-
1Academic Journal
-
2Academic Journal
-
3Academic Journal
Authors: M. Sh. Khubutiya, Kh. G. Alidzhanova, Zh. V. Molchanova, M. A. Sagirov, E. V. Ilyina, М. Ш. Хубутия, Х. Г. Алиджанова, Ж. В. Молчанова, М. А. Сагиров, Е. В. Ильина
Contributors: The study has no sponsorship, Исследование не имеет спонсорской поддержки
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 2 (2025); 387-397 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 2 (2025); 387-397 ; 2541-8017 ; 2223-9022
Subject Terms: лечение, cardiac remodeling, right heart, risk stratification, myocardial fibrosis, myocardial deformity, treatment, ремоделирование сердца, правые отделы сердца, стратификация риска, фиброз миокарда, деформируемость миокарда
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/2184/1602; https://www.jnmp.ru/jour/article/view/2184/1709; Sinagra G, Elliott PM, Merlo M. Dilated cardiomyopathy: so many cardiomyopathies! Eur Heart J. 2020;41(39):3784–3786. PMID: 31872205 https://doi.org/10.1093/eurheartj/ehz908; Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, et al. Dilated cardiomyopathy. Nat Rev Dis Primers. 2019;5(1):32. PMID: 31073128 https://doi.org/10.1038/s41572-019-0084-1; Шумаков В.И., Хубутия М.Ш., Ильинский И.М. Дилатационная кардиомиопатия. Москва: Триада; 2003.; Ferreira A, Ferreira V, Antunes MM, Lousinha A, Pereira-da-Silva T, Antunes D, et al. Dilated Cardiomyopathy: A Comprehensive Approach to Diagnosis and Risk Stratification. Biomedicines. 2023;11(3):834. https://doi.org/10.3390/biomedicines11030834; Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev. 2022;27(4):1173–1191. PMID: 34263412 https://doi.org/10.1007/s10741-021-10139-0; Hammersley DJ, Jones RE, Owen R, Mach L, Lota AS, Khalique Z, et al. Phenotype, outcomes and natural history of early-stage nonischaemic cardiomyopathy. Eur J Heart Fail. 2023;25(11):2050–2059. PMID: 37728026 https://doi.org/10.1002/ejhf.3037; Голухова Е.З., Александрова С.А., Бердибеков Б.Ш. Прогностическая роль количественной оценки миокардиального фиброза по данным магнитно-резонансной томографии с отсроченным контрастированием при неишемических дилатационных кардиомиопатиях: систематический обзор и метаанализ. Российский кардиологический журнал. 2021;26(12):189–197. https://doi.org/10.15829/1560-4071-2021-4776; Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390(10092):400–414. PMID: 28190577 https://doi.org/10.1016/S0140-6736(16)31713-5; Xu XR, Han MM, Yang YZ, Wang X, Hou DY, Meng XC, et al. Fifteenyear mortality and prognostic factors in patients with dilated cardiomyopathy: persistent standardized application of drug therapy and strengthened management may bring about encouraging change in an aging society. J Geriatr Cardiol. 2022;19(5):335–342. PMID: 35722031 https://doi.org/10.11909/j.issn.1671-5411.2022.05.003; Merlo M, Stolfo D, Anzini M, Negri F, Pinamonti B, Barbati G, et al. Persistent recovery of normal left ventricular function and dimension in idiopathic dilated cardiomyopathy during long-term follow-up: does real healing exist? J Am Heart Assoc. 2015;4(1):e001504. PMID: 25587018 https://doi.org/10.1161/JAHA.114.000570; Leeper B. Right Ventricular Failure. AACN Adv Crit Care. 2020;31(1):49–56. PMID: 32168515 https://doi.org/10.4037/aacnacc2020172; Packer M. What causes sudden death in patients with chronic heart failure and a reduced ejection fraction? Eur Heart J. 2020;41(18):1757–1763. https://doi.org/10.1093/eurheartj/ehz553; Iovănescu ML, Florescu DR, Marcu AS, Donoiu I, Militaru S, Florescu C, et al. The Dysfunctional Right Ventricle in Dilated Cardiomyopathies: Looking from the Right Point of View. J Cardiovasc Dev Dis. 2022;9(10):359. PMID: 36286311 https://doi.org/10.3390/jcdd9100359; Becker MAJ, van der Lingen ALCJ, Wubben M, van de Ven PM, van Rossum AC, Cornel JH, et al. Characteristics and prognostic value of right ventricular (DYS)function in patients with non-ischaemic dilated cardiomyopathy assessed with cardiac magnetic resonance imaging. ESC Heart Fail. 2021;8(2):1055–1063. PMID: 33560582https://doi.org/10.1002/ehf2/13072; Vîjîiac A, Onciul S, Guzu C, Verinceanu V, Bătăilă V, Deaconu S, et al. The prognostic value of right ventricular longitudinal strain and 3D ejection fraction in patients with dilated cardiomyopathy. Int J Cardiovasc Imaging. 2021;37(11):3233–3244. PMID: 34165699 https://doi.org/10.1007/s10554-021-02322-z; Venner C, Selton-Suty C, Huttin O, Erpelding ML, Aliot E, Juillière Y. Right ventricular dysfunction in patients with idiopathic dilated cardiomyopathy: Prognostic value and predictive factors. Arch Cardiovasc Dis. 2016;109(4):231–241. PMID: 26782624 https://doi.org/10.1016/j.acvd.2015.10.006; Pathak RK, Sanders P, Deo R. Primary prevention implantable cardioverter-defibrillator and opportunities for sudden cardiac death risk assessment in non-ischaemic cardiomyopathy. Eur Heart J. 2018;39(31):2859–2866. PMID: 30020440 https://doi.org/10.1093/eurheartj/ehy344; Li Y., Guo J, Li W, Xu Y, Wan K, Xu Z, et al. Prognostic value of right atrial strain derived from cardiovascular magnetic resonance in non-ischemic dilated cardiomyopathy. J Cardiovasc Magn Reson. 2022;24(1):54. PMID: 36352424 https://doi.org/10.1186/s12968-022-00894-w; Sallach JA, Tang WH, Borowski AG, Tong W, Porter T, Martin MG, et al. Right Atrial Volume Index in Chronic Systolic Heart Failure and Prognosis. JACC Cardiovasc Imaging. 2009;2(5):527–534. PMID: 19442936 https://doi.org/10.1016/j.jcmg.2009.01.012; Marrow BA, Cook SA, Prasad SK, McCann GP. Emerging Techniques for Risk Stratification in Nonischemic Dilated Cardiomyopathy: JACC Review Topic of the Week. J Am Coll Cardiol. 2020;75(10):1196–1207. PMID: 32164893 https://doi.org/10.1016/j.jacc.2019.12.058; Boulet J, Mehra MR. Left Ventricular Reverse Remodeling in Heart Failure: Remission to Recovery. Struct Heart. 2021;5(5):466–481. https://doi.org/10.1080/24748706.2021.1954275; Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, et al. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells. 2021;10(10):2767. PMID: 34685747 https://doi.org/10.3390/cells10102767; Мазур В.В., Калинкин А.М., Мазур Е.С. Особенности ремоделирования сердца на разных стадиях хронической сердечной недостаточности у больных постинфарктным кардиосклерозом и дилатационной кардиомиопатией. Рациональная фармакотерапия в кардиологии. 2010;6(6):818–822.; Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol. 2006;47(6):1161–1166. PMID: 16545646 https://doi.org/10.1016/j.jacc.2005.11.045; Mikami Y, Jolly U, Heydari B, Peng M, Almehmadi F, Zahrani M, et al. Right Ventricular Ejection Fraction Is Incremental to Left Ventricular Ejection Fraction for the Prediction of Future Arrhythmic Events in Patients With Systolic Dysfunction. Circ Arrhythm Electrophysiol. 2017;10(1): e004067. PMID: 28087564 https://doi.org/10.1161/CIRCEP.116.004067; Gulati A, Ismail TF, Jabbour A, Alpendurada F, Guha K, Ismail NA, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013;128(15):1623–1633. PMID: 23965488 https://doi.org/10.1161/CIRCULATIONAHA.113.002518; Pueschner A, Chattranukulchai P, Heitner JF, Shah DJ, Hayes B, Rehwald W, et al. The Prevalence, Correlates, and Impact on Cardiac Mortality of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy. JACC Cardiovasc Imaging. 2017;10(10 Pt B):1225–1236. PMID: 29025576 https://doi.org/10.1016/j.jcmg.2017.06.013; Elming MB, Hammer-Hansen S, Voges I, Nyktari E, Raja AA, Svendsen JH, et al. Right Ventricular Dysfunction and the Effect of Defibrillator Implantation in Patients With Nonischemic Systolic Heart Failure. Circ Arrhythm Electrophysiol. 2019;12(3):e007022. PMID: 30866666 https://doi.org/10.1161/CIRCEP.118.007022; Jimenez-Juan L, Ben-Dov N, Goncalves Frazao CV, Tan NS, Singh SM, Dorian P, et al. Right Ventricular Function at Cardiac MRI Predicts Cardiovascular Events in Patients with an Implantable Cardioverter-Defibrillator. Radiology. 2021;301(2):322–329. PMID: 34402663 https://doi.org/10.1148/radiol.2021210246; Di Marco A, Brown PF, Bradley J, Nucifora G, Claver E, de Frutos F, et al. Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients With Nonischemic Dilated Cardiomyopathy. J Am Coll Cardiol. 2021;77(23):2890–2905. PMID: 34112317 https://doi.org/10.1016/j.jacc.2021.04.030; Alba AC, Gaztañaga J, Foroutan F, Thavendiranathan P, Merlo M, Alonso-Rodriguez D, et al. Prognostic Value of Late Gadolinium Enhancement for the Prediction of Cardiovascular Outcomes in Dilated Cardiomyopathy: An International, Multi-Institutional Study of the MINICOR Group. Circ Cardiovasc Imaging. 2020;13(4):e010105. PMID: 32312112 https://doi.org/10.1161/CIRCIMAGING.119.010105; Mandawat A, Chattranukulchai P, Mandawat A, Blood AJ, Ambati S, Hayes B, et al. Progression of Myocardial Fibrosis in Nonischemic DCM and Association With Mortality and Heart Failure Outcomes. JACC Cardiovasc Imaging. 2021;14(7):1338–1350. PMID: 33454264 https://doi.org/10.1016/j.jcmg.2020.11.006; Perone F, Dentamaro I, La Mura L, Alifragki A, Marketou M, Cavarretta E, et al. Current Insights and Novel Cardiovascular Magnetic Resonance-Based Techniques in the Prognosis of Non-Ischemic Dilated Cardiomyopathy. J Clin Med. 2024;13(4):1017. PMID: 38398330 https://doi.org/10.3390/jcm13041017; Tang HS, Kwan CT, He J, Ng PP, Hai SHJ, Kwok FYJ, et al. Prognostic Utility of Cardiac MRI Myocardial Strain Parameters in Patients With Ischemic and Nonischemic Dilated Cardiomyopathy: A Multicenter Study. AJR Am J Roentgenol. 2023;220(4):524–538. PMID: 36321987 https://doi.org/10.2214/AJR.22.28415; D’Andrea A, Scarafile R, Riegler L, Salerno G, Gravino R, Cocchia R, et al. Right atrial size and deformation in patients with dilated cardiomyopathy undergoing cardiac resynchronization therapy. Eur J Heart Fail. 2009;11(12):1169–1177. PMID: 19926601 https://doi.org/10.1093/eurjhf/hfp158; Liu T, Gao Y, Wang H, Zhou Z, Wang R, Chang S-S, et al. Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy. Heart. 2021;107(15):1233–1239. PMID: 33139324 https://doi.org/10.1136/heartjnl-2020-317949; Liu S, Li Y, Lian J, Wang X, Li Y, Wang D, et al. Prognostic Significance of Biventricular and Biatrial Strain in Dilated Cardiomyopathy: Strain Analysis Derived from Cardiovascular Magnetic Resonance. Rev Cardiovasc Med. 2023;24(12):347. https://doi.org/10.31083/j.rcm2412347; Houard L, Benaets MB, de Meester de Ravenstein C, Rousseau MF, Ahn SA, Amzulescu M-S, et al. Additional Prognostic Value of 2D Right Ventricular Speckle-Tracking Strain for Prediction of Survival in Heart Failure and Reduced Ejection Fraction: A Comparative Study With Cardiac Magnetic Resonance. JACC Cardiovasc Imaging. 2019;12(12):2373–2385. PMID: 30772232 https://doi.org/10.1016/j.jcmg.2018.11.028; Muraru D, Badano LP, Nagata Y, Surkova E, Nabeshima Y, Genovese D, et al. Development and prognostic validation of partition values to grade right ventricular dysfunction severity using 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2020;21:10–21. PMID: 31539046 https://doi.org/10.1093/ehjci/jez233; Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernandeet L, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. PMID: 25559473 https://doi.org/10.1016/j.echo.2014.10.003; Kübler J, Burgstahler C, Brendel JM, Gassenmaier S, Hagen F, Klingel K, et al. Cardiac MRI findings to differentiate athlete’s heart from hypertrophic (HCM), arrhythmogenic right ventricular (ARVC) and dilated (DCM) cardiomyopathy. Int J Cardiovasc Imaging. 2021;37(8):2501–2515. PMID: 34019206 https://doi.org/10.1007/s10554-021-02280-6; Monzo L, Tupy M, Borlaug BA, Reichenbach A, Jurcova I, Benes J, et al. Pressure overload is associated with right ventricular dyssynchrony in heart failure with reduced ejection fraction. ESC Heart Fail. 2024;11(2):1097–1109. PMID: 38263857 https://doi.org/10.1002/ehf2.14682; Golwala H, Bajaj NS, Arora G, Arora P. Implantable cardioverter-defibrillator for nonischemic cardiomyopathy: An updated meta-analysis. Circulation. 2017;135(2):201–203. PMID: 27993908 https://doi.org/10.1161/CIRCULATIONAHA.116.026056; O’Keefe JH Jr, Magalski A, Stevens TL, Bresnahan DR Jr, Alaswad K, Krueger SK, et al. Predictors of improvement in left ventricular ejection fraction with carvedilol for congestive heart failure. J Nucl Cardiol. 2000;7(1):3–7. PMID: 10698228 https://doi.org/10.1067/mnc.2000.102678; Theerasuwipakorn N, Chokesuwattanaskul R, Phannajit J, Marsukjai A, Thapanasuta M, Klem I, et al. Impact of late gadolinium-enhanced cardiac MRI on arrhythmic and mortality outcomes in nonischemic dilated cardiomyopathy: updated systematic review and meta-analysis. Sci Rep. 2023;13(1):13775. PMID: 37612359 https://doi.org/10.1038/s41598-023-41087-4; Tong X, Shen L, Zhou X, Wang Y, Chang S, Lu S. Comparative Efficacy of Different Drugs for the Treatment of Dilated Cardiomyopathy: A Systematic Review and Network Meta-analysis. Drugs RD. 2023;23(3):197–210. PMID: 37556093 https://doi.org/10.1007/s40268-023-00435-5; https://www.jnmp.ru/jour/article/view/2184
-
4Academic Journal
Authors: Artem G. Atoyan, Margarita A. Zholkovskaya, Amina A. Savlokhova, Anastasia S. Toryanik, Umsaitin M. Mamaeva, Akhmed A. Believ, Amir Kh. Khatukaev, Saida M. Borlakova, Luiza A. Arapieva, Anastasia D. Rocheva, Daria D. Gorokhova, Savely A. Okulov, Ilya G. Nasonov, Kseniya V. Korchmar, Артем Григорьевич Атоян, Маргарита Александровна Жолковская, Амина Ахметовна Савлохова, Анастасия Сергеевна Торяник, Умсайтин Мурадовна Мамаева, Ахмед Алимпашаевич Белиев, Амир Хасанович Хатукаев, Саида Маратовна Борлакова, Луиза Алихановна Арапиева, Анастасия Дмитриевна Рочева, Дарья Денисовна Горохова, Савелий Александрович Окулов, Илья Геннадьевич Насонов, Ксения Вадимовна Корчмарь
Contributors: Авторы заявляют об отсутствии финансирования исследования.
Source: Complex Issues of Cardiovascular Diseases; Online First ; Комплексные проблемы сердечно-сосудистых заболеваний; Online First ; 2587-9537 ; 2306-1278
Subject Terms: Терапевтическая мишень, Cardiovascular diseases, RNA-binding proteins, Cardiac remodeling, Ion channels, Atrial fibrillation, Therapeutic target, Сердечно-сосудистые заболевания, РНК-связывающие белки, Ремоделирование сердца, Ионные каналы, Фибрилляция предсердий
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1714/1062; Mensah GA, Fuster V, Roth GA. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. J Am Coll Cardiol. 2023;82(25):2343-2349. doi:10.1016/j.jacc.2023.11.003.; Косолапов ВП, Ярмонова МВ. Анализ высокой сердечно-сосудистой заболеваемости и смертности взрослого населения как медико-социальной проблемы и поиск путей ее решения. Уральский медицинский журнал. 2021;20(1):58-64. https://doi.org/10.52420/2071-5943-2021-20-1-58-64; Боровкова Н.Ю., Токарева А.С., Савицкая Н.Н., и др. Современное состояние проблемы сердечно-сосудистых заболеваний в Нижегородском регионе: возможные пути снижения смертности. Российский кардиологический журнал. 2022;27(5):5024. https://doi.org/10.15829/1560-4071-2022-5024; Фозилов Х.Г., Атаниязов Х.Х., Хамидуллаева Г.А., и др. Раннее выявление и контроль факторов риска сердечно-сосудистых заболеваний в приаралье: опыт Узбекистана. Кардиология. 2024;64(1):37-43. https://doi.org/10.18087/cardio.2024.1.n2614; Li C, Zheng Y, Liu Y, et al. The interaction protein of SORBS2 in myocardial tissue to find out the pathogenic mechanism of LVNC disease. Aging (Albany NY). 2022;14(2):800-810. doi:10.18632/aging.203841; Zhang S, Tong Y. Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother. 2022;155:113853. doi:10.1016/j.biopha.2022.113853.; Jaufmann J, Franke FC, Sperlich A, et al. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J. 2021;35(4):e21470. doi:10.1096/fj.202002495R.; Ichikawa T, Kita M, Matsui TS, et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci. 2017;130(20):3517-3531. doi:10.1242/jcs.200691.; Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells. 2022;11(23):3815. doi:10.3390/cells11233815.; Murase K, Ito H, Kanoh H, et al. Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol. 2012;45(1):22-8. doi:10.1007/s00795-010-0537-9.; Zhang Q, Gao X, Li C, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36(7):2247-60. doi:10.1523/JNEUROSCI.2528-15.2016.; Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol. 2020;92(5):e12951. doi:10.1111/sji.12951.; GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)–Analysis Working Group; Statistical Methods groups–Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site–NDRI; Biospecimen Collection Source Site–RPCI; Biospecimen Core Resource–VARI; Brain Bank Repository–University of Miami Brain Endowment Bank; Leidos Biomedical–Project Management; ELSI Study; Genome Browser Data Integration &Visualization–EBI; Genome Browser Data Integration &Visualization–UCSC Genomics Institute, University of California Santa Cruz; Lead analysts:; Laboratory, Data Analysis &Coordinating Center (LDACC):; NIH program management:; Biospecimen collection:; Pathology:; eQTL manuscript working group:; Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi:10.1038/nature24277.; Lv Q, Dong F, Zhou Y, et al. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability. Cell Death Dis. 2020;11(12):1056. doi:10.1038/s41419-020-03268-1.; Ding Y, Yang J, Chen P, et al. Knockout of SORBS2 Protein Disrupts the Structural Integrity of Intercalated Disc and Manifests Features of Arrhythmogenic Cardiomyopathy. J Am Heart Assoc. 2020;9(17):e017055. doi:10.1161/JAHA.119.017055.; Sanger JM, Wang J, Gleason LM, et al. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken). 2010;67(12):808-23. doi:10.1002/cm.20490.; Qian LL, Sun X, Yang J, et al. Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166247. doi:10.1016/j.bbadis.2021.166247.; Sun X, Lee HC, Lu T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ Res. 2024;134(7):858-871. doi:10.1161/CIRCRESAHA.123.323538.; Zhao L, Wang W, Huang S, et al. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol. 2018;19(1):35. doi:10.1186/s13059-018-1412-6.; Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711-719. doi:10.1038/s41586-020-2077-3.; Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185-198. doi:10.1038/s41576-020-00302-y.; Timmer LT, den Hertog E, Versteeg D, et al. Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition. Cardiovasc Res. 2025;121(4):585-600. doi:10.1093/cvr/cvaf021.; Dovinova I, Kvandová M, Balis P, et al. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Physiol Res. 2020;69(Suppl 4):S541-S553. doi:10.33549/physiolres.934612.; Zhu L, Choudhary K, Gonzalez-Teran B, et al. Transcription Factor GATA4 Regulates Cell Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitors. Circulation. 2022;146(10):770-787. doi:10.1161/CIRCULATIONAHA.121.057620.; Lu T, Sun X, Li Y, et al. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes. 2017;66(10):2681-2690. doi:10.2337/db17-0181.; Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, et al. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel). 2022; 11(2):235. doi:10.3390/antiox11020235.; Артеменков АА. Дислипидемии плазмы крови: патогенез и диагностическое значение. Обзор литературы. Пермский медицинский журнал (сетевое издание "Perm medical journal"). 2023;40(1):78-93. doi:10.17816/pmj40178-93; Liu MM, Peng J, Guo YL, et al. SORBS2 as a molecular target for atherosclerosis in patients with familial hypercholesterolemia. J Transl Med. 2022;20(1):233. doi:10.1186/s12967-022-03381-z.; Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017 Jul 15;136:136-149. doi:10.1016/j.bcp.2017.04.014.; Ren K, Li H, Zhou HF, et al. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging (Albany NY). 2019;11(23):10992-11009. doi:10.18632/aging.102498.; Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482(4):849-856. doi:10.1016/j.bbrc.2016.11.123.; Калашников В.Ю., Мичурова М.С. Атеросклеротические сердечно-сосудистые заболевания и сахарный диабет 2‑го типа. Как учесть все нюансы в выборе терапии? Кардиология. 2021;61(1):78-86. https://doi.org/10.18087/cardio.2021.1.n1148; Xiong X, Zhou J, Fu Q, et al. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis. 2022;21(1):60. doi:10.1186/s12944-022-01673-3.; Каширских Д.А., Хотина В.А., Сухоруков В.Н., и др. Клеточные и тканевые маркеры атеросклероза. Комплексные проблемы сердечно-сосудистых заболеваний. 2020;9(2):102-113. https://doi.org/10.17802/2306-1278-2020-9-2-102-113; Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243-1252. doi:10.1042/CS20180306.; Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. doi:10.3390/biom8030080.; Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. doi:10.3389/fimmu.2018.00430.; Akinyelure OP, Colantonio LD, Chaudhary NS, et al. Inflammation biomarkers and incident coronary heart disease: the Reasons for Geographic And Racial Differences in Stroke Study. Am Heart J. 2022;253:39-47. doi:10.1016/j.ahj.2022.07.001; Kumari P, Kumar H. Dimensions of inflammation in host defense and diseases. Int Rev Immunol. 2022;41(1):1-3. doi:10.1080/08830185.2022.2014174.; Vdovenko D, Bachmann M, Wijnen WJ, et al. The adaptor protein c-Cbl-associated protein (CAP) limits pro-inflammatory cytokine expression by inhibiting the NF-κB pathway. Int Immunopharmacol. 2020;87:106822. doi:10.1016/j.intimp.2020.106822.; Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136-46. doi:10.1172/JCI70577.; Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 2016;94:43-53. doi:10.1016/j.yjmcc.2016.03.014.; Shan B, Li JY, Liu YJ, et al. LncRNA H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the miR-93-5p/SORBS2 Axis. Inflammation. 2021;44(1):344-357. doi:10.1007/s10753-020-01340-8.; Алиева АМ, Алмазова ИИ, Резник ЕВ, и др. Гипертрофическая кардиомиопатия: современный взгляд на проблему. CardioСоматика. 2020;11(1):39-45. doi:10.26442/22217185.2020.1.200116; Галеева З.М., Галявич А.С., Балеева Л.В., и др. О причинах дилатационной кардиомиопатии в молодом возрасте. Южно-Российский журнал терапевтической практики. 2022;3(3):85-90. https://doi.org/10.21886/2712-8156-2022-3-3-85-90; McLendon JM, Zhang X, Matasic DS, et al. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc. 2022;11(13):e025687. doi:10.1161/JAHA.122.025687.; Gagliano Taliun SA, VandeHaar P, Boughton AP, et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat Genet. 2020;52(6):550-552. doi:10.1038/s41588-020-0622-5.; Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39(44):3961-3969. doi:10.1093/eurheartj/ehy474.; Li C, Liu F, Liu S, et al. Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine. 2020;53:102695. doi:10.1016/j.ebiom.2020.102695.; Li C, Zhang L, Hu X, et al. SORBS2 upregulation may contribute to dysfunction in LVNC via the Notch pathway. Acta Biochim Biophys Sin (Shanghai). 2022;55(2):327-329. doi:10.3724/abbs.2022177; Guo A, Wang Y, Chen B, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362(6421):eaan3303. doi:10.1126/science.aan3303; Prins KW, Asp ML, Zhang H, et al. Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci. 2016;1(3):122-130. doi:10.1016/j.jacbts.2016.02.002; Халиков А.А., Кузнецов К.О., Искужина Л.Р., Халикова Л.В. Судебно-медицинские аспекты внезапной аутопсия-отрицательной сердечной смерти. Судебно-медицинская экспертиза. 2021;64(3):59‑63. https://doi.org/10.17116/sudmed20216403159; Петрова Е.А., Кольцова Е.А. Нарушения ритма сердца и инсульт. Consilium Medicum. 2017; 19 (2): 30–34.; Канорский С.Г. Фибрилляция предсердий в старческом возрасте: современные возможности лечения. Южно-Российский журнал терапевтической практики. 2022;3(1):7-14. https://doi.org/10.21886/2712-8156-2022-3-1-7-14; Антипов Г.Н., Постол А.С., Котов С.Н., и др. Сравнение ремоделирования предсердий после процедур «лабиринт-3» и «криолабиринт» при сочетанных вмешательствах на сердце: ретроспективное исследование. Кубанский научный медицинский вестник. 2022;29(2):14-27. https://doi.org/10.25207/1608-6228-2022-29-2-14-27; Nattel S, Dobrev D. Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters. Circ Res. 2017 ;120(9):1396-1398. doi:10.1161/CIRCRESAHA.116.310489.; Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239. doi:10.1038/s41588-018-0171-3.; Roselli C, Rienstra M, Ellinor PT. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020;127(1):21-33. doi:10.1161/CIRCRESAHA.120.316575.; Kim JA, Chelu MG, Li N. Genetics of atrial fibrillation. Curr Opin Cardiol. 2021;36(3):281-287. doi:10.1097/HCO.0000000000000840.; Sheng Y, Wang YY, Chang Y, et al. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res. 2024;61:101-117. doi:10.1016/j.jare.2023.09.012.; Поморцев А.В., Карахалис М.Н., Матулевич С.А., и др. Пороки развития сердца плода: факторы риска и возможности ультразвукового метода при первом скрининге. Инновационная медицина Кубани. 2023;(4):51-59. https://doi.org/10.35401/2541-9897-2023-8-4-51-59; Molck MC, Simioni M, Paiva Vieira T, et al. Genomic imbalances in syndromic congenital heart disease. J Pediatr (Rio J). 2017;93(5):497-507. doi:10.1016/j.jped.2016.11.007.; Xu W, Ahmad A, Dagenais S, Iyer RK, Innis JW. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A. 2012;158A(3):635-40. doi:10.1002/ajmg.a.34425.; Strehle EM, Yu L, Rosenfeld JA, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region. Am J Med Genet A. 2012;158A(9):2139-51. doi:10.1002/ajmg.a.35502.; Liang F, Wang B, Geng J, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. Elife. 2021;10:e67481. doi:10.7554/eLife.67481.; Бондарь И.А., Демин А.А., Гражданкина Д.В. Сахарный диабет 2 типа: взаимосвязь исходных клинико-лабораторных и эхокардиографических показателей с отдалёнными неблагоприятными сердечно-сосудистыми событиями. Сахарный диабет. 2022;25(2):136-144. https://doi.org/10.14341/DM12823; Lu T, Chai Q, Jiao G, et al. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc Res. 2019;115(1):145-153. doi:10.1093/cvr/cvy137.; Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680-691. doi:10.1038/s41588-020-0637-y.; Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240-245. doi:10.1038/s41586-020-2263-3.; Lu T, Lee HC. Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Front Physiol. 2021;12:750618. doi:10.3389/fphys.2021.750618.; Nystoriak MA, Nieves-Cintrón M, Nygren PJ, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114(4):607-15. doi:10.1161/CIRCRESAHA.114.302168.; Yi F, Wang H, Chai Q, et al. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem. 2014;289(15):10853-10864. doi:10.1074/jbc.M113.520940; Sun X, Qian LL, Li Y, et al. Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells. J Mol Cell Cardiol. 2020;140:68-76. doi:10.1016/j.yjmcc.2020.03.001.; Турушева А.В., Котовская Ю.В., Фролова Е.В., и др. Влияние артериальной гипертензии на смертность и развитие гериатрических синдромов. Артериальная гипертензия. 2022;28(4):419-427. https://doi.org/10.18705/1607-419X-2022-28-4-419-427; Hoffmann TJ, Ehret GB, Nandakumar P, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49(1):54-64. doi:10.1038/ng.3715.; Кобалава Ж.Д., Конради А.О., Недогода С.В., и др. Артериальная гипертензия у взрослых. Клинические рекомендации 2024. Российский кардиологический журнал. 2024;29(9):6117. https://doi.org/10.15829/1560-4071-2024-6117. EDN: GUEWLU; Wang D, Uhrin P, Mocan A, Waltenberger B, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv. 2018;36(6):1586-1607. doi:10.1016/j.biotechadv.2018.04.006.; Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44(2):129-146. doi:10.1038/s41440-020-00553-6.; Zheng F, Ye C, Ge R, et al. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci. 2023;330:122023. doi:10.1016/j.lfs.2023.122023.; Holtzclaw JD, Grimm PR, Sansom SC. Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens. 2011;20(5):512-7. doi:10.1097/MNH.0b013e3283488889.; Yang Y, Li PY, Cheng J, et al. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension. 2013;61(2):519-25. doi:10.1161/HYPERTENSIONAHA.111.00211.; Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519-2530. doi:10.1038/s12276-023-01130-w.; Pinard A, Jones GT, Milewicz DM. Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res. 2019;124(4):588-606. doi:10.1161/CIRCRESAHA.118.312436.; Wang C, Qu B, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201-6. doi:10.1016/j.atherosclerosis.2014.11.027.
Availability: https://www.nii-kpssz.com/jour/article/view/1714
-
5Academic Journal
Authors: Бахадирович, Мурадов Шерзод
Source: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 4 No. 3 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 43-48 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 4 № 3 (2025): SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; 43-48 ; 2181-3469
Subject Terms: постинфарктый кардиосклероз, хроническая сердечная недостаточность, ремоделирование сердца
File Description: application/pdf
-
6Academic Journal
Authors: S. V. Popov, L. N. Maslov, A. V. Mukhomedzyanov, A. S. Slidnevskaya, A. Kan, N. V. Naryzhnaya, Yu. G. Birulina, T. V. Lasukova, Yu. K. Podoxenov, С. В. Попов, Л. Н. Маслов, А. В. Мухомедзянов, А. С. Слидневская, А. Кан, Н. В. Нарыжная, Ю. Г. Бирулина, Т. В. Ласукова, Ю. К. Подоксенов
Contributors: The study was supported by the Russian Science Foundation grant No. 23-65-10017. The section on post-infarction cardiac remodeling was prepared in the framework of the state assignment 122020300042-4, Работа выполнена при финансовой поддержке гранта Российского научного фонда №2365-10017. Раздел, посвященный постинфарктному ремоделированию сердца, подготовлен в рамках государственного задания 122020300042-4
Source: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 11-18 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 11-18 ; 2713-265X ; 2713-2927
Subject Terms: адреномедуллин, peptides, ischemia/reperfusion, post-infarction cardiac remodeling, adrenomedullin, пептиды, ишемия / реперфузия, постинфарктное ремоделирование сердца
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/2628/1043; Currey E.M., Falconer N., Isoardi K.Z., Barras M. Impact of pharmacists during in-hospital resuscitation or medical emergency response events: A systematic review. Am. J. Emerg. Med. 2024;75:98–110. https://doi.org/10.1016/j.ajem.2023.10.020; Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R. et al. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1_Pt_B):102049. https://doi.org/10.1016/j.cpcardiol.2023.102049; Nanavaty D., Sinha R., Kaul D., Sanghvi A., Kumar V., Vachhani B. et al. Impact of COVID-19 on acute myocardial infarction: A national inpatient sample analysis. Curr. Probl. Cardiol. 2024;49(1_Pt_A):102030. https://doi.org/10.1016/j.cpcardiol.2023.102030; Hti Lar Seng N.S., Zeratsion G., Pena Zapata O.Y., Tufail M.U., Jim B. Utility of cardiac troponins in patients with chronic kidney disease. Cardiol. Rev. 2024;32(1):62–70. https://doi.org/10.1097/CRD.0000000000000461; Luo Q., Sun W., Li Z., Sun J., Xiao Y., Zhang J. et al. Biomaterialsmediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials. 2023;303:122368. https://doi.org/10.1016/j.biomaterials.2023.122368; Мотова А.В., Каретникова В.Н., Осокина А.В., Поликутина О.М., Барбараш О.Л. Инфаркт миокарда 2-го типа: особенности диагностики в реальной клинической практике. Сибирский журнал клинической и экспериментальной медицины. 2022;37(3):75–82. https://doi.org/10.29001/2073-8552-2022-37-3-75-82; Вышлов Е.В., Алексеева Я.В., Усов В.Ю., Мочула О.В., Рябов В.В. Синдром микрососудистого повреждения миокарда у пациентов с первичным инфарктом миокарда с подъемом сегмента ST: распространенность и связь с клиническими характеристиками. Сибирский журнал клинической и экспериментальной медицины. 2022;37(1):36–46. https://doi.org/10.29001/2073-8552-2021-36-4-36-46; Li M., Hu L., Li L. Research progress of intra-aortic balloon counterpulsation in the treatment of acute myocardial infarction with cardiogenic shock: A review. Medicine (Baltimore). 2023;102(49):e36500. https://doi.org/10.1097/MD.0000000000036500; Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Cur. Cardiol. Rev. 2022;18(5):63–79. https://doi.org/10.2174/1573403X18666220413121730; Reimer K.A., Jennings R.B. Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischemic myocardium without limitation of ultimate infarct size. Lab. Invest. 1984;51(6):655–666.; Kitamura K., Kangawa K., Kawamoto M., Ichiki Y., Nakamura S., Matsuo H. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 1993a;192(2):553–560. https://doi.org/10.1006/bbrc.1993.1451; Sugo S., Minamino N., Kangawa K., Miyamoto K., Kitamura K., Sakata J. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 1994;201(3):1160–1166. https://doi.org/10.1006/bbrc.1994.1827; Kitamura K., Sakata J., Kangawa K., Kojima M., Matsuo H., Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem. Biophys. Res. Commun. 1993b; 194(2):720– 725. https://doi.org/10.1006/bbrc.1993.1881; Ishiyama Y., Kitamura K., Ichiki Y., Sakata J., Kida O., Kangawa K. et al. Haemodynamic responses to rat adrenomedullin in anaesthetized spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1995;22(9):614–618. https://doi.org/10.1111/j.1440-1681.1995.tb02075.x; Meeran K., O'Shea D., Upton P.D., Small C.J., Ghatei M.A., Byfield P.H. et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 1997;82(1):95–100. https://doi.org/10.1210/jcem.82.1.3656; Sandoval D.A., D'Alessio D.A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015;95(2):513–548. https://doi.org/10.1152/physrev.00013.2014; Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. https://doi.org/10.1016/j.bmcl.2020.127499; Naot D., Musson D.S., Cornish J. The activity of peptides of the calcitonin family in bone. Physiol. Rev. 2019;99(1):781–805. https://doi.org/10.1152/physrev.00066.2017; Woolley M.J., Reynolds C.A., Simms J., Walker C.S., Mobarec J.C., Garelja M.L. et al. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochem. Pharmacol. 2017;142:96–110. https://doi.org/10.1016/j.bcp.2017.07.005; Sekine N., Takano K., Kimata-Hayashi N., Kadowaki T., Fujita T. Adrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism. Am. J. Physiol. Endocrinol. Metab. 2006;291(1):E9–E14. https://doi.org/10.1152/ajpendo.00213.2005; Mittra S. Bourreau J.P. Gs and Gi coupling of adrenomedullin in adult rat ventricular myocytes. Am J. Physiol. Heart Circ. Physiol. 2006;290(5):H1842–H1847. https://doi.org/10.1152/ajpheart.00388.2005; Berenguer C., Boudouresque F., Dussert C., Daniel L., Muracciole X., Grino M. et al. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Oncogene. 2008;27(4):506–518. https://doi.org/10.1038/sj.onc.1210656; Bell D., Campbell M., McAleer S.F., Ferguson M., Donaghy L., Harbinson M.T. Endothelium-derived intermedin/adrenomedullin-2 protects human ventricular cardiomyocytes from ischaemiareoxygenation injury predominantly via the AM1 receptor. Peptides. 2016;76:1–13. https://doi.org/10.1016/j.peptides.2015.12.005; Xian X., Sakurai T., Kamiyoshi A., Ichikawa-Shindo Y., Tanaka M., Koyama T. et al. Vasoprotective activities of the adrenomedullin-RAMP2 system in endothelial cells. Endocrinology. 2017;158(5):1359–1372. https://doi.org/10.1210/en.2016-1531; Josiassen J., Frydland M., Holmvang L., Lerche Helgestad O.K., Okkels Jensen L., Goetze J.P. et al. Mortality in cardiogenic shock is stronger associated to clinical factors than contemporary biomarkers reflecting neurohormonal stress and inflammatory activation. Biomarkers. 2020;25(6):506–512. https://doi.org/10.1080/1354750X.2020.1795265; Nagaya N., Nishikimi T., Uematsu M., Yoshitomi Y., Miyao Y., Miyazaki S. et al. Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart. 1999;81(5):483–487. https://doi.org/10.1136/hrt.81.5.483; Hartopo A.B., Puspitawati I., Anggraeni V.Y. High level of mid-regional proadrenomedullin during ST-segment elevation myocardial infarction is an independent predictor of adverse cardiac events within 90-day follow-up. Medicina (Kaunas). 2022;58(7):861. https://doi.org/10.3390/medicina58070861; Vijay P., Szekely L., Aufiero T.X., Sharp T.G. Coronary sinus adrenomedullin rises in response to myocardial injury. Clin. Sci. (Lond). 1999;96(4):415–420. https://doi.org/10.1042/cs0960415; Oie E., Vinge L.E., Yndestad A., Sandberg C., Grøgaard H.K., Attramadal H. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation. 2000;101(4):415–422. https://doi.org/10.1161/01.cir.101.4.415; Nagaya N., Nishikimi T., Yoshihara F., Horio T., Morimoto A., Kangawa K. Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278(4):R1019–R1026. https://doi.org/10.1152/ajpregu.2000.278.4.R1019; Belloni A.S., Guidolin D., Ceretta S., Bova S., Nussdorfer G.G. Acute effect of ischemia on adrenomedullin immunoreactivity in the rat heart: an immunocytochemical study. Int. J. Mol. Med. 2004;14(1):71–73. https://doi.org/10.3892/ijmm.14.1.71; Hinrichs S., Scherschel K., Krüger S., Neumann J.T., Schwarz M., Yan I. et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc. Natl. Acad. Sci USA. 2018;115(37):E8727–E8736. https://doi.org/1073/pnas.1721635115; Kato K., Yin H., Agata J., Yoshida H., Chao L., Chao J. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J. Physiol. Heart. Circ. Physiol. 2003;285(4):H1506– H1514. https://doi.org/10.1152/ajpheart.00270.2003; de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis L.V.M., Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. https://doi.org/10.2174/1570161119666201120160619; Yin H., Chao L., Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension. 2004;43(1):109–116. https://doi.org/10.1161/01.HYP.0000103696.60047.55; An R., Xi C., Xu J., Liu Y., Zhang S., Wang Y. et al. Intramyocardial injection of recombinant adeno-associated viral vector coexpressing PR39/adrenomedullin enhances angiogenesis and reduces apoptosis in a rat myocardial infarction model. Oxid. Med. Cell. Longev. 2017;2017:1271670. https://doi.org/10.1155/2017/1271670; Naryzhnaya N.V., Maslov L.N., Derkachev I.A., Ma H., Zhang Y., Prasad N.R. et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J. Biomed. Res. 2022;37(4):230–254. https://doi.org/10.7555/JBR.36.20220125; Moradi M., Mousavi A., Emamgholipour Z., Giovannini J., Moghimi S., Peytam F. et al. Quinazoline-based VEGFR-2 inhibitors as potential antiangiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur. J. Med. Chem. 2023;259:115626. https://doi.org/10.1016/j.ejmech.2023.115626; Okumura H., Nagaya N., Itoh T., Okano I., Hino J., Mori K. et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004;109(2):242–248. https://doi.org/10.1161/01.CIR.0000109214.30211.7C; Hamid S.A., Baxter G.F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res. Cardiol. 2005;100(5):387– 396. https://doi.org/10.1007/s00395-005-0538-3; Hamid S.A., Baxter G.F. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J. Mol. Cell. Cardiol. 2006;41(2):360–363. https://doi.org/10.1016/j.yjmcc.2006.05.017; Hamid S.A., Totzeck M., Drexhage C., Thompson I., Fowkes R.C., Rassaf T. et al. Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res. Cardiol. 2010;105(2):257–266. https://doi.org/10.1007/s00395-009-0058-7; Nishida H., Sato T., Miyazaki M., Nakaya H. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res. 2008;77(2):398–405. https://doi.org/10.1016/j.cardiores.2007.07.015; Torigoe Y., Takahashi N., Hara M., Yoshimatsu H., Saikawa T. Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology. 2009;150(3):1450–1455. https://doi.org/10.1210/en.2008-1052; Karakas M., Akin I., Burdelski C., Clemmensen P., Grahn H., Jarczak D. et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, doubleblinded, placebo-controlled, multicentre trial. Lancet Respir. Med. 2022;10(3):247–254. https://doi.org/10.1016/S2213-2600(21)00439-2; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Marutsuka K. et al. Beneficial effects of adrenomedullin on left ventricular remodeling after myocardial infarction in rats. Cardiovasc. Res. 2002;56(3):373–380. https://doi.org/10.1016/s0008-6363(02)00594-1; Okumura H., Nagaya N., Kangawa K. Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens. Res. 2003;26_Suppl:S99–S104. https://doi.org/10.1291/hypres.26.s99; Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Cao Y. et al. Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation. 2004;110(4):426–431. https://doi.org/10.1161/01.CIR.0000136085.34185.83; Dong W., Yu P., Zhang T., Zhu C., Qi J., Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol. Med. Rep. 2018;17(3):4547–4553. https://doi.org/10.3892/mmr.2018.8450; Dou L., Lu E., Tian D., Li F., Deng L., Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. J. Transl. Int. Med. 2023;11(2):169–177. https://doi.org/10.2478/jtim-2023-0091; Wang X., Jia J.H., Zhang M., Meng Q.S., Yan B.W., Ma Z.Y. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 2023;37(10):e23143. https://doi.org/10.1096/fj.202300474R; https://www.sibjcem.ru/jour/article/view/2628
-
7Academic Journal
Authors: Abdullaiev, R.Ya., Kapustnik, V.A., Markovsky, V.D., Kulikova, F.I., Kyrychenko, A.G., Tomakh, N.V.
Source: Azerbaijan Medical Journal. :9-14
Subject Terms: острый инфаркт миокарда, ürəyin gecikmiş postinfarkt remodelləşməsi, late postinfarction period, acute myocardial infarction, echocardiography, kəskin miokard infarktı, cardiac postinfarction remodeling, позднее постинфарктное ремоделирование сердца, 3. Good health, exokardioqrafiya, эхокардиография
-
8Academic Journal
Source: HYPERTENSION; № 2.46 (2016); 37-42
АРТЕРИАЛЬНАЯ ГИПЕРТЕНЗИЯ; № 2.46 (2016); 37-42
АРТЕРІАЛЬНА ГІПЕРТЕНЗІЯ; № 2.46 (2016); 37-42Subject Terms: 03 medical and health sciences, 0302 clinical medicine, апелин, артериальная гипертензия, ренин-ангиотензиновая система, ремоделирование сердца, терапевтические возможности, апелін, артеріальна гіпертензія, ренін-ангіотензинова система, ремоделювання серця, терапевтичні можливості, apelin, hypertension, renin-angiotensin system, cardiac remodeling, therapeutic options, 3. Good health
File Description: application/pdf
-
9Academic Journal
Authors: Koval, S.M., Yushko, K.O., Starchenko, T.H.
Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 11, Iss 5.69, Pp 37-40 (2015)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; № 5.69 (2015); 37-40
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; № 5.69 (2015); 37-40
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; № 5.69 (2015); 37-40Subject Terms: pathological cardiac remodeling, 03 medical and health sciences, 0302 clinical medicine, apelin, апелін, гіпертонічна хвороба, цукровий діабет 2-го типу, патологічне ремоделювання серця, type 2 diabetes mellitus, essential hypertension, апелин, гипертоническая болезнь, сахарный диабет 2-го типа, патологическое ремоделирование сердца, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health
File Description: application/pdf
-
10Academic Journal
Authors: M. A. Kercheva, V. V. Ryabov, M. S. Rebenkova, B. Kim, A. N. Ryabtseva, A. A. Kolmakov, A. E. Gombozhapova, J. G. Kzhyshkowska
Source: Сибирский журнал клинической и экспериментальной медицины. 2021. Т. 36, № 2. С. 61-69
Subject Terms: макрофаги, 2. Zero hunger, 03 medical and health sciences, 0302 clinical medicine, почечная недостаточность, ремоделирование сердца, сердечная недостаточность, инфаркт миокарда, 3. Good health
File Description: application/pdf
Access URL: https://cardiotomsk.elpub.ru/jour/article/download/1192/619
https://cardiotomsk.elpub.ru/jour/article/view/1192
https://cyberleninka.ru/article/n/osobennosti-makrofagalnoy-infiltratsii-pochek-u-patsientov-s-infarktom-miokarda-1
https://cardiotomsk.elpub.ru/jour/article/viewFile/1192/619
https://cyberleninka.ru/article/n/osobennosti-makrofagalnoy-infiltratsii-pochek-u-patsientov-s-infarktom-miokarda-1/pdf
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000847189 -
11Academic Journal
Source: Вестник МГПУ. Серия Естественные науки.
Subject Terms: myocardial heterogeneity, left ventricle, левый желудочек, ремоделирование сердца, гетерогенность миокарда, heart, cardiac remodeling, сердце, 3. Good health
-
12Academic Journal
Authors: Tseluyko, Vira, Korchagina, Daria
Source: ScienceRise: Medical Science; № 4 (37) (2020); 15-21
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, ремоделирование сердца, тиреотоксикоз, артериальная гипертензия, фиксированная комбинированная антигипертензивная терапия, амбулаторное мониторирование артериального давления, ремоделювання серця, артеріальна гіпертензія, фіксована комбінована антигіпертензивна терапія, амбулаторне моні торування артеріального тиску, cardiac remodeling, thyrotoxicosis, arterial hypertension, fixed combination antihypertensive therapy, ambulatory blood pressure monitoring, УДК616.12-008.331.1-06:616.44-008.64]-085.224-036.8, 3. Good health
File Description: application/pdf
-
13Academic Journal
Authors: Korchagina, Daria
Source: ScienceRise: Medical Science; № 2 (35) (2020); 4-9
ScienceRise. Medical Science; № 2 (35) (2020); 4-9Subject Terms: 03 medical and health sciences, 0302 clinical medicine, артеріальна гіпертензія, тиреотоксикоз, ремоделювання серця, гіпертрофія міокарду, прогнозування, arterial hypertension, thyrotoxicosis, heart remodelling, myocardial hypertrophy, prognosis, артериальная гипертензия, ремоделирование сердца, гипетрофия миокарда, прогнозирование, УДК [616.12-008.331.1-06: 616.44-008.61]: 616.12/.14-007.6:616.12-008.45, 3. Good health
File Description: application/pdf
-
14
-
15Academic Journal
Authors: Sharykin, A.S., Badtieva, V.A., Pavlov, V.I., Ivanova, Yu.M., Usmanov, D.M.
Subject Terms: A. Pelliccia classification, heart remodeling, гипертрофия миокарда левого желудочка, athletes, VO2 Peak, ремоделирование сердца, УДК 796.012.432.2, классификация A. Pelliccia, left ventricular myocardial hypertrophy, спортсмены, пиковое потребление кислорода
File Description: application/pdf
-
16Academic Journal
Authors: Зиёдуллаев Максуд Максмудович
Source: BOSHQARUV VA ETIKA QOIDALARI ONLAYN ILMIY JURNALI; Vol. 3 No. 12 (2023): BOSHQARUV VA ETIKA QOIDALARI ONLAYN ILMIY JURNALI; 124-130 ; 2181-2616
Subject Terms: ремоделирование сердца, сердечно-сосудистые заболевания, этиология, патогенез
File Description: application/pdf
Relation: https://sciencebox.uz/index.php/sjeg/article/view/9121/8347; https://sciencebox.uz/index.php/sjeg/article/view/9121
Availability: https://sciencebox.uz/index.php/sjeg/article/view/9121
-
17Academic Journal
Source: Science and Education; Vol. 4 No. 5 (2023): Science and Education; 581-588 ; 2181-0842
Subject Terms: ремоделирование сердца, гипертоническая болезнь, гестоз, ЭхоКГ, левый желудочек, диастолическая дисфункция
File Description: application/pdf
-
18Academic Journal
Authors: N. N. Pakhtusov, A. O. Yusupova, K. A. Zhbanov, A. A. Shchedrygina, E. V. Privalova, Yu. N. Belenkov, Н. Н. Пахтусов, А. О. Юсупова, К. А. Жбанов, А. А. Щендрыгина, Е. В. Привалова, Ю. Н. Беленков
Contributors: The study was financially supported by the Russian Science Foundation in the form of scientific project No. 22-15-00424, scientific grant "The role of activation of the WNT signaling cascade, the processes of its epigenetic regulation and immune-mediated inflammation in the progression of atherosclerosis and the possibility of influencing it by therapeutic neoangiogenesis in patients with stable ischemic heart disease.", Исследование выполнено при финансовой поддержке Российского научного фонда в виде научного проекта № 22-15-00424, научного гранта «Роль активации сигнального каскада WNT, процессов его эпигенетической регуляции и иммуноопосредованного воспаления в прогрессировании атеросклероза и возможности влияния на него методом терапевтического неоангиогенеза у пациентов со стабильной ишемической болезнью сердца».
Source: Rational Pharmacotherapy in Cardiology; Vol 18, No 6 (2022); 630-637 ; Рациональная Фармакотерапия в Кардиологии; Vol 18, No 6 (2022); 630-637 ; 2225-3653 ; 1819-6446
Subject Terms: воспаление, трансформирующий фактор роста β, ремоделирование сердца, металлопротеиназа 9
File Description: application/pdf
Relation: https://www.rpcardio.com/jour/article/view/2849/2376; The top 10 causes of death [cited 2022 Jan 12]. Available from: https://www.who.int/newsroom/fact-sheets/detail/the-top-10-causes-of-death.; Gibbs RA. The Human Genome Project changed everything. Nat Rev Genet. 2020;21(10):575-6. DOI:10.1038/s41576-020-0275-3.; Low EL, Baker AH, Bradshaw AC. TGFβ smooth muscle cells and coronary artery disease: a review. Cell Signal. 2019;53:90-101. DOI:10.1016/j.cellsig.2018.09.004; Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8(9):a022061. DOI:10.1101/cshperspect.a022061.; Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. DOI:10.1101/cshperspect.a021873.; Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600-6. DOI:10.1016/j.yjmcc.2010.10.033.; Wang JH, Zhao L, Pan X, et al. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-β1 signaling pathway. Lab Investig [Internet]. 2016;96(8):839-52. DOI:10.1038/labinvest.2016.65.; Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76-83. DOI:10.1016/j.cbi.2018.07.008.; Knuuti J, Wijns W, Achenbach S, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407-77. DOI:10.1093/eurheartj/ehz425.; Jespersen L, Hvelplund A, Abildstrøm SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734-44. DOI:10.1093/eurheartj/ehr331.; Safdar B, Spatz ES, Dreyer RP, et al. Presentation, clinical profile, and prognosis of young patients with myocardial infarction with nonobstructive coronary arteries (MINOCA): Results from the VIRGO study. J Am Heart Assoc. 2018;7(13):e009174. DOI:10.1161/JAHA.118.009174.; Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-60. DOI:10.3758/BRM.41.4.1149.; Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79-108. DOI:10.1016/j.euje.2005.12.014.; Grainger DJ, Kemp PR, Metcalfe JC, et al. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med. 1995;1(1):74-9. DOI:10.1038/nm0195-74.; Erren M, Reinecke H, Junker R, et al. Systemic inflammatory parameters in patients with atherosclerosis of the coronary and peripheral arteries. Arterioscler Thromb Vasc Biol. 1999;19(10):2355-63. DOI:10.1161/01.atv.19.10.2355.; Wang XL, Liu SX, Wilcken DEL. Circulating transforming growth factor beta1 and coronary artery disease. Cardiovasc Res. 1997;34(2):404-10. DOI:10.1016/s0008-6363(97)00033-3.; van Dijk RA, Engels CC, Schaapherder AF, et al. Visualizing TGF-β and BMP signaling in human atherosclerosis: a histological evaluation based on Smad activation. Histol Histopathol. 2012;27(3):387- 96. DOI:10.14670/HH-27.387.; Grainger DJ. TGF-beta and atherosclerosis in man. Cardiovasc Res. 2007;74(2):213-22. DOI:10.1016/j.cardiores.2007.02.022.; Rodríguez-Vita J, Sánchez-Galán E, Santamaría B, et al. Essential role of TGF-β/Smad pathway on statin dependent vascular smooth muscle cell regulation. PLoS One. 2008;3(12):e3959. DOI:10.1371/journal.pone.0003959.; Lefer AM, Tsao P, Aoki N, Palladino MA. Mediation of cardioprotection by transforming growth factor-beta. Science.1990;249(4964):61-4. DOI:10.1126/science.2164258.; Border WA, Noble NA. Transformation growth factor β in tissue fibrosis. N Engl J Med. 1994;331(19):153-8. DOI:10.1056/NEJM199411103311907.; Kuwahara F, Kai H, Tokuda K, et al. Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106(1):130- 5. DOI:10.1161/01.CIR.0000020689.12472.E0.; Li JM, Brooks G. Differential protein expression and subcellular distribution of TGFβ1, β2, and β3 in cardiomyocytes during pressure overload-induced hypertrophy. J Mol Cell Cardiol. 1997;29(8):2213- 24. DOI:10.1006/jmcc.1997.0457.; Bujak M, Ren G, Kweon HJ, et al. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation. 2007;116(19):2127-38. DOI:10.1161/CIRCULATIONAHA.107.704197.; Xia Y, Lee K, Li N, D. et al. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload. Histochem Cell Biol. 2009;131(4):471-81. DOI:10.1007/s00418-008-0541-5.; Ali M, Girgis S, Hassan A, et al. Inflammation and coronary artery disease: From pathophysiology to Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Coron Artery Dis. 2018;29(5):429-37. DOI:10.1097/MCA.0000000000000625.; Nidorf SM, Fiolet ATL, Eikelboom JW, et al. The effect of low-dose colchicine in patients with stable coronary artery disease: The LoDoCo2 trial rationale, design, and baseline characteristics. Am Heart J. 2019;218:46-56. DOI:10.1016/j.ahj.2019.09.011.; Bagi Z, Feher A, Cassuto J, Microvascular responsiveness in obesity: Implications for therapeutic intervention. Br J Pharmacol. 2012;165(3):544-60. DOI:10.1111/j.1476-5381.2011.01606.x.; Pasqualetto MC, Tuttolomondo D, Cutruzzolà A, et al. Human coronary inflammation by computed tomography: Relationship with coronary microvascular dysfunction. Int J Cardiol. 2021;336:8-13. DOI:10.1016/j.ijcard.2021.05.040.; https://www.rpcardio.com/jour/article/view/2849
-
19Academic Journal
Authors: Alexey V. Yakovlev, Ivan A. Efremov, Andrey N. Ryabikov, Natalia F. Yakovleva, Ilya V. Shirokikh, Sergey N. Shilov, Alexander T. Teplyakov, Elena V. Grakova, Kristina V. Kopeva, Алексей Владимирович Яковлев, Иван Андреевич Ефремов, Андрей Николаевич Рябиков, Наталья Фаритовна Яковлева, Илья Валерьевич Широких, Сергей Николаевич Шилов, Александр Трофимович Тепляков, Елена Викторовна Гракова, Кристина Васильевна Копьева
Contributors: Авторы заявляют об отсутствии финансирования исследования.
Source: Complex Issues of Cardiovascular Diseases; Том 12, № 3 (2023); 161-172 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 3 (2023); 161-172 ; 2587-9537 ; 2306-1278
Subject Terms: Ремоделирование сердца, Obstructive sleep apnea, Diastolic dysfunction, Global longitudinal strain, Cardiac remodeling, Синдром обструктивного апноэ во сне, Диастолическая дисфункция, Глобальная продольная деформация миокарда
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1187/818; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1187/1158; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1187/1159; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1187/1160; Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016;(8):7-13. doi:10.15829/1560- 4071-2016-8-7-13; Arnardottir Е.S., Bjornsdottir E., Olafsdottir K.A., Benediktsdottir B., Gislason T. Obstructive sleep apnoea in the general population: highly prevalent but minimal symptoms. European Respiratory Journal. 2016;47:194-202. doi:10.1183/13993003.01148-2015.; Maedera M., Schochb O., Busera M. Ammann P., Rickli H. Obstructive sleep apnoea and heart failure. Cardiovascular Medicine. 2017;20:9-17. doi:10.4414/cvm.2017.00452.; Медведева Е.А., Коростовцева Л.С., Сазонова Ю.В., Бочкарёв М.В., Свиряев Ю.В., Конради А.О. Синдром обструктивного апноэ во сне при хронической сердечной недостаточности: взгляд кардиолога. Российский кардиологический журнал. 2018;1:78-82. doi:10.15829/1560-4071-2018-1-78-82.; Сукмарова З.Н., Литвин А.Ю., Чазова И.Е., Рогоза А.Н. Эффективность комплексной медикаментозной и CPAP-терапии у пациентов с артериальной гипертонией 2-3-й степени и тяжелой степенью синдрома обструктивного апноэ во время сна. Системные гипертензии. 2011;8(1):40. doi.org/10.26442/SG33110.; Baran R., Grimm D., Infanger M., Wehland M. The Effect of Continuous Positive Airway Pressure Therapy on Obstructive Sleep Apnea-Related Hypertension. Int J Mol Sci. 2021;22(5):2300. doi:10.3390/ijms22052300.; Bakker J.P, Weaver T.E, Parthasarathy S., Aloia M.S. Adherence to CPAP: What Should We Be Aiming For, and How Can We Get There. Chest. 2019;155(6):1272-1287. doi:10.1016/j.chest.2019.01.012.; Galderisi M., Cosyns B., Edvardsen T., Cardim N., Delgado V., Salvo G., Donal E., Sade L., Ernande L., Garbi M., Grapsa J., Hagendorff A., Kamp O., Magne J., Santoro C., Stefanidis A., Lancellotti P., Popescu B., Habib G. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18:1301–1310. doi:10.1093/ehjci/jex244.; Varghesea M., Sharmaa G., Shukla G. Setha S., Mishraa S., Guptab A., Bahl V. Longitudinal ventricular systolic dysfunction in patients with very severe obstructive sleep apnea: A case control study using speckle tracking imaging. Indian Heart J. 2017;69(3):305-310. doi:10.1016/j.ihj.2016.12.011.; Tadic M., Gherbesi E., Faggiano A., Sala C., Carugo S., Cuspidi C. Is myocardial strain an early marker of systolic dysfunction in obstructive sleep apnoea? Findings from a meta-analysis of echocardiographic studies J Hypertens. 2022;40(8):1461-1468. doi:10.1097/HJH.0000000000003199.; Гусева В.П., Рябиков А.Н., Воронина Е.В., Малютина С.К. Изменения продольной систолической функции левого желудочка в зависимости от артериальной гипертензии и эффективности ее контроля: популяционный анализ. Кардиология. 2020;60(7):36–43. doi:10.18087/cardio.2020.7.n932.; Бузунов Р.В., Пальман А.Д., Мельников А.Ю. Авербух В.М., Мадаева И.М., Куликов А.Н. Диагностика и лечение синдрома обструктивного апноэ сна у взрослых. Рекомендации Российского общества сомнологов. Эффективная фармакотерапия. 2018;35:34-45.; Nagueh S.F, Smiseth O.A, Appleton C.P. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016;17:1321–1360 doi:10.1016/j.echo.2016.01.011.; Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083. doi:10.15829/1560-4071-2020-4083.; Yu L., Li H., Liu X., Fan J., Zhu Q., Li J., Jiang J., Wang J. Left ventricular remodeling and dysfunction in obstructive sleep apnea: Systematic review and meta-analysis. Herz. 2020;45(8):726-738. doi:10.1007/s00059-019-04850-w.; Sascău R., Zota I.M., Stătescu C., Boișteanu D., Roca M., Maștaleru A., Leon Constantin M.M., Vasilcu T.F., Gavril R.S., Mitu F. Review of Echocardiographic Findings in Patients with Obstructive Sleep Apnea. Can Respir J. 2018;2018:1206217. doi:10.1155/2018/1206217.; Vakili B., Okin P., Devereux R. Prognostic implications of left ventricular hypertrophy. Prog Cardiovasc Dis. 2018;61(5-6):446-455. doi:10.1016/j.pcad.2018.11.002.; Stampehl M., Mann D., Nguyen J. Cota F., Colmenares C., Dokainish H. Speckle strain echocardiography predicts outcome in patients with heart failure with both depressed and preserved left ventricular ejection fraction. Echocardiography. 2015;32:71–78. doi:10.1111/echo.12613.; Vecchis De R., Baldi C., Biase Di G. The relation between global longitudinal strain and serum natriuretic peptide is more strict than that found between the latter and left ventricular ejection fraction: a retrospective study in chronic heart failure. J Clin Med Res. 2015;7(12):979–988. doi:10.14740/jocmr2370w.; Gozdzik A., Marwick T., Przewlocka-Kosmala M., Jankowska E., Ponikowski P., Kosmala W. Comparison of left ventricular longitudinal systolic function parameters in the prediction of adverse outcome in heart failure with preserved ejection fraction. ESC Heart Fail. 2021;8(2):1531-1540. doi:10.1002/ehf2.13247.; Papanikolaou J., Ntalapascha M., Makris D., Koukoubani T., Tsolaki V., Zakynthinos G., Gourgoulianis K., Zakynthinos E. Affiliations expand. Diastolic dysfunction in men with severe obstructive sleep apnea syndrome but without cardiovascular or oxidative stress-related comorbidities. Ther Adv Respir Dis. 2019;13:1753466619880076. doi:10.1177/1753466619880076.; Leite A.R., Martinez D.M., Garcia-Rosa M.L, Macedo E., Lagoeiro A., Martins W., Vasques-Netto D. Santos C. Risk of Obstructive Sleep Apnea and Echocardiographic Parameters. Arq Bras Cardiol. 2019;113(6):1084-1089. doi:10.5935/abc.20190181.; Wan Q., Xiang G., Xing Y., Hao S., Shu X., Pan C., Li S. Left atrial dysfunction in patients with obstructive sleep apnea: a combined assessment by speckle tracking and real-time three-dimensional echocardiography. Ann Palliat Med. 2021;10(3):2668-2678. doi:10.21037/apm-20-1125.; Korcarz C., Peppard P., Young T., Chapman C., Hla K., Barnet J., Hagen E., Stein J. Effects of Obstructive Sleep Apnea and Obesity on Cardiac Remodeling: The Wisconsin Sleep Cohort Study. Sleep. 2016;39(6):1187-1195. doi:10.5665/sleep.5828.; Arnaud C., Bochaton T., Pepin J., Belaidi E. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis. 2020;113(5):350-358. doi:10.1016/j.acvd.2020.01.003.; Haranczyk M., Konieczynska M., Płazak W. Influence of obstructive sleep apnea on right heart structure and function. Adv Respir Med. 2021;89(5):493-500. doi:10.5603/ARM.a2021.0095.
-
20Academic Journal
Authors: Диёра Жамшедовна Камолова
Source: Science and Education, Vol 4, Iss 5, Pp 581-588 (2023)
Subject Terms: ремоделирование сердца, гипертоническая болезнь, гестоз, эхокг, левый желудочек, диастолическая дисфункция, Science (General), Q1-390, Education (General), L7-991