Showing 1 - 15 results of 15 for search '"температурный коэффициент линейного расширения (ТКЛР)"', query time: 0.57s Refine Results
  1. 1
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 1 (2024); 22-28 ; Новые огнеупоры; № 1 (2024); 22-28 ; 1683-4518 ; 10.17073/1683-4518-2024-1

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2136/1726; King, E. G. Low-temperature heat capacities and entropies at 298.16 K of some titanates of aluminum, calcium, lithium and zinc / E. G. King // J. Am. Chem. Soc. ― 1955. ― Vol. 77, № 8. ― Р. 2150‒2152. DOI:10.1021/ja01613a032.; Bonnickson, K. R. High temperature heat contents of some titanates of aluminum, iron and zinc / K. R. Bonnickson // J. Am. Chem. Soc. ― 1955. ― Vol. 77, № 8. ― Р. 2152‒2154. DOI:10.1021/ja01613a033.; Бергман, Г. А. Термодинамические свойства цирконолита и титанатов алюминия и циркония / Г. А. Бергман, В. Л. Климов, О. К. Карлина [и др.] // Охрана окружающей среды и обращение с радиоактивными отходами научно-промышленных центров: труды ГУП МосНПО «Радон». Вып. 15 : Итоги научной деятельности за 2007 г. ― М. : IBDG, 2009. ― С. 18‒23.; Бережной, А. С. Титанат алюминия как огнеупорный материал / А. С. Бережной, Н. В. Гулько // Сборник научных работ по химии и технологии силикатов; под ред. Ю. М. Бутта и М. А. Матвеева. ― М. : Гос. изд-во пром-сти строит. материалов, 1956. ― С. 217‒233.; Suvorov, S. A. Synthesis, sintering, and properties of aluminum titanate / S. A. Suvorov, V. V. Kolomeytsev, V. N. Makarov, D. E. Denisov // Refractories. ― 1981. ― Vol. 22, № 7/8. ― Р. 446‒452. DOI:10.1007/BF01398422.; Суворов, С. А. Синтез, спекание и свойства титаната алюминия / С. А. Суворов, В. В. Коломейцев, В. Н. Макаров, Д. Е. Денисов // Огнеупоры. ― 1981. ― № 8. ― С. 47‒52.; Milosevski, М. Propiedades del sistema Al2TiO5‒ SiO2 obtenido por un proceso de tres alcóxidos / M. Milosevski, R. Milosevska, D. Spaseska, A. R. Boccaccini // Bol. Soc. Esp. Cerám. Vidrio. ― 1995. ― Vol. 34, № 3. ― Р. 141‒145.; Tarasovskii, V. P. Prospects of the use of titanium aluminate ceramics in automobile engines / V. P. Tarasovskii, E. S. Lukin // Refractories. ― 1995. ― Vol. 36, № 6. ― P. 347‒350. DOI:10.1007/BF02227463.; Тарасовский, В. П. Перспективы применения керамики из титаната алюминия в автомобильных двигателях / В. П. Тарасовский, Е. С. Лукин // Огнеупоры. ― 1995. ― № 11. ― С. 8‒10.; Lang, S. M. The system beryllia‒alumina‒titania: phase relations and general physical properties of three component porcelains / S. M. Lang, C. L. Fillmore, L. K. Maxwell // Journal of Research of the National Bureau of Standards. ― 1952. ― Vol. 48. ― P. 298‒312. URL: https://nvlpubs.nist.gov/nistpubs/jres/048/jresv48n4p298_A1b.pdf.; Bussen, W. R. Thermal expansion hysteresis of aluminium titanate / W. R. Bussen, N. R. Thielke, R. V. Sarakauskas // Ceram. Age. ― 1952. ― Vol. 60, № 11. ― P. 38‒40.; Гуламова, Д. Д. Взаимодействие оксидов алюминия и титана при высоких температурах / Д. Д. Гуламова, М. X. Саркисова // Неорганические материалы. ― 1989. ― Т. 25, № 5. ― С. 789‒794.; Bayer, G. Тhermal expansion characteristics and stability of pseudobrookite-type compounds, Me3O5 / G. Bayer // Journal of The Less-Common Metals. ― 1971. ― Vol. 24, № 2. ― P. 129‒138. DOI:10.1016/00225088(71)90091-9.; Morosin, B. Structure studies on Al2TiO5 at room temperature and at 600 °C / B. Morosin, R. W. Lynch // Acta Crystallogr., Sect. B. ― 1972. ― Vol. 28, № 4. ― P. 1040‒1046. DOI:10.1107/S0567740872003681.; Skala, R. D. Diffraction, structure and phase stability on aluminum titanate / R. D. Skala, D. Li, I. M. Low // J. Eur. Ceram. Soc. ― 2009. ― Vol. 29, № 1. ― P. 67‒75. DOI:10.1016/j.jeurceramsoc.2008.05.037.; Wright, R. E. Acoustic emission of aluminium titanate / R. E. Wright // J. Am. Ceram. Soc. ― 1972. ― Vol. 55, № 1. ― P. 54‒67. DOI:10.1111/j.1151-2916.1972.tb13401.x.; Tarasovskii, V. P. Influence of microstructure on the coefficient of thermal linear expansion of ceramics made from aluminum titanate / V. P. Tarasovskii, E. S. Lukin, A. V. Belyakov // Refractories. ― 1984. ― Vol. 25, № 6. ― Р. 688‒690. DOI:10.1007/BF01389940.; Тарасовский, В. П. Влияние микроструктуры на коэффициент теплового линейного расширения керамики из титаната алюминия / В. П. Тарасовский, Е. С. Лукин, А. В. Беляков // Огнеупоры. ― 1984. ― № 12. ― С. 18‒20.; Tkachenko, V. D. Thermal expansion of ceramics containing aluminum titanate / V. D. Tkachenko, E. P. Garmash, B. K. Lupin, E. S. Lugovskaya // Refractories. ― 1988. ― Vol. 29, № 2. ― Р. 501‒505. DOI:10.1007/BF01297647.; Ткаченко, В. Д. Термическое расширение керамики, содержащей титанат алюминия / В. Д. Ткаченко, Е. П. Гармаш, Б. К. Лупин, Е. С. Луговская // Огнеупоры. ― 1988. ― № 8. ― C. 45‒49.; Wohlfromm, H. Effect of ZrSiO4 and MgO additions on reaction sintering and properties of Al2TiO5-based materials / H. Wohlfromm, J. S. Moya, P. Pena // J. Mater. Sci. ― 1990. ― Vol. 25, № 8. ― P. 3753‒3764. DOI:10.1007/BF00575415.; Tarasovskii, V. P. Aluminum titanate ― methods of production, microstructure and properties (review) / V. P. Tarasovskii, E. S. Lukin // Refractories. ― 1985. ― Vol. 26, № 3. ― Р. 285‒294. DOI:10.1007/BF01539594.; Тарасовский, В. П. Титанат алюминия ― методы получения, микроструктура, свойства / В. П. Тарасовский, Е. С. Лукин // Огнеупоры. ― 1985. ― № 6. ― С. 24‒31.; Cleveland, J. J. Grain size / microcracking relations for pseudobrookite oxides / J. J. Cleveland, R. C. Bradt // J. Am. Ceram. Soc. ― 1978. ― Vol. 61, № 11/12. ― Р. 478‒481. DOI:10.1111/j.1151-2916.1978.tb16121.x.; Wazeer, A., Mondal, V., Kennedy, S. (2021). Comparative studies on microstructure and hardness of plasma-sprayed Al2TiO5, ZrO2 and Cr2O3 ceramic coatings on Al-silicon (LM13). In: Kumar, A., Pal, A., Kachhwaha, S. S., Jain, P. K. (eds) Recent Advances in Mechanical Engineering. ICRAME 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. DOI:10.1007/978-981-15-9678-0_76.; Поваренных, А. С. Кристаллохимическая классификация минеральных видов / A. C. Поваренных. ― Киев : Наукова думка, 1966. ― 304 c.; Брон, B. A. О свойствах Al2TiO5 / В. А. Брон, А. К. Подгорный // Доклады Академии наук СССР. ― 1953. ― Т. 91, № 1. ― C. 93, 94.; Yamamoto, S. Corrosion of aluminium titanate ceramics by molten aluminium / S. Yamamoto, T. Soga, T. Ban [et al.] // Journal of the Technical Association of Refractories. ― 2010. ― Vol. 30, № 2. ― P. 119, 120.; Tanaka, M. Effect of grain boundary cracks on the corrosion behaviour of aluminium titanate ceramics in a molten aluminium alloy / M. Tanaka, K. Kashiwagi, N. Kawashima [et al.] // Corrosion Sci. ― 2012. ― Vol. 54. ― P. 90‒96. DOI:10.1016/j.corsci.2011.09.002.; Брон, В. А. О реакции образования Al2TiO5 в твердой фазе / В. А. Брон // Доклады Академии наук СССР. ― 1953. ― Т. 91, № 4. ― C. 825‒827.; Freudenberg, B. Aluminum titanate formation by solid-state reaction of fine Al2O3 and TiO2 powders / B. Freudenberg, A. Mocellin // J. Am. Ceram. Soc. ― 1987. ― Vol. 70, № 1. ― P. 33‒38. DOI:10.1111/j.11512916.1987.tb04849.x.; Freudenberg, B. Aluminum titanate formation by solid-state reaction of coarse Al2O3 and TiO2 powders / B. Freudenberg, A. Mocellin // J. Am. Ceram. Soc. ― 1988. ― Vol. 71, № 1. ― P. 22‒28. DOI:10.1111/j.11512916.1988.tb05755.x.; Freudenberg, B. Aluminium titanate formation by solid state reaction of Al2O3 and TiO2 single crystals / B. Freudenberg, A. Mocellin // J. Mater. Sci. ― 1990. ― Vol. 25, № 8. ― P. 3701‒3708. DOI:10.1007/BF00575408.; Kim, I. J. Formation, decomposition and thermal stability of Al2TiO5 ceramics / I. J. Kim, L.G. Gauckler // J. Ceram. Sci. Technol. ― 2012. ― Vol. 3, № 2. ― P. 49‒60. DOI:10.4416/JCST2011-00049.; Saburo, Hori. Sintering of CVD aluminum oxide titanium dioxide powders / Saburo Hori, Ryuichi Kurita, Masahiro Yoshimura, Shigeyuki Somiya // International Journal of High Technology Ceramics. ― 1985. ― Vol. 1, № 1. ― P. 59‒67. DOI:10.1016/02673762(85)90024-4.; Hori, Saburo. Preparation of codeposited Al2O3‒TiO2 powders by vapor phase reaction using combustion flame / Saburo Hori, Yoshio Ishii, Masahiro Yoshimura, Shigeyuki Somiya // Journal of the Ceramic Society of Japan. ― 1986. ―- Vol. 94, issue 1088. ― P. 400‒408. DOI:10.2109/jcersj1950.94.1088_400.; Okamura, H. // Preparation and sintering of monosized Al2O3‒TiO2 composite powder / H. Okamura, E. A. Barringer, H. K. Bowcn // J. Am. Ceram. Soc. ― 1986. ― Vol. 69, № 2. ― P. 22‒24. DOI:10.1111/j.11512916.1986.tb04726.x.; Woignier, T. Al2O3‒TiO2 and Al2TiO5 ceramic materials by the sol-gel process / T. Woignier, P. Lespade, J. Phalippou, R. Rogier // Journal of Non-crystalline Solids. ― 1988. ― Vol. 100, № 1‒3. ― Р. 325‒329. DOI:10.1016/0022-3093(88)90041-5.; Morrow, M. K. Preparation of aluminum titanate by slip casting for high-temperature applications / M. K. Morrow, C. E. Holcombe, C. A. Cromer // 1972 U.S. ATOMIC ENERGY COMMISSION. ― 19 p.; Stanciu, L. Influence of powder precursors on reaction sintering of Al2TiO5 / L. Stanciu, J. R. Groza, L. Stoica, C. Plapcianu // Scripta Materialia. ― 2004. ― Vol. 50, № 9, May. ― P. 1259‒1262. DOI:10.1016/j.scriptamat.2004.01.034.; Segadães, Ana M. Combustion synthesis of aluminium titanate / Ana M. Segadães, Márcio R. Morelli, Ruth G. A. Kiminami // J. Eur. Ceram. Soc. ― 1998. ― Vol. 18, issue 7. ― P. 771‒781. DOI:10.1016/S0955-2219(98)00004-1.; Ibrahima, D. M. Preparation of tialite (aluminium titanate) via the urea formaldehyde polymeric route / D. M. Ibrahima, A. A. Mostafaa, T. Khalilb // Ceram. Int. ― 1999. ― Vol. 25, issue 8. ― P. 697‒704. DOI 10.1016/S0272-8842(99)00004-8.; Gulamova, D. D. Effect of the microstructural features on the stability of aluminum titanate / D. D. Gulamova, M. Kh. Sarkisova // Refractories. ― 1991. ― Vol. 32. ― P. 215‒218. https://link.springer.com/article/10.1007/BF01290379#citeas.; Гуламова, Д. Д. Влияние особенностей микроструктуры на устойчивость титаната алюминия / Д. Д. Гуламова, М. X. Саркисова / Огнеупоры. ― 1991. ― № 5. ― С. 2‒4. DOI:10.1007/BF01290379.; Low, I. M. Factors controlling the thermal stability of aluminum titanate ceramics in vacuum / I. M. Low, D. Lawrence, R. I. Smith // J. Am. Ceram. Soc. ― 2005. ― Vol. 88, № 10. ― P. 2957‒2961. DOI:10.1111/j.15512916.2005.00518.x; https://newogneup.elpub.ru/jour/article/view/2136

  2. 2
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 8 (2023); 38-43 ; Новые огнеупоры; № 8 (2023); 38-43 ; 1683-4518 ; 10.17073/1683-4518-2023-8

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2004/1633; Стариков, В. С. Огнеупоры и футеровки в ковшевой металлургии : уч. пособие для вузов / В. С. Стариков, М. В. Темлянцев, В. В. Стариков. ― М. : МИСиС, 2003. ― 328 с.; Кащеев, И. Д. Оксидноуглеродистые огнеупоры / И. Д. Кащеев. ― М. : Интермет Инжиниринг, 2000. ― 265 с.; Dai, Y. Corrosion mechanism and protection of BOF refractory for high silicon hot metal steelmaking process / Y. Dai, J. Li, W. Yan, C. Shi // Journal of Materials Research and Technology. ― 2020. ― Vol. 9. ― P. 4292‒4308. DOI:10.1016/j.jmrt.2020.02.055.; Chen, J. Corrosion and penetration behaviors of slag/ steel on the corroded interfaces of Al2O3‒C refractories: role of Ti3AlC2 / J. Chen, L. Chen, Y. Wei, N. Li, S. Zhang // Corrosion Science. ― 2018. ― Vol. 143. ― P. 166‒176. DOI:10.1016/j.corsci.2018.08.022.; Fruhstorfer, J. Erosion and corrosion of alumina refractory by ingot casting steels / J. Fruhstorfer, L. Schöttler, S. Dudczig [et al.] // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36. ― P. 1299‒1306. D10.1016/j.jeurceramsoc.2015.11.038.; Zhang, L. Measurement of erosion state and refractory lining thickness of blast furnace hearth by using threedimensional laser scanning method / L. Zhang, J. Zhang, K. Jiao [et al.] // Metallurgical Research and Technology. ― 2021. ― Vol. 118. ― Article 106. DOI:10.1051/metal/2020085.; Madej, D. Detailed studies on microstructural evolution during the high temperature corrosion of SiC-containing andalusite refractories in the cement kiln preheater / D. Madej, J. Szczerba // Ceram. Int. ― 2017. ― Vol. 43. ― P. 1988‒1996. DOI:10.1016/j.ceramint.2016.10.166.; Schacht, C. А. Refractory linings: thermomechanical design and applications / C. А. Schacht. ― CRC Press: Boca Raton, Florida, USA, 2019. ― 504 p. DOI:10.1201/9780203741078.; Kashcheev, I. D. Study of thermal shock resistance of pulsed high-temperature equipment refractories / I. D. Kashcheev, K. G. Zemlyanoi, R. V. Dzerzhinskii, A. V. Fedotov // Refract. Ind. Ceram. ― 2016. ― Vol. 57, № 4. ― Р. 369‒372. Кащеев, И. Д. Исследование термостойкости огнеупоров для импульсных высокотемпературных установок / И. Д. Кащеев, К. Г. Земляной, Р. В. Дзержинский, А. В. Федотов // Новые Огнеупоры. ― 2016. ― № 7. ― С. 43‒47. DOI:10.17073/1683-4518-2016-7-43-47.; Kondrukevich, A. A. Effect of operational factors on steel-teeming ladle lining working layer life / A. A Kondrukevich, D. V. Ryabyi // Refract. Ind. Ceram. ― 2017. ― Vol. 58. № 5. ― Р. 469‒474. Кондрукевич, А. А. Влияние эксплуатационных факторов на стойкость рабочего слоя футеровки сталеразливочных ковшей / А. А. Кондрукевич, Д. В. Рябый // Новые огнеупоры. ― 2017. ― № 9. ― С. 3‒9. DOI:10.17073/1683-4518-2017-9-3-9.; Samadi, S. Thermomechanical finite element modeling of steel ladle containing alumina spinel refractory lining / S. Samadi, S. Jin, D. Gruber, H. Harmuth // Finite Elements in Analysis and Design. ― 2022. ― Vol. 206. ― Article 103762. DOI:10.1016/j.finel.2022.103762.; Oliveira, R. L. G. Thermomechanical behaviour of refractory dry-stacked masonry walls under uniaxial compression / R. L. G. Oliveira, J. P. C. Rodrigues, J. M. Pereira [et al.] // Engineering Structures. ― 2021. ― Vol. 240. ― Article 112361. DOI:10.1016/j.engstruct.2021.112361.; Bareiro, W. G. Numerical modelling of the thermomechanical behaviour of refractory concrete lining / W. G. Bareiro, E. D. Sotelino, F. de Andrade Silva // Magazine of Concrete Research. ― 2021. ― Vol. 73. ― P. 1048‒1059. DOI:10.1680/jmacr.19.00371.; Gehre, P. Functional spinel-binder based additives for improved MgO‒C performance in ladle applications / P. Gehre, Chr. Wohrmeyer, Chr. G. Aneziris, Chr. Parr // Refractories Worldforum. ― 2017. ― Vol. 9, № 3. ― Р. 83‒88.; Wöhrmeyer, Chr. Protection mechanism of CMAadditives in MgO‒C ladle bricks / Chr. Wöhrmeyer, S. Gao, S. Graddick, Chr. Parr, F. Simonin // Proc 61th Int. Colloquium on Refractories, Aachen. ― 2018. ― Р. 54‒59.; Wöhrmeyer, Chr. Corrosion mechanism of MgO‒ CMA‒C ladle brick with high service life / Chr. Wöhrmeyer, S. Gao, Zh. Ping [et al.] / Steel Research international. ― 2020. ― Vol 91, issue 2. ― Article 1900436. https://doi.org/10.1002/srin.201900436.; Gao, Jianying. Role of calcium magnesium aluminate in carbon-containing bricks for steel ladle / Jianying Gao, Chr. Wohrmeyer, C. Deteuf / China's Refractorie. ― 2021. ― Vol. 30, № 1. ― Р. 23‒31; https://newogneup.elpub.ru/jour/article/view/2004

  3. 3
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания (тема № 0008-2022-0005).

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 7 (2023); 38-41 ; Новые огнеупоры; № 7 (2023); 38-41 ; 1683-4518 ; 10.17073/1683-4518-2023-7

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/2026/1654; Щурик, А. Г. Искусственные углеродные материалы / А. Г. Щурик. ― Пермь : Изд.-во Перм. гос. ун-та, 2009. ― 342 с.; Niu, Y. R. Comparison of ZrB2‒MoSi2 composite coatings fabricated by atmospheric and vacuum plasma spray processes / Y. R. Niu, Z. Wang, J. Zhao [et al.] // J. Therm. Spray Technol. ― 2017. ― № 26. ― P. 100‒107.; Zhang, Y. L. C/SiC/ Si‒Mo‒B/glass multilayer oxidation protective coating for carbon/carbon composites / Y. L. Zhang, H. J. Li, X. Y. Yao [et al.] // Surf. Coat. Technol. ― 2011. ― № 206. ― P. 492‒496.; Feng, T. Microstructure and oxidation of multilayer MoSi2‒CrSi2‒Si coatings for SiC coated carbon/carbon composites SiC internal layer / T. Feng, H. J. Li, Q. G. Fu [et al.] // Corros. Sci. ― 2010. ― № 52. ― P. 3011‒3017.; Li, T. Effect of LaB6 on the thermal shock property of MoSi2‒SiC coating for carbon/carbon composites / T. Li, H. J. Li, X. H. Shi // Appl. Surf. Sci. ― 2013. ― № 264. ― P. 88‒93.; Сазонова, М. В. Термическая стабильность композитов и покрытий на основе MoSi2‒B‒Al2O3 при нагревании на воздухе до 1600 o С / М. В. Сазонова, И. Б. Баньковская, Д. В. Коловертнов // Новые огнеупоры. ― 2021. ― № 11. ― С. 48‒51.; Kolovertnov, D. V. Effect of temperature ― time parameters on the structure and properties of glass-ceramic composites based on molybdenum disilicide / D. V. Kolovertnov, I. B. Ban’kovskaya, M. V. Sazonova // Glass Phys. Chem. ― 2022. ― Vol. 48, № 6. ― P. 642‒645.; Клюев, В. П. Тепловое расширение и температура стеклования кальциевоборатных и кальциевоалюмоборатных стекол / В. П. Клюев, Б. З. Певзнер // Физика и химия стекла. ― 2003. ― Т. 29, № 2. ― С. 191‒204.; Wu, H. Effect of spraying power on microstructure and bonding strength of MoSi2-based coatings prepared by supersonic plasma spraying / H. Wu, H. J. Li, Q. Lei [et al.] // Appl. Surf. Sci. ― 2011. ― № 257. ― Р. 5566–5570.; Wang, C. C. Oxidation behavior and microstructural evolution of plasma sprayed La2O3‒MoSi2‒SiC coating on carbon/carbon composites / C. C. Wang, K. Z. Li, C. X. Huo [et al.] // Surf. Coat. Technol. ― 2018. ― № 348. ― P. 81‒90.; Chen, Peng. Preparation of oxidation protective MoSi2‒SiC coating on graphite using recycled waste MoSi2 by one-step spark plasma sintering method / Peng Chen, Lu Zhu, Xuanru Ren [et al.] // Ceram. Int. ― 2019. ― № 45. ― P. 22040—22046.; Николаев, А. Н. Синтез и исследование свойств жаростойких покрытий на основе композиции Si‒ B4C‒ZrB2‒ZrO2 / А. Н. Николаев, И. Б. Баньковская, Д. В. Коловертнов // Физика и химия стекла. ― 2020. ― Т. 46, № 6. ― С. 649‒657.; Silvestroni, Laura. Method to improve the oxidation resistance of ZrB2-based ceramics for reusable space systems / Laura Silvestroni, Simone Failla, Irina Neshpo, Oleg Grigoriev // J. Eur. Ceram. Soc. ― 2018. ― № 38. ― P. 2467‒2476.; Zhang, Н. A novel microstructural design to improve the oxidation resistance of ZrB2‒SiC ultra-high temperature ceramics (UHTCs) / H. Zhang, D. D. Jayaseelan, I. Bogomol [et al.] // J. Alloys Compounds. ― 2019. ― № 785. ― P. 958‒964.; Баньковская, И. Б. Термическая стабильность композиций из дисилицида молибдена, кварца и стекла. Антикоррозионные покрытия : тр. 10-го Всесоюз. совещания по жаростойким покрытиям, Ленинград, 12‒14 мая 1981 г. / И. Б. Баньковская, М. В. Сазонова. ― Л. : Наука, 1983. ― С. 50‒57.; Баньковская, И. Б. Развитие работ по созданию покрытий для защиты углеродных материалов при высоких температурах (oбзор по работам ИХС РАН) / И. Б. Баньковская, Д. В. Коловертнов // Физика и химия стекла. ― 2017. ― Т. 43, № 2. ― С. 156‒171.; Малышев, В. В. Высокотемпературный электрохимический синтез силицидов металлов VI-A группы в галогенидно-оксидных расплавах / В. В. Малышев, Р. В. Куприна, И. А. Новоселова, Т. В. Верховлюк // Журнал неорганической химии. ― 1996. ― Т. 41, № 12. ― С. 1992‒1996.; Баньковская, И. Б. Термическая стабильность некоторых стеклокерамических композиций при 1400 °С. Температуроустойчивые покрытия : тр. 11-го Всесоюз. совещания по жаростойким покрытиям, Ленинград, 31 мая ‒ 2 июня 1983 г. / И. Б. Баньковская, М. В. Сазонова. ― Л. : Наука, 1985. ― С. 86‒91.; https://newogneup.elpub.ru/jour/article/view/2026

  4. 4
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 11 (2020); 44-50 ; Новые огнеупоры; № 11 (2020); 44-50 ; 1683-4518 ; 10.17073/1683-4518-2020-11

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1503/1274; Briggs, J. Engineering ceramics in Europe and the USA / J. Briggs. ― Enceram : Menith Wood. UK, Worcester, 2011. ― 331 р.; Гаршин, А. П. Реакционно-спеченные карбидокремниевые материалы конструкционного назначения. Физико-механические и триботехнические свойства / А. П. Гаршин, С. Г. Чулкин. ― СПб. : изд.-во Политехн. ун-та, 2006. ― 84 с.; Гаршин, А. П. Карбид кремния. Монокристаллы, порошки и изделия на их основе / А. П. Гаршин. ― СПб. : изд.-во Политехн. ун-та, 2006. ― 124 с.; Кржижановский, Р. Е. Теплофизические свойства неметаллических материалов. Окислы : справочная книга / Р. Е. Кржижановский, З. Ю. Штерн. ― Л. : Энергия, 1973. ― 118 c.; Bortz, S. A. Properties of structural ceramics / S. A. Bortz, D. C. Larsen // Camp. J. Jan. ― 1981. ― № 2. ― P. 16‒31.; Hikata, A. Ultrasonic study of sintered SiC at low temperatures / A. Hikata, C. Elbaum, Y. Inomata [et al.] // Mater. Res. Bull. ― 1985. ― Vol. 20, № 7. ― P. 823‒828.; Palchaev, D. K. Thermal expansion of silicon carbide materials / D. K. Palchaev, Z. K. Murlieva, K. S. Palchaeva // Journal of Engineering Physics and Thermophysics. ― 1994. ― Vol. 66, № 6. ― P. 660‒662.; Li, Z. Thermal expansion of the hexagonal (6H) polytype of silicon carbide / Z. Li, R. C. Bradt // J. Am. Ceram. Soc. ― 1986. ― Vol. 69, № 12. ― P. 863‒866.; Li, Z. Thermal expansion of the hexagonal (4H) polytype of SiC / Z. Li, R. C. Bradt // J. Appl. Phys. ― 1986. ― Vol. 60, № 2. ― P. 612‒614.; Li, Z. Thermal expansion of the cubic (3C) polytype of SiC / Z. Li, R. C. Bradt // J. Mater. Sci. ― 1986. ― Vol. 21, № 12. ― P. 4366‒4368.; Li, Z. Thermal expansion and thermal expansion anisotropy of SiC polytypes / Z. Li, R. C. Bradt // J. Am. Ceram. Soc. ― 1987. ― Vol. 70, № 7. ― P. 445‒448.; Touloukian, Y. S. Thermal conductivity-metallic elements and alloys / Y. S. Touloukian, R. K. Kirby, R. E. Taylor [et al.] // Thermophysical Properties of Matter. ― 1970. ― Vol. 1. ― P. 873‒878.; Hazen, R. M. Comparative crystal chemistry.Temperature, pressure, composition and the variation of crystal structure / R. M. Hazen, L. M. Finge // Conference Рroceedings of University of Tokyo Hongo, Tokyo, Japan, 1982. ― P. 115.; Perevislov, S. N. Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent / S. N. Perevislov, I. B. Panteleev, A. P. Shevchik [et al.] // Refract. Ind. Ceram. ― 2018. ― Vol. 58, № 5. ― P. 577‒582. Перевислов, С. Н. Микроструктура и механические свойства LPSSiC-материалов с высокодисперсной спекающей добавкой / С. Н. Перевислов, И. Б. Пантелеев, А. П. Шевчик [и др.] // Новые огнеупоры. ― 2017. ― № 10. ― С. 42‒47.; Wyckoff, R. W. G. Crystal Structure / R. W. G. Wyckoff. ― New York : Liter science, 1963. ― 111 p.; Гнесин, Г. Г. Карбидокремниевые материалы / Г. Г. Гнесин. ― М. : Металлургия, 1977. ― 216 с.; Гнесин, Г. Г. Бескислородные керамические материалы / Г. Г. Гнесин. ― Киев : Техника, 1987. ― 159 с.; Хениш, Г. Карбид кремния / Г. Хениш, Р. Рой. ― М. : Мир, 1972. ― 349 с.; Новикова, С. И. Термическое расширение твердого тела / С. И. Новикова. ― М. : Наука, 1974. ― 293 с.; Talwar, D. N. Thermal expansion coefficient of 3C‒SiC / D. N. Talwar, J. C. Sherbondy // Applied Physics Letters. ― 1995. ― Vol. 67, № 22. ― P. 3301‒3303.; Tsagareishvili, G. V. Thermal expansion of boron and boron carbide / G. V. Tsagareishvili, T. G. Nakashidze, J. S. Jobava [et al.] // Journal of the Less Common Metals. ― 1986. ― Vol. 117, № 1/2. ― P. 159‒161.; Косолапова, Т. Я. Неметаллические тугоплавкие соединения / Т. Я. Косолапова, Т. В. Андреева, Т. С. Бартницкая [и др.]. ― М. : Металлургия, 1985. ― 224 с.; Косолапова, Т. Я. Свойства, получение и применение тугоплавких соединений / Т. Я. Косолапова. ― М. : Металлургия, 1986. ― 928 с.; Самсонов, Г. В. Бориды / Г. В. Самсонов, Т. И. Серебрякова, В. А. Неронов. ― М. : Атомиздат, 1975. ― 376 с.; Nesmelov, D. D. Reaction sintered materials based on boron carbide and silicon carbide / D. D. Nesmelov, S. N. Perevislov // Glass and Ceramics. ― 2015. ― Vol. 71, № 9/10. ― P. 313‒319.; Perevislov, S. N. Materials based on boron carbide obtained by reaction sintering / S. N. Perevislov, A. S. Lysenkov, D. D. Titov [et al.] // IOP Conference Series: Materials Science and Engineering. ― IOP Publishing. ― 2019. ― Vol. 525, № 1. ― P. 012074.; Markov, M. A. Preparation of MoSi2‒SiC‒ZrB2 structural ceramics by free sintering / M. A. Markov, S. S. Ordan’yan, S. V. Vikhman [et al.] // Refract. Ind. Ceram. ― 2019. ― Vol. 60, № 4. ― Р. 385‒388. Марков, М. А. Получение конструкционной керамики в системе MoSi2‒SiC‒ZrB2 свободным спеканием / М. А. Марков, С. С. Орданьян, С. В. Вихман [и др.] // Новые огнеупоры. ― 2019. ― № 8. ― С. 34‒37.; Perevislov, S. N. Evaluation of the crack resistance of reactive sintered composite boron carbide-based materials / S. N. Perevislov // Refract. Ind. Ceram. ― 2019. ― Vol. 60, № 3. ― Р. 168‒173. Перевислов, С. Н. Оценка трещиностойкости реакционно-спеченных композиционных материалов на основе карбида бора / С. Н. Перевислов // Новые огнеупоры. ― 2019. ― № 3. ― С. 49‒54.; Frolova, M. G. Molding features of silicon carbide products by the method of hot slip casting / M. G. Frolova, A. V. Leonov, Y. F. Kargin [et al.] // Inorg. Mater. : Applied Research. ― 2018. ― Vol. 9, № 4. ― P. 675‒678.; Lysenkov, A. S. Composite material Si3N4/SiC with calcium aluminate additive / A. S. Lysenkov, K. A. Kim, D. D. Titov [et al.] // Journal of Physics : сonference series. ― 2018. ― Vol. 1134, № 1. ― P. 012036.; Perevislov, S. N. Production of ceramic materials based on SiC with low-melting oxide additives / S. N. Perevislov, A. S. Lysenkov, D. D. Titov [et al.] // Glass and Ceramics. ― 2019. ― Vol. 75, № 9/10. — P. 400‒407.; Perevislov, S. N. Hot-pressed ceramic SiC‒YAG materials / S. N. Perevislov, A. S. Lysenkov, D. D. Titov [et al.] // Inorg. Mater. ― 2017. ― Vol. 53, № 2. ― P. 220‒225.; https://newogneup.elpub.ru/jour/article/view/1503

  5. 5
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 1 (2021); 9-14 ; Новые огнеупоры; № 1 (2021); 9-14 ; 1683-4518 ; 10.17073/1683-4518-2021-1

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1520/1290; Чистов, В. П. Разработка экспертной системы на основе логического интеллекта для управления доменной печью / В. П. Чистов, В. Г. Лисиенко, Л. И. Леонтьев [и др.] // Наука и инженерное творчество ― XXI веку: первая научно-техническая конференция РУО АИН РФ. ― Екатеринбург : РУО АИН РФ, 1995. ― С. 89‒92.; Голубев, О. В. Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики : дис. . канд. техн. наук : 05.13.18. ― Липецк, 2003. ― 158 с.; Ченцов, А. В. Балансовая логикостатистическая модель доменного процесса / А. В. Ченцов, Ю. А. Чесноков, С. В. Шаврин. ― Екатеринбург : УрО РАН, 2003. ― 164 с.; Сучков, А. В. Проблемы построения системы поддержки принятия решений для доменного производства / А. В. Сучков // Вестник Воронежского гос. техн. ун-та. ― 2009. — № 10. ― С. 72‒81.; Лисиенко, В. Г. Развитие модельной поддержки экспертных систем управления энергонасыщенными объектами / В. Г. Лисиенко, В. А. Морозова, А. В. Сучков, А. В. Огаров // Автоматизация технологических производственных процессов в металлургии : межвуз. сб. науч. тр.; под ред. Б. Н. Парсункина. ― Магнитогорск : МГТУ, 2009. ― С. 4‒19.; Иванча, Н. Г. Совершенствование технологии, работы оборудования и систем управления доменной плавкой / Н. Г. Иванча, И. Г. Муравьева, Ю. С. Семенов [и др.] // Черная металлургия : Бюл. НТиЭИ. ― 2017. ― № 6. ― С. 31‒40.; Муравьева, И. Г. Интеллектуальная система поддержки принятия решений по управлению доменной плавкой / И. Г. Муравьева, Д. Н. Тогобицкая, Ю. С. Семенов [и др.] // Сб. науч. работ «Компьютерное моделирование, анализ, управление, оптимизация». ― 2017. ― № 1. ― С. 25‒30.; Истомин, А. С. Разработка логико-динамической модели с целью повышения эффективности выплавки чугуна в доменной печи : дис. . канд. техн. наук : 05.16.02. ― Екатеринбург. ― 2017. ― 181 с.; Коверзин, А. М. Исследование гарнисажа и футеровки в горне доменной печи № 2 АО ЕВРАЗ ЗСМК / А. М. Коверзин, В. Г. Щипицын, А. В. Ващенко [и др.] // Бюл. Черная металлургия. ― 2018. ― № 9. ― С. 9‒24.; Курунов, И. Ф. Исследование состава и структуры гарнисажа горна ДП № 6 НЛМК / И. Ф. Курунов, А. С. Блюзнюков, В. Н. Титов [и др.] // Бюл. Черная металлургия. ― 2019. ― Т. 75, № 2. ― С. 166‒181.; Перепелицын, В. А. Минералогия и микроструктура разновидностей гарнисажа в доменной печи № 6 АО ЕВРАЗ НТМК / В. А. Перепелицын, К. Г. Земляной, К. В. Миронов [и др.] // Новые огнеупоры. ― 2020. ― № 7. ― С. 11‒21.; Литовских, Е. Я. Теплофизические свойства огнеупоров : справ. издание / Е. Я. Литовских, Н. А. Пучкелевич. ― М. : Металлургия, 1982. ― 152 с.; Физические свойства сталей и сплавов, применяемых в энергетике : справочник; под ред. Б. Е. Неймарк. ― М.‒Л. : Энергия, 1967.― 240 с.; https://newogneup.elpub.ru/jour/article/view/1520

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15