Showing 1 - 20 results of 85 for search '"прогнозирование банкротства"', query time: 0.88s Refine Results
  1. 1
    Academic Journal

    Source: YASHIL IQTISODIYOT VA TARAQQIYOT; Vol. 3 No. 6 (2025): «Yashil iqtisodiyot va taraqqiyot» jurnali ; YASHIL IQTISODIYOT VA TARAQQIYOT; Том 3 № 6 (2025): «Yashil iqtisodiyot va taraqqiyot» журнали ; YASHIL IQTISODIYOT VA TARAQQIYOT; Vol. 3 No. 6 (2025): «Yashil iqtisodiyot va taraqqiyot» журнали ; 2992-8982 ; 0000-0000

    File Description: application/pdf

  2. 2
    Conference

    File Description: application/pdf

    Relation: Экономическая безопасность страны, регионов, организаций различных видов деятельности : материалы VI Всероссийского форума в Тюмени по экономической безопасности. — Тюмень, 2025

  3. 3
  4. 4
  5. 5
  6. 6
    Conference

    Subject Geographic: RSVPU

    File Description: application/pdf

    Relation: Техническое регулирование в едином экономическом пространстве : сборник статей IX Всероссийской научно-практической конференции с международным участием. — Екатеринбург, 2022

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Strategic decisions and risk management; № 1 (2018); 64-71 ; تصمیمات راهبردی و مدیریت ریسک ها; № 1 (2018); 64-71 ; Стратегические решения и риск-менеджмент; № 1 (2018); 64-71 ; 战略决策和风险管理; № 1 (2018); 64-71 ; 2618-9984 ; 2618-947X ; 10.17747/2078-8886-2018-1

    File Description: application/pdf

    Relation: https://www.jsdrm.ru/jour/article/view/753/633; https://www.jsdrm.ru/jour/article/view/753/656; Илышева Н. Н., Ким Н. В. (2007) Математическая модель определения нормативов финансовых показателей //Финансы и кредит. N 31 (271). C. 80–87.; Федорова Е. А., Довженко С. Е., Федоров Ф. Ю. (2016) Модели прогнозирования банкротства российских предприятий: отраслевые особенности // Проблемы прогнозирования. № 3. С. 32–40.; Шеремет А. Д. Методика финансового анализа: учеб. пособие / А. Д. Шеремет, Р. С. Сайфулин. М.: Инфра-М, 2004. 208 с.; Altman E. I. (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy // The Journal of Finance.Vol. 4. P. 589–609.; Bandyopadhyay A. (2006) Predicting probability of default of Indian corporate bonds: logistic and Z-score model approaches //The Journal of Risk Finance. Vol. 7, N3. P. 255–272.; Bauer J., Agarwal V. (2014) Are hazard models superior to traditional bankruptcy prediction approaches?; A comprehensive test //Journal of Banking & Finance. Vol. 40. P. 432–442.; Brîndescu-Olariu D. (2017) Bankruptcy prediction logit model developed on Romanian paired sample //Theoretical & Applied Economics.Vol. 24, N 1. P. 5–22.; Chesser D. L. (1974) Predicting loan noncompliance // The Journal of Commercial Bank Lending. August. P. 28–38.; Chiaramonte L., Casu B. (2017) Capital and liquidity ratios and financial distress. Evidence from the European banking industry //The British Accounting Review.Vol. 49, N 2. P. 138–161.; Galvão R. K. H., Becerra V. M., Abou-Seada M. (2004) Ratio selection for classification models //Data Mining and Knowledge Discovery. Vol. 8, N 2. P. 151–170.; Hung C., Chen J. H. (2009) A selective ensemble based on expected probabilities for bankruptcy prediction // Expert systems with applications. Vol. 36, N 3. P. 5297–5303.; Korol T. (2013) Early warning models against bankruptcy risk for Central European and Latin American enterprises //Economic Modelling. Vol. 31. P. 22–30.; Li M. Y. L., Miu P. (2010) A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach //Journal of Empirical Finance. Vol. 17, N 4. P. 818–833.; Lieu P. T., Lin C. W., Yu H. F. (2008) Financial early-warning models on cross-holding groups //Industrial Management & Data Systems. Vol. 108, N 8. P. 1060–1080.; Lin F., Liang D., Yeh C. C. et al. (2014) Novel feature selection methods to financial distress prediction //Expert Systems with Applications. Vol. 41, N 5. P. 2472–2483.; Nam J. H., Jinn T. (2000) Bankruptcy prediction: Evidence from Korean listed companies during the IMF crisis //Journal of International Financial Management & Accounting.Vol. 11, N 3. P. 178–197.; Sayari N., Mugan C. S. (2017) Industry specific financial distress modeling //BRQ Business Research Quarterly. Vol. 20, N 1. P. 45–62.; Šorins R., Voronova I. (1998) Uzņēmuma maksātnespējas novērtējums //Ekonomiskās problēmas uzņēmējdarbībā. N 3. P. 125–131.; Taffler R. J. Empirical models for the monitoring of UK corporations //Journal of Banking & Finance. 1984. Vol. 8, N 2. P. 199–227.; Taffler R. J., Tisshaw H. (1977) Going, Going, Gone – Four Factors which Predict // Accountancy.Vol. 3. P. 50–54.; Tian S., Yu Y., Guo H. (2015) Variable selection and corporate bankruptcy forecasts //Journal of Banking & Finance. Vol. 52. P. 89–100.; Zmijewski M. E. (1984) Methodological issues related to the estimation of financial distress prediction models //Journal of Accounting research. Vol. 22. P. 59–82.; https://www.jsdrm.ru/jour/article/view/753

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20