Showing 1 - 20 results of 33 for search '"радиорезистентность"', query time: 0.61s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was funded by the Ministry of Higher Education and Science of the Russian Federation, grant No. 123020700216-4 (FEUF-2023-0004)., Данное исследование было профинансировано Министерством высшего образования и науки Российской̆ Федерации, грант № 123020700216-4 (FEUF-2023-0004).

    Source: Siberian journal of oncology; Том 23, № 6 (2024); 97-106 ; Сибирский онкологический журнал; Том 23, № 6 (2024); 97-106 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3358/1302; Coley A.B., DeMeis J.D., Chaudhary N.Y., Borchert G.M. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines. 2022; 10(8): 1819. doi:10.3390/biomedicines10081819.; Maxwell E.S., Fournier M.J. The Small Nucleolar RNAs. Ann. Rev. Biochem. 1995; 64(1): 897–934. doi:10.1146/annurev.bi.64.070195.004341.; Terns M.P., Terns R.M. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 2002; 10(1–2): 17–39.; Deschamps-Francoeur G., Couture S., Abou-Elela S., Scott M.S. The snoGloBe interaction predictor reveals a broad spectrum of C/D snoRNA RNA targets. Nucleic Acids Res. 2022; 50(11): 6067–83. doi:10.1093/nar/gkac475.; Baldini L., Charpentier B., Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D SnoRNAs. Noncoding RNA. 2021; 7(2): 30. doi:10.3390/ncrna7020030.; Ono M., Scott M.S., Yamada K., Avolio F., Barton G.J., Lamond A.I. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 2011; 39(9): 3879–91. doi:10.1093/nar/gkq1355.; Scott M.S., Avolio F., Ono M., Lamond A.I., Barton G.J. Human MiRNA Precursors with Box H/ACA SnoRNA Features. PLoS Comput Biol. 2009; 5(9). doi:10.1371/journal.pcbi.1000507.; Dong J., Wang H., Zhang Z., Yang L., Qian X., Qian W., Han Y., Huang H., Qian P. Small but strong: Pivotal roles and potential applications of snoRNAs in hematopoietic malignancies. Front Oncol. 2022; 12. doi:10.3389/fonc.2022.939465.; Mei Y.P., Liao J.P., Shen J., Yu L., Liu B.L., Liu L., Li R.Y., Ji L., Dorsey S.G., Jiang Z.R., Katz R.L., Wang J.Y., Jiang F. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012; 31(22): 2794–804. doi:10.1038/onc.2011.449.; Nachmani D., Bothmer A.H., Grisendi S., Mele A., Bothmer D., Lee J.D., Monteleone E., Cheng K., Zhang Y., Bester A.C., Guzzetti A., Mitchell C.A., Mendez L.M., Pozdnyakova O., Sportoletti P., Martelli M.P., Vulliamy T.J., Safra M., Schwartz S., Luzzatto L., Bluteau O., Soulier J., Darnell R.B., Falini B., Dokal I., Ito K., Clohessy J.G., Pandolfi P.P. Germline NPM1 mutations lead to altered rRNA 2’-O-methylation and cause dyskeratosis congenita. Nat Genet. 2019; 51(10): 1518–29. doi:10.1038/s41588-019-0502-z.; Oliveira V., Mahajan N., Bates M.L., Tripathi C., Kim K.Q., Zaher H.S., Maggi L.B. Jr, Tomasson M.H. The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis. FASEB Bioadv. 2019; 1(7): 404–14. doi:10.1096/fba.2018-00075.; Ronchetti D., Todoerti K., Tuana G., Agnelli L., Mosca L., Lionetti M., Fabris S., Colapietro P., Miozzo M., Ferrarini M., Tassone P., Neri A. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J. 2012; 2(11). doi:10.1038/bcj.2012.41.; Zhou F., Liu Y., Rohde C., Pauli C., Gerloff D., Köhn M., Misiak D., Bäumer N., Cui C., Göllner S., Oellerich T., Serve H., Garcia-Cuellar M.P., Slany R., Maciejewski J.P., Przychodzen B., Seliger B., Klein H.U., Bartenhagen C., Berdel W.E., Dugas M., Taketo M.M., Farouq D., Schwartz S., Regev A., Hébert J., Sauvageau G., Pabst C., Hüttelmaier S., Müller-Tidow C. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017; 19(7): 844–55. doi:10.1038/ncb3563.; May J.M., Bylicky M., Chopra S., Coleman C.N., Aryankalayil M.J. Long and short non-coding RNA and radiation response: a review. Transl Res. 2021; 233: 162–79. doi:10.1016/j.trsl.2021.02.005.; Li Y., Ma X., Li J., He S., Zhuang J., Wang G., Ye Y., Xia W. LncRNA Gas5 Regulates Granulosa Cell Apoptosis and Viability Following Radiation by X-Ray via Sponging MiR-205-5p and Wnt/β-Catenin Signaling Pathway in Granulosa Cell Tumor of Ovary. Trop J Pharm Res. 2020; 19(6): 1153–59.; Gao J., Liu L., Li G., Cai M., Tan C., Han X., Han L. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol. 2019; 126: 994–1001. doi:10.1016/j.ijbiomac.2018.12.176.; Weidhaas J.B., Babar I., Nallur S.M., Trang P., Roush S., Boehm M., Gillespie E., Slack F.J. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007; 67(23): 11111–16. doi:10.1158/0008-5472.CAN-07-2858.; Zhang H., Fang C., Feng Z., Xia T., Lu L., Luo M., Chen Y., Liu Y. and Li Y. The Role of LncRNAs in the Regulation of Radiotherapy Sensitivity in Cervical Cancer. Front. Oncol. 2022; 12. doi:10.3389/fonc.2022.896840.; Ebahimzadeh K., Shoorei H., Mousavinejad S.A., Anamag F.T., Dinger M.E., Taheri M., Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract. 2021; 218. doi:10.1016/j.prp.2020.153327.; Xiao J., He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res. 2021; 13: 8781–94. doi:10.2147/CMAR.S336265.; Tian Y., Tang L., Yi P., Pan Q., Han Y., Shi Y., Rao S., Tan S., Xia L., Lin J., Oyang L., Tang Y., Liang J., Luo X., Liao Q., Wang H., Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer. 2020; 11(13): 3976–85. doi:10.7150/jca.42734.; Masoudi-Khoram N., Abdolmaleki P. Role of non-coding RNAs in response of breast cancer to radiation therapy. Mol Biol Rep. 2022; 49(6): 5199–208. doi:10.1007/s11033-022-07234-2.; Li Z., Wang F., Zhu Y., Guo T., Lin M. Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst). 2021. doi:10.1155/2021/9005073.; Zhang S., Wang B., Xiao H., Dong J., Li Y., Zhu C., Jin Y., Li H., Cui M., Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer. 2020; 11(7): 1801–16. doi:10.1111/1759-7714.13450.; Rastorgueva E., Liamina D., Panchenko I., Iurova E., Beloborodov E., Pogodina E., Sugak D., Slesarev S., Saenko Y. The effect of chromosome abnormalities on expression of SnoRNA in radioresistant and radiosensitive cell lines after irradiation. Cancer Biomark. 2022; 34(4): 545–53. doi:10.3233/CBM-210092.; Liamina D., Sibirnyj W., Khokhlova A., Saenko V., Rastorgueva E., Fomin A., Saenko Y. Radiation-Induced Changes of microRNA Expression Profiles in Radiosensitive and Radioresistant Leukemia Cell Lines with Different Levels of Chromosome Abnormalities. Cancers (Basel). 2017; 9(10): 136. doi:10.3390/cancers9100136.; Расторгуева Е.В., Погодина Е.С., Юрова Е.В., Белобородов Е.А., Сугак Д.Е., Саенко Ю.В., Фомин А.Н. Экспрессия H/ACA мякРНК в клеточных линиях с хромосомными нарушениями после облучения. Ульяновский медико-биологический журнал. 2022; (4): 149–59. doi:10.34014/2227-1848-2022-4-149-159.; Liang J.C., Ning Y., Wang R.Y., Padilla-Nash H.M., Schröck E., Soenksen D., Nagarajan L., Ried T. Spectral karyotypic study of the HL-60 cell line: detection of complex rearrangements involving chromosomes 5, 7, and 16 and delineation of critical region of deletion on 5q31.1. Cancer Genet Cytogenet. 1999; 113(2): 105–9. doi:10.1016/s0165-4608(99)00030-8.; Lafontaine D.L., Tollervey D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci. 1998; 23(10): 383–8. doi:10.1016/s0968-0004(98)01260-2.; Naumann S., Reutzel D., Speicher M., Decker H.J. Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res. 2001; 25(4): 313–22. doi:10.1016/s0145-2126(00)00125-9.; Wang Y., Han Y., Jin Y., He Q., Wang Z. The Advances in Epigenetics for Cancer Radiotherapy. Int J Mol Sci. 2022; 23(10): 5654. doi:10.3390/ijms23105654.; Brooks W.H., Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet. 2015; 6: 22. doi:10.3389/fgene.2015.00022.; Peitzsch C., Cojoc M., Hein L., Kurth I., Mäbert K., Trautmann F., Klink B., Schröck E., Wirth M.P., Krause M., Stakhovsky E.A., Telegeev G.D., Novotny V., Toma M., Muders M., Baretton G.B., Frame F.M., Maitland N.J., Baumann M., Dubrovska A. An Epigenetic Reprogramming Strategy to Resensitize Radioresistant Prostate Cancer Cells. Cancer Res. 2016; 76(9): 2637–51. doi:10.1158/0008-5472.CAN-15-2116.; https://www.siboncoj.ru/jour/article/view/3358

  2. 2
  3. 3
    Academic Journal

    Source: Head and Neck Tumors (HNT); Том 13, № 2 (2023); 57-64 ; Опухоли головы и шеи; Том 13, № 2 (2023); 57-64 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2023-13-2

    File Description: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/889/586; Brotchi J., Bonnal J., Gerebtzoff M.A. Astroblaste tumoral et astrocyte réactionnel: distinction histochimique par l’activité de la déshydrogénase du glutamate. Neurochirurgie 1972;18(2):150–4.; Brotchi J. Astrocytes réactionnels et épilepsie. Acta Neurol Belg 1972;72(3):137–45.; Van Meir E.G., Hadjipanayis C.G., Norden A.D. et al. Exciting new advances in neuro-oncology. CA Cancer J Clin 2010;60(3):166–93. DOI:10.3322/caac.20069; Тягунова Е.Е., Захаров А.С., Глухов А.И. и др. Особенности эпилептиформной активности у пациентов с диагностированной глиобластомой: от генетических и биохимических механизмов к клиническим аспектам. Опухоли головы и шеи 2022;12(3):102–13. DOI:10.17650/2222-1468-2022-12-3-102-113; Darmanis S., Sloan S.A., Croote D. et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 2017;21(5):1399–410. DOI:10.1016/j.celrep.2017.10.030; Zhang L., Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull 2015;31(3):371–8. DOI:10.1007/s12264-014-1522-4; Umare M.D., Wankhede N.L., Bajaj K.K. et al. Interweaving of reactive oxygen species and major neurological and psychiatric disorders. Ann Pharm Fr 2022;80(4):409–25. DOI:10.1016/j.pharma.2021.11.004; Liddelow S.A., Barres B.A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 2017;46(6):957–67. DOI:10.1016/j.immuni.2017.06.006; Heiland H.D., Ravi V.M., Behringer S.P. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 2019;10(1):2541. DOI:10.1038/s41467-019-10493-6; Shlapakova T.I., Kostin R.K., Tyagunova E.E. Reactive oxygen species: participation in cellular processes and progression of pathology. Russian Journal of Bioorganic Chemistry 2020;46(5):657–74. DOI:10.1134/s1068162020050222; Zhang Y., Chen K., Sloan S.A. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci 2014;34(36):11929–47. DOI:10.1523/JNEUROSCI.1860-14.2014; Zhang Y., Sloan S.A., Clarke L.E. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 2016;89(1):37–53. DOI:10.1016/j.neuron.2015.11.013; Liddelow S.A., Guttenplan K.A., Clarke L.E. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541(7638):481–7. DOI:10.1038/nature21029; Zamanian J.L., Xu L., Foo L.C. et al. Genomic analysis of reactive astrogliosis. J Neurosci 2012;32(18):6391–410. DOI:10.1523/JNEUROSCI.6221-11.2012; Guan X., Hasan M.N., Maniar S. et al. Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol 2018;55(8):6927–38. DOI:10.1007/s12035-018-0880-8; Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 2014;62(9):1377–91. DOI:10.1002/glia.22683; Butt A.M., Fern R.F., Matute C. Neurotransmitter signaling in white matter. Glia 2014;62(11):1762–79. DOI:10.1002/glia.22674; Haroutunian V., Katsel P., Roussos P. et al. Myelination, oligodendrocytes, and serious mental illness. Glia 2014;62(11):1856–77. DOI:10.1002/glia.22716; Banker G.A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 1980;209(4458):809–10. DOI:10.1126/science.7403847; Ullian E.M., Sapperstein S.K., Christopherson K.S. et al. Control of synapse number by glia. Science 2001;291(5504):657–61. DOI:10.1126/science.291.5504.657; Christopherson K.S., Ullian E.M., Stokes C.C. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005;120(3):421–33. DOI:10.1016/j.cell.2004.12.020; Kucukdereli H., Allen N.J., Lee A.T. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci USA 2011;108(32):E440–9. DOI:10.1073/pnas.1104977108; Allen N.J., Bennett M.L., Foo L.C. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 2012;486(7403):410–4. DOI:10.1038/nature11059; Singh S.K., Stogsdill J.A., Pulimood N.S. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via Hevin. Cell 2016;164(1–2):183–96. DOI:10.1016/j.cell.2015.11.034; Farhy-Tselnicker I., van Casteren A.C., Lee A. et al. Astrocytesecreted glypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation. Neuron 2017;96(2):428–45.e413. DOI:10.1016/j.neuron.2017.09.053; Krencik R., Seo K., van Asperen J.V. et al. Systematic three-dimensional coculture rapidly recapitulates interactions between human neurons and astrocytes. Stem Cell Rep 2017;9(6):1745–53. DOI:10.1016/j.stemcr.2017.10.026; Stogsdill J.A., Ramirez J., Liu D. et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017;551(7679):192–7. DOI:10.1038/nature24638; Blanco-Suarez E., Liu T.F., Kopelevich A. et al. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 2018;100(5):1116–32.e1113. DOI:10.1016/j.neuron.2018.09.043; Chung W.S., Clarke L.E., Wang G.X. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013;504(7480):394–400. DOI:10.1038/nature12776; Tasdemir-Yilmaz O.E., Freeman M.R. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 2014;28(1):20–33. DOI:10.1101/gad.229518.113; Vainchtein I.D., Chin G., Cho F.S. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 2018;359(6381):1269–73. DOI:10.1126/science.aal3589; Lee J.H., Kim J.Y., Noh S. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021;590(7847):612–7. DOI:10.1038/s41586-020-03060-3; Kuffler S.W., Nicholls J.G., Orkand R.K. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 1966;29(4):768–87. DOI:10.1152/jn.1966.29.4.768; Olsen M.L., Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 2008;107(3):589–601. DOI:10.1111/j.1471-4159.2008.05615.x; Kelley K.W., Ben Haim L., Schirmer L. et al. Kir4.1-dependent astrocyte-fast motor neuron interactions are required for peak strength. Neuron 2018;98(2):306–19.e307. DOI:10.1016/j.neuron.2018.03.010; Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci 2016;19(2):182–9. DOI:10.1038/nn.4201; Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. Активные формы кислорода: участие в клеточных процессах и развитии патологии. Биоорганическая химия 2020;46(5):466–85. DOI:10.31857/S013234232005022X; Yu X., Nagai J., Marti-Solano M. et al. Context-specific striatal astrocyte molecular responses are phenotypically exploitable. Neuron 2020;108(6):1146–62.e1110. DOI:10.1016/j.neuron.2020.09.021; Placone A.L., Quinones-Hinojosa A., Searson P.C. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol 2016;37(1):61–9. DOI:10.1007/s13277-015-4242-0; Burda J.E., Bernstein A.M., Sofroniew M.V. Astrocyte roles in traumatic brain injury. Exp Neurol 2016;275(3):305–15. DOI:10.1016/j.expneurol.2015.03.020; Heneka M.T., Carson M.J., El Khoury J. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015;14(4):388–405. DOI:10.1016/s1474-4422(15)70016-5; Krawczyk M.C., Haney J.R., Pan L. et al. Human astrocytes exhibit tumor microenvironment-, age-, and sex-related transcriptomic signatures. J Neurosci 2022;42(8):1587–603. DOI:10.1523/JNEUROSCI.0407-21.2021; Diaz-Castro B., Bernstein A.M., Coppola G. et al. Molecular and functional properties of cortical astrocytes during peripherally induced neuroinflammation. Cell Rep 2021;36(6):109508. DOI:10.1016/j.celrep.2021.109508; Pinter A., Hevesi Z., Zahola P. et al. Chondroitin sulfate proteoglycan-5 forms perisynaptic matrix assemblies in the adult rat cortex. Cell Signal 2020;74:109710. DOI:10.1016/j.cellsig.2020.109710; Chen W., Wang D., Du X. et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol 2015;32(3):43. DOI:10.1007/s12032-015-0487-0; Biasoli D., Sobrinho M.F., da Fonseca A.C. et al. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogene 2014;3(10):e123. DOI:10.1038/oncsis.2014.36; Shlapakova T.I., Tyagunova E.E., Kostin R.K. et al. Targeted antitumor drug delivery to glioblastoma multiforme cells. Russ J Bioorg Chem 2021;47(2):376–9. DOI:10.1134/S1068162021020254; Шлапакова Т.И., Тягунова Е.Е., Костин Р.К. и др. Адресная доставка противоопухолевых препаратов к клеткам мультиформной глиобластомы. Биоорганическая химия 2021;47(3):299–303. DOI:10.31857/S0132342321020251; Bogoyavlenskaya T.A., Tyagunova E.E., Kostin R.K. et al. Glioblastoma break-in; try something new. Int J Cancer Manag 2021;14(1):e109054. DOI:10.5812/ijcm.109054; Esteban F.J., Horcajadas A., El-Rubaidi O. et al. El monóxido de nitrógeno en los astrocitomas malignos. Rev Neurol 2005;40(7):437–40.; Campos J.C., Campos P.T., Bona N.P. et al. Synthesis and Biological Evaluation of Novel 2-imino-4-thiazolidinones as Potential Antitumor Agents for Glioblastoma. Med Chem 2022;18(4):452–62. DOI:10.2174/1573406417666210806094543; Grant R., Ironside J.W. Glutathione S-transferases and cytochrome P450 detoxifying enzyme distribution in human cerebral glioma. J Neurooncol 1995;25(1):1–7. DOI:10.1007/BF01054717; Han X., Yoon S.H., Ding Y. et al. Cyclosporin A and sanglifehrin A enhance chemotherapeutic effect of cisplatin in C6 glioma cells. Oncol Rep 2010;23(4):1053–62. DOI:10.3892/or_00000732; Fletcher-Sananikone E., Kanji S., Tomimatsu N. et al. Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res 2021;81(23):5935–47. DOI:10.1158/0008-5472.CAN-21-0752; Nikolenko V.N., Gridin L.A., Oganesyan M.V. The posterior perforated substance: a brain mystery wrapped in an enigma. Curr Top Med Chem 2019;19(32):2991–8. DOI:10.2174/1568026619666191127122452; https://ogsh.abvpress.ru/jour/article/view/889

  4. 4
    Academic Journal

    Contributors: The study was performed as part of the State assignment of the Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences (state registration number 01201363192)., Исследование выполнено в рамках государственного задания ФГБУН «Федеральный исследовательский центр Южный научный центр Российской академии наук» (номер государственной регистрации 01201363192).

    Source: Cancer Urology; Том 17, № 4 (2021); 85-93 ; Онкоурология; Том 17, № 4 (2021); 85-93 ; 1996-1812 ; 1726-9776

    File Description: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/1474/1332; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1474/1009; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1474/1010; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1474/1011; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/1474/1012; Chaiswing L., Weiss H.L., Jayswal R.D. et al. Profiles of radioresistance mechanisms in prostate cancer. Crit Rev Oncog 2018;23(1-2):39-67. DOI:10.1615/CritRevOncog.2018025946.; Kamran S.C., D'Amico A.V. Radiation therapy for prostate cancer. Hematol Oncol Clin North Am 2020;34(1):45-69. DOI:10.1016/j.hoc.2019.08.017.; Calleris G., Marra G., Dalmasso E. et al. Is it worth to perform salvage radical prostatectomy for radio-recurrent prostate cancer? A literature review. World J Urol 2019;37(8):1469-83. DOI:10.1007/s00345-019-02749-z.; Nakabayashi M., Xie W., Buckle G. et al. Long-term follow-up of a phase II trial of chemotherapy plus hormone therapy for biochemical relapse after definitive local therapy for prostate cancer. Urology 2013;81(3):611-6. DOI:10.1016/j.urology.2012.12.025; Chang L., Graham P.H., Hao J. et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis 2014;5(10):e1437. DOI:10.1038/cddis.2014.415.; Долотказин Д.Р., Шкурников М.Ю., Алексеев Б.Я. Роль микроРНК в диагностике рака предстательной железы. Онкоурология 2020;16(4):172-80. DOI:10.17650/17269776-2020-16-4-172-180.; Федянин М.Ю., Игнатова Е.О., Тюляндин С.А. Роль микроРНК при солидных опухолях. Злокачественные опухоли 2013;(1):3-14. DOI:10.18027/2224-5057-2013-1-3-14.; Запорожченко И.А., Рыкова Е.Ю., Лактионов П.П. Основы биологии микроРНК: строение, биогенез и регуляторные функции (обзорная статья). Биоорганическая химия 2020;46(1):3-17. DOI:10.1134/S106816202001015X.; Bartel D.P. Metazoan MicroRNAs. Cell 2018;173(1):20-51. DOI:10.1016/j.cell.2018.03.006.; Farazi T.A., Hoell J.I., Morozov P., Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol 2013;774:1-20. DOI:10.1007/978-94-007-5590-1_1.; Labbe M., Hoey C., Ray J. et al. MicroRNAs identified in prostate cancer: correlative studies on response to ionizing radiation. Mol Cancer 2020;19(1):63. DOI:10.1186/s12943-020-01186-6.; Xu C.G., Yang M.F., Fan J.X., Wang W. MiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1. Eur Rev Med Pharmacol Sci 2016;20(8):1501-8.; Tao Z., Xu S., Ruan H. et al. MiR-195/-16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint. Cell Physiol Biochem 2018;48(2):801—14. DOI:10.1159/000491909; Mao A., Liu Y., Wang Y. et al. miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells. Tumour Biol 2016;37(4):4831-40. DOI:10.1007/s13277-015-4336-8.; Mao A., Zhao Q., Zhou X. et al. MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci Rep 2016;6:27346. DOI:10.1038/srep27346; Mercatelli N., Coppola V., Bonci D. et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 2008;3(12):e4029. DOI:10.1371/journal.pone.0004029.; Wang F., Mao A., Tang J. et al. microRNA-16-5p enhances radiosensitivity through modulating Cyclin D1/E1-pRb-E2F1 pathway in prostate cancer cells. J Cell Physiol 2019;234(8):13182-90. DOI:10.1002/jcp.27989.; Li B., Shi X.B., Nori D. et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate 2011;71(6):567-74. DOI:10.1002/pros.21272.; McDermott N., Meunier A., Wong S. et al. Profiling of a panel of radioresistant prostate cancer cells identifies deregulation of key miRNAs. Clin Transl Radiat Oncol 2017;2:63-8. DOI:10.1016/j.ctro.2017.01.005.; Чеботарев Д.А., Махоткин М.А., Набока А.В. и др. Получение радиоре-зистентных вариантов клеток линий HeLa и DU145. Наука Юга России 2017;13(4):101-6. DOI:10.23885/2500-0640-2017-3-4-101-106.; Чеботарев Д.А., Махоткин М.А., Набока А.В. et al. Участие микроРНК в регуляции радиорезистентности клеток HeLa и DU145. Генетика 2019;55(9):1011-20. DOI:10.1134/S1022795419090047.; Kozomara A., Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011;39:D152-7. DOI:10.1093/nar/gkq1027.; McCarthy D.J., Chen Y., Smyth G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 2012;40(10):4288-97. DOI:10.1093/nar/gks042.; Chou C.H., Shrestha S., Yang C.D. et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 2018;6(D1):D296-302. DOI:10.1093/nar/gkx1067.; Kanehisa M., Furumichi M., Tanabe M. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45(D1):D353-61. DOI:10.1093/nar/gkw1092.; Sansal I., Sellers W.R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004;22(14):2954-63. DOI:10.1200/JCO.2004.02.141.; Sircar K., Yoshimoto M., Monzon F.A. et al. PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. J Pathol 2009;218(4):505-13. DOI:10.1002/path.2559.; De Muga S., Hernandez S., Agell L. et al. Molecular alterations of EGFR and PTEN in prostate cancer: association with highgrade and advanced-stage carcinomas. Mod Pathol 2010;23:703-12. DOI:10.1038/modpathol.2010.45.; Reid A.H., Attard G., Ambroisine L. et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer 2010;102:678-84. DOI:10.1038/sj.bjc.6605554.; Wang S., Gao J., Lei Q. et al. Prostatespecific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003;4(3):209-21. DOI:10.1016/s1535-6108(03)00215-0.; Gray I.C., Stewart L.M., Phillips S.M. et al. Mutation and expression analysis of the putative prostate tumoursuppressor gene PTEN. Br J Cancer 1998;78(10):1296-300. DOI:10.1038/bjc.1998.674; Faratian D., Goltsov A., Lebedeva G. et al. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 2009;69(16):6713-20. DOI:10.1158/0008-5472.CAN-09-0777.; Mao C., Liao R.Y., Chen Q. Loss of PTEN expression predicts resistance to EGFR-targeted monoclonal antibodies in patients with metastatic colorectal cancer. Br J Cancer 2010;102(5):940. DOI:10.1038/sj.bjc.6605575.; Zafarana G., Ishkanian A.S., Malloff C.A. et al. Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radio therapy. Cancer 2012;118(16):4053-62. DOI:10.1002/cncr.26729.; Teng D.H., Hu R., Lin H. MMAC1/ PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 1997;57(23):5221-5.; Zhou J., Du T., Li B. et al. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro 2015;7(5):1759091415602463. DOI:10.1177/1759091415602463.; Xu F., Na L., Li Y., Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020;10:54. DOI:10.1186/s13578-020-00416-0.; Chang L., Ni J., Beretov J. et al. Identification of protein biomarkers and signaling pathways associated with prostate cancer radioresistance using label-free LC-MS/MS proteomic approach. Sci Rep 2017;7:41834. DOI:10.1038/srep41834.; Burgio S.L., Fabbri F., Seymour I.J. et al. Perspectives on mTOR inhibitors for castration-refractory prostate cancer. Curr Cancer Drug Targets 2012;12(8):940-9. DOI:10.2174/156800912803251234.; Griffin C., McNulty J., Pandey S. Pancratistatin induces apoptosis and autophagy in metastatic prostate cancer cells. Int J Oncol 2011;38(6): 1549-56. DOI:10.3892/ijo.2011.977.; Nauseef J., Henry M. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 2011;8(8):428-39. DOI:10.1038/nrurol.2011.85.; Li H., Tang D.G. Prostate cancer stem cells and their potential roles in metastasis. J Surg Oncol 2011;103(6):558-62. DOI:10.1002/jso.21806.; Chang L., Graham P.H., Hao J. et al. Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev 2014;33(2-3):469-96. DOI:10.1007/s10555-014-9493-5.; Nakanishi A., Kitagishi Y., Ogura Y., Matsuda S. The tumor suppressor PTEN interacts with p53 in hereditary cancer. Int J Oncol 2014;44(6):1813-9. DOI:10.3892/ijo.2014.2377.; Xu J., Zhang W., Lv Q., Zhu D. Overexpression of miR-21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN. Oncol Rep 2015;33(6):3108-16. DOI:10.3892/or.2015.3931.; Riley K.J., Rabinowitz G.S., Yario T.A. et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012;31(9):2207-21. DOI:10.1038/emboj.2012.63.; Nagpal V., Rai R., Place A.T. et al. MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation 2016;1339(3): 291-301. DOI:10.1161/CIRCULATIONAHA.115.018174.; Macedo-Silva C., Benedetti R., Ciardiello F. et al. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenet 2021;13(1):125. DOI:10.1186/s13148-021-01111-8.; Jili S., Eryong L., Lijuan L., Chao Z. RUNX3 inhibit laryngeal squamous cell carcinoma malignancy under the regulation of miR-148a-3p/DNMT1 axis. Cell Biochem Funct 2016;34(8):597-605. DOI:10.1002/cbf.3233.; Zhang J., Yang C., Wu C. et al. DNA Methyltransferases in cancer: biology, paradox, aberrations, and targeted therapy. Cancers (Basel) 2020;12(8):2123. DOI:10.3390/cancers12082123.; Bui T.V., Mendell J.T. Myc: maestro of microRNAs. Genes Cancer 2010;1(6):568-75. DOI:10.1177/1947601910377491.; Richardsen E., Andersen S., Al-Saad S. et al. Low expression of miR-424-3p is highly correlated with clinical failure in prostate cancer. Sci Rep 2019;9(1):10662. DOI:10.1038/s41598-019-47234-0.; Kim M.Y., Shin H., Moon H.W. et al. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci Rep 2021; 11(1):7355. DOI:10.1038/s41598-021-86785-z.; https://oncourology.abvpress.ru/oncur/article/view/1474

  5. 5
  6. 6
    Academic Journal

    Contributors: Research as part of a state assignment «Search for predictors of radioresistance of colorectal cancer and development of personalized neoadjuvant therapeutic approaches»., Исследование выполнено в рамках гос. задания «Поиск предикторов радиорезистентности рака прямой кишки и разработка персонифицированных неоадъювантных терапевтических подходов».

    Source: Siberian journal of oncology; Том 18, № 6 (2019); 105-113 ; Сибирский онкологический журнал; Том 18, № 6 (2019); 105-113 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-6

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1250/692; Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov; 68(6): 394–424. doi:10.3322/caac.21492.; Romano G.M., Bianco F., De Franciscis S., Belli A. The Management of Recurrent Rectal Cancer: A European Perspective. Comprehensive Rectal Cancer Care. Springer, Cham. 2019. p. 521–536. doi:10.1007/978-3-319-98902-0_27.; Glimelius B. Multidisciplinary treatment of patients with rectal cancer: Development during the past decades and plans for the future. Ups J Med Sci. 2012 May; 117(2): 225–36. doi:10.3109/03009734.2012.658974.; Glimelius B. The Swedish Approach. Comprehensive Rectal Cancer Care. Springer, Cham; 2019. p. 335–353. doi:10.1007/978-3-319-98902-0_19; Påhlman L., Glimelius B. Local recurrences after surgical treatment for rectal carcinoma. Acta Chir Scand. 1984; 150(4): 331–5.; Swedish Rectal Cancer Trial, Cedermark B., Dahlberg M., Glimelius B., Påhlman L., Rutqvist L.E., Wilking N. Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med. 1997 Apr 3; 336(14): 980–7. doi:10.1056/NEJM199704033361402.; Lanning R.M., Goodman K.A. Radiation Therapy: The North American Approach. Comprehensive Rectal Cancer Care. Springer, Cham; 2019. P. 365–403. doi:10.1007/978-3-319-98902-0_21.; Bae S.H., Park W., Choi D.H., Nam H., Kang W.K., Park Y.S., Park J.O., Chun H.K., Lee W.Y., Yun S.H., Kim H.C. Palliative radiotherapy in patients with a symptomatic pelvic mass of metastatic colorectal cancer. Radiat Oncol. 2011 May 21; 6: 52. doi:10.1186/1748-717X-6-52.; Sauer R., Liersch T., Merkel S., Fietkau R., Hohenberger W., Hess C., Becker H., Raab H.R., Villanueva M.T., Witzigmann H., Wittekind C., Beissbarth T., Rödel C. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012 Jun 1; 30(16): 1926–33. doi:10.1200/JCO.2011.40.1836.; Cammà C., Giunta M., Fiorica F., Pagliaro L., Craxì A., Cottone M. Preoperative Radiotherapy for Resectable Rectal Cancer: A Meta-analysis. JAMA. 2000; 284(8): 1008–1015. doi:10.1001/jama.284.8.1008.; Holman F.A., Bosman S.J., Haddock M.G., Gunderson L.L., Kusters M., Nieuwenhuijzen G.A.P., van den Berg H., Nelson H., Rutten H.J. Results of a pooled analysis of IOERT containing multimodality treatment for locally recurrent rectal cancer: Results of 565 patients of two major treatment centres. Eur J Surg Oncol. 2017 Jan; 43(1): 107–117. doi:10.1016/j.ejso.2016.08.015.; Cai G., Zhu J., Palmer J.D., Xu Y., Hu W., Gu W., Cai S., Zhang Z. CAPIRI-IMRT: a phase II study of concurrent capecitabine and irinotecan with intensity-modulated radiation therapy for the treatment of recurrent rectal cancer. Radiat Oncol. 2015 Feb 28; 10: 57. doi:10.1186/s13014-015-0360-5.; Colorectal Cancer Collaborative Group.Adjuvant radiotherapy for rectal cancer: a systematic overview of 8507 patients from 22 randomised trials. Lancet. 2001; 358(9290): 1291–304. doi:10.1016/S0140-6736-(01)06409-1.; Folkesson J., Birgisson H., Pahlman L., Cedermark B., Glimelius B., Gunnarsson U. Swedish Rectal Cancer Trial: long lasting benefits from radiotherapy on survival and local recurrence rate. J Clin Oncol. 2005 Aug 20; 23(24): 5644–50. doi:10.1200/JCO.2005.08.144.; van Gijn W., Marijnen C.A., Nagtegaal I.D., Kranenbarg E.M., Putter H., Wiggers T., Rutten H.J., Påhlman L., Glimelius B., van de Velde C.J.; Dutch Colorectal Cancer Group. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011 Jun; 12(6): 575–82. doi:10.1016/S1470-2045(11)70097-3.; Roh M.S., Colangelo L.H., O'Connell M.J., Yothers G., Deutsch M., Allegra C.J., Kahlenberg M.S., Baez-Diaz L., Ursiny C.S., Petrelli N.J., Wolmark N. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol. 2009 Nov 1; 27(31): 5124–30. doi:10.1200/JCO.2009.22.0467.; Martin S.T., Heneghan H.M., Winter D.C. Systematic review and metaanalysis of outcomes following pathological complete response to neoadjuvant chemoradiotherapy for rectal cancer. Br J Surg. 2012 Jul; 99(7): 918–28. doi:10.1002/bjs.8702.; Glynne-Jones R., Hughes R. Complete response after chemoradiotherapy in rectal cancer (watch-and-wait): have we cracked the code?. Clin Oncol (R Coll Radiol). 2016 Feb; 28(2): 152–160. doi:10.1016/j.clon.2015.10.011.; Langrand-Escure J., Diao P., Garcia M.A., Wang G., Guy J.B., Espenel S., Guillaume E., Rehailia-Blanchard A., Pigné G., de Laroche G., Kaczmarek D., Muron T., Porcheron J., Phelip J.M., Vallard A., Magné N. Outcome and prognostic factors in 593 non-metastatic rectal cancer patients: a mono-institutional survey. Sci Rep. 2018 Jul 16; 8(1): 10708. doi:10.1038/s41598-018-29040-2.; Dayde D., Tanaka I., Jain R., Tai M.C., Taguchi A. Predictive and Prognostic Molecular Biomarkers for Response to Neoadjuvant Chemoradiation in Rectal Cancer. Int J Mol Sci. 2017; 18(3). pii: E573. doi:10.3390/ijms18030573.; You L., Guo X., Huang Y. Correlation of Cancer Stem-Cell Markers OCT4, SOX2, and NANOG with Clinicopathological Features and Prognosis in Operative Patients with Rectal Cancer. Yonsei Med J. 2018 Jan; 59(1): 35–42. doi:10.3349/ymj.2018.59.1.35.; Bowden D.L., Sutton P.A., Wall M.A., Jithesh P.V., Jenkins R.E., Palmer D.H., Goldring C.E., Parsons J.L., Park B.K., Kitteringham N.R., Vimalachandran D. Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response. J Proteom. 2018; 179: 53–60, doi:10.1016/j.jprot.2018.02.030.; Kim S.C., Shin Y.K., Kim Y.A., Jang S.G., Ku J.L. Identification of genes inducing resistance to ionizing radiation in human rectal cancer cell lines: re-sensitization of radio-resistant rectal cancer cells through down regulating NDRG1. BMC Cancer. 2018; 18(1): 594. doi:10.1186/s12885-018-4514-3.; Bottarelli L., De’ Angelis G.L., Azzoni C., Di Mario F., De’ Angelis N., Leandro G., Fornaroli F., Gaiani F., Negri F. Potential predictive biomarkers in locally advanced rectal cancer treated with preoperative chemo-radiotherapy. Acta Biomed. 2018 Dec 17; 89(9S): 102–106. doi:10.23750/abm.v89i9-S.7881.; Sakai K., Kazama S., Nagai Y., Murono K., Tanaka T., Ishihara S., Sunami E., Tomida S., Nishio K., Watanabe T. Chemoradiation provides a physiological selective pressure that increases the expansion of aberrant TP53 tumor variants in residual rectal cancerous regions. Oncotarget. 2914 Oct 30; 5(20): 9641–9. doi:10.18632/oncotarget.2438.; Martellucci J., Alemanno G., Castiglione F., Bergamini C., Valeri A. Role of KRAS mutation as predictor of pathologic response after neoadjuvant chemoradiation therapy for rectal cancer. Updates Surg. 2015 Mar; 67(1): 47–53. doi:10.1007/s13304-015-0281-8.; Duldulao M.P., Lee W., Nelson R.A., Li W., Chen Z., Kim J., Garcia-Aguilar J. Mutations in specific codons of the KRAS oncogene are associated with variable resistance to neoadjuvant chemoradiation therapy in patients with rectal adenocarcinoma. Ann Surg Oncol. 2013 Jul; 20(7): 2166–71. doi:10.1245/s10434-013-2910-0.; Kim N.K., Hur H. New Perspectives on Predictive Biomarkers of Tumor Response and Their Clinical Application in Preoperative Chemoradiation Therapy for Rectal Cancer. Yonsei Med J. 2015 Nov; 56(6): 1461–77. doi:10.3349/ymj.2015.56.6.1461.; Azizian A., Gruber J., Ghadimi B.M., Gaedcke J. MicroRNA in rectal cancer. World J Gastrointest Oncol. 2016 May 15; 8(5): 416–26. doi:10.4251/wjgo.v8.i5.416.; Lim S.H., Chua W., Henderson C., Ng W., Shin J.S., Chantrill L., Asghari R., Lee C.S., Spring K.J., de Souza P. Predictive and prognostic biomarkers for neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Crit Rev Oncol Hematol. 2015 Oct; 96(1): 67–80. doi:10.1016/j.critrevonc.2015.05.003.; Conde-Muíño R., Cuadros M., Zambudio N., Segura-Jiménez I., Cano C., Palma P. Predictive Biomarkers to Chemoradiation in Locally Advanced Rectal Cancer. Biomed Res Int. 2015; 2015: 921435. doi:10.1155/2015/921435.; Gaedcke J., Grade M., Camps J., Søkilde R., Kaczkowski B., Schetter A.J., Difilippantonio M.J., Harris C.C., Ghadimi B.M., Møller S., Beissbarth T., Ried T., Litman T. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012; 18(18): 4919–30.; Campayo M., Navarro A., Benítez J.C., Santasusagna S., Ferrer C., Monzó M., Cirera L. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS One. 2018 Nov 2; 13(11): e0206542. doi:10.1371/journal.pone.0206542.; Molinari C., Matteucci F., Caroli P., Passardi A. Biomarkers and Molecular Imaging as Predictors of Response to Neoadjuvant Chemoradiotherapy in Patients With Locally Advanced Rectal Cancer. Clin Colorectal Cancer. 2015 Dec; 14(4): 227–38. doi:10.1016/j.clcc.2015.05.014.; D'Angelo E., Fassan M., Maretto I., Pucciarelli S., Zanon C., Digito M., Rugge M., Nitti D., Agostini M. Serum miR-125b is a noninvasive predictive biomarker of the pre-operative chemoradiotherapy responsiveness in patients with rectal adenocarcinoma. Oncotarget. 2016 May 10; 7(19): 28647–57. doi:10.18632/oncotarget.8725.; Yu J., Li N., Wang X., Ren H., Wang W., Wang S., Song Y., Liu Y., Li Y., Zhou X., Luo A., Liu Z., Jin J. Circulating serum microRNA-345 correlates with unfavorable pathological response to preoperative chemoradiotherapy in locally advanced rectal cancer. Oncotarget. 2016 Sep 27; 7(39): 64233–64243. doi:10.18632/oncotarget.11649.; Li X.F., Jiang Z., Gao Y., Li C.X., Shen B.Z. Combination of three-gene immunohistochemical panel and magnetic resonance imagingdetected extramural vascular invasion to assess prognosis in non-advanced rectal cancer patients. World J Gastroenterol. 2016 Oct 14; 22(38): 8576–8583.; Sun W., Li G., Wan J., Zhu J., Shen W., Zhang Z. Circulating tumor cells: A promising marker of predicting tumor response in rectal cancer patients receiving neoadjuvant chemo-radiation therapy. Oncotarget. 2016 Oct 25; 7(43): 69507–69517. doi:10.18632/oncotarget.10875.; Agostini M., Zangrando A., Pastrello C., D’Angelo E., Romano G., Giovannoni R., Giordan M., Maretto I., Bedin C., Zanon C., Digito M., Esposito G., Mescoli C., Lavitrano M., Rizzolio F., Jurisica I., Giordano A., Pucciarelli S., Nitti D. A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients. Cancer Biol Ther. 2015; 16(8): 1160–71. doi:10.1080/15384047.2015.1046652.; Qin C.J., Song X.M., Chen Z.H., Ren X.Q., Xu K.W., Jing H., He Y.L. XRCC2 as a predictive biomarker for radioresistance in locally advanced rectal cancer patients undergoing preoperative radiotherapy. Oncotarget. 2015 Oct 13; 6(31): 32193–204. doi:10.18632/oncotarget.4975.; Ahmed M.A., Selzer E., Dörr W., Jomrich G., Harpain F., Silberhumer G.R., Müllauer L., Holzmann K., Grasl-Kraupp B., Grusch M., Berger W., Marian B. Fibroblast growth factor receptor 4 induced resistance to radiation therapy in colorectal cancer. Oncotarget. 2016 Oct 25; 7(43): 69976–69990. doi:10.18632/oncotarget.12099.; Voboril R., Rychterova V., Voborilova J., Kubecova M., Fanta J., Dvorak J. NF-κB/p65 expression before and after treatment in rectal cancer patients undergoing neoadjuvant (chemo)radiotherapy and surgery: prognostic marker for disease progression and survival. Neoplasma. 2016; 63(3): 462–70. doi:10.4149/317_151013N525.; Shirota Y., Stoehlmacher J., Brabender J., Xiong Y.P., Uetake H., Danenberg K.D., Groshen S., Tsao-Wei D.D., Danenberg P.V., Lenz H.J. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol. 2001 Dec 1; 19(23): 4298–304. doi:10.1200/JCO.2001.19.23.4298.; Sartore-Bianchi A., Trusolino L., Martino C., Bencardino K., Lonardi S., Bergamo F., Zagonel V., Leone F., Depetris I., Martinelli E., Troiani T., Ciardiello F., Racca P., Bertotti A., Siravegna G., Torri V., Amatu A., Ghezzi S., Marrapese G., Palmeri L., Valtorta E., Cassingena A., Lauricella C., Vanzulli A., Regge D., Veronese S., Comoglio P.M., Bardelli A., Marsoni S., Siena S. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016; 17(6): 738–746. doi:10.1016/S1470-2045(16)00150-9.; Li Y., Liang L., Dai W., Cai G., Xu Y., Li X., Li Q., Cai S. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016 Aug 24; 15(1): 55. doi:10.1186/s12943-016-0539-x.; Therkildsen C., Bergmann T.K., Henrichsen-Schnack T., Ladelund S., Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol. 2014 Jul; 53(7): 852–64. doi:10.3109/0284186X.2014.895036.; Karagkounis G., Thai L., DeVecchio J., Gantt G.A., Duraes L., Pai R.K., Kalady M.F. NPTX2 is associated with neoadjuvant therapy response in rectal cancer. J Surg Res. 2016 May 1; 202(1): 112–7. doi:10.1016/j.jss.2015.12.042.; Croner R.S., Sevim M., Metodiev M.V., Jo P., Ghadimi M., Schellerer V., Brunner M., Geppert C., Rau T., Stürzl M., Naschberger E., Matzel K.E., Hohenberger W., Lottspeich F., Kellermann J. Identification of Predictive Markers for Response to Neoadjuvant Chemoradiation in Rectal Carcinomas by Proteomic Isotope Coded Protein Label (ICPL) Analysis. Int J Mol Sci. 2016 Feb 4; 17(2): 209. doi:10.3390/ijms17020209.; Guo Y., Jiang W., Ao L., Song K., Chen H., Guan Q., Gao Q, Cheng J., Liu H., Wang X., Guan G., Guo Z. A qualitative signature for predicting pathological response to neoadjuvant chemoradiation in locally advanced rectal cancers. Radiother Oncol. 2018; 129(1): 149–153. doi:10.1016/j.radonc.2018.01.010.; Lee Y.E., He H.L., Shiue Y.L., Lee S.W., Lin L.C., Wu T.F., Chang I.W., Lee H.H., Li C.F. The prognostic impact of lipid biosynthesis-associated markers, HSD17B2 and HMGCS2, in rectal cancer treated with neoadjuvant concurrent chemoradiotherapy. Tumour Biol. 2015 Sep; 36(10): 7675–83. doi:10.1007/s13277-015-3503-2.; Chai C.Y., Zhang Y., Song J., Lin S.C., Sun S., Chang I.W. VNN1 overexpression is associated with poor response to preoperative chemoradiotherapy and adverse prognosis in patients with rectal cancers. Am J Transl Res. 2016 Oct 15; 8(10): 4455–4463.; Chao T.B., Li C.F., Lin C.Y., Tian Y.F., Chang I.W., Sheu M.J., Lee Y.E., Chan T.C., He H.L. Prognostic significance of DSG3 in rectal adenocarcinoma treated with preoperative chemoradiotherapy. Future Oncol. 2016 Jun; 12(12): 1457–67. doi:10.2217/fon-2016-0071.; Ho V., Chung L., Revoltar M., Lim S.H., Tut T.G., Abubakar A., Henderson C.J., Chua W., Ng W., Lee M., De Souza P., Morgan M., Lee C.S., Shin J.S. MRE11 and ATM Expression Levels Predict Rectal Cancer Survival and Their Association with Radiotherapy Response. PLoS One. 2016 Dec 8; 11(12): e0167675. doi:10.1371/journal.pone.0167675.; Cebrián A., Gómez Del Pulgar T., Fernández-Aceñero M.J., Borrero-Palacios A., Del Puerto-Nevado L., Martínez-Useros J., MarínArango J.P., Caramés C., Vega-Bravo R., Rodríguez-Remírez M., Manzarbeitia F., García-Foncillas J. Decreased PLK1 expression denotes therapy resistance and unfavourable disease-free survival in rectal cancer patients receiving neoadjuvant chemoradiotherapy. Pathol Res Pract. 2016 Dec; 212(12): 1133–1137. doi:10.1016/j.prp.2016.09.012.; Zhu K., Zhao Q., Yue J., Shi P., Yan H., Xu X., Wang R. GOLPH3 overexpression correlates with poor response to neoadjuvant therapy and prognosis in locally advanced rectal cancer. Oncotarget. 2016 Oct 18; 7(42): 68328–68338. doi:10.18632/oncotarget.12008.; Yan R., Zhu K., Dang C., Lan K., Wang H., Yuan D., Chen W., Meltzer S.J., Li K. Paf15 expression correlates with rectal cancer prognosis, cell proliferation and radiation response. Oncotarget. 2016 Oct 18; 7(42): 68328–68338. doi:10.18632/oncotarget.12008.; Zaanan A., Park J.M., Tougeron D., Huang S., Wu T.T., Foster N.R., Sinicrope F.A. Association of beclin 1 expression with response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. Int J Cancer. 2015 Sep 15; 137(6): 1498–502. doi:10.1002/ijc.29496.; Del Puerto-Nevado L., Marin-Arango J.P., Fernandez-Aceñero M.J., Arroyo-Manzano D., Martinez-Useros J., Borrero-Palacios A., RodriguezRemirez M., Cebrian A., Gomez Del Pulgar T., Cruz-Ramos M., Carames C., Lopez-Botet B., Garcia-Foncillas J. Predictive value of vrk 1 and 2 for rectal adenocarcinoma response to neoadjuvant chemoradiation therapy: a retrospective observational cohort study. BMC Cancer. 2016 Jul 25; 16: 519. doi:10.1186/s12885-016-2574-9.; Gómez Del Pulgar T., Cebrián A., Fernández-Aceñero M.J., Borrero-Palacios A., Del Puerto-Nevado L., Martínez-Useros J., MarínArango J.P., Caramés C., Vega-Bravo R., Rodríguez-Remírez M., CruzRamos M., Manzarbeitia F., García-Foncillas J. Focal adhesion kinase: predictor of tumour response and risk factor for recurrence after neoadjuvant chemoradiation in rectal cancer. J Cell Mol Med. 2016 Sep; 20(9): 1729–36. doi:10.1111/jcmm.12879.; Peng H., You K., Zhang R., Xi S., Zhang T., Dong J., Cai M., Wang C., Zhang H., Zhou T., Gao Y., Wen B. Predictive value of APAF-1 and COX-2 expression in pathologic complete response to neoadjuvant chemoradiotherapy for patients with locally advanced rectal adenocarcinoma. Oncotarget. 2016 Jun 7; 7(23): 35233–40. doi:10.18632/oncotarget.9125.; https://www.siboncoj.ru/jour/article/view/1250

  7. 7
    Academic Journal

    Contributors: The study was funded by Russian Foundation for Basic Research, grant No 18-415-560005 and No.19-415- 560004., Работа выполнена при финансовой поддержке РФФИ и субъекта РФ в рамках научных проектов № 18-415-560005 и 19-415-560004.

    Source: Siberian journal of oncology; Том 19, № 6 (2020); 141-147 ; Сибирский онкологический журнал; Том 19, № 6 (2020); 141-147 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-6

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1653/819; Iyer N.G., Tan D.S., Tan V.K., Wang W., Hwang J., Tan N.C., Sivanandan R., Tan H.K., Lim W.T., Ang M.K., Wee J., Soo K.C., Tan E.H. Randomized trial comparing surgery and adjuvant radiotherapy versus concurrent chemoradiotherapy in patients with advanced, nonmetastatic squamous cell carcinoma of the head and neck: 10-year update and subset analysis. Cancer. 2015 May 15; 121(10): 1599–607. doi:10.1002/cncr.29251.; Roxburgh C.S., Weiser M.R. Selective use of radiation for locally advanced rectal cancer: one size does not fit all. Minerva Chir. 2018 Dec; 73(6): 592–600. doi:10.23736/S0026-4733.18.07791-X.; Baskar R., Itahana K. Radiation therapy and cancer control in developing countries: Can we save more lives? Int J Med Sci. 2017 Jan 1; 14(1): 13–17. doi:10.7150/ijms.17288.; Hekim N., Cetin Z., Nikitaki Z., Cort A., Saygili E.I. Radiation triggering immune response and inflammation. Cancer Lett. 2015 Nov 28; 368(2): 156–63. doi:10.1016/j.canlet.2015.04.016.; Wennerberg E., Lhuillier C., Vanpouille-Box C., Pilones K.A., García-Martínez E., Rudqvist N.P., Formenti S.C., Demaria S. Barriers to Radiation-Induced In Situ Tumor Vaccination. Front Immunol. 2017 Mar 13; 8: 229. doi:10.3389/fimmu.2017.00229.; Tsoutsou P.G., Zaman K., Martin Lluesma S., Cagnon L., Kandalaft L., Vozenin M.C. Emerging Opportunities of Radiotherapy Combined With Immunotherapy in the Era of Breast Cancer Heterogeneity. Front Oncol. 2018 Dec 12; 8: 609. doi:10.3389/fonc.2018.00609.; Rachmadi L., Siregar N.C., Kanoko M., Andrijono A., Bardosono S., Suryandari D.A., Sekarutami S.M., Hernowo B.S. Role of Cancer Stem Cell, Apoptotic Factor, DNA Repair, and Telomerase Toward Radiation Therapy Response in Stage IIIB Cervical Cancer. Oman Med J. 2019; 34(3): 224–30. doi:10.5001/omj.2019.43.; Tang L., Wei F., Wu Y., He Y., Shi L., Xiong F., Gong Z., Guo C., Li X., Deng H., Cao K., Zhou M., Xiang B., Li X., Li Y., Li G., Xiong W., Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018 Apr 23; 37(1): 87. doi:10.1186/s13046-018-0758-7.; Васильченко Н.Г., Кутилин Д.С., Тимошкина Н.Н., Потемкин Д.С., Полуэктов С.И., Гусарева М.А., Кошелева Н.Г., Солдатова К.И., Максимов А.Ю., Кит О.И., Сидоренко Ю.С. Современные схемы лучевой терапии и биомаркеры радиорезистентности опухолевых клеток прямой кишки. Сибирский онкологический журнал. 2019; 18(6): 105–113. doi:10.21294/1814-4861-2019-18-6-105-113.; Akiyama A., Minaguchi T., Fujieda K., Hosokawa Y., Nishida K., Shikama A., Tasaka N., Sakurai M., Ochi H., Satoh T. Abnormal accumulation of p53 predicts radioresistance leading to poor survival in patients with endometrial carcinoma. Oncol Lett. 2019; 18(6): 5952–58. doi:10.3892/ol.2019.10940.; Chou S.Y., Yen S.L., Huang C.C., Huang E.Y. Galectin-1 is a poor prognostic factor in patients with glioblastoma multiforme after radiotherapy. BMC Cancer. 2018 Jan 30; 18(1): 105. doi:10.1186/s12885-018-4025-2.; Duregon E., Senetta R., Pittaro A., Verdun di Cantogno L., Stella G., De Blasi P., Zorzetto M., Mantovani C., Papotti M., Cassoni P. CAVEOLIN-1 expression in brain metastasis from lung cancer predicts worse outcome and radioresistance, irrespective of tumor histotype. Oncotarget. 2015 Oct 6; 6(30): 29626–36. doi:10.18632/oncotarget.4988.; Fiedler M., Weber F., Hautmann M.G., Haubner F., Reichert T.E., Klingelhöffer C., Schreml S., Meier J.K., Hartmann A., Ettl T. Biological predictors of radiosensitivity in head and neck squamous cell carcinoma. Clin Oral Investig. 2018 Jan; 22(1): 189–200. doi:10.1007/s00784-017-2099-x.; Чернышова А.Л., Старцева Ж.А., Затолокина А.А. Оптимизация выбора адъювантной лучевой терапии у больных раком тела матки I cтадии. Сибирский онкологический журнал. 2014; (6): 54–59.; Horsman M.R., Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. J Radiat Res. 2016 Aug; 57 Suppl 1(Suppl 1): i90i98. doi:10.1093/jrr/rrw007.; Span P.N., Bussink J. The Role of Hypoxia and the Immune System in Tumor Radioresistance. Cancers (Basel). 2019 Oct 14; 11(10): 1555. doi:10.3390/cancers11101555.; Brown J.M., Wilson W.R. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004 Jun; 4(6): 437–47. doi:10.1038/nrc1367.; Eales K.L., Hollinshead K.E., Tennant D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis. 2016; 5(1): e190. doi:10.1038/oncsis.2015.50.; Wang H., Jiang H., Van De Gucht M., De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel). 2019 Jan 18; 11(1): 112. doi:10.3390/cancers11010112.; Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015 Dec 11; 3: 83–92. doi:10.2147/HP.S93413.; Rohwer N., Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011 Jun; 14(3): 191–201. doi:10.1016/j.drup.2011.03.001.; Fu Z., Chen D., Cheng H., Wang F. Hypoxia-inducible factor-1α protects cervical carcinoma cells from apoptosis induced by radiation via modulation of vascular endothelial growth factor and p53 under hypoxia. Med Sci Monit. 2015 Jan 27; 21: 318–25. doi:10.12659/MSM.893265.; Ebner D.K., Tinganelli W., Helm A., Bisio A., Yamada S., Kamada T., Shimokawa T., Durante M. The Immunoregulatory Potential of Particle Radiation in Cancer Therapy. Front Immunol. 2017 Feb 6; 8: 99. doi:10.3389/fimmu.2017.00099.; Menon H., Ramapriyan R., Cushman T.R., Verma V., Kim H.H., Schoenhals J.E., Atalar C., Selek U., Chun S.G., Chang J.Y., Barsoumian H.B., Nguyen Q.N., Altan M., Cortez M.A., Hahn S.M., Welsh J.W. Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment. Front Immunol. 2019 Feb 15; 10: 193. doi:10.3389/fimmu.2019.00193.; Shevtsov M., Sato H., Multhoff G., Shibata A. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy. Front Oncol. 2019 Mar 19; 9: 156. doi:10.3389/fonc.2019.00156.; Sethumadhavan S., Silva M., Philbrook P., Nguyen T., Hatfield S.M., Ohta A., Sitkovsky M.V. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS One. 2017; 12(11): e0187314. doi:10.1371/journal.pone.0187314.; Noman M.Z., Hasmim M., Lequeux A., Xiao M., Duhem C., Chouaib S., Berchem G., Janji B. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells. 2019 Sep 14; 8(9): 1083. doi:10.3390/cells8091083.; Smolarczyk R., Cichoń T., Pilny E., Jarosz-Biej M., Poczkaj A., Kułach N., Szala S. Combination of anti-vascular agent DMXAA and HIF-1α inhibitor digoxin inhibits the growth of melanoma tumors. Sci Rep. 2018 May 9; 8(1): 7355. doi:10.1038/s41598-018-25688-y.; Vanpouille-Box C., Diamond J.M., Pilones K.A., Zavadil J., Babb J.S., Formenti S.C., Barcellos-Hoff M.H., Demaria S. TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Res. 2015 Jun 1; 75(11): 2232–42. doi:10.1158/0008-5472.CAN-14-3511.; Horsman M.R. Measurement of Tumor Oxygenation. Int J Radiat Oncol Biol Phys. 1998 Nov 1; 42 (4): 701–4. doi:10.1016/s0360-3016(98)00332-0.; Cao X., Rao Allu S., Jiang S., Jia M., Gunn J.R., Yao C., LaRochelle E.P., Shell J.R., Bruza P., Gladstone D.J., Jarvis L.A., Tian J., Vinogradov S.A., Pogue B.W. Tissue pO2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat Commun. 2020 Jan 29; 11(1): 573. doi:10.1038/s41467-020-14415-9.; Peerlings J., Van De Voorde L., Mitea C., Larue R., Yaromina A., Sandeleanu S., Spiegelberg L., Dubois L., Lambin P., Mottaghy F.M. Hypoxia and hypoxia response-associated molecular markers in esophageal cancer: A systematic review. Methods. 2017 Nov; 130: 51–62. doi:10.1016/j.ymeth.2017.07.002.; Harada H. Hypoxia-inducible factor 1-mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res. 2016 Aug; 57 Suppl 1(Suppl 1): 99–105. doi:10.1093/jrr/rrw012.; Zeng L., Morinibu A., Kobayashi M., Zhu Y., Wang X., Goto Y., Yeom C.J., Zhao T., Hirota K., Shinomiya K., Itasaka S., Yoshimura M., Guo G., Hammond E.M., Hiraoka M., Harada H. Aberrant IDH3α Expression Promotes Malignant Tumor Growth by Inducing HIF-1-mediated Metabolic Reprogramming and Angiogenesis. Oncogene. 2015; 34(36): 4758–66. doi:10.1038/onc.2014.411.; Yeo C.D., Kang N., Choi S.Y., Kim B.N., Park C.K., Kim J.W., Kim Y.K., Kim S.J. The role of hypoxia on the acquisition of epithelialmesenchymal transition and cancer stemness: a possible link to epigenetic regulation. Korean J Intern Med. 2017 Jul; 32(4): 589–599. doi:10.3904/kjim.2016.302.; Kakurina G.V., Kondakova I.V., Spirina L.V., Kolegova E.S., Shashova E.E., Cheremisina O.V., Novikov V.A., Choinzonov E.L. Expression of genes encoding cell motility proteins during progression of head and neck squamous cell carcinoma. Bull Exp Biol Med. 2018; 166(2): 250–252. doi:10.1007/S10517-018-4325-1.; Liu Z.J., Semenza G.L., Zhang H.F. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B. 2015 Jan; 16(1): 32–43. doi:10.1631/jzus.B1400221.; Luo Y., Li M., Zuo X., Basourakos S.P., Zhang J., Zhao J., Han Y., Lin Y., Wang Y., Jiang Y., Lan L. βcatenin nuclear translocation induced by HIF1α overexpression leads to the radioresistance of prostate cancer. Int J Oncol. 2018 Jun; 52(6): 1827–1840. doi:10.3892/ijo.2018.4368.; Koukourakis M., Kakouratos C., Kalamida D., Bampali Z., Mavropoulou S., Sivridis E., Giatromanolaki A. Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol. 2016 Jul; 92(7): 353–63. doi:10.3109/09553002.2016.1162921.; Lee S.Y., Jeong E.K., Ju M.K., Jeon H.M., Kim M.Y., Kim C.H., Park H.G., Han S.I., Kang H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer. 2017 Jan 30; 16(1): 10. doi:10.1186/s12943-016-0577-4.; Rycaj K., Tang D.G. Cancer stem cells and radioresistance. International journal of radiation biology. 2014; 90: 615–21. doi:10.3109/09553002.2014.892227.; Gomez-Casal R., Bhattacharya C., Ganesh N., Bailey L., Basse P., Gibson M., Epperly M., Levina V. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelialmesenchymal transition phenotypes. Mol Cancer. 2013; 12(1): 94. doi:10.1186/1476-4598-12-94.; Barker H.E., Paget J.T., Khan A.A., Harrington K.J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015 Jul; 15(7): 409–25. doi:10.1038/nrc3958.; Hellevik T., Pettersen I., Berg V., Winberg J.O., Moe B.T., Bartnes K., Paulssen R.H., Busund L.T., Bremnes R., Chalmers A., Martinez-Zubiaurre I. Cancer-associated fibroblasts from human NSCLC survive ablative doses of radiation but their invasive capacity is reduced. Radiat Oncol. 2012 Apr 13; 7: 59. doi:10.1186/1748-717X-7-59.; Lindblom E.K., Dasu A., Toma-Dasu I. Hypoxia Induced by Vascular Damage at High Doses Could Compromise the Outcome of Radiotherapy. Anticancer Res. 2019 May; 39(5): 2337–2340. doi:10.21873/anticanres.13350.; Lindblom E., Toma-Dasu I., Dasu A.Accounting for Two Forms of Hypoxia for Predicting Tumour Control Probability in Radiotherapy: An In Silico Study. Adv Exp Med Biol. 2018; 1072: 183–87. doi:10.1007/978-3-319-91287-5_29.; Vaupel P., Mayer A. Hypoxia in Tumors: Pathogenesis-Related Classification, Characterization of Hypoxia Subtypes, and Associated Biological and Clinical Implications. Adv Exp Med Biol 2014; 812: 19–24. doi:10.1007/978-1-4939-0620-8_3.; Orel V.B., Zabolotny M.A., Orel V.E. Heterogeneity of hypoxia in solid tumours and mechanochemical reactions with oxygen nanobubbles. Med Hypotheses. 2017 May; 102: 82–86. doi:10.1016/j.mehy.2017.03.006.; Birau A., Ceausu R.A., Cimpean A.M., Gaje P., Raica M., Olariu T. Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma. Oncol Lett. 2012 Dec; 4(6): 1183–86. doi:10.3892/ol.2012.893.; Nagy J.A., Dvorak H.F. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metastasis. 2012 Oct; 29(7): 657–62. doi:10.1007/s10585-012-9500-6.; Senchukova M.A., Nikitenko N.V., Tomchuk O.N., Zaitsev N.V., Stadnikov A.A. Different types of tumor vessels in breast cancer: morphology and clinical value. Springerplus. 2015 Sep 17; 4: 512. doi:10.1186/s40064-015-1293-z.; Zhou X., Liu H., Zheng Y., Han Y., Wang T., Zhang H., Sun Q., Li Z. Overcoming Radioresistance in Tumor Therapy by Alleviating Hypoxia and Using the HIF-1 Inhibitor. ACS Appl Mater Interfaces. 2020 Jan 29; 12(4): 4231–4240. doi:10.1021/acsami.9b18633.; Siemann D.W., Horsman M.R. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther. 2015 Sep; 153: 107–24. doi:10.1016/j.pharmthera.2015.06.006.; Liu S., Wu F., Zhang Y., Qin R., Zhu N., Li Y., Wang M., Zeng Q., Xie D., Li Y., Fan J., Han Y. Apatinib Combined With Radiotherapy Enhances Antitumor Effects in an In Vivo Nasopharyngeal Carcinoma Model. Cancer Control. 2020 Jan-Dec; 27(1): 1073274820922553. doi:10.1177/1073274820922553.; Janssens G.O., Rademakers S.E., Terhaard C.H., Doornaert P.A., Bijl H.P., van den Ende E., Chin A., Takes R.P., de Bree R., Hoogsteen I.J., Bussink J., Span P.N., Kaanders J.H. Improved RecurrenceFree Survival with ARCON for Anemic Patients with Laryngeal Cancer. Clinical Cancer Research. 2014; 20(5): 1345–54. doi:10.1158/1078-0432.CCR-13-1730.; Akanji M.A., Rotimi D., Adeyemi O.S. Hypoxia-Inducible Factors as an Alternative Source of Treatment Strategy for Cancer. Oxid Med Cell Longev. 2019 Aug 14; 2019: 8547846. doi:10.1155/2019/8547846.; Nabors L.B., Mikkelsen T., Hegi M.E., Ye X., Batchelor T., Lesser G., Peereboom D., Rosenfeld M.R., Olsen J., Brem S., Fisher J.D., Grossman S.A.; New Approaches to Brain Tumor Therapy (NABTT) Central Nervous System Consortium. A safety run-in and randomized phase 2 study of cilengitide combined with chemoradiation for newly diagnosed glioblastoma (NABTT 0306). Cancer. 2012 Nov 15; 118(22): 5601–7. doi:10.1002/cncr.27585.; https://www.siboncoj.ru/jour/article/view/1653

  8. 8
    Academic Journal

    Source: Siberian journal of oncology; Том 18, № 2 (2019); 44-51 ; Сибирский онкологический журнал; Том 18, № 2 (2019); 44-51 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-2

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1013/619; Musabaeva L.I., Startseva Z.A., Gribova O.V., Velikaya V.V., Lisin V.A. Novel technologies and theoretical models in radiation therapy of cancer patients using 6.3 MeV fast neutrons produced by U-120 cyclotron. AIP Conference Proceedings.2016; 1760: 020050. doi:10.1063/1.4960269.; Gribova O.V., Musabaeva L.I., Choynzonov E.L., Lisin V.A., Novikov V.A. Neutron therapy for salivary and thyroid gland cancer.AIP Conference Proceedings.2016; 1760: 020021.doi:10.1063/1.4960240.; Великая В.В., Мусабаева Л.И., Старцева Ж.А., Лисин В.А. Быстрые нейтроны 6,3 МэВ в комплексном лечении больных местными рецидивами рака молочной железы. Вопросы онкологии. 2015; 61 (4): 583–585. [Velikaya V.V., Musabaeva L.I., Startseva Zh.A., Lisin V.A. Fast neutrons of 6.3 MeV in complex treatment of patients with breast cancer local recurrences. Problems in Oncology. 2015; 61 (4): 583–585. (in Russian)].; Великая В.В., Старцева Ж.А., Симонов К.А., Лисин В.А., Попова Н.О., Гольдберг В.Е. Отдаленные результаты комплексного лечения с применением нейтронной терапии у больных местно-распространенным раком молочной железы. Радиация и риск. 2018; 1: 107–114. [Velikaya V.V., Startseva Zh.A., Lisin V.A., Simonov K.A., Popova N.O., Goldberg V.E. Late effects of combined modality treatment with adjuvant neutron therapy for locally advanced breast cancer. Radiation and Risk. 2018; 1: 107–114. (in Russian)]. doi:10.21870/0131-3878-2018-27-1-107-114.; Клеппер Л.Я.Формирование дозовых полей дистанционными источниками излучения. М., 1986. 220. [Klepper L.Ya.Formation of dose fields by remote radiation sources. Moscow, 1986. 220. (in Russian)].; Гулидов И.А., Мардынский Ю.С., Цыб А.Ф., Сысоев А.С. Нейтроны ядерных реакторов в лечении злокачественных новообразований. Обнинск, 2001. 132. [Gulidov I.A., Mardynskiy Yu.S., Tsyb A.F., Sysoyev A.S. Neutrons of Nuclear Reactors in Treatment of Malignant Tumors. Obninsk, 2001. 132. (in Russian)].; Важенин А.В., Рыкованов Г.Н.Уральский центр нейтронной терапии: история создания, методология, результаты работ. М., 2008; 124. [Vazhenin A.V., Rykovanov G.N.Ural Center of Neutron Therapy: History, Metodology, Results of work. Moscow. 2008; 124. (in Russian)].; Wagner F.M., Specht H., Loeper-Kabasakal B., Breitkreutz H. Современное состояние терапии быстрыми нейтронами. Сибирский онкологический журнал. 2015; 6: 5–11. [Wagner F.M., Specht H., LoeperKabasakal B., Breitkreutz H. Fast neutron therapy: a status report. Siberian journal of oncology. 2015; 6: 5–12. (in Russian)].; Velikaya V.V., Musabaeva L.I., Lisin V.A., Startseva Z.A.6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer. AIP Conference Proceedings, 2016. 020069. doi:10.1063/1.4960288.; Великая В.В., Грибова О.В., Мусабаева Л.И., Старцева Ж.А., Симонов К.А., Алейник А.Н., Лисин В.А. Озонотерапия лучевых реакций и повреждений кожи после нейтронной терапии у больных злокачественными новообразованиями. Вопросы онкологии. 2015; 61 (4): 571–574. [Velikaya V.V., Gribova O.V., Musabaeva L.I., Startseva Zh.A., Simonov K.A., Aleinik A.N., Lisin V.A. Ozone therapy for radiation reactions and skin lesions after neutron therapy in patients with malignant tumors. Problems in Oncology. 2015; 61 (4): 571–574. (in Russian)].; Kucherova T.Ya., Velikaya V.V., Gribova O.V., Startseva Zh.A., Choinzonov E.L., Tuzikov S.A., Vusik M.V., Doroshenko A.V. Physical therapy methods in the treatment and rehabilitation of cancer patients. AIP Conference Proceedings. 2016; 020038. doi:10.1063/1.4960257.; Catterall M. Results of neutron therapy: differences, correlations and improvements. Int J Radiat Oncol Biol Phys. 1982; 8 (12): 2141–2144.; Павлов А.С., Фадеева М.А., Карякина Н.Ф. Линейно-квадратичная модель в расчетах изоэффективных доз в оценке противоопухолевого эффекта и лучевых осложнений при лучевой терапии злокачественных опухолей. М., 2005. 67. [Pavlov A.S., Fadeyeva M.A., Karyakina N.F. Lineyno-kvadratichnaya model’ pri raschete protivoopukholevogo effekta i luchevykh oslozhneniy pri luchevoy terapii zlokachestvennykh opukholey. Moscow, 2005. 67. (in Russian)].; Виноградов В.М., Коврыжкина Т.А., Акимов А.А. Расчет биологически изоэффективных доз при дистанционной лучевой терапии. СПб., 1997; 30. [Vinogradov V.M., Kovryzhkina T.A., Akimov A.A.Raschet biologicheski izoeffektivnykh doz pri distantsionnoy luchevoy terapii. Metodicheskoye posobiye. Saint-Peterburg, 1997; 30. (in Russian)].; Жолкивер К.И. Значение величины фракции дозы и фактора времени в лучевой терапии. Медицинская радиология. 1986; 31 (3): 72–79. [Zholkiver K.I.Znacheniya fraktsii dozy i faktora vremeni v luchevoy terapii. Meditsinskaya radiologiya. 1986; 31 (3): 72–79. (in Russian)]. 16. Kondratjeva A.G., Kolchuzhkin A.M., Lisin V.A., Tropin I.S. Properties of Absorbed Dose distribution in heterogeneous Media. Journal of Physics: Conference Series. 2006; 41 (1): 527–530.; Иванов В.И., Машкович В.П., Центер Э.М. Международная система единиц в атомной науке и технике. М., 1981. 197. [Ivanov V.I., Mashkovich V.P., Tsenter E.M.Mezhdunarodnaya sistema ustroystva v oblasti atomnoy nauki i tekhniki. Moscow, 1981. 197. (in Russian)].; Musabajeva L.I., Lavrenkov K.A., Lisin V.A.Reaktion von Tumoren und Normalgeweben bei der Therapie mit schnellen Neutronen am Zyklotron U-120. Radiobiologia Radiotherapia, 1990. 31 (1): 61–67.; https://www.siboncoj.ru/jour/article/view/1013

  9. 9
    Conference

    Relation: Экология и безопасность в техносфере: современные проблемы и пути решения : сборник трудов Всероссийской научно-практической конференции молодых ученых, аспирантов и студентов, г. Юрга, 23-25 ноября 2017 г. — Томск, 2017.; http://earchive.tpu.ru/handle/11683/46702

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20