-
1Academic Journal
Authors: Yu. Yu. Pentsak, A. B. Kholmogorova, O. L. Evdokimova, A. A. Grin, Ю. Ю. Пенцак, А. Б. Холмогорова, О. Л. Евдокимова, А. А. Гринь
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 3 (2025); 578-585 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 3 (2025); 578-585 ; 2541-8017 ; 2223-9022
Subject Terms: эмоциональная дезадаптация, stereotactic radiosurgery, emotional maladjustment, стереотаксическая радиохирургия
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/2214/1647; Харламенкова Н.Е., Никитина Д.А. Природа посттравматического стресса при угрожающих жизни заболеваниях. Вестник Российского фонда фундаментальных исследований. 2019;4(104):49–58. https://doi.org/10.22204/2410-4639-2019-104-04-49-58; Lippitz BE, Bartek J Jr, Mathiesen T, Förander P. Ten-year followup after Gamma Knife radiosurgery of meningioma and review of the literature. Acta Neurochir (Wien). 2020;162(9):2183–2196. PMID: 32591948 https://doi.org/10.1007/s00701-020-04350-5; Пенцак Ю.Ю., Холмогорова А.Б., Евдокимова О.Л., Гринь А.А. Психоэмоциональные особенности лиц с диагнозом «менингиома головного мозга». Современная зарубежная психология. 2025; 14(1):36–44. https://doi.org/10.17759/jmfp.2025140104; Власов Е.А. Статистика и эпидемиология опухолей головного мозга. URL: https://rentgenogram.ru/articles/statistika-i-epidemiologiyaopuholej-golovnogo-mozga/ [Дата обращения 26 августа 2025 г.]; Jacobsen PB, Donovan KA, Trask PC, Fleishman SB, Zabora J, Baker F, et al. Screening for psychologic distress in ambulatory cancer patients. Cancer. 2005;103(7):1494–1502. PMID: 15726544 https://doi.org/10.1002/cncr.20940; Тарабрина Н.В., Харламенкова Н.Е., Падун М.А., Хажуев И.С., Казымова Н.Н., Быховец Ю.В. и др. Интенсивный стресс в контексте психологической безопасности. Москва: Институт психологии РАН, 2017.; Тарабрина Н.В. Практикум по психологии посттравматического стресса. Санкт-Петербург: Питер, 2001.; Зайцев Ю.А., Хван А.А. Стандартизация методик диагностики тревожности Ч. Спилбергера – Ю. Ханина и Дж. Тейлор. Психологическая диагностика. 2011;3:19–34.; Williams T, Brechin D, Muncer S, Mukerji N, Evans S, Anderson N. Meningioma and mood: exploring the potential for meningioma to affect psychological distress before and after surgical removal. Br J Neurosurg. 2019;33(4):383–387. PMID: 30829086 https://doi.org/10.1080/02688697.2019.1571163; Kasper G, Hart S, Samuel N, Fox C, Das S. Anxiety and depression in patients with intracranial meningioma: a mixed methods analysis. BMC Psychol. 2022;10(1):93. PMID: 35395829 https://doi.org/10.1186/s40359-022-00797-6; Климова М.О., Циринг Д.А. Личностно-психологические характеристики онкобольных: их динамика и влияние на течение болезни и выживаемость. Общество: социология, психология, педагогика. 2022;(12):116–122. https://doi.org/10.24158/spp.2022.12.18; Jungo A, McKinley R, Meier R, Knecht Urspeter, Vera L, P´erez-Beteta J, et al. Towards Uncertainty-Assisted Brain Tumor Segmentation and Survival Prediction. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds.). Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science. Vol. 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_40; Быченко И.В. Характерологические особенности личности, влияющие на развитие соматоформных расстройств. Смоленский медицинский альманах. 2021;(4):162–166. https://10.37963/SMA.2021.4.253; Харламенкова Н.Е. Эмоционально-личностные изменения у больных менингиомой в постоперационном периоде: отчет о НИР (заключ.): грант РФФИ №18-013-00324. Москва, 2018.; Капашева Г.А., Бурленова С.О., Барикова А.Р. Психологические особенности копинг-стратегий у разведенных женщин. Инновационная наука. 2016;(6-3):224–226.; Menlibayeva K, Nurimanov C, Nuradilov S, Akshulakov S. Study of the stress in adults diagnosed with meningioma: Insights from a tertiary neurosurgical hospital. Cancer Rep (Hoboken). 2024;7(7):e2105. PMID: 39051552 https://10.1002/cnr2.2105; https://www.jnmp.ru/jour/article/view/2214
-
2Academic Journal
Source: Ukrainian Neurosurgical Journal; Vol. 30 No. 3 (2024); 3-17
Ukrainian Neurosurgical Journal; Том 30 № 3 (2024); 3-17Subject Terms: microvascular decompression, trigeminal neuralgia, микрососудистая декомпрессия, баллонная компрессия, stereotactic radiosurgery, radiofrequency thermocoagulation, балонна компресія, невралгия тройничного нерва, мікросудинна декомпресія, balloon compression, стереотаксическая радиохирургия, овальное отверстие, стереотаксична радіохірургія, овальний отвір, ризотомії гліцерином, ризотомии глицерином, невралгія трійчастого нерва, радіочастотна термокоагуляція, glycerol rhizotomy, радиочастотная термокоагуляция
File Description: application/pdf
Access URL: https://theunj.org/article/view/308080
-
3Academic Journal
Authors: V. A. Hizemava, P. D. Dziameshka, О. А. Гиземова, П. Д. Демешко
Source: Diagnostic radiology and radiotherapy; Том 15, № 3 (2024); 39-47 ; Лучевая диагностика и терапия; Том 15, № 3 (2024); 39-47 ; 2079-5343
Subject Terms: локальный рецидив, metastatic brain damage, adaptive stereotactic radiosurgery, non-small cell lung cancer, local relapse, метастатическое поражение головного мозга, адаптивная стереотаксическая радиохирургия, немелкоклеточный рак легкого
File Description: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/1020/656; Waqar S.N., Samson P.P., Robinson C.G. et al. Non-small-cell lung cancer with brain metastasis at presentation // Clin. Lung. Cancer. 2018. Vol. 19, No. 4. P. 373– 379. doi:10.1016/j.cllc.2018.01.007.; Solomon B.J., Bauer T.M., Ignatius Ou S.H. et al. Post hoc analysis of lorlatinib intracranial efficacy and safety in patients with ALK-positive advanced non-smallcell lung cancer from the phase III CROWN study // J. Clin. Oncol. 2022. Vol. 40, No. 31. P. 3593–3602. doi:10.1200/JCO.21.02278.; Vogelbaum M.A., Brown P.D., Messersmith H. et al. Treatment for brain metastases: ASCO-SNO-ASTRO guideline // J. Clin. Oncol. 2022. Vol. 40, No. 5. P. 492– 516. doi:10.1200/JCO.21.02314.; Nadal E., Rodríguez-Abreu D., Simó M. et al. Phase II trial of atezolizumab combined with carboplatin and pemetrexed for patients with advanced nonsquamous nonsmall-sell lung cancer with untreated brain metastases (Atezo-Brain, GECP17/05) // J. Clin. Oncol. 2023. Vol. 41, No. 28. P. 4478–4485. doi:10.1200/JCO.22.02561.; Kocher M., Soffietti R., Abacioglu U. et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study // J. Clin. Oncol. 2011. Vol. 29, No. 2. P.134–141. doi:10.1200/JCO.2010.30.1655.; Sas-Korczynska B., Rucinska M. et al. WBRT for brain metastases from non-small cell lung cancer: for whom and when? — Contemporary point of view // J. Thorac. Dis. 2021. Vol. 13, No. 5. P. 3246–3257. doi:10.21037/jtd-2019-rbmlc-06.; Chang E.L., Wefel J.S., Hess K.R. et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial // Lancet Oncol. 2009. Vol. 10, No. 11. P.1037–1044. doi:10.1016/S1470-2045(09)70263-3.; Shaw E., Scott C., Souhami L. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05 // Int. J. Radiat. Oncol. Biol. Phys. 2000. Vol. 47, No. 2. P. 291–298. doi:10.1016/s0360-3016(99)00507-6.; Higuchi Y., Serizawa T., Nagano O. et al. Three-staged stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors // Int. J. Radiat. Oncol. Biol. Phys. 2009. Vol. 74, No. 5. P. 1543–1538. doi:10.1016/j.ijrobp.2008.10.035.; Yomo S., Hayashi M., Nicholson C. A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors // J. Neurooncol. 2012. Vol. 109, No. 1. P. 159–165. doi:10.1007/s11060-012-0882-8.; Осинов И.К., Голанов А.В., Банов С.М. и др. Стажированная радиохирургия в лечении пациентов с метастатическим поражением головного мозга // Нейрохирургия. 2021. Т. 3, С. 26–37. doi:10.17650/1683-3295-2021-23-1-26-37.; Sperduto P.W., De B., Li J. et al. Graded prognostic assessment (GPA) for patients with lung cancer and brain metastases: initial report of the small cell lung cancer GPA and update of the non-small cell lung cancer GPA including the effect of programmed death ligand 1 and other prognostic factors // Int. J. Radiat. Oncol. Biol. Phys. 2022. Vol. 114, No. 1. Р. 60–74. doi:10.1016/j.ijrobp.2022.03.020.; Korytko T., Radivoyevitch T., Colussi V. et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors // Int. J. Radiat. Oncol. Biol. Phys. 2006. Vol. 64, No. 2. P. 419–424. doi:10.1016/j.ijrobp.2005.07.980.; Cox J.D., Stetz J., Pajak T.F. et al. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) // Int. J. Radiat. Oncol. Biol. Phys. 1995. Vol. 31, No. 5. P. 1341–1346. doi:10.1016/0360-3016(95)00060-C.; Shaw E., Scott C., Souhami L. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05 // Int. J. Radiat. Oncol. Biol. Phys. 2000. Vol. 47, No. 2. P. 291–298. doi:10.1016/s0360-3016(99)00507-6.; Ito D., Aoyagi K., Nagano O. et al. Comparison of two-stage Gamma Knife radiosurgery outcomes for large brain metastases among primary cancers // J. Neurooncol. 2020. Vol. 147, No. 1. P. 237–246. doi:10.1007/s11060-020-03421-y.; Terry F., Merenzon M., Daggubati L. et al. Two-stage radiosurgery for large brain metastases: a systematic review and meta-analysis of clinical outcomes // Neurosurg Focus. 2023. Vol. 55, No. 2. E5.; Serizawa T., Higuchi Y., Yamamoto M. et al. Comparison of treatment results between 3- and 2-stage Gamma Knife radiosurgery for large brain metastases: a retrospective multi-institutional study // J. Neurosurg. 2018. Vol. 131, No. 1. P. 227–237. doi:10.3171/2018.4.JNS172596.; Медведева К.Е., Баулин А.А., Лепилина О.Г. и др. Двухэтапная стажированная стереотаксическая радиохирургия на Гамма-ноже в лечении метастазов в головной мозг // Радиация и риск. 2022. Т. 3, № 1. С. 136–149. doi:10.21870/0131-3878-2022-31-1-136-149.; Cho A., Medvedeva K.E., Kranawetter B. et al. How to dose-stage large or high-risk brain metastases: an alternative two-fraction radiosurgical treatment approach // J. Neurosurg. 2022. Vol. 137. P. 1666–1675. doi:10.3171/2022.2.JNS212440.; Ильялов С.Р, Паршунина А.М., Квашнин К.М. и др. Стажированная радиохирургия крупного внутримозгового метастаза с масс-эффектом и дислокацией мозга: клиническое наблюдение // Нейрохирургия. 2022. Т. 24. С. 66–71. doi:10.17650/1683‐3295‐2022‐24‐2‐66‐71.
-
4Academic Journal
Authors: V. А. Yarovaya, А. V. Golanov, V. V. Nazarova, А. R. Zaretskii, I. А. Levashov, А. К. Kulagina, Т. V. Melnikova, А. D. Matyaeva, А. А. Yarovoy, В. А. Яровая, А. В. Голанов, В. В. Назарова, А. Р. Зарецкий, И. А. Левашов, А. К. Кулагина, Т. В. Мельникова, А. Д. Матяева, А. А. Яровой
Source: Malignant tumours; Том 14, № 1 (2024); 83-91 ; Злокачественные опухоли; Том 14, № 1 (2024); 83-91 ; 2587-6813 ; 2224-5057
Subject Terms: клинический случай, fine needle aspiration biopsy, molecular testing, prognostic classes, Gamma Knife stereotactic radiosurgery, surveillance for metastatic disease, liver metastases, case report, тонкоигольная аспирационная биопсия, молекулярно-генетическое тестирование, прогностические классы, стереотаксическая радиохирургия «Гамма-нож», мониторинг метастатической болезни, метастазы в печени
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/1289/919; Яровой А.А., Голанов А.В., Ильялов С.Р. и соавт. Стереотаксическая радиохирургия «Гамма-нож» как альтернатива энуклеации у пациентов с увеальной меланомой (первые результаты). Офтальмохирургия 2014;2:74–80.; Яровой А.А., Демидов Л.В., Зарецкий А.Р., Яровая В.А., Назарова В.В., Чудакова Л.В. и др. Способ определения тактики ведения пациентов с увеальной меланомой: Патент № 2019136524. 2019; Singh A.D., Bergman L., Seregard S. Uveal melanoma: epidemiologic aspects. Ophthalmol Clin North Am 2005;18(1):75– 84. https://doi.org/10.1016/j.ohc.2004.07.002; Damato E.M., Damato B.E. Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2384 patients. Ophthalmology 2012;119(8):1582–9. https://doi.org/10.1016/j.ophtha.2012.01.048; Яровой А.А., Малюгин Э.Б., Яровая В.А. и соавт. Тонкоигольная аспирационная биопсия внутриглазных образований. Офтальмохирургия 2020;1:51–56. https://doi.org/10.25276/0235-4160-2020-1-51-56.; Margo C.E. The collaborative ocular melanoma study: an overview. Cancer Control 2004;11(5):304–309. https://doi.org/10.1177/107327480401100504; Яровой А.А. Органосохраняющее и функционально-сберегающее лечение меланомы хориоидеи на основе брахитерапии с рутением-106 и лазерной транспупиллярной термотерапии. Дис. . д-ра мед. наук. М., 2010.; Shah A.A., Bourne T.D., Murali R. BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology 2013;45(7):651–6. https://doi.org/10.1097/PAT.0000000000000002; Damato B., Kacperek A., Errington D., Heimann H. Proton beam radiotherapy of uveal melanoma. Saudi J Ophthalmol 2013;27(3):151–157. https://doi.org/10.1016/j.sjopt.2013.06.014; Саакян С.В., Бородин Ю.И., Ширина Т.В. Оценка эффективности лечения и выживаемости больных увеальной меланомой после лечения медицинским узким протонным пучком. Радиология-практика 2012;6:49–53; Синявский О.А., Трояновский Р.Л., Иванов П.И. и соавт. Пятилетний опыт резекции увеальных меланом после стереотаксической радиохирургии с использованием гамма-ножа. Современные технологии в офтальмологии 2018;1:316–319.; Parker T., Rigney G., Kallos J., et al. Gamma knife radiosurgery for uveal melanomas and metastases: a systematic review and meta-analysis. Lancet Oncol 2020;21(11):1526–1536. https://doi.org/10.1016/S1470-2045(20)30459-9; Shields C.L., Say E.A. T., Hasanreisoglu M., et al. Personalized prognosis of uveal melanoma based on cytogenetic profile in 1059 patients over an 8-year period: the 2017 Harry S. Gradle Lecture. Ophthalmology 2017;124(10):1523– 1531. https://doi.org/10.1016/j.ophtha.2017.04.003; Cicinelli M.V., Nicola M.D., Gigliotti C.R., et al. Predictive factors of radio-induced complications in 194 eyes undergoing gamma knife radiosurgery for uveal melanoma. Acta Ophthalmol 2021;99(8):e1458-e1466. https://doi.org/10.1111/aos.14814; Яровая В.А. Прогностическая тонкоигольная аспирационная биопсия увеальной меланомы. Дис. . канд. ме. наук. М., 2020.; Kilic E., Naus N.C., van Gils W., et al. Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients. Invest Ophthalmol Vis Sci 2005;46(7):2253–7. https://doi.org/10.1167/iovs.04-1460; Singh N., Bergman L., Seregard S., Singh A.D. Uveal melanoma: epidemiologic aspects. Clinical Ophthalmic Oncology. Uveal Tumors 2014:75–88. https://doi.org/10.1007/978-3-642-54255-8_6; Carvajal R.D., Schwartz G.K., Tezel T., et al. Metastatic disease from uveal melanoma: treatment options and future prospects. Br J Ophthalmol 2017;101(1):38–44. https://doi.org/10.1136/bjophthalmol-2016-309034; https://www.malignanttumors.org/jour/article/view/1289
-
5Academic Journal
Authors: V. N. Nikolenko, B. A. Volel, A. N. Shkarubo, A. A. Nagajtseva, T. S. Zharikova, Yu. O. Zharikov, В. Н. Николенко, Б. А. Волель, А. Н. Шкарубо, А. А. Нагайцева, Т. С. Жарикова, Ю. О. Жариков
Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 15, No 4 (2023); 89-93 ; Неврология, нейропсихиатрия, психосоматика; Vol 15, No 4 (2023); 89-93 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2023-4
Subject Terms: зрительный дефицит, pathology, pituitary gland, anatomy, stereotactic radiosurgery, visual disturbances, морфология, гипофиз, анатомия, стереотаксическая радиохирургия
File Description: application/pdf
Relation: https://nnp.ima-press.net/nnp/article/view/2064/1562; Ntali G, Wass JA. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary. 2018;21(2):111-8. doi:10.1007/S11102-018-0869-3; Zatelli MC. Pathogenesis of non-functioning pituitary adenomas. Pituitary. 2018;21(2):130-7. doi:10.1007/S11102-018-0874-6; Rizzoli P, Iuliano Sh, Weizenbaum E, Laws E. Headache in Patients With Pituitary Lesions: A Longitudinal Cohort Study. Neurosurgery. 2016;78(3):316-23. doi:10.1227/NEU.0000000000001067; Barkhoudarian G, Kelly DF. Pituitary Apoplexy. Neurosurg Clin N Am. 2019 Oct;30(4):457-63. doi:10.1016/j.nec.2019.06.001. Epub 2019 Aug 7.; Monteiro DM, Freitas P, Vieira R, Carvalho D. Hypogonadotropic hypogonadism in non-functioning pituitary adenomas: impact of intervention. Exp Clin Endocrinol Diabetes. 2017;125(6):368-76. doi:10.1055/s-0042-124355; Molitch ME. Diagnosis and Treatment of Pituitary Adenomas. JAMA. 2017 Feb 7;317(5):516-24. doi:10.1001/jama.2016.19699; Esposito D, Olsson DS, Ragnarsson O, et al. Non_functioning pituitary adenomas: indications for pituitary surgery and post-surgical management. Pituitary. 2019 Aug;22(4):422-34. doi:10.1007/s11102-019-00960-0; Huang W, Molitch ME. Management of nonfunctioning pituitary adenomas (NFAs): observation. Pituitary. 2018;21(2):162-7. doi:10.1007/s11102-017-0856-0; Penn DL, Burke WT, Laws ER. Management of non-functioning pituitary adenomas: surgery. Pituitary. 2018;21:145-53. doi:10.1007/s11102-017-0854-2; AlMalki MH, Ahmad MM, Brema I, et al. Contemporary Management of Clinically Non- functioning Pituitary Adenomas: A Clinical Review. Clin Med Insights Endocrinol Diabetes. 2020 Jun 24;13:1179551420932921. doi:10.1177/1179551420932921; Калинин ПЛ, Кадашев БА, Фомичев ДВ и др. Хирургическое лечение аденом гипофиза. Вопросы нейрохирургии. 2017;81(1):95-107. doi:10.17116/neiro201780795-107; Григорьев АЮ, Иващенко ОВ, Надеждина ЕЮ. Основные принципы гемостаза в эндоскопической трансназальной хирургии образований хиазмальной области. Нейрохирургия. 2017;(4):3-10.; Шкарубо АН. Атлас эндоскопическойэндоназальной хирургии основания черепа и краниовертебрального сочленения. Москва: АБВ-пресс; 2020. 272 с.; Eseonu CI, ReFaey K, Rincon-Torroella J,et al. Endoscopic Versus Microscopic Transsphenoidal Approach for Pituitary Adenomas: Comparison of Outcomes During the Transition of Methods of a Single Surgeon. World Neurosurg. 2017 Jan;97:317-25. doi:10.1016/j.wneu.2016.09.120. Epub 2016 Oct 11.; Попова ТН, Николенко ВН, Жандарова ЛФ и др. Онкология: Учебное пособие для студентов высших учебных заведений. Под ред. П.В. Глыбочко. Москва: Издательский центр «Академия»; 2008. 400 с.; Forster N, Warnick R, Takiar V, et al.Debulking surgery of pituitary adenoma as a strategy to facilitate definitive stereotactic radiosurgery. J Neurooncol. 2018 Jun;138(2):335-40. doi:10.1007/s11060-0182801-0. Epub 2018 Feb 15.; Kessel KA, Diehl CD, Oechsner M, et al.Patient-reported outcome (PRO) as an addition to long-term results after high-precision stereotactic radiotherapy in patients with secreting and non-secreting pituitary adenomas: a retrospective cohort study up to 17-years follow-up. Cancers. 2019;11(12):1884. doi:10.3390/cancers11121884; Narayan V, Mohammed N, Bir SC, et al.Long-Term Outcome of Nonfunctioning and Hormonal Active Pituitary Adenoma After Gamma Knife Radiosurgery. World Neurosurg. 2018;114:e824-e832. doi:10.1016/j.wneu.2018.03.094; Yu J, Li Y, Quan T, et al. Initial GammaKnife radiosurgery for nonfunctioning pituitary adenomas: results from a 26-year experience. Endocrine. 2020;68:399-410. doi:10.1007/s12020-020-02260-1; Ding C, Saw CB, Timmerman RD. Cyberknife stereotactic radiosurgery and radiation therapy treatment planning system. Med Dosim. 2018 Summer;43(2):129-40. doi:10.1016/j.meddos.2018.02.006. Epub 2018 Mar 28.; Minniti G, Flickinger J, Tolu B, Paolini S.Management of nonfunctioning pituitary tumors: radiotherapy. Pituitary. 2018;21(2):154-61. doi:10.1007/S11102-018-0868-4; Minniti G, Clarke E, Scaringi C, Enrici RM.Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother. 2016;21(4):370-8. doi:10.1016/j.rpor.2014.09.004; Kotecha R, Sahgal A, Rubens M, et al.Stereotactic radiosurgery for non-functioning pituitary adenomas: meta-analysis and International Stereotactic Radiosurgery Society practice opinion. Neuro Oncol. 2020 Mar 5;22(3):318-32. doi:10.1093/neuonc/noz225; Chanson Ph, Dormoy A, Dekkers OM. Use of radiotherapy after pituitary surgery for non-functioning pituitary adenomas. Eur J Endocrinol. 2019;181(1):D1-D13. doi:10.1530/EJE-19-0058; Yamanaka R, Abe E, Sato T, et al. Secondary Intracranial Tumors Following Radiotherapy for Pituitary Adenomas: A Systematic Review. Cancers (Basel). 2017;9(8):103. doi:10.3390/cancers9080103; Еремкина АК, Дзеранова ЛК, Пигарова ЕК и др. Морфофункциональные особенности гормонально-неактивных аденом гипофиза. Архив патологии. 2019;81(1):71-8. doi:10.17116/patol20198101171; Delgado-Lopez PD, Pi-Barrio J, Duenas-Polo MT, et al. Recurrent non-functioning pituitary adenomas: a review on the new pathological classification, management guidelines and treatment options. Clin Transl Oncol. 2018 Oct;20(10):1233-45. doi:10.1007/s12094018-1868-6. Epub 2018 Apr 5.; Batista RL, Musolino NRC, Cescato VAS,et al. Cabergoline in the management of residual nonfunctioning pituitary adenoma. Am J Clin Oncol. 2019;42(2):221-7. doi:10.1097/COC.0000000000000505; Mercado M, Melgar V, Salame L, Cuenca D. Clinically non-functioning pituitary adenomas: pathogenic, diagnostic and therapeutic aspects. Endocrinol Diabetes Nutr. 2017;64(7):384-95. doi:10.1016/j.endinu.2017.05.009; Tampourlou M, Karapanou O, Vassiliadi DA, Tsagarakis S. Medical therapy for non-functioning pituitary tumors – a critical approach. Hormones (Athens). 2019;18(2):117-26. doi:10.1007/s42000-018-0070-0; Tampourlou M, Fountas A, Ntali G,Karavitaki N. Mortality in patients with nonfunctioning pituitary adenoma. Pituitary. 2018;21(2):203-7. doi:10.1007/s11102-018-0863-9; Andino-Rios GG, Portocarrero-Ortiz L,Rojas-Guerrero C, et al. Nonfunctioning Pituitary Adenoma That Changed to a Functional Gonadotropinoma. Case Rep Endocrinol. 2018 Apr 29;2018:5027859. doi:10.1155/2018/5027859
-
6Academic Journal
Authors: A. S. Tokarev, S. A. Chuvilin, M. V. Neznanova, G. V. Koinash, P. D. Matveyev, А. С. Токарев, С. А. Чувилин, М. В. Незнанова, Г. В. Койнаш, П. Д. Матвеев
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 10, № 4 (2021); 800-807 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 10, № 4 (2021); 800-807 ; 2541-8017 ; 2223-9022
Subject Terms: разрыв АВМ, stereotactic radiosurgery, “Gamma Knife”, magnetic resonance imaging, MR angiography, functional magnetic resonance imaging, AVM rupture, стереотаксическая радиохирургия, «Гамма-Нож», магнитнорезонансная томография, МР-ангиография, функциональная магнитно-резонансная томография
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1286/1008; https://www.jnmp.ru/jour/article/view/1286/1110; Bokhari MR, Bokhari SRA. Arteriovenous Malformation of The Brain. Stat Pearls Treasure Island (FL); 2019. PMID: 28613495 Bookshelf ID: NBK430744; Abecassis IJ, Xu DS, Batjer HH, Bendok BR. Natural history of brain arteriovenous malformations: a systematic review. Neurosurgical Focus. 2014;37(3):E7. PMID: 25175445 https://doi.org/10.3171/2014.6.FOCUS14250; Stapf C, Mohr JP, Pile-Spellman J, Solomon RA, Sacco RL, Connolly ES Jr. Epidemiology and natural history of arteriovenous malformations. Neurosurgical Focus. 2001;11(5):e1. PMID: 16466233 https://doi.org/10.3171/foc.2001.11.5.2; Inoue HK, Ohye C. Hemorrhage risks and obliteration rates of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2002;97(5 Suppl):474–476. PMID: 12507079 https://doi.org/10.3171/jns.2002.97.supplement; Szeifert GT, Levivier M, Lorenzoni J, Nyáry I, Major O, Kemeny AA. Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery. Prog Neurol Surg. 2013;27:119–129. PMID: 23258516 https://doi.org/10.1159/000341772; Маряшев С.А. Стереотаксическое облучение артериовенозных мальформаций головного мозга: дис. д-ра мед. наук. Науч.- исслед. ин-т нейрохирургии им. Н.Н. Бурденко. Москва; 2016. URL: https://docplayer.ru/41342176-Maryashev-sergey-alekseevichstereotaksicheskoe-obluchenie-arteriovenoznyh-malformaciygolovnogo-mozga.html [Дата обращения 19 ноября 2021 г.]; Yen CP, Ding D, Cheng CH, Starke RM, Shaffrey M, Sheehan J. Gamma Knife surgery for incidental cerebral arteriovenous malformations. J Neurosurg. 2014;121(5):1015-1021. PMID: 25148009 https://doi.org/10.3171/2014.7.JNS131397; Kano H, Kondziolka D, Flickinger JC, Park KJ, Parry PV, Yang HC, et al. Stereotactic radiosurgery for arteriovenous malformations, Part 6: multistaged volumetric management of large arteriovenous malformations. J Neurosurg. 2012;116(1):54–65. PMID: 22077447 https://doi.org/10.3171/2011.9.JNS11177; Izawa M, Hayashi M, Chernov M, Nakaya K, Ochiai T, Murata N, et al. Long-term complications after gamma knife surgery for arteriovenous malformations. J Neurosurg. 2005;102(Suppl):34–37. PMID: 15662777 https://doi.org/10.3171/jns.2005.102.s_supplement.0034; Chang JH, Chang JW, Park YG, Chang SS. Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg. 2000;93(Suppl 3):96–101. PMID: 11143271 https://doi.org/10.3171/sup.2000.93.supplement3.0096; Pollock BE, Gorman DA, Brown PD. Radiosurgery for arteriovenous malformations of the basal ganglia, thalamus, and brainstem. J Neurosurg. 2004;100(2):210–214. PMID: 15086226 https://doi.org/10.3171/jns.2004.100.2.0210; Hadizadeh DR, von Falkenhausen M, Gieseke J, Meyer B, Urbach H, Hoogeveen R, et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution fourdimensional MR angiography compared with that at DSA. Radiology. 2008;246(1):205– 213. PMID: 17951352 https://doi.org/10.1148/radiol.2453061684; Radiosurgery Practice Guideline Initiative. Stereotactic Radiosurgery for Patients with Intracranial Arteriovenous Malformations (AVM) Radiosurgery Practice Guideline Report #2-03. Issued March 2009. URL: https://pdf4pro.com/view/radiosurgery-practice-guideline-initiativestereotactic-32d2f5.html [Дата обращения 19 ноября 2021 г.]; Abdelaziz O, Shereen A, Inoue T, Hirai H, Shima A. Correlation of Appearance of MRI Perinidal T2 Hyperintensity Signal and Eventual Nidus Obliteration Following Photon Radiosurgery of Brain AVMs: Combined Results of LINAC and Gamma Knife Centers. J Neurol Surg A Cent Eur Neurosurg. 2019;80(3):187–197. PMID: 30895568 https://doi.org/10.1055/s-0039-1678710; https://www.jnmp.ru/jour/article/view/1286
-
7Academic Journal
Authors: I. Yu. Zherkо, P. D. Dziameshkо, L. V. Naumenko, I. I. Minailо, E. P. Zhyliayeva, O. A. Hizemava, O. A. Navasel’skaya, И. Ю. Жерко, П. Д. Демешко, Л. В. Науменко, И. И. Минайло, Е. П. Жиляева, О. А. Гиземова, О. А. Новосельская
Source: Diagnostic radiology and radiotherapy; Том 13, № 1 (2022); 95-102 ; Лучевая диагностика и терапия; Том 13, № 1 (2022); 95-102 ; 2079-5343
Subject Terms: безметастатическая выживаемость, stereotactic radiosurgery, local control, metastatic-free survival, стереотаксическая радиохирургия, локальные контроль
File Description: application/pdf
Relation: https://radiag.bmoc-spb.ru/jour/article/view/702/543; Singh A.D., Bergman L., Seregard S. Uveal melanoma: epidemiologic aspects // Ophthalmol. Clin. N. Am. 2005. Vol. 18, No. 1. Р. 75–84, viii. doi:10.1016/j.ohc.2004.07.002. PMID: 15763193.; Krantz B.A., Dave N., Komatsubara K.M., Marr B.P., Carvajal R.D. Uveal melanoma: epidemiology, etiology, and treatment of primary disease // Clin. Ophthalmol. 2017. Vol. 11. Р. 279–289. doi:10.2147/OPTH.S89591. PMID: 28203054; PMCID: PMC5298817.; Huerta C., Rodríguez L.A. Incidence of ocular melanoma in the general population and in glaucoma patients // J. Epidemiol Community Health. 2001. Vol. 55, No. 5. Р. 338–339.; Isager P., Østerlind A., Engholm G., Heegaard S., Lindegaard J., Overgaard J., Storm HH. Uveal and conjunctival malignant melanoma in Denmark, 1943–97: incidence and validation study // Ophthalmic. Epidemiol. 2005. Vol. 12, No. 4. Р. 223–232. doi:10.1080/09286580591000836. PMID: 16033743.; Kaliki S., Shields C.L. Uveal melanoma: relatively rare but deadly cancer // Eye (Lond). 2017. Vol. 31, No. 2. Р. 241–257. doi:10.1038/eye.2016.275. Epub 2016 Dec 2. PMID: 27911450; PMCID: PMC5306463.; Hawkins B.S.; Collaborative Ocular Melanoma Study Group. The Collaborative Ocular Melanoma Study (COMS) randomized trial of pre enucleation radiation of large choroidal melanoma: IV. Ten year mortality findings and prognostic factors. COMS report number 24 // Am. J. Ophthalmol. 2004. Vol. 138, No. 6. Р. 936–951. doi:10.1016/j.ajo.2004.07.006. PMID: 15629284.; Yang J., Manson D.K., Marr B.P., Carvajal R.D. Treatment of uveal melanoma: where are we now? // Ther. Adv. Med. Oncol. 2018. Feb. 21, Vol. 10. 1758834018757175. doi:10.1177/1758834018757175. PMID: 29497459; PMCID: PMC5824910.; Al Mahmoud T., Quinlan Davidson S., Pond G.R., Deschênes J. Outcome Analysis of Visual Acuity and Side Effect after Ruthenium 106 Plaque Brachytherapy for Medium sized Choroidal Melanoma // Middle East Afr. J. Ophthalmol. 2018. Vol. 25, No. 2. Р. 103–107. doi:10.4103/meajo.MEAJO_198_16. PMID: 30122856; PMCID: PMC6071343.; Seibel I., Cordini D., Rehak M., Hager A., Riechardt A.I., Böker A., Heufelder J., Weber A., Gollrad J., Besserer A., Joussen A.M. Local Recurrence After Primary Proton Beam Therapy in Uveal Melanoma: Risk Factors, Retreatment Approaches, and Outcome // Am. J. Ophthalmol. 2015. Vol. 160, No. 4. Р. 628–636. doi:10.1016/j.ajo.2015.06.017. Epub 2015 Jun. 29. PMID: 26133249.; Dunavoelgyi R., Dieckmann K., Gleiss A., Sacu S., Kircher K., Georgopoulos M., Georg D., Zehetmayer M., Poetter R. Local tumor control, visual acuity, and survival after hypofractionated stereotactic photon radiotherapy of choroidal melanoma in 212 patients treated between 1997 and 2007 // Int. J. Radiat. Oncol. Biol. Phys. 2011. Vol. 81, No. 1. Р. 199–205. doi:10.1016/j.ijrobp.2010.04.035. Epub 2010 Aug 2. PMID: 20675066.; Modorati G., Miserocchi E., Galli L., Picozzi P., Rama P. Gamma knife radiosurgery for uveal melanoma: 12 years of experience // Br. J. Ophthalmol. 2009. Vol. 93, No. 1. Р. 40–44. doi:10.1136/bjo.2008.142208. Epub 2008 Aug. 29. PMID: 18757470.; Kang D.W., Lee S.C., Park Y.G., Chang J.H. Long term results of Gamma Knife surgery for uveal melanomas // J. Neurosurg. 2012. Vol. 117, Suppl. Р. 108–114. doi:10.3171/2012.8.GKS121002. PMID: 23205797.; Gigliotti C.R., Modorati G., Di Nicola M., Fiorino C., Perna L.A., Miserocchi E., Franzin A., Picozzi P., Bolognesi A., Mortini P., Del Vecchio A., Calandrino R. Predictors of radio induced visual impairment after radiosurgery for uveal melanoma // Br. J. Ophthalmol. 2018. Vol. 102, No. 6. Р. 833–839. doi:10.1136/bjophthalmol 2017–310801. Epub 2017 Sep. 13. PMID: 28903963.; Emara K., Weisbrod D.J., Sahgal A., McGowan H., Jaywant S., Michaels H., Payne D., Pintilie M., Laperriere NJ., Simpson ER. Stereotactic radiotherapy in the treatment of juxtapapillary choroidal melanoma: preliminary results // Int. J. Radiat. Oncol. Biol. Phys. 2004. Vol. 59, No. 1. Р. 94–100. doi:10.1016/j.ijrobp.2003.10.007. PMID: 15093904.; Jager M.J., Shields C.L., Cebulla C.M., Abdel Rahman M.H., Grossniklaus H.E., Stern M.H., Carvajal R.D., Belfort R.N., Jia R., Shields J.A, Damato B.E. Uveal melanoma // Nat Rev. Dis Primers. 2020. Vol. 6, No. 1. Р. 24. doi:10.1038/s41572-020-0158-0. Erratum in: Nat. Rev Dis Primers. 2022. Jan 17; 8, No. 1. Р. 4. PMID: 32273508.; Naumenko L.V., Zhyliayeva K.P., Evmenenko A.A., Zherka I.Yu., Krasny S.A. Eighteen year results of treatment of uveal melanoma using Ruthenium 106 + Rhodium 106 brachytherapy // Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021. Vol. 18, No. 3. Р. 284–291. https://doi.org/10.29235/1814–6023–2021–18–3284–291.; Logani S., Cho A.S., Ali B.H., Withers H.R., McBride W.H., Kozlov K.L., Hall M.O., Lee D.A., Straatsma B.R. Single dose compared with fractionated dose radiation of the OM431 choroidal melanoma cell line // Am. J. Ophthalmol. 1995. Vol. 120, No. 4. Р. 506–510. doi:10.1016/s0002-9394(14)72665-0. PMID: 7573309.; Rennie I., Forster D., Kemeny A., Walton L., Kunkler I. The use of single fraction Leksell stereotactic radiosurgery in the treatment of uveal melanoma // Acta Ophthalmol. Scand. 1996. Vol. 74, No. 6. Р. 558–562. doi:10.1111/j.1600–0420.1996.tb00734.x. PMID: 9017041.; Devin F., Regis J., Berros P., Manera L., Porcheron D., Sedan R., Peragut J.C., Saracco J.B. Traitement du mélanomechoroïdien par radiochirurgie Gamma Knife [Treatment of choroid melanoma by Gamma Knife radiosurgery] // J. Fr. Ophtalmol. 1996. Vol. 19, No. 8–9. Р. 551–554. French. PMID: 8944138.; Zehetmayer M., Menapace R., Kitz K., Ertl A., Strenn K., Ruhswurm I. Stereotactic irradiation of uveal melanoma with the Leksell gamma unit // Front Radiat. The. Oncol. 1997. Vol. 30. Р. 47–55. doi:10.1159/000425687. PMID: 9205884.; Langmann G., Pendl G., Müllner K., Feichtinger KH., Papaefthymiouaf G. High compared with low dose radiosurgery for uveal melanomas // J. Neurosurg. 2002. Vol. 97 (5 Suppl.). Р. 640–643. doi:10.3171/jns.2002.97.supplement. PMID: 12507112.; Modorati G., Miserocchi E., Galli L., Picozzi P., Rama P. Gamma knife radiosurgery for uveal melanoma: 12 years of experience // Br. J. Ophthalmol. 2009. Vol. 93, No. 1. Р. 40–44. doi:10.1136/bjo.2008.142208. Epub 2008 Augю 29. PMID: 18757470.; Mueller A.J., Talies S., Schaller U.C., Horstmann G., Wowra B., Kampik A. Stereotactic radiosurgery of large uveal melanomas with the gamma knife // Ophthalmology. 2000. Vol. 107, No. 7. Р. 138–1387; discussion 1387–1388. doi:10.1016/s0161–6420(00)00150–0. PMID: 10889116.; Guleser U.Y., Sarici A.M., Ucar D., Gonen B., Sengul Samanci N., Özgüroğlu M. Comparison of iodine 125 plaque brachytherapy and gamma knife stereotactic radiosurgery treatment outcomes for uveal melanoma patients // Graefes Arch. Clin. Exp. Ophthalmol. 2021. Nov. 4. doi:10.1007/s00417–021–05472 x. Epub ahead of print. PMID: 34735632.; Krema H., Somani S., Sahgal A., Xu W., Heydarian M., Payne D., McGowan H., Michaels H., Simpson ER., Laperriere N. Stereotactic radiotherapy for treatment of juxtapapillary choroidal melanoma: 3 year follow up // Br. J. Ophthalmol. 2009. Vol. 93, No. 9. Р. 1172–1176. doi:10.1136/bjo.2008.153429. Epub 2009 May 3. PMID: 19414441.; Dieckmann K., Georg D., Zehetmayer M., Bogner J., Georgopoulos M., Pötter R. LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience // Radiother. Oncol. 2003. Vol. 67, No. 2. Р. 199–206. doi:10.1016/s0167–8140(02)00345–6. PMID: 12812851.
-
8Academic Journal
Authors: E. N. Girya, O. L. Evdokimova, A. A. Kochakova, V. A. Rak, E. N. Rozhnova
Source: Digital Diagnostics, Vol 2, Iss 2S, Pp 34-35 (2021)
Subject Terms: кавернозные мальформации, стереотаксическая радиохирургия, импульсные последовательности, Computer applications to medicine. Medical informatics, R858-859.7
Relation: https://jdigitaldiagnostics.com/DD/article/viewFile/83208/63706; https://doaj.org/toc/2712-8490; https://doaj.org/toc/2712-8962; https://doaj.org/article/edd93c7ae2b442408b2827b708e4dcd2
-
9Academic Journal
Source: Ukrainian Neurosurgical Journal; Vol. 27 No. 1 (2021); 34-43
Ukrainian Neurosurgical Journal; Том 27 № 1 (2021); 34-43Subject Terms: ангіогенез, якість життя, ангиогенез, stereotactic radiosurgery, glioblastoma, головная боль, бевацизумаб, bevacizumab, головний біль, 3. Good health, anti-angiogenic therapy, angiogenesis, quality of life, стереотаксическая радиохирургия, глиобластома, гліобластома, стереотаксична радіохірургія, headache, антиангиогенная терапия, качество жизни, антиангіогенна терапія
File Description: application/pdf
Access URL: http://theunj.org/article/view/223479
-
10Report
Authors: Сагов, Ислам Русланович
Contributors: Сухих, Евгения Сергеевна
Subject Terms: интенсивно модулированная лучевая терапия, стереотаксическая радиохирургия, технические параметры, дозиметрическая оценка, радиобиологическая оценка, опухоли мозга, intensity Modulated Radiation Therapy, stereotactic Radiosurgery, technical parameters, dosimetric evaluation, radiobiologic evaluation, brain tumors, 14.04.02, 539.16.08:617-089:615.849
File Description: application/pdf
Availability: http://earchive.tpu.ru/handle/11683/66812
-
11Academic Journal
Source: Ukrainian Neurosurgical Journal, Iss 3, Pp 54-57 (2015)
Ukrainian Neurosurgical Journal; No. 3 (2015); 54-57
Ukrainian Neurosurgical Journal; № 3 (2015); 54-57Subject Terms: Orthopedic surgery, stereotactic radiosurgery, skull base meningiomas, linear accelerator, менингиома основания черепа, 3. Good health, линейный ускоритель, 03 medical and health sciences, 0302 clinical medicine, стереотаксическая радиохирургия, менінгіома основи черепа, лінійний прискорювач, стереотаксична радіохірургія, Neurology. Diseases of the nervous system, 14. Life underwater, RC346-429, RD701-811
File Description: application/pdf
-
12Academic Journal
Source: Ukrainian Neurosurgical Journal; Том 25, № 2 (2019); 40-45
Subject Terms: neurofibromatosis type II, intracranial tumor, stereotactic radiosurgery, нейрофиброматоз тип II, интракраниальная опухоль, стереотаксическая радиохирургия, 3. Good health, нейрофіброматоз типу II, інтракраніальна пухлина, стереотаксична радіохірургія
File Description: application/pdf
Access URL: http://theunj.org/article/view/159619
-
13Academic Journal
Authors: Chuvashova, Olga, Kruchok, Irina
Source: Ukrainian Neurosurgical Journal, Iss 3, Pp 39-42 (2013)
Український нейрохірургічний журнал; № 3 (2013); 39-42
Украинский нейрохирургический журнал; № 3 (2013); 39-42
Ukrainian Neurosurgical Journal; № 3 (2013); 39-42Subject Terms: менингиома пещеристого синуса, стереотаксическая радиохирургия, Orthopedic surgery, менінгіома печеристого синуса, стереотаксична радіохірургія, Neurology. Diseases of the nervous system, сavernous sinus meningioma, stereotactic radiosurgery, RC346-429, RD701-811, 3. Good health
File Description: application/pdf
-
14Academic Journal
Authors: A. S. Lyuosev, M. B. Dolgushin, A. I. Pronin, A. V. Nazarenko, N. A. Meshcheriakova, D. I. Nevzorov, S. B. Alieva, А. С. Люосев, М. Б. Долгушин, А. И. Пронин, А. В. Назаренко, Н. А. Мещерякова, Д. И. Невзоров, С. Б. Алиева
Source: Medical Visualization; № 5 (2017); 18-28 ; Медицинская визуализация; № 5 (2017); 18-28 ; 2408-9516 ; 1607-0763
Subject Terms: лучевая терапия, 18F-FET, MRI, brain, necrosis, stereotactic radiosurgery, radiation therapy, 18F-ФЭТ, МРТ, головной мозг, некроз, стереотаксическая радиохирургия
File Description: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/470/424; Chen J., Dassarath M., Yin Z., Liu H., Yang K., Wu G. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiation Oncology. 2011; 6: 128. DOI:10.1186/1748-717X-6-128.; De Salvo M.N. Radiation necrosis of the pons after radiotherapy for nasopharyngeal carcinoma: diagnosis and treatment. J. Radiol. Case Rep. 2012; 6 (7): 9–16. DOI:10.3941/jrcr.v6i7.1108.; Hsu Y.-C., Wang L.-F., Lee K.-W., Ho K.-Y., Huang C.-J., Kuo W.-R. Сerebral radionecrosis in patients with nasopharyngeal carcinoma. Kaohsiung J. Med. Sci. 2005; 21 (10): 452–459. DOI:10.1016/S1607-551X(09)70150-0.; Sheline G.E., Wara W.M., Smith V. Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 1980; 6: 1215–1228.; Qin D.X., Hu Y.H., Yan J.H., Xu G.Z., Cai W.M., Wu X.L., Cao D.X., Gu X.Z. Analysis of 1379 patients with nasopharyngeal carcinoma treated by radiation. Cancer. 1988; 61: 1117–1124.; Lee A.W., Ng S.H., Ho J.H., Tse V.K., Poon Y.F., Tse C.C., Au G.K., O S.K., Lau W.H., Foo W.W. Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma. Cancer. 1988; 61: 1535–1542.; Fischer A.W., Holfelder H. Lokales Amyloid in Gehirn. Einespatfolge von rontgenbestrahlungen. Dtsch. Z. Chir. 1930; 227: 475–483.; Glass J.P.,Hwang T.L., Leavens M.E., Libshitz H.I. Cerebral radiation necrosis following treatment of extracranial malignancies. Cancer. 1984; 54: 1966–1972.; MarksJ. E., Wong J. The risk of cerebral radionecrosis in relation to dose, time and fractionation: a follow-up study. Prog. Exp. Tumor Res. 1985; 29: 210–218.; Ruben J.D., Dally М., Bailey М., Smith R., McLean C.A., Fedele P. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006; 65: 499–508. DOI:10.1016/j.ijrobp.2005.12.002.; Савинцева Ж.И., Скворцова Т.Ю., Бродская З.Л. Современные методы нейровизуализации в дифференциальной диагностике лучевых поражений головного мозга у больных с церебральными опухолями. Лучевая диагностика и терапия. 2012; 1 (3): 15–23.; Крячок И.А. Новый подход к лечению пациентов с пострадиационным некрозом головного мозга. Онкология. 2010; 12 (3): 261–262.; Burger Р.С., Boyko O.B. The pathology of central nervous system radiation injury. Radiation injury to the nervous system. Eds Gutin P.H., Leibel S.A., Sheline G.E. New York: Raven, 1991: 191–208.; Castel J.C., Caille J.M. Imaging of irradiated brain tumors: value of magnetic resonance imaging. J. Neuradiol. 1989; 16: 81–132.; Sawaya R. The fibrinolytic enzymes in the biology of brain tumors. Sawaya M. D. (ed). Fibrilysis and the central nerv system. Philadelphia, Pa: Harnley and Belfus, 1990: 106–126.; Li Y.Q., Chen P., Haimovitz-Friedman A., Reilly R.M., Wong C.S. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res. 2003; 63 (18): 5950–5956.; Шишкина Л.В. Патологическая анатомия осложнений у нейроонкологических больных после лучевой терапии: Автореф. дисс. … канд. мед. наук. М., 1988. 18 с.; Никитин К.В., Шишкина Л.В., Пронин И.Н., Ильялов С.Р., Костюченко В.В., Голанов А.В. Лучевой некроз после стереотаксической радиохирургии доброкачественной глиомы: описание случая. Вопросы нейро хирургии им. Н.Н. Бурденко. 2009; 3: 37–42.; Monje M.L., Toda H., Palmer T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003; 302 (5651): 1760–1765. DOI:10.1126/science.1088417.; Wilson C.M., Gaber M.W., Sabek O.M., Zawaski J.A., Merchant T.E. Radiation-induced astrogliosis and bloodbrain barrier damage can be abrogated using anti-TNF treatment. Int. J. Radiat. Oncol. Biol. Phys. 2009; 74 (3): 934–941. DOI:10.1016/j.ijrobp.2009.02.035.; Zhou H., Liu Z., Liu J., Zhou D., Zhao Z., Xiao S., Tao E., Suo W.Z. Fractionated radiation- induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. Am. J .Neuroradiol. 2011; 32 (10): 1795–1800. DOI:10.3174/ajnr.A2643.; Safdari Н., Fuentes J.M. Dubois J.B., Alirezai M., Castan P., Vlahovitch B. Radiation necrosis of the brain: Time of onset and incidence related to total dose and fractionation of radiation. Neuroradiology. 1985; 27: 44–47.; Lee A.W.M., Law S.C.K., Ng S.H., Chan D.K., Poon Y.F., Foo W., Tung S.Y., Cheung F.K., Ho J.H. Retrospective analysis of nasopharyngeal carcinoma treated during 1976-1985: late complications following megavoltage irradiation. Br. J. Radiol. 1992; 65: 918–928. DOI:10.1259/0007-1285-65-778-918.; Chong V.F., Fan Y.F., Mukherji K.S. Radiation-Induced Temporal Lobe Changes: CT and MR Imaging Characteristics. Am. J. Roentgenol. 2000; 175: 431–436. DOI:10.2214/ajr.175.2.1750431.; Lee A.W., Foo W., Chappell R., Fowler J.F., Sze W.M., Poon Y.F., Law S.C., Ng S.H., O S.K., Tung S.Y., Lau W.H., Ho J.H. Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1998; 40: 35–42.; Tandon N., Vollmer D., New P., Hevezi J.M., Herman T., Kagan-Hallet K., West G.A. Fulminant radiation-induced necrosis after stereotactic radiation therapy to the posterior fossa. Case report and review of the literature. J. Neurosurg. 2001; 95: 507–512. DOI:10.3171/jns.2001.95.3.0507.; Chin L.S., Ma L., DiBiase S. Radiation necrosis following gamma knife surgery: a case- controlled comparison of treatment parameters and long-term clinical follow up. J. Neurosurg. 2001; 94: 899–904. DOI:10.3171/jns.2001.94.6.0899.; Chen H., Burnett M., Huse J., Lustig R.A., Bagley L.J., Zager E.L. Recurrent late cerebral necrosis with aggressive characteristics after radiosurgical treatment of an arteriovenous malformation. Casereport J. Neurosurg. 2006; 105: 455–460. DOI:10.3171/jns.2006.105.3.455.; Cheng K.M., Chan C.M., Fu Y.T., Ho L.C., Tsang Y.W., Lee M.K., Cheung Y.L., Law C.K. Brain abscess formation in radiation necrosis of the temporal lobe following radiation therapy for nasopharyngeal carcinoma. Acta Neurochir. (Wien). 2000; 142: 435–440.; Cheng K.M., Chan C.M., Fu Y.T., Ho L.C., Cheung F.C., Law C.K. Acute hemorrhage in late radiation necrosis of the temporal lobe: report of five cases and review of the literature. J. Neurooncol. 2001; 51: 143–150.; Giglio P., Gilbert M. Cerebral Radiation Necrosis. The Neurologist. 2003; 9: 180–188. DOI:10.1097/01.nrl.0000080951.78533.c4.; Dooms G.C., Hecht S., Brant-Zawadzki M., Berthiaume Y., Norman D., Newton T.H. Brain radiation lesions: MR imaging. Radiology. 1986; 158: 149–155. DOI:10.1148/radiology.158.1.3940373.; Galldiks N., Stoffels G., Filss C., Piroth M.D., Sabel M., Ruge M.I., Herzog H., Shah N.J., Fink G.R., Coenen H.H., Langen K.J. Role of O-(2-18F-Fluoroethyl)-L-Tyrosine PET for Differentiation of Local Recurrent Brain Metastasis from Radiation Necrosis. J. Nuclear Med. 2012; 53 (9): 1367–1374. DOI:10.2967/jnumed.112.103325.; Скворцова Т.Ю., Бродская З.Л., Савинцева Ж.И., Гурчин А.Ф. Современные проблемы мониторинга лече ния церебральных глиом и возможности повышения точности диагностики при помощи ПЭТ с [11С]метионином. Лучевая диагностика и терапия. 2014; 2 (5): 5–16. http://dx.doi.org/10.22328/2079-5343-2014-2-5-16.; Kreth F.W., Muacevic A., Medele R., Bise K., Meyer T., Reulen H.J. The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours- a pro spective study. Acta Neurochirurgica. 2001; 143 (6): 539–546.; Heper A.O., Erden E., Savas A., Ceyhan K., Erden I., Akyar S., Kanpolat Y. An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg. Neurol. 2005; 30; 64: 82–88. DOI:10.1016/j.surneu.2005.07.055.; Grosu A.L., Astner S.T., Riedel E., Nieder C., Wiedenmann N., Heinemann F., Schwaiger M., Molls M., Wester H.J., Weber W.A. An Interindividual Comparison of O-(2- [18F] Fluoroethyl)- L-Tyrosine (FET)-and L-[Methyl-11C] Methionine (MET)-PET in Patients With Brain Gliomas and Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81 (4): 1049–1058. DOI:10.1016/j.ijrobp.2010.07.002.; Palumbo B., Buresta T., Nuvoli S., Spanu A., Schillaci O., Fravolini M.L., Palumbo I. SPECT and PET serve as molecular imaging techniques and in Vivo biomarkers for brain metastases. Int. J. Molec. Sci. 2014; 15 (6): 9878–9893. DOI:10.3390/ijms15069878.; Stöber B., Tanase U., Herz M., Seidl C., Schwaiger M., Senekowitsch-Schmidtke R. Differentiation of tumour and inflammation: characterisation of [methyl-3H] methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J Nucl. Med. Molec. Imaging. 2006; 33 (8): 932–939. DOI:10.1007/s00259-005-0047-5.; Hanakawa K., Ikeda H., Ishii K., Asamoto S., Iwata T., Matsumoto K. High uptake on 11C methionine PET scan in the pituitary gland of a patient with cerebral glioma after surgical abortion. No To Shinkei. 1998; 50 (6): 573–577.; Позитронная эмиссионная томография: Руководство для врачей; Под ред. А.М. Гранова и Л.А. Тютина. М.: Фолиант, 2008. 610 c.; Карташев А.В., Виноградов В.М., Киселева Л.Н. Злокачественные глиомы головного мозга. Lambert Academic Publishing. 2011; 166–168.; Pöpperl G., Götz C., Rachinger W., Gildehaus F.J., Tonn J.C., Tatsch K.Value of O-(2-[18F] fluoroethyl)-Ltyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Molec. Imaging. 2004; 31 (11): 1464–1470. DOI:10.1007/s00259-004-1590-1.; Langen K.J., Hamacher K., Weckesser M., Floeth F., Stoffels G., Bauer D., Coenen H.H., Pauleit D. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33 (3): 287–294. DOI:10.1016/j.nucmedbio.2006.01.002.; Jensen M.L. Image Analysis of FET PET scans performed during Chemo-Radiotherapy of Glioblastoma Multiforme. DTU Informatics. 2012: 8–14.; Juhász C., Dwivedi S., Kamson D.O., Michelhaugh S.K., Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Molec. Imaging. 2014; 13 (6): 7290–2014.; Pöpperl G., Kreth F.W., Herms J., Koch W., Mehrkens J.H., Gildehaus F.J., Kretzschmar H.A., Tonn J.C., Tatsch K. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med. 2006; 47 (3): 393–403.; Piroth M.D., Liebenstund S., Galldiks N., Stoffels G., ShahN. J., EbleM. J., Coenen H.H., Langen K.J. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2- [18F] Fluoroethyl)-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful? Molec. Imaging. 2013; 12 (6): 7290–2013.; Di Chiro G., De LaPaz R.L., Brooks R.A., Sokoloff L., Kornblith P.L., Smith B.H., Patronas N.J., Kufta C.V., Kessler R.M., Johnston G.S., Manning R.G., Wolf A.P. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. eurology. 1982; 32 (12): 1323.; Bělohlávek O., Šimonová G., Kantorová I., Novotný J. Jr., Liscák R. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur. J. Nucl. Med. Molec. Imaging. 2003; 30 (1): 96– 100. DOI:10.1007/s00259-002-1011-2.; Lee H.Y., Chung J.K., Jeong J.M., Lee D.S., Kim D.G., Jung H.W., Lee M.C. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann. Nucl. Med. 2008; 22 (4): 281–286. DOI:10.1007/s12149-007-0104-1.; Трофимова Т.Н., Трофимов Е.А. Современные стратегии лучевой диагностики при первичных опухолях головного мозга. Практическая онкология. 2013; 14 (3): 141–147.; Molecular anatomic imaging: PET-CT and SPECT-CT integrated modality imaging. Ed. Von Schulthess G.K. Lippincott Williams & Wilkins, 2007: 150–152.; Hutterer M., Nowosielski M., Putzer D., Jansen N.L., Seiz M., Schocke M., McCoy M., Göbel G., laFougère C., Virgolini I.J., Trinka E., Jacobs A.H., Stockham mer G. [18F]-fluoro- ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neurooncology. 2013; 341–351. DOI:10.1093/neuonc/nos300.; Unterrainer M., Schweisthal F., Suchorska B., Wenter V., Schmid-Tannwald C., Fendler W.P., Schüller U., Bartenstein P., Tonn J.C., Albert N.L. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma – does it make sense? J. Nucl. Med. 2016; 57: 1177–1182. DOI:10.2967/jnumed.115.171033.; Weckesser M., Matheja P., Rickert C., Löttgen J., Palkovic S., Riemann B., Paulus W., Wassmann H., Schober O. Evaluation of the extension of cerebral gliomas by scintigraphy. Strahlenther. Onkol. 2000; 176 (4): 180–185.; del Amo E.M., Urtti A., Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur. J. Pharmaceut. Sci. 2008; 35 (3): 161–174. DOI:10.1016/j.ejps.2008.06.015.; https://medvis.vidar.ru/jour/article/view/470
-
15Academic Journal
Authors: ВАЖЕНИН А.В., ВАЖЕНИН И.А., МОЗЕРОВА Е.Я., ПИМЕНОВА М.М.
Subject Terms: СТЕРЕОТАКСИЧЕСКАЯ РАДИОХИРУРГИЯ,РАК ЛЕГКОГО,ЛУЧЕВЫЕ ПОВРЕЖДЕНИЯ,STEREOTACTIC RADIOSURGERY,LUNG CANCER,RADIATION TOXICITY
File Description: text/html
-
16Academic Journal
Authors: A. S. Lyuosev, M. B. Dolgushin, A. I. Pronin, A. A. Odzharova, A. I. Mikhailov, A. Kh. Bekyashev, D. I. Nevzorov, E. A. Nechipai, S. R. Ilyalov, А. С. Люосев, М. Б. Долгушин, А. И. Пронин, А. А. Оджарова, А. И. Михайлов, А. Х. Бекяшев, Д. И. Невзоров, Э. А. Нечипай, С. Р. Ильялов
Source: Medical Visualization; № 6 (2016); 15-25 ; Медицинская визуализация; № 6 (2016); 15-25 ; 2408-9516 ; 1607-0763
Subject Terms: стереотаксическая радиохирургия, 18F-FET, metastases, MRI, necrosis, stereotactic radiosurgery, 18F-ФЭТ, метастазы, головной мозг, некроз
File Description: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/356/344; Gagliardi F.M., Mercuri S. Single metastases in the brain: late results in 325 cases. Acta Neurochirurg. 1983; 68 (3–4): 253–262.; Oneschuk D., Bruera E. Palliative management of brain metastases. Supportive care in cancer. 1998; 6 (4): 365– 372.; Soffietti R., Ruda R., Mutani R. Management of brain metastases. J. Neurol. 2002; 249 (10): 1357–1369.; Мельникова Е.А. Метастазы опухолей в головной мозг. Нейрохирургия. 2005; 3: 61–65. Melnikova E.A. The metastatic tumors in the brain. Neurokhirurgiya. 2005; 3: 61–65. (In Russian); Vecht C.J. Clinical management of brain metastasis. J. Neurol. 1998; 245 (3): 127–131.; Голанов А.В., Банов С.М., Ветлова Е.Р. и др. Радиохирургическое лечение метастазов в головной мозг. Результаты одноцентрового ретроспективного исследования. Злокачественные опухоли. 2015; 4 (спец. выпуск. 2): 58–65. Golanov A.V., Banov S.M., Vetlova E.R. et al. Radiosurgical treatment of brain metastases. The results of a singlecenter retrospective study. Zlokachestvennie opukholi 2015; 4 (Special Issue 2): 58–65. (In Russian); Suh J.H. Stereotactic radiosurgery for the management of brain metastases. New Engl. J. Med. 2010; 362 (12): 1119–1127.; Kano H., Kondziolka D., Lobato-Polo J. et al. T1/T2 matching to differentiate tumor growth from radiation effect safter stereotactic radiosurgery. Neurosurgery. 2010; 66 (3): 486–492.; Dooms G.C., Hecht S., Brant-Zawadzki M. et al. Brain radiation lesions: MR imaging. Radiology. 1986; 158 (1): 149–155.; Galldiks N., Stoffels G., Filss C.P. et al. Role of O-(2-(18) F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med. 2012; 53 (9): 1367–1374.; Davis P.C., Hudgins P.A., Peterman S.B. et al. Diagnosis of cerebral metastases: double- dose delayed CT vs contrastenhanced MR imaging. Am. J. Neuroradiol. 1991; 12 (2): 293–300.; Schellinger P.D., Meinck H.M., Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J. Neurooncol. 1999; 44 (3): 275–281.; Palumbo B. Brain tumour recurrence: brain single-photon emission computerized tomography, PET and proton magnetic resonance spectroscopy. Nucl. Med. Communications. 2008; 29 (8): 730–735.; Kickingereder P., Dorn F., Blau T. et al. Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat. Oncol. 2013; 8 (1): 1–8.; Galldiks N., Stoffels G., Ruge M.I. et al. Role of O-(2-(18) F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with lowgrade glioma. J. Nucl. Med. 2013; 54 (12): 2046–2054.; Palumbo B., Buresta T., Nuvoli S. et al. SPECT and PET serve as molecular imaging techniques and in Vivo biomarkers for brain metastases. Int. J. Molec. Sci. 2014; 15 (6): 9878–9893.; Singhal T., Narayanan T.K., Jain V. et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Molec. Imaging Biol. 2008; 10 (1): 1–8.; Gulyas B., Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of. 2012; 56 (2): 173–190.; Позитронная эмиссионная томография: руководство для врачей: Под ред. А.М. Гранова, Л.А. Тютина. СПб.: Фолиант, 2008. 610 с. Positron emission tomography: a guide for physicians. Eds A.M. Granov, L.A. Tyutin. SPb.: Foliant, 2008. 610 p. (In Russian); Tsuyuguchi N., Sunada I., Iwai Y. et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J. Neurosurg. 2003; 98 (5): 1056–1064.; Terakawa Y., Tsuyuguchi N., Iwai Y. et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nuc. Med. 2008; 49 (5): 694–699.; Grosu A.L., Astner S.T., Riedel E. et al. An Interindividual Comparison of O-(2-[18F] Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C] Methionine (MET)–PET in Patients With Brain Gliomas and Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81 (4): 1049–1058.; Ильялов С.Р. Стереотаксическая радиохирургия внутримозговых метастазов рака с применением установки гамма-нож: Дисс. … канд. мед. наук. М., 2008. 148 c. Ilyalov S.R. Stereotactic radiosurgery of intracranial cancer metastases using gamma knife. Diss. … kand. med. nauk. M., 2015. 148 p. (In Russian); Narang J., Jain R., Arbab A.S. et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neurooncology. 2011; 29: nor075.; Patel T.R., McHugh B.J., Bi W.L. et al. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am. J. .Neuroradiol. 2011; 32 (10): 1885–1892.; Shah R., Vattoth S., Jacob R. et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012; 32 (5): 1343–1359.; Verma N., Cowperthwaite M.C., Burnett M.G. et al. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neurooncology. 2013; 16: nos307.; Ruzevick J., Kleinberg L., Rigamonti D. Imaging changes following stereotactic radiosurgery for metastatic intracranial tumors: differentiating pseudoprogression from tumor progression and its effect on clinical practice. Neurosurg. Rev. 2014; 37 (2): 193–201.; Насхлеташвили Д.Р., Абсалямова О.В., Алешин В.А. и др. Практические рекомендации по лекарственному лечению метастатических опухолей головного мозга. Злокачественные опухоли. 2015; 4 (спец. выпуск 2): 80–98. Nashletashvili D.R., Absalyamova O.V., Aleshin V.A. et al. Practical recommendations for drug treatment of metastatic brain tumors. Zlokachestvennie opukholi. 2015; 4 (Special Issue 2): 80–98. (In Russian); Журавлева М.А. Возможности перфузионной КТ в оценке эффективности комбинированного лечения глиальных опухолей головного мозга: Дисс. … канд. мед. наук. СПб., 2015. 182 с. Zhuravleva M.A. Possibilities of perfusion CT in the evaluation of the effectiveness of the combined treatment of glial brain tumors: Diss. … kand. med. nauk. Spb. 2015. 182 p. (In Russian); Peterson A.M., Meltzer C.C., Evanson E.J. et al. MR Imaging Response of Brain Metastases after Gamma Knife Stereotactic Radiosurgery 1. Radiology. 1999; 211 (3): 807–814.; Shaw E., Scott C., Souhami L. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int. J. Radiat. Oncol. Biol. Phys. 2000; 47 (2): 291–298.; Ross D.A., Sandler H.M., Balter J.M. et al. Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors. J. Neurooncol. 2002; 56 (2): 175–181.; Kreth F.W., Muacevic A., Medele R. et al. The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours – a prospective study. Acta Neurochir. 2001; 143 (6): 539–546.; Heper A.O., Erden E., Savas A. et al. An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg. Neurol. 2005; 64: S82–S88.; Di Chiro G., DeLaPaz R.L., Brooks R.A. et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982; 32 (12): 1323.; Bělohlávek O., Šimonová G., Kantorová I. et al. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur. J. Nucl. Med. Molecul. Imaging. 2003; 30 (1): 96–100.; Lee H.Y., Chung J.K., Jeong J.M. et al. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann. Nucl. Med. 2008; 22 (4): 281–286.; Савинцева Ж.И., Скворцова Т.Ю., Бродская З.Л. Современные методы нейровизуализации в дифференциальной диагностике лучевых поражений головного мозга у больных с церебральными опухолями. Лучевая диагностика и терапия. 2012; 1 (3): 15–23. Savintseva Zh.I., Skvortsova T.Yu., Brodskaya Z.L. Modern neuroimaging techniques in the differential diagnosis of radiation injuries of the brain in patients with cerebral tumors. Luchevaya diagnostikas i terapiya. 2012; 1 (3): 15–23. (In Russian); Трофимова Т.Н., Трофимов Е.А. Современные стратегии лучевой диагностики при первичных опухолях головного мозга. Практическая онкология. 2013; 14 (3): 141–147. Trofimova T.N., Trofimov E.A. Modern strategies for radiation diagnosis in primary brain tumors. Practicheskaya Oncologiya. 2013; 14 (3): 141–147. (In Russian); von Schulthess G.K., ed. Molecular anatomic imaging: PET-CT and SPECT-CT integrated modality imaging. Lippincott Williams & Wilkins, 2007: 150–152.; Hutterer M., Nowosielski M., Putzer D. et al. [18F]-fluoroethyl-L-tyrosine PET: a valuable diagnostic tool in neurooncology, but not all that glitters is glioma. Neurooncology. 2013; 341–351.; Unterrainer M., Schweisthal F., Suchorska B. et al. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma–does it make sense? J. Nucl. Med. 2016: jnumed-115.; Wyss M., Hofer S., Bruehlmeier M. et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J. Neurooncol. 2009; 95 (1): 87–93.; Piroth M.D., Pinkawa M., Holy R. et al. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme-a dosimetric comparison. Radiat. Oncol. 2009; 23; 4 (1):1.; Niyazi M., Geisler J., Siefert A. et al. FET–PET for malignant glioma treatment planning. Radiother. Oncol. 2011; 99 (1): 44–48.; Heiss P., Mayer S., Herz M. et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)- L-tyrosine in vitro and in vivo. J. Nucl. Med. 1999; 40 (8): 1367–1373.; Langen K.J., Jarosch M., Mühlensiepen H. et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol. 2003; 30 (5): 501– 508.; Langen K.J., Hamacher K., Weckesser M. et al. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33 (3): 287– 294.; del Amo E.M., Urtti A., Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Еur. J. Pharmaceut. Sci. 2008; 35 (3): 161–174.; Jensen M.L. Image Analysis of FET PET scans performed during Chemo-Radiotherapy of Glioblastoma Multiforme. Faculty of health sciences university of Copenhagen. 2012: 8–14.; Juhász C., Dwivedi S., Kamson D.O. et al. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Molec. Imaging. 2014; 13 (6): 7290–2014.; Stöber B., Tanase U., Herz M. et al. Differentiation of tumour and inflammation: characterisation of [methyl-3H] methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J. Nucl. Med. Molec. Imaging. 2006; 33 (8): 932–939.; Floeth F.W., Sabel M., Stoffels G. et al. Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J. Nucl. Med. 2008; 49 (5): 730–737.; Tonn J.C., Westphal M., Rutka J.T. (eds.). Oncology of CNS tumors. Springer Science & Business Media. 2010; 20: 345–361.; Pöpperl G., Götz C., Rachinger W. et al. Value of O-(2-[18F] fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Molec. Imaging. 2004; 31 (11): 1464–1470.; Pichler R., Dunzinger A., Wurm G. et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur. J. Nucl. Med. Molec. Imaging. 2010; 37 (8): 1521–1528.; Weckesser M., Langen K.J., Rickert C.H. et al. O-(2-[18F] fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur. J. Nucl. Med. Molec. Imaging. 2005; 32 (4): 422–429.; Pöpperl G., Kreth F.W., Herms J. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med. 2006; 47 (3): 393–403.; Pöpperl G., Kreth F.W., Mehrkens J.H. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Molec. Imaging. 2007; 34 (12): 1933–1942.; Kunz M., Thon N., Eigenbrod S. et al. Hot spots in dynamic18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neurooncology. 2011; 13 (3): 307–316.; Calcagni M.L., Galli G., Giordano A. et al. Dynamic O-(2-[18F] fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin. Nucl. Med. 2011; 36 (10): 841–847.; Piroth M.D., Liebenstund S., Galldiks N. et al. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2-[18F] Fluoroethyl)-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful? Molec. Imaging. 2013; 12 (6): 7290–2013.; Pyka T., Gempt J., Ringel F. et al. Prediction of glioma recurrence using dynamic 18F- fluoroethyltyrosine PET. Am. J. Neuroradiol. 2014; 35 (10): 1924–1929.; https://medvis.vidar.ru/jour/article/view/356
Availability: https://medvis.vidar.ru/jour/article/view/356
-
17Academic Journal
Source: Research'n Practical Medicine Journal.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, СТЕРЕОТАКСИЧЕСКАЯ РАДИОХИРУРГИЯ,РАК ЛЕГКОГО,ЛУЧЕВЫЕ ПОВРЕЖДЕНИЯ,STEREOTACTIC RADIOSURGERY,LUNG CANCER,RADIATION TOXICITY
File Description: text/html
-
18Academic Journal
Source: Research'n Practical Medicine Journal.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, МЕТАСТАТИЧЕСКОЕ ПОРАЖЕНИЕ ГОЛОВНОГО МОЗГА,СТЕРЕОТАКСИЧЕСКАЯ РАДИОХИРУРГИЯ,СТЕРЕОТАКСИЧЕСКАЯ РАДИОТЕРАПИЯ,BRAIN METASTASES,STEREOTACTIC RADIOSURGERY,SBRT,STEREOTACTIC RADIOTHERAPY
File Description: text/html
-
19Academic Journal
Authors: S. I. Tkachev, S. V. Medvedev, D. S. Romanov, P. V. Bulychkin, T. V. Yuryeva, R. A. Gutnik, I. P. Yazhgunovich, A. V. Berdnik, Yu. B. Bykova, С. И. Ткачёв, С. В. Медведев, Д. С. Романов, П. В. Булычкин, Т. В. Юрьева, Р. А. Гутник, И. П. Яжгунович, А. В. Бердник, Ю. Б. Быкова
Source: Malignant tumours; № 2 (2013); 86-93 ; Злокачественные опухоли; № 2 (2013); 86-93 ; 2587-6813 ; 2224-5057
Subject Terms: локальный контроль, stereotactic radiosurgery, local control, стереотаксическая радиохирургия
File Description: application/pdf
Relation: https://www.malignanttumors.org/jour/article/view/38/42; Hoyer M., Swaminath A., Bydder S., et al. Radiotherapy for liver metastases: a review of evidence. Int J Radiat Oncol Biol Phys. 2012. V. 82 (3). P. 1047 57.; Lax I., Blomgren H., N slund I., et al. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994. V. 32 P. 677 683.; Poston G. J. Surgical strategies for colorectal liver metastases. Surg Oncol 2004. V. 13. P. 125 36.; de Haas R. J., Wicherts D. A., Flores E., et al. R1 resection by necessity for colorectal liver metastases: is it still a contraindication to surgery? Ann Surg. 2008. V. 248 (4). P. 626 37.; de Jong M. C., Mayo S. C., Pulitano C., et al. Repeat curative intent liver surgery is safe and effective for recurrent colorectal liver metastasis: results from an international multi institutional analysis. J Gastrointest Surg. 2009. V. 13 (12). P. 2141 51.; Potters L., Kavanagh B., Galvin J. M., et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2010. V. 76. P. 326 332.; Blomgren H., Lax I., N slund I., Svanstr; m R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty one patients. Acta Oncol. 1995. V. 33. P. 861 70.; Blomgren H., Lax I., Goranson H., et al. Radiosurgery for tumors in the body: clinical experience using a new method. J Radiosurg. 1998. V. 1. P. 63 74.; Gunv n P, Blomgren H, Lax I. Radiosurgery for recurring liver metastases after hepatectomy. Hepatogastroenterology. 2003. V. 50 (53). P. 1201 4.; Dawson L. A., McGinn C. J., Normolle D., et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2000. V. 18. P. 2210 2218.; Dawson L. A., Normolle D., Balter J. M., et al. Analysis of radiationinduced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002. V. 53 (4). P. 810 821.; Herfarth K. K., Debus J., Lohr F., et al. Stereotactic Single Dose Radiation Therapy of Liver Tumors: Results of a Phase I / II Trial. Journal of Clinical Oncology. 2001. V. 19. P. 164 170.; Wulf J., Guckenberger M., Haedinger U., et al. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006. V. 45 (7). P. 838 47.; Hoyer M., Roed H., Hansen A. T., et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006. V. 45. P. 823 830.; Schefter T. E., Kavanagh B. D., Timmerman R. D., et al. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005. V. 62. P. 1371 1378.; Kavanagh B. D., Schefter T. E., Cardenes H. R., et al. Interim analysis of a prospective phase I / II trial of SBRT for liver metastases. Acta Oncol. 2006. V. 45. P. 848 855.; Rusthoven K. E., Kavanagh B. D., Cardenes H., et al. Multi institutional Phase I / II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009. V. 27. P. 1572 1578.; van der Pool A. E., Mendez Romero A., Wunderink W., et al. Stereotactic body radiation therapy for colorectal liver metastases. Br J Surg. 2010. V. 97. P. 377 382.; Goodman K. A., Wiegner E. A., Maturen K. E., et al. Dose escalation study of single fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010. V. 78. P. 486 493.; https://www.malignanttumors.org/jour/article/view/38
-
20Academic Journal
Authors: КРУЧОК ИРИНА ВЛАДИМИРОВНА, ЧУВАШОВА ОЛЬГА ЮРЬЕВНА, ВЕРБОВА ЛЮДМИЛА НИКОЛАЕВНА, ГРЯЗОВ АНДРЕЙ БОРИСОВИЧ
File Description: text/html