Showing 1 - 3 results of 3 for search '"приобретенная резистентность"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 19 (2019); 51-56 ; Медицинский Совет; № 19 (2019); 51-56 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2019-19

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5146/4673; Tjulandin S., Imyanitov E., Moiseyenko V., Ponomarenko D., Gurina L., Koroleva I., Karaseva V. Prospective cohort study of clinical characteristics and management patterns for patients with non-small-cell lung cancer in the Russian Federation: EPICLIN-Lung. Curr Med Res Opin. 2015;31(6):1117-27. doi:10.1185/03007995.2015.1036015.; Лактионов К. К., Артамонова Е. В., Бредер В. В., Горбунова В. А., Моисеенко Ф. В., Реутова Е. В. и соавт. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. 2018;8(3s2):30–46. doi:10.18027/2224–5057–2018–8–3s2–30–46.; Marshall J. Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer. 2006;107(6):1207-1218. doi:10.1002/cncr.22133.; Lee C.K., Davies L., Wu Y.L., Mitsudomi T. Gefitinib or Erlotinib vs Chemotherapy for EGFR Mutation-Positive Lung Cancer: Individual Patient Data Meta-Analysis of Overall Survival. J Natl Cancer Inst. 2017;109(6). doi:10.1093/jnci/djw279.; Hirsh V. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr Oncol. 2011;18(3):126-138. doi:10.3747/co.v18i3.877.; Yang J.C., Wu Y.L., Schuler M., et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUXLung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–151. doi:10.1016/S1470-2045(14)71173-8.; Urata Y., Katakami N., Morita S, et al. Randomized phase III study compar.ing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108L. J Clin Oncol. 2016;34(27):3248–3257. doi:10.1200/JCO.2015.63.4154.; Yang J.J., Zhou Q., Yan H.H., et al. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer. 2017;116(5):568–574. doi:10.1038/bjc.2016.456.; Paz-Ares L., Tan E.H., O’Byrne K., et al. Afatinib versus gefitinib in patients with EGFR mutationpositive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol. 2017;28(2):270–277. doi:10.1093/annonc/mdw611.; Park K., Tan E.H., O’Byrne K., et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, openlabel, randomised controlled trial. Lancet Oncol. 2016;17(5):577–589. doi:10.1016/S1470-2045(16)30033-X.; Wu Y.L., Cheng Y., Zhou X., et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive nonsmall-cell lung cancer (ARCHER 1050): a randomised,open-label, phase 3 trial. Lancet Oncol 2017;18(11):1454–1466. doi:10.1016/S1470-2045(17)30608-3.; Mok T.S., Cheng Y., Zhou X. et al. Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib With Gefitinib in Patients With Advanced Non–Small-Cell Lung Cancer and EGFR-Activating Mutations. J Clin Oncol. 2018;36(22):2244-2250. doi:10.1200/JCO.2018.78.7994.; Arcila M.E., Oxnard G.R., Nafa K., et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011;17(5):1169-1180. doi:10.1158/1078-0432.CCR-10-2277.; Pao W., Miller V.A., Politi K.A., et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73. doi: 0.1371/journal.pmed.0020073.; Sequist L.V., Waltman B.A., Dias-Santagata D., et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.19. doi:10.1126/scitranslmed.3002003.; Yang J.C., Ahn M.J., Kim D.W., et al. Osimertinib in pretreated T790M-positive advanced non-smallcell lung cancer: AURA study phase II extension component. J Clin Oncol. 2017;35(12):1288–1296. doi:10.1200/JCO.2016.70.3223.; Jenkins S., Chih-Hsin Yang J., Jänne P.A. et al. EGFR Mutation Analysis for Prospective Patient Selection in Two Phase II Registration Studies of Osimertinib. Journal of Thoracic Oncology. 2017;12(8):1247-1256. doi:10.1016/j.jtho.2017.05.002.; Janne P.A., Yang J.C., Kim D.W., et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–1699. doi:10.1056/NEJMoa1411817.; Mok T.S., Wu Y.L., Ahn M.J., et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–640. doi:10.1056/NEJMoa1612674.; Huang W.L., Chen Y.L., Yang S.C. et al. Liquid biopsy genotyping in lung cancer: ready for clinical utility? Oncotarget. 2017;8(11):18590-18608. doi:10.18632/oncotarget.14613.; Oxnard G.R., Thress K.S., Alden R.S. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3375-3382. doi:10.1200/JCO.2016.66.7162.; Ahn M., Han J., Tsai C. et al. Detection of EGFR mutations from plasma ctDNA in the osimertinib Phase III trial (AURA3): comparison of three plasma assays. Presented at: IASLC 18th World Conference on Lung Cancer (WCLC). Yokohama, Japan, October 15–18, 2017. Available at: https://wclc2019.iaslc.org › WCLC2019-Abstract-Book_web-friendly.; Yu H.A., Arcila M.E., Rekhtman N. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240-2247. doi:10.1158/1078-0432.CCR-12-2246.; Soria J.C., Ohe Y., Vansteenkiste J., et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113-125. doi:10.1056/NEJMoa1713137.; Thress K.S., Paweletz C.P., Felip E., et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–562. doi:10.1038/nm.3854; Niederst M.J., Hu H., Mulvey H.E. et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res. 2015;21(17):3924-33. doi:10.1158/1078-0432.CCR-15-0560.; Wang Z., Yang J.J., Huang J. et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J Thorac Oncol. 2017;12(11):1723-1727. doi:10.1016/j.jtho.2017.06.017.; Ortiz-Cuaran S, Scheffler M, Plenker D et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin Cancer Res. 2016;22(19):4837-4847. doi:10.1158/1078-0432.CCR-15-1915.; Santarpia M., Liguori A., Karachaliou N. et al. Osimertinib in the treatment of non-smallcell lung cancer: design, development and place in therapy. Lung Cancer (Auckl). 2017;8:109–125. doi: Santarpia M., Liguori A., Karachaliou N. et al. Osimertinib in the treatment of non-small-cell lung cancer: design, development and place in therapy. Lung Cancer (Auckl). 2017;8:109–125. doi:10.2147/LCTT.S119644.; Hochmair M.J., Morabito A., Hao D. et al. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer: updated analysis of the observational GioTag study. Future Oncol. 2019;15(25):2905-2914. doi:10.2217/fon-2018-0711.; Hendriks L.E., Smit E.F., Vosse B.A. et al. EGFR mutated non-small cell lung cancer patients: more prone to development of bone and brain metastases? Lung Cancer. 2014;84(1):86–91. doi:10.1016/j.lungcan.2014.01.006.; Iuchi T., Shingyoji M., Sakaida T., Hatano K., Nagano O., Itakura M., et al. Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer. 2013;82(2):282-287. doi:10.1016/j.lungcan.2013.08.016.; Park S.J., Kim H.T., Lee D.H. et al. Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer. 2012;77(3):556–560. doi:10.1016/j.lungcan.2012.05.092; Yang J.C.H., Wu Y.-L., Hirsh V. et al. 143PD Competing central nervous system or systemic progression analysis for patients with EGFR mutation-positive NSCLC receiving afatinib in LUX-Lung 3, 6, and 7. Journal of Thoracic Oncology. 2018;13(4):S84-S85. doi:10.1016/S1556-0864(18)30417-9.

  2. 2
  3. 3
    Academic Journal

    Source: Malignant tumours; № 2 (2017); 94-99 ; Злокачественные опухоли; № 2 (2017); 94-99 ; 2587-6813 ; 2224-5057

    File Description: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/349/316; Blank C. et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro, Int. J. Cancer, 2006, Vol. 119, No. 2, pp. 317–327.; Brahmer J.R., Tykodi S.S., Cho L.Q., Hwu W. J., Topalian S. L., Hwu P. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer, N. Engl. J. Med. 2012. Vol. 366, pp. 2455–2465.; Topalian S. L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D. F. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer, N. Engl. J. Med. 2012. Vol. 366, pp. 2443–2454.; Sharma P., Allison J.P., The future of immune checkpoint therapy, Science, 2015, Vol. 348, No. 6230, pp. 56–61.; Okazaki T., Honjo T., PD-1 and PD-1 ligands: from discovery to clinical application, Int. Immunol., 2007, Vol. 19, No. 813–824.; Keir M. E., Liang S.C., Guleria I., Latchman Y. E., Qipo A., Albacker L.A. et al. Tissue expression of PD-L1mediates peripheral T cell tolerance, J. Exp. Med., 2006, Vol. 203, No. 4, pp. 883–895.; Tseng S.Y., Otsuji M., Gorski K., Huang X., Slansky J. E., Pai S. I. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells, J. Exp. Med., 2001, Vol. 193, pp. 839–846.; Dong H., Strome S. E., Salomao D.R., Tamura H., Hirano F., Flies D.B. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nat. Med., 2002, Vol. 8, pp. 793–800.; Wang L., Pino-Lagos K., de Vries V.C., Guleria I., Sayegh M.H., Noelle R. J., Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 +CD4+ regulatory T cells, Proc. Natl. Acad.Sci. USA, 2008, Vol. 105, pp. 9331–9336; Iwai Y., Ishida M., Tanaka Y., Okazaki T., Honjo T., Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade, Proc. Natl. Acad.Sci. USA, 2002, Vol. 99, pp. 12293–12297.; Tsushima F., Yao S., Shin T., Flies A., Flies S., Xu H. et al. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy, Blood, 2007, Vol. 110, pp. 180–185.; Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J., 1992, Vol. 11, pp. 3887–3895.; Freeman G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 2000, Vol. 192, pp. 1027–1034.; Zitvogel L., Kroemer G., Targeting PD-1/PD-L1 interactions for cancer immunotherapy, OncoImmunology, 2012, Vol. 1:8, pp. 1223–1225.; Parry R.V., Chemnitz J.M., Frauwirth K.A., Lanfranco A.R., Braunstein I., Kobayashi S.V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms, Mol. Cell. Biol., 2005, Vol. 25, pp. 9543–9553.; Marzec M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of 573 immunosuppressive protein CD274 (PD-L1, B7-H1), Proc. Natl. Acad.Sci. USA, 2008, Vol. 105, No. 52, pp. 20852–20857.; Parsa A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma, Nat. Med., 2007, Vol. 13, No. 1, pp. 84–88.; Mittendorf E.A. et al. PD-L1 expression in triple-negative breast cancer, Cancer Immunol. Res., 2014, Vol. 2, No. 4, pp. 361–370.; Ribas A. Adaptive Immune Resistance: How Cancer Protects from Immune Attack, Cancer Discov., 2015, Vol. 5, No. 9, pp. 915–919.; Chen L., Han X., Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future, J. Clin. Invest., 2015, Vol. 125, No. 9, pp. 3384–91.; Mittal D. et al. New insights into cancer immunoediting and its three component phases elimination, equilibrium and escape, Curr. Opin. Immunol., 2014, Vol. 27, pp. 16–25.; Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy, Nat.Rev. Cancer, 2012, Vol. 12, No. 4, pp. 252–264.; Nishimura H., Honjo T., Minato N. Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice, J. Exp. Med., 2000, Vol. 191, pp. 891–898.; Probst H.C., McCoy K., Okazaki T., Honjo T., van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA- 4, Nat. Immunol., 2005, Vol. 6, pp. 280–286.; Ansari M. J., Salama A.D., Chitnis T., Smith R.N., Yagita H., Akiba H. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice, J. Exp. Med., 2003, Vol. 198, pp. 63–69.; Francisco L.M., Salinas V.H., Brown K. E., Vanguri V.K., Freeman G. J., Kuchroo V.K. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells, J. Exp. Med., 2009, Vol. 206, pp. 3015–3029.; Dong H., Zhu G., Tamada K., Chen L. B7H1, a third member of the B7 family, co-stimulates Tcell proliferation and interleukin 10 secretion, Nature Med., 1999, Vol. 5, pp. 1365–1369.; Latchman Y. et al. PDL2 is a second ligand for PD1 and inhibits T cell activation, Nature Immunol., 2001, Vol. 2, pp. 261–268.; Shin T. et al. In vivo costimulatory role of B7DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses, J. Exp. Med., 2005, Vol. 201, pp. 1531–1541.; Paterson A.M. et al. The programmed death1 ligand 1: B7–1 pathway restrains diabetogenic effector T cells in vivo, J. Immunol., 2011, Vol. 187, pp. 1097–1105.; Park J. J. et al. B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance, Blood, 2010, Vol. 116, pp. 1291–1298.; Kuang D.M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PDL1, J. Exp. Med., 2009, Vol. 206, pp. 1327–1337.; Liu Y., Zeng B., Zhang Z., Zhang Y., Yang R. B7H1 on myeloid-derived suppressor cells in immune suppression by a mouse model of ovarian cancer, Clin. Immunol., 2008, Vol. 129, pp. 471–481.; Rosenwald A. et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma, J. Exp. Med., 2003, Vol. 198, pp. 851–862.; Steidl C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers, Nature, 2011, Vol. 471, pp. 377–381.; Terme M. et al. IL18 induces PD-1-dependent immunosuppression in cancer, Cancer Res., 2011, Vol. 71, pp. 5393–5399.; Fanoni D. et al. New monoclonal antibodies against Bcell antigens: possible new strategies for diagnosis of primary cutaneous Bcell lymphomas, Immunol. Lett., 2011, Vol. 134, pp. 157–160.; Velu V. et al. Enhancing SIV-specific immunity in vivo by PD1 blockade, Nature, 2009, Vol. 458, pp. 206–210.; Ahmadzadeh M. et al. T cells infiltrating the tumor express high levels of PD1 and are functionally impaired, Blood, 2009, Vol. 114, No. 8, pp. 1537–1544.; O’Donnell J.S., Long G.V., Scolyer R.A. et al. Resistance to PD1/PDL1 checkpoint inhibition, Cancer Treatment Reviews, 2017, Vol. 52, pp. 71–81.; Schumacher T.N., Schreiber R.D., Neoantigens in cancer immunotherapy, Science, 2015, Vol. 348, No. 6230, pp. 69–74.; Martin A.M. et al., Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance, Prostate Cancer Prostatic Dis., 2015, Vol. 18, No. 4, pp. 325–332.; Spranger S., Bao R., Gajewski T. F., Melanoma-intrinsic -catenin signaling prevents anti-tumor immunity, Nature, 2015, Vol. 523, No. 7559, pp. 231–235.; Ellis L.M., Hicklin D. J. VEGF-targeted therapy: mechanisms of anti- tumor activity, Nat.Rev. Cancer, 2008, Vol. 8, No. 8, pp. 579–591.; Young M.R. et al., Tumor-derived cytokines induce bone marrow suppressor cells that mediate immunosuppression through transforming growth factor beta, Cancer Immunol. Immunother., 1992, Vol. 35, No. 1, pp. 14–18.; Commeren D. L. et al. Paradoxical effects of interleukin-10 on the maturation of murine myeloid dendritic cells, Immunology, 2003, Vol. 110, No. 2, pp. 188–196.; Baas M., Besancon A., Goncalves T. et al. TGFb-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance eLife 2016; 5: e08133.; Thommen D.S. et al., Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors, Cancer Immunol. Res., 2015, Vol. 3, No. 12, pp. 344–355.; Prendergast G.C. Immune escape as a fundamental trait of cancer: focus on IDO, Oncogene, 2008, Vol. 27, pp. 3889–3900.; Holmgaard R.B. et al., Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4, J. Exp. Med., 2013, Vol. 210, No. 7, pp. 1389–1402.; Spranger S. et al., Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8 (+) T cells 700 directly within the tumor microenvironment, J. Immunother. Cancer, 2014, Vol. 2, p. 3.; Zarek P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing Tcell anergy and the generation of adaptive regulatory T cells, Blood, 2008, Vol. 111, pp. 251–259.; Deaglio S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression, J. Exp. Med., 2007, Vol. 204, pp. 1257–1265.; Ribas A. et al. PD-1 Blockade Expands Intratumoral Memory T Cells, Cancer Immunol. Res., 2016, Vol. 4, No. 3, pp. 194–203.; https://www.malignanttumors.org/jour/article/view/349