-
1Academic Journal
Source: Кардиология в Беларуси. :88-98
Subject Terms: cell rejection reactions, 03 medical and health sciences, 0302 clinical medicine, terminal heart failure, внутрисосудистое ультразвуковое исследование, immunosuppressive therapy, orthotopic heart transplantation, терминальная сердечная недостаточность, ортотопическая трансплантация сердца, иммуносупрессивная терапия, 3. Good health, реакции клеточного отторжения, intravascular ultrasound
-
2Academic Journal
Source: Патология кровообращения и кардиохирургия, Vol 23, Iss 1, Pp 26-32 (2019)
Subject Terms: трансплантация сердца, RD1-811, 0202 electrical engineering, electronic engineering, information engineering, механическая поддержка сердца, Surgery, 02 engineering and technology, 01 natural sciences, терминальная сердечная недостаточность, 0104 chemical sciences, 3. Good health
-
3Academic Journal
Authors: М. Жульков, А. Головин, Е. Головина, А. Гренадеров, А. Фомичев, С. Альсов, А. Чернявский
Source: Патология кровообращения и кардиохирургия, Vol 24, Iss 1 (2020)
Subject Terms: дисковый насос, механическая поддержка кровообращения, насос непульсирующего потока, терминальная сердечная недостаточность, Surgery, RD1-811
File Description: electronic resource
-
4Academic Journal
Authors: M. A. Popov, D. V. Shumakov, D. I. Zybin, E. G. Agafonov, М. А. Попов, Д. В. Шумаков, Д. И. Зыбин, Е. Г. Агафонов
Contributors: The study was performed without external funding., Исследование проводилось без спонсорской поддержки.
Source: Transplantologiya. The Russian Journal of Transplantation; Том 12, № 1 (2020); 42-48 ; Трансплантология; Том 12, № 1 (2020); 42-48 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2020-12-1
Subject Terms: терминальная сердечная недостаточность, left ventricular myocardial hypertrophy, expanded criteria organs, expanded criteria donor, terminal heart failure, гипертрофия миокарда левого желудочка, органы с расширенными критериями использования, доноры с расширенными критериями
File Description: application/pdf
Relation: https://www.jtransplantologiya.ru/jour/article/view/478/548; https://www.jtransplantologiya.ru/jour/article/view/478/555; Messerley FH, Williams B, Ritz E. Essential hypertension. Lancet. 2007;370(9587):591–603. PMID: 17707755 https://doi.org/10.1016/s0140-6736(07)61299-9; Mehta SK, Rame JE, Khera A, Murphy SA, Canham RM, Peshock RM, et al. Left ventricular hypertrophy, subclinical atherosclerosis and inflammation. Hypertension. 2007;49(6):1385– 1391. PMID: 17404181 https://doi.org/10.1161/hypertensionaha.107.087890; Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli VP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–1566. PMID: 2139921 https://doi.org/10.1056/nejm199005313222203; Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114(5):345–352. PMID: 1825164 https://doi.org/10.7326/0003-4819-114- 5-345; Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendation for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108. PMID: 16458610 https://doi.org/10.1016/j.euje.2005.12.014; Russo MJ, Davies RR, Hong KN, Chen JM, Argenziano M, Moskowitz A, et al. Matching high-risk recipients with marginal donor hearts is a clinically effective strategy. Ann Thorac Surg. 2009;87(4):1066–1070. PMID: 19324129 https://doi.org/10.1016/j. athoracsur.2008.12.020; Wever PO, Stoddard G, Drakos SG, Gilbert EM, Nativi JN, Budge D, et al. Impact of donor left ventricular hypertrophy on survival after heart transplant. Am J Transplant. 2011;11(12):2755– 2761. PMID: 21906259 https://doi.org/10.1111/j.1600-6143.2011.03744.x; Khush KK, Menza R, Nguyen J, Zaroff JG, Goldstein BA. Donor predictors of allograft use and recipient outcomes after heart transplantation. Circ Heart Fail. 2013;6(2):300–309. PMID: 23392789 https://doi.org/10.1161/circheartfailure.112.000165; Mohamedali B, Bhat G, Zelinger A. Frequency and pattern of left ventricular dysfunction in potential heart donors: implications regarding use of dysfunctional hearts for successful transplantation. J Am Coll Cardiol. 2012;60(3):235– 236. PMID: 22789890 https://doi.org/10.1016/j.jacc.2012.04.016; Venkateswaran RV, Townend JN, Wilson IC, Mascaro JG, Bonser RS, Steeds RP. Echocardiography in the potential heart donor. Transplantation. 2010;89(7):894–901. PMID: 20075789 https://doi.org/10.1097/tp.0b013e3181cfe8e9; Zaroff JG, Babcock WD, Shi boski SC, Solinger LL, Rosengard BR. Temporal changes in left ventricular systolic function in heart donors: results of serial echocardiography. J Heart Lung Transplant. 2003;22(4):383–388. PMID: 12681416 https://doi.org/10.1016/s1053-2498(02)00561-2; Chen CW, Sprys MH, Gaffey AC, Chung JJ, Margulies KB, Acker MA, et al. The low ejection fraction in donor hearts is not directly related to increase recipient mortality. J Heart Lung Transplant. 2017;36(6):611– 615. PMID: 28314504 https://doi.org/10.1016/j.healun.2017.02.001; Marelli D, Laks H, Fazio D, Moore S, Moriguchi J,Kobashigawa J. The use of donor hearts with left ventricular hypertrophy. J Heart Lung Transplant. 2000;19(5):496–503. PMID: 10808159 https://doi.org/10.1016/s1053-2498(00)00076-0; Aziz S, Soine LA, Lewis SL, Kruse AP, Levy WC, Wehe KM, et al. Donor left ventricular hypertrophy increases risk for early graft failure. Transpl Int. 1997;10(6):446–450. PMID: 9428118 https://doi.org/10.1007/s001470050084; Goland S, Czer LS, Kass RM, Siegel RJ, Mirocha J, De Robertis MA, et al. Use of cardiac allografts with mild and moderate left ventricular hypertrophy can be safely used in heart transplantation to expand the donor pool. J Am Coll Cardiol. 2008;51(12):1214– 1220. PMID: 18355661 https://doi.org/10.1016/j.jacc.2007.11.052; Kittleson M, Patel J, Chang DH, Kransdorf E, Levine R, Dimbil S, et al. Donor left ventricular hypertrophy: over-rated or does donor history of hypertension make a difference for post-heart transplant outcome? J Heart Lung Transplantation. 2019;38(4 Suppl):S269. https://doi.org/10.1016/j. healun.2019.01.670; Stetson SJ, Perez-Verdia A, Mazur W, Farmer JA, Koerner MM, Weilbacher DG, et al. Cardiac hypertrophy after transplantation is associated with persistent expression of tumor necrosis factor-. Circulation. 2001;104(6):676–681. https://doi.org/10.1161/hc3101.093765; Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor- provokes a hypertrophic growth response in adult cardiac myocytes. Circulation. 1997;95(5):1247–1252. PMID: 9054856 https://doi.org/10.1161/01.cir.95.5.1247; McKoy RC, Uretsky BF, Kormos R, Hardesty RL, Griffith BP, Salerni R, et al. Left ventricular hypertrophy in cyclosporine-induced systemic hypertension after cardiac transplantation. Am J Cardiol. 1988;62(4):1140– 1142. PMID: 2973223 https://doi.org/10.1016/0002-9149(88)90570-x; Ventura HO, Lavie CJ, Messerli FH, Valentino V, Smart FW, Stapleton DD, et al. Cardiovascular adaptation to cyclosporine-induced hypertension. J Hum Hypertens. 1994;8(4):233–237. PMID: 8021902; Calò L, Semplicini A, Davis PA, Bonvicini P, Cantaro S, Rigotti P, et al. Cyclosporin-induced endothelial dysfunction and hypertension: are nitric oxide system abnormality and oxidative stress involved? Transplant Int. 2000;13(Suppl 1):413–418. PMID: 11112045 https://doi.org/10.1007/s001470050374; Taler SJ, Textor SC, Canzanello VJ, Schwartz L. Cyclosporine-Induced Hypertension: incidence, pathogenesis and management. Drug Safety. 1999;20(5):437–449. PMID: 10348094 https://doi.org/10.2165/00002018- 199920050-00004; Goodroe R, Bonnema DD, Lunsford S, Anderson P, Ryan-Baille B, Uber W, et al. Severe left ventricular hypertrophy 1 year after transplant predicts mortality in cardiac transplant recipients. J Heart Lung Transplant. 2007;26(2):145– 151. PMID: 17258148 https://doi.org/10.1016/j.healun.2006.11.003; Morgan JA, John R, Weinberg AD, Remoli R, Kherani AR, Vigilance DW, et al. Long-term results of cardiac transplantation in patients 65 years of age and older: a comparative analysis. Ann Thorac Surg. 2003;76(6):1982–1987. PMID: 14667625 https://doi.org/10.1016/s0003-4975(03)01070-1; Everett JE, Djalilian AR, Kubo SH, Kroshus TJ, Shumway SJ. Heart transplantation for patients over age 60. Clin Transplant. 1996;10(6Pt1):478–81. PMID: 8996766; Blanche C, Blanche DA, Kearney B, Sandhu M, Czer LS, Kamlot A, et al. Heart transplantation in patients seventy years of age and older: A comparative analysis of outcome. J Thorac Cardiovasc Surg. 2001;121(3):532–541. PMID: 11241089 https://doi.org/10.1067/mtc.2001.112831; Marelli D, Bresson J, Laks H, Kubak B, Fonarow G, Tsai FC, et al. Hepatitis C-positive donors in heart transplantation. Am J Transplant. 2002;2(5):443– 447. PMID: 12123210 https://doi.org/10.1034/j.1600-6143.2002.20508.x; Laks H, Marelli D, Fonarow GC, Hamilton MA, Ardehali A, Moriguchi JD, et al. Use of two recipient lists for adults requiring heart transplantation. J Thorac Cardiovasc Surg. 2003;125(1):49–59. PMID: 12538985 https://doi.org/10.1067/mtc.2003.62; Laks H, Marelli D. The alternate recipient list for heart transplantation: a model for expansion of the donor pool. Adv Card Surg. 1999;11:233–244. PMID: 10575495; Шевченко А.О., Фараджов Р.А., Изотов Д.А., Колоскова Н.Н., Никитина Е.А., Гичкун О.Е. и др. Ингибиторы ангиотензинпревращающего фермента у реципиентов сердца: результаты одноцентрового исследования. Вестник трансплантологии и искусственных органов. 2018;20(4):14–21.; Попцов В.Н., СпиринаЕ.А., Устин С.Ю., Масютин С.А., Догонашева А.А., Воронков В.Ю. и др. Трансплантация донорского сердца с гипертрофией миокарда левого желудочка 1,5 см и более. Вестник трансплантологии и искусственных органов. 2019;21(1):7–16.; https://www.jtransplantologiya.ru/jour/article/view/478
-
5Academic Journal
Authors: G. P. Itkin, S. V. Gautier, И. П. Иткин, С. В. Готье
Source: Russian Journal of Transplantology and Artificial Organs; Том 20, № 1 (2018); 138-143 ; Вестник трансплантологии и искусственных органов; Том 20, № 1 (2018); 138-143 ; 1995-1191 ; 10.15825/1995-1191-2018-1
Subject Terms: система управления насосами, terminal heart failure, rotary pumps, modulation of output fl ow, control system, терминальная сердечная недостаточность, роторные насосы, модуляция выходного потока
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/865/702; Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015; 34 (12): 1495–1504. DOI:10.1016/j.healun.2015.10.003.; Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D et al. Advanced heart failure treated with continuous-fl ow left ventricular assist device. N. Engl. J. Med. 2009; 361 (23): 2241–2251. DOI:10.1056/NEJMoa0909938.; Miller L, Pagani FD, Russell SD, John R, Boyle AJ, Aaron son KD. Use of a continuous-fl ow device in patients awaiting heart transplantation. N. Engl. J. Med. 2007; 357: 885–896. PMID: 17761592 DOI:10.1056/NEJMoa067758.; Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT et al. Reversal of severe heart failure with a continuous-fl ow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011; 123 (4): 381–390. DOI:10.1161/CIRCULATIONAHA. 109.933960.; Birks EJ, George RS, Firouzi A, Wright G, Bahrami T, Yacoub MH et al. Long-term outcomes of patients bridged to recovery versus patients bridged to transplantation. J. Thorac. Cardiovasc. Surg. 2012; 190–196. DOI:10.1016/j.jtcvs.2012.03.021.; Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005; 112 (9 Suppl): I32–I36. DOI:10.1161/CIRCULATIONAHA.104.524124.; Drakos SG, Pagani FD, Lundberg MS, Baldwin JT. Advancing the Science of Myocardial Recovery With Mechanical Circulatory Support: A Working Group of the National, Heart, Lung, and Blood Institute. JACC Basic. Transl. Sci. 2017 Jun; 2 (3): 335–340. doi:10.1016/j.jacbts.2016.12.003.; Rose EA, Moskowitz AJ, Packer M, Sollano JA, Wiliams DL, Tierney AR et al. The REMATCH trial: rationale, design, and end points. Ann. Thorac. Surg. 1999; 67 (3): 723–730. PMID: 10215217.; Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M et al. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J. Thorac. Cardiovasc. Surg. 2012; 144 (3): 584–603. DOI:10.1016/j.jtcvs.2012.05.044.; Drews T, Stepanenko A, Dandel M, Buz S, Lehmkupl HB, Helzer R. Mechanical circulatory support in patient of advanced age. Eur. J. Heart. Fail. 2010; 12 (9): 990–994. DOI:10.1093/eurjhf/hfq076. PMID:20495203.; Salamonsen RF, Mason DG, Ayre PJ. Response of rotary blood pumps to changes in preload and afterload at a fi xed speed setting are unphysiological when compared with the natural heart. Artif Organs. 2011 Mar; 35 (3): E47-53. doi:10.1111/j.1525-1594.2010.01168.x. Epub 2011 Mar 1.; Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Rotary pumps and diminished pulsatility: do we need a pulse? ASAIO J. 2013; 59 (4): 355–366. doi:10.1097/MAT.0b013e31829f9bb3.; Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, Fukamachi K. Does pulsatility matter in the era of continuous-fl ow blood pumps? J. Heart. Lung. Transplant. 2015 Aug; 34 (8): 999–1004. doi:10.1016/j.healun.2014.09.012.; Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Rotary Pumps and Diminished Pulsatility: Do We Need a Pulse? ASAIO Journal. 2013; 59: 355–366.; Saeed O, Jermyn R, Kargoli F, Madan S, Mannem S, Gunda S et al. Blood pressure and adverse events during continuous fl ow left ventricular assist device support. Circ. Heart. Fail. 2015 May; 8 (3): 551–556. doi:10.1161/CIRCHEARTFAILURE.114.002000.; Vandenberghe S, Segers P, Antaki J, Meyns B, Verdonck VPR. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO Journal. 2005; 51: 711–718. PMID:16340355.; Thalmann M, Schima H, Wieselthaler G, Wolner E. Physiology of continuous blood fl ow in recipients of rotary cardiac assist devices. J. Heart. Lung. Transplant. 2005 Mar; 24 (3): 237–245. PMID: 15737748 DOI:10.1016/j.healun.2004.04.018.; Baba A, Dobsák P, Saito I, Isoyama T, Takiura K, Abe Y et al. Microcirculation of the bulbar conjunctiva in the goat implanted with a total artifi cial heart: Effects of pulsatile and nonpulsatile fl ow. ASAIO J. 2004; 50: 321– 327. PMID: 14616529.; Amir O, Radovancevic B, Delgado RM, Kar B, Radovancevic R, Henderson M et al. Peripheral vascular reactivity in patients with pulsatile vs axial fl ow left ventricular assist device support. Journal of Heart and Lung Transplantation. 2006; 25: 391–394. PMID: 16563966 DOI:10.1016/j.healun.2005.11.439.; Ji B, Undar A. Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: Is there a difference? Perfusion. 2007; 22: 115–119. PMID: 17708160.; Orime Y, Shiono M, Nakata K, Hata M, Sezai A, Yamada H et al. The role of pulsatility in end organ microcirculation after cardiogenic shock. ASAIO J. 1996; 42: M724–M729. PMID: 8944976.; Dobsák P, Novakova M, Baba A, Vasku J, Isoyama T, Saito I et al. Infl uence of fl ow design on microcirculation in conditions of undulation pump-left ventricle assist device testing. Artif Organs. 2006; 30: 478–487. PMID: 16734600 DOI:10.1111/j.1525-1594.2006.00244.x.; Ji, Undar A. An evaluation of the benefi ts of pulsatile versus non-pulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients. ASAIO J. 2006; 52: 357–361. PMID: 16883112 DOI:10.1097/01.mat.0000225266.80021.9b.; Letsou GV, Shah N, Gregoric ID, Myers HJ, Delgado R, Frazier OH. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-fl ow left ventricular assist device. J. Heart. Lung. Transplant. 2005; 24: 105–109. PMID: 15653390 DOI:10.1016/j.healun.2003.10.018.; Hayes HM, Dembo LG, Larbalestier R, O’Driscoll G. Management options to treat gastrointestinal bleeding in patients supported on rotary left ventricular assist devices: A single-center experience. Artif. Organs. 2010; 34: 703–706. doi:10.1111/j.15251594.2010.01084.x.; John R, Kamdar F, Liao K, Colvin-Adams M, Boyle A, Joyce L. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann. Thorac. Surg. 2008; 86: 1227–1234; discussion 1234. DOI:10.1016/j.athoracsur.2008.06.030.; John R. Current axial-fl ow devices –The HeartMate II and Jarvik 2000 left ventricular assist devices. Semin. Thorac. Cardiovasc. Surg. 2008; 20: 264–272. PMID: 18805167 DOI:10.1016/j.athoracsur.2008.06.030.; Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart. Lung. Transplant. 2011; 30: 849–853. DOI:10.1016/j.healun.2011.03.008.; Morgan JA, Paone G, Nemeh HW, Henry SE, Patel R, Vavra J et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J. Heart. Lung. Transplant. 2012; 31: 715–718. DOI:10.1016/j.healun.2012.02.015.; Crow S, John R, Boyle A, Shumway S, Liao K, ColvinAdams M et al. Gastrointestinal bleeding rates in recipients of non-pulsatile and pulsatile left ventricular assist devices. J Thorac. Cardiovasc. Surg. 2009; 137: 208. DOI:10.1016/j.jtcvs.2008.07.032.; Geisen U, Heilmann C, Beyersdorf F, Benk C, BerchtoldHerz M, Schlensak et al. Nonsurgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur. J. Cardiothorac. Surg. 2008; 33: 679–684. DOI:10.1016/j.ejcts.2007.12.047.; Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuousfl ow left ventricular assist device (HeartMate II). J. Am. Coll. Cardiol. 2009; 53: 2162–2167. DOI:10.1016/j.jacc.2009.02.048.; Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V 3rd et al. Acquired von Willebrand syndrome in continuous-fl ow ventricular assist device recipients. Ann. Thorac. Surg. 2010; 90: 1263–1269; discussion 1269.20868825. DOI:10.1016/j.athoracsur.2010.04.099.; Crow S, Milano C, Joyce L, Chen D, Arepally G, Bowles D et al. Comparative analysis of von Willebrand factor profi les in pulsatile and continuous left ventricular assist device recipients. ASAIO J. 2010; 56: 441–445, 1396–1404, 200. doi:10.1097/MAT.0b013e3181e5de0a.; Giridharan GA, Ewert DL, Pantalos GM, Gillars KJ, Litwak KN, Gray LA et al. Left ventricular and myocardial perfusion responses to volume unloading and after-load reduction in a computer simulation. ASAIO J. 2004; 50: 512–518, DOI:10.1097/01.MAT.0000136513.21369.75.; Klotz S, Deng MC, Stypmann J, Roetker J, Wilhelm MJ, Hammel D et al. Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support. Ann. Thorac. Surg. 2004; 77: 143–149; discussion 149. DOI:10.1016/S00034975(03)01336-5.; Thohan V, Stetson SJ, Nagueh SF, Rivas-Gotz C, Koerner MM, Lafuente JA et al. Cellular and hemodynamics responses of failing myocardium to continuous fl ow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: A comparative analysis with pulsatile-type devices. J. Heart. Lung. Transplant. 2005; 24: 566–575, 2005. DOI:10.1016/j.healun.2004.02.017.; Krabatsch T, Schweiger M, Dandel M, Stepanenko A, Drews T, Potapov E et al. Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann. Thorac. Surg. 2011; 91: 1335–1340. DOI:10.1016/j.athoracsur.2011.01.027.; Kato TS, Chokshi A, Singh P, Khawaja T, Cheema F, Akashi H et al. Effects of continuous-fl ow versus pulsatilefl ow left ventricular assist devices on myocardial unloading and remodeling. Circ. Heart. Fail. 2011; 14: 546–553. DOI:10.1161/CIRCHEARTFAILURE. 111.962142.; Koenig SC, Pantalos GM, Gillars KJ, Ewert DL, Litwak KN, Etoch SW. Hemodynamic and pressure-volume responses to continuous and pulsatile ventricular assist in an adult mock circulation. ASAO J. 2004; 50: 15–24. DOI:10.1097/01.MAT.0000104816.50277.EB.; May-Newman K, Enriquez-Almaguer L, Posuwattanakul P, Dembitsky W. Biomechanics of the aortic valve in the continuous fl ow VAD-assisted heart. ASAIO J. 2001; 56: 301–308. DOI:10.1097/MAT.0b013e3181e321da.; Mudd JO, Cuda JD, Halushka M, Soderlund KA, Conte J, Russell SD. Fusion of aortic valve commissures in patients supported by a continuous axial fl ow left ventricular assist device. J. Heart. Lung. Transplant. 2008; 27: 1269–1274. DOI:10.1016/j.healun.2008.05.029.; Rose AG, Park SJ, Bank AJ, Miller LW. Partial aortic valve fusion induced by left ventricular assist device. Ann. Thorac. Surg. 2000; 70: 1270–1274. PMID: 1081884.; Hatano M, Kinugawa K, Shiga T, Kato N, Endo M, Hisagi M et al. Less frequent opening of the aortic valve and a continuous fl ow pump are risk factors for postoperative onset of aortic insuffi ciency in patients with a left ventricular assist device. Circ. J. 2011; 75: 1147–1155. DOI:10.1253/circj.CJ-10-1106.; Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC et al. Prevalence of de novo aortic insuffi ciency during long-term support with left ventricular assist devices. J. Heart. Lung. Transplant. 2010; 29: 1172–1176. DOI:10.1016/j.healun.2010.05.018.; Tuzun E, Gregoric ID, Conger JL, Golden K, Jarvik R, Frazier OH. The effect of intermittent low speed mode upon aortic valve opening in calves supported with a Jarvik 2000 axial fl ow device. ASAIO J. 2005 Mar-Apr; 51 (2): 139–143. PMID: 15839437.; Tolpen SI, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K. Programmed Speed Reduction Enables Aortic Valve Opening and Increased Pulsatility in the LVAD-Assisted Heart. ASAIO J. 2015; 61 (5): 540–547. doi:10.1097/MAT.0000000000000241.; Larose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the Heart Ware ventricular assist system. ASAIO J. 2010; 56: 285–289. DOI:10.1097/MAT.0b013e3181dfbab5.; Wang S, Rider AR, Kunselman AR, Richardson JS, Dasse KA, Undar A. Effects of the pulsatile fl ow settings on pulsatile waveforms and hemodynamic energy in a pedivas centrifugal pump. ASAIO J. 2009; 55: 271–276. DOI:10.1097/MAT.0b013e31819401f9.; Vollkron M, Schima H, Huber L, Benkowski R, Morello G, Wieselthaler G. Advanced suction detection for an axial fl ow pump. Artif. Organs. 2006 Sep; 30 (9): 665–670. PMID: 16934094 DOI:10.1111/j.15251594.2006.00282.x.; Yuhki AI, Hatoh E, Nogawa M, Miura M, Shimazaki Y, Takatani S. Detection of suction and regurgitation of the implantable centrifugal pump based on the motor current waveform analysis and its application to optimization of pump fl ow. Artif. Organs. 1999 Jun; 23 (6): 532–527. PMID: 10392280.; Tchantchaleishvili V, Jessica GY, Luc JGY, Cohan CM, Phan K, Hübbert L et al. Clinical implications of physiological fl ow adjustment in continuous-fl ow left ventricular assist devices. ASAIO J. 2017 May/Jun; 63 (3): 241–250. doi:10.1097/MAT.0000000000000477.; Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. Feasibility of Pump Speed Modulation for Restoring Vascular Pulsatility with Rotary Blood Pumps. ASAIO J. 2015 Sep-Oct; 61 (5): 526–532. doi:10.1097/MAT.0000000000000262.; Bartoli CR, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD, Slaughter MS et al. Hemodynamic responses to continuous versus pulsatilemechanical unloading of the failing left ventricle. ASAIO J. 2010 Sep-Oct; 56 (5): 410–416. doi:10.1097/ MAT.0b013e3181e7bf3c.; Undar A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif. Organs. 2004; 28 (5): 439–443. DOI:10.1111/j.15251594.2004.00086.x.; Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH et al. Rapid Speed Modulation of a Rotary Total Artifi cial Heart Impeller. Artif. Organs. 2016; 40 (9): 824–833. doi:10.1111/aor.12827.; Pirbodaghi T. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile in vitro Flow Environment. Artif. Organs. 2017; 41 (8): 710–716. doi:10.1111/aor.12860.; Bozkurt SI, van de Vosse FN, Rutten MC. Improving arterial pulsatility by feedback control of a continuous fl ow left ventricular assist device via in silico modeling. Int. J. Artif. Organs. 2014; 37 (10): 773–785. doi:10.5301/ijao.5000328.; Huang FI, Ruan X, Fu X. Pulse-pressure-enhancing controller for better physiologic perfusion of rotary blood pumps based on speed modulation. ASAIO J. 2014; 60 (3): 269–279. doi:10.1097/MAT.0000000000000059.; Bozkurt S. van de Vosse FN, Rutten MCM. Enhancement of Arterial Pressure Pulsatility by Left Ventricular Assist Device Flow Rate in Mock Circulatory System. J. Med. Biol. Eng. 2016; 36: 308–315. DOI 10.1007/s40846016-014060.; Jahren SE, Ochsner G, Shu F, Amacher R, Antaki JF, Vandenberghe S. Analysis of pressure head-fl ow loops of pulsatile rotodynamic blood pumps. Artif. Organs. 2014; 38 (4): 316–326. doi:10.1111/aor.12139.; Garcia MAZV, Enriquez LA, Dembitsky W, May-Newman K. The Effect of Aortic Valve Incompetence on the Hemodynamics of a Continuous Flow Ventricular Assist Device in a Mock Circulation. SAIO Journal. 2008; 54: 237–244. DOI:10.1097/MAT.0b013e31816a309b.; Sumikura H, Homma A, Ohnuma K, Taenaka Y, Takewa Y, Mukaibayashi H et al. Development and evaluation of endurance test system for ventricular assist devices. J. Artif. Organs. 2013; 16: 138–148. DOI 10.1007/s10047-013-0687-3.; Soucy KG, Bartoli CR, Phillips D, Giridharan GA, Sobieski MA, Wead WB et al. Continuous-Flow Left Ventricular Assist Device Support Improves Myocardial Supply: Demand in Chronic Heart Failure. Ann. Biomed. Eng. 2017; 45 (6): 1475–1486. doi:10.1007/s10439017-1804-x.; Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Adachi H. et al. Alternation of left ventricular load by a continuous-fl ow left ventricular assist device with a native heart load control system in a chronic heart failure model. J. Thorac. Cardiovasc. Surg. 2014; 148 (2): 698–704. doi:10.1016/j.jtcvs.2013.12.049.; Karantonis DM, Lovell NH, Ayre PJ, Mason DG, Cloherty SL. Identifi cation and classifi cation of physiologically signifi cant pumping states in an implantable rotary blood pump. Artif. Organs. 2006; 30 (9): 671–679. DOI:10.1111/j.1525-1594.2006.00283.x.; Pirbodaghi Т, Cotter С, Bourque К. Power Consumption of Rotary Blood Pumps: Pulsatile Versus ConstantSpeed Mode. Artifi cial. Organs. 2014; 38 (12): 1024– 1028. doi:10.1111/aor.12323.; Kishimoto S, Date K, Arakawa M, Takewa Y, Nishimura T, Tsukiya T et al. Infl uence of a novelelectrocardiogramsynchronized rotational-speed-change system of an implantable continuous-fl ow left ventricular assist device (EVAHEART) on hemolytic performance. J. Artif. Organs. 2014; 17 (4): 373–377. doi:10.1007/s10047014-0787-8.; https://journal.transpl.ru/vtio/article/view/865
-
6Academic Journal
Authors: G. P. Itkin, O. Yu. Dmitrieva, A. S. Buchnev, A. A. Drobyshev, A. P. Kuleshov, A. V. Volkova, T. A. Halilulin, Г. П. Иткин, О. Ю. Дмитриева, А. С. Бучнев, А. А. Дробышев, А. П. Кулешов, Е. А. Волкова, Т. А. Халилулин
Source: Russian Journal of Transplantology and Artificial Organs; Том 20, № 2 (2018); 61-68 ; Вестник трансплантологии и искусственных органов; Том 20, № 2 (2018); 61-68 ; 1995-1191 ; 10.15825/1995-1191-2018-2
Subject Terms: терминальная сердечная недостаточность, pumps of non-pulsating fl ow, children’s axial pump, terminal heart failure, насосы непульсирующего потока, детский осевой насос
File Description: application/pdf; text/html
Relation: https://journal.transpl.ru/vtio/article/view/883/710; https://journal.transpl.ru/vtio/article/view/883/745; Brancaccio G. Ventricular assist devices as a bridge to heart transplantation or as destination therapy in pediatric patients / G. Brancaccio, S. Filippelli, G. Michielon et al. Transplant. Proc. 2012; 44: 2007–2012.; Duncan BW. Mechanical circulatory support in children with cardiac disease / B.W. Duncan, V. Hraska, R.A. Jonas et al. J. Thorac. Cardiovasc. Surg. 1999; 117: 529– 542.; Khan A. Mechanical circulatory assistance in pediatric patients with cardiac failure / A. Khan, A.B. Gazzaniga. Cardiovasc. Surg. 1996; 4: 43–49.; Duncan BW. Pediatric mechanical circulatory support in the United States: past, present, and future / B.W. Duncan. ASAIO J. 2006; 52: 525–529.; Kirklin K. The Fourth INTERMACS annual Report: 4,000 implants and counting / K. Kirklin, D. Naftel, R. Kormos et al. The Journal of Heart and Lung Transplantation. 2012; 31 (2): 117–126.; Haines NM. Comparison of two extracorporeal life support systems with pulsatile and nonpulsatile fl ow / N.M. Haines, S. Wang, J.L. Myers et al. Artif. Organs. 2009; 33: 958–966.; Roland H. Mechanical Cardiac Support in the Young with the Berlin Heart EXCOR Pulsatile Ventricular Assist Device: 15 Years Experience / H. Roland, A-M. Vladimir, W. Yuguo et al. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Ann. 2006; 9: 99–108.; Hetzer R. Improvement in survival after mechanical circulatory support with pneumatic pulsatile ventricular assist devices in pediatric patients / R. Hetzer, E. Potapov, B. Stiller et al. Ann. Thorac. Surg. 2006; 82: 917– 924. 9. Hetzer R. Mechanical cardiac support in the young with the Berlin Heart EXCOR pulsatile ventricular assist device: 15 years’ experience / R. Hetzer, V. Alexi-Meskishvili, Y. Weng et al. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2006: 99–108.; Stiller B. Pneumatic pulsatile ventricular assist devices in children under 1 year of age / B. Stiller, Y. Weng, M. Hubler et al. Eur. J. Cardiothorac. Surg. 2005; 28: 234–239.; Stiller B. Heart transplantation in children after mechanical circulatory support with pulsatile pneumatic assist device / B. Stiller, R. Hetzer, Y. Weng et al. J. Heart. Lung. Transplant. 2003; 22: 1201–1208.; Бокерия ЛА. Применение системы вспомогательного кровообращения «Berlin Heart Excor» у пациентов с терминальной стадией сердечной недостаточности / Л.А. Бокерия, К.В. Шаталов, В.Ю. Мерзляков и др. Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева. 2010; 11: 106.; Дмитриева ОЮ, Бучнев АС, Дробышев АА, Иткин ГП. Гемолизные исследования имплантируемого осевого насоса для двухэтапной трансплантации сердца у детей. Вестник трансплантологии и искусственных органов. 2017; 19 (1): 22–27.; https://journal.transpl.ru/vtio/article/view/883
-
7Academic Journal
Authors: O. Yu. Dmitrieva, A. S. Buchnev, A. A. Drobyshev, G. P. Itkin, О. Ю. Дмитриева, А. С. Бучнев, А. А. Дробышев, Г. П. Иткин
Source: Russian Journal of Transplantology and Artificial Organs; Том 19, № 1 (2017); 22-27 ; Вестник трансплантологии и искусственных органов; Том 19, № 1 (2017); 22-27 ; 1995-1191 ; 10.15825/1995-1191-2017-1
Subject Terms: терминальная сердечная недостаточность, hemolysis research, pediatric axial pump, end-stage heart failure, гемолизные испытания, детский осевой насос
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/728/606; Throckmorton AL, Chopski SG. Pediatric Circulatory Support: Current Strategies and Future Directions. Biventricular and Univentricular Mechanical Assistance. ASAIO Journal. 2008; 54: 491–497.; Rosenthal DN, Almond CS, Jaquiss RD, Peyton CE, Auerbach SR et al. Adverse events in children implanted with ventricular assist devices in the United States: Data from the pediatric interagency registry for mechanical circulatory support (PediMACS). J. Heart Lung Transplant. 2016; 35 (5): 569–577.; Zafar F, Jefferies JL, Tjossem CJ, Bryant R, Jaquiss RD, Wearden PD et al. Biventricular Berlin Heart EXCOR pediatric use across the United States. Ann. Thorac. Surg. 2015; 99 (4): 1328–1334.; Potapov EV, Hetzer R. Pediatric Berlin Heart Excor. Ann. Thorac. Cardiovasc. Surg. 2006; 12 (2): 15.; Baldwin JT, Duncan BW. Ventricular assist devices for children. Progress in Pediatric Cardiolog. 2006; 21: 173–184.; Fraser CD, Jaquiss RDB, MD, Rosenthal DN et al. Prospective trial of a pediatric ventricle assist device. New England J. of Medicine. 2012; 367 (6): P532–541.; Itkin GP, Matveev YG, Romanov OV. Comparative hemolysis tests of rotary blood pump. Artificial Organs. 1995; 19 (7): 616–619.; Wurzinger LJ, Opitz R, Eckstein H. Mechanical blood trauma: an overview. Angeiologie. 1986; 38: Р81–97.; Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys. J. 1972; 12: 257–272.; Throckmorton AL, Untaroiu A, Allaire PE, Houston G, Wood HG et al. Computational analysis of an axial flow pediatric ventricular assist. Artificial Organs. 2007; 28 (10): 881–891.; Paul R, Schügner F, Reul H, Rau G. Recent findings on flow induced blood damage: critical shear stresses and exposure times obtained with a high shear stress Couette system. Artif. Organs. 1999; 23: 680.; Yeleswarapu KK, Antaki JF, Kameneva MV, Rajagopal KR. A mathematical model for shear induced hemolysis. Artif. Organs. 1995; 19: 576–582.; Apel J, Paul R, Klaus S, Siess Th, Reul H. Assessment of hemolysis related quantitie in a microaxial blood pump by computational fluid dynamics. Artif. Organs. 2001; 25: 341–347.; Huang CR, Fabisiak W. A rheological equation characterizing both the time dependent and steady state viscosity of human blood. AIChE Symp. Series. 1978; whole: 19–21.; Affeld K, Goubergrits L, Holberndt O. Novel cardiac assist valve with a purge flow in the valve sinus. ASAIO J. 1998; 44: M642–647.; ASTM F1841-97: Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps. 2005.; Kawahito K, Nosé Y. Hemolysis in different centrifugal pumps. Artif. Organs. 1997; 21: 323–326.; Nakazawa T, Takami Y, Benkowski R, Ohtsubo S, Yukio O et al. Development and Initial Testing of a Permanently Implantable Centrifugal Pump. Artificial Organs. 1997; 17: 597–601.; Araki K, Anai T, Oshikawa M, Nakamura K, Onitsuka T. In vitro Performance of a Centrifugal, a Mixed Flow, and an Axial Flow Blood Pump. Artificial Organs. 1998; 22 (5): 366–370.; Kawahito K, Nose Y. Hemolysis in Different Centrifugal Pumps. Artificial Organs. 1997; 21 (4): 323–326.; Kobayashi K, Nitta S, Yambe T, Sonobe T, Naganuma S et al. Hemolysis test of disposable type vibrating flow pump. Artificial Organs. 1997; 21 (7): 691–693.; Gobel C, Eilers R, Reul H, Schwindke P, Jorger M, Rau G. A New Blood Pump for Cardiopulmonary Bypass: The HiFlow centrifugal pump. Arfificid Orgarns. 1997; 21 (7): 841–845.; Mueller MR, Schima H, Engelhardt H et al. In vitro hematological testing of rotary blood pumps; remarks on standardization and data interpretation. Artif. Organs. 1993; 17: 103–110.; Schima H, Müller MR, Tsangaris S et al. Mechanical blood traumatization by tubing and throttles in in vitro pump tests: experimental results and implications for hemolysis theory. Artif. Organs. 1993; 17: 164–170.; Tamari Y, Lee-Sensiba K, Leonard EF, Parnell V, Tortolani AJ. The effects of pressure and flow on hemolysis caused by Bio-Medicus centrifugal pumps and roller pumps. Guidelines for choosing a blood pump. J. Thorac. Cardiovasc. Surg. 1993; 106: 997–1007.; Naito K, Suenaga E, Cao Z-L, Suda H, Ueno T et al. Comparative hemolysis study of clinically vailable centrifugal pumps. Artif. Organ. 1996: 20 (6): 560–563.; Maruyama O, Yamaguch K, Nishida M, Onoguchi T, Tsutsui T. Hemolytic evaluation using polyurethane microcapsule suspensions in circulatory support devices: normalized index of hemolysis comparisons of commercial centrifugal blood pumps. Artificial Organs. 2007; 32 (2): 146–156.; https://journal.transpl.ru/vtio/article/view/728