус по диагностике и лечению хронического панкреатита: заместительная ферментная терапия. Терапевтический архив. 2017;89(8):80-87. https://doi.org/10.17116/terarkh201789880-87; Восканян С.Э., Сюткин В.Е., Сушков А.И., Восканян Ю.В., Веселкова А.Ю. Патология трансплантата печени в отдаленном посттрансплантационном периоде. Трансплантология. 2023;15(3):359-375. https://doi.org/10.23873/2074-0506-2023-15-3-359-375; Коробка В.Л., Пасечников В.Д., Коробка Р.В., Пак Е.С., Шаповалов А.М. Использование эндоскопического лигирования варикозных узлов в комбинации с неселективными β-блокаторами, или самостоятельно, в профилактике кровотечений у больных с асцитом, включенных в лист ожидания трансплантации печени. Вестник трансплантологии и искусственных органов. 2022;24(3):42-50. https://doi.org/10.15825/1995-1191-2022-3-42-50; Коробка В.Л., Пак Е.С., Шаповалов А.М., Кострыкин М.Ю., Ткачев А.В. Оценка четырехлетнего ведения листа ожидания трансплантации печени Ростовской области: перспективы снижения смертности в листе. Медицинский вестник Юга России. 2019;10(3):32-39. https://doi.org/10.21886/2219-8075-2019-10-3-32-39; Visseren T, Erler N.S., Heimbach J.K., Eaton J.E., Selzner N, et al. Inflammatory conditions play a role in recurrence of PSC after liver transplantation: An international multicentre study. JHEP Rep. 2022;4(12):100599. https://doi.org/10.1016/j.jhepr.2022.100599; Steenstraten IC, Sebib Korkmaz K, Trivedi PJ, Inderson A, van Hoek B, et al. Systematic review with meta-analysis: risk factors for recurrent primary sclerosing cholangitis after liver transplantation. Aliment Pharmacol Ther. 2019;49(6):636-643. https://doi.org/10.1111/apt.15148; Bajer L, Slavcev A, Macinga P, Sticova E, Brezina J, et al. Risk of recurrence of primary sclerosing cholangitis after liver transplantation is associated with de novo inflammatory bowel disease. World J Gastroenterol. 2018;24(43):4939-4949. https://doi.org/10.3748/wjg.v24.i43.4939; Visseren T, Erler NS, Polak WG, Adam R, Karam V, et al. Recurrence of primary sclerosing cholangitis after liver transplantation – analysing the European Liver Transplant Registry and beyond. Transpl Int. 2021;34(8):1455-1467. https://doi.org/10.1111/tri.13925; https://www.medicalherald.ru/jour/article/view/1963