-
1Academic Journal
Authors: Borovkova, Mariia, Sieryi, Oleksii, Lopushenko, Ivan, Kartashkina, Natalia, Pahnke, Jens, Bykov, Alexander, Meglinski, Igor
Source: IEEE transactions on medical imaging. 2022. Vol. 41, № 4. P. 977-982
IEEE Transaction on Medical ImagingSubject Terms: двулучепреломление, 0301 basic medicine, Стокса вектор, мыши, Plaque, Amyloid, Aβ plaques, Optical polarimetry, 01 natural sciences, Mice, 03 medical and health sciences, Альцгеймера болезнь, Stokes vector, Alzheimer Disease, 0103 physical sciences, оптическая поляриметрия, Animals, birefringence, Spectrum Analysis, scattering, Brain, Neurofibrillary Tangles, многоволновая поляриметрия, рассеяние, скрининг
File Description: application/pdf
Linked Full TextAccess URL: https://ieeexplore.ieee.org/ielx7/42/4359023/09622320.pdf
https://pubmed.ncbi.nlm.nih.gov/34807820
https://publications.aston.ac.uk/id/eprint/43303/1/Screening_of_Alzheimers_disease_with_multiwavelength_Stokes_polarimetry_in_a_mouse_model.pdf
https://ieeexplore.ieee.org/document/9622320
https://pubmed.ncbi.nlm.nih.gov/34807820/
https://research.aston.ac.uk/en/publications/screening-of-alzheimers-disease-with-multiwavelength-stokes-polar
https://www.ncbi.nlm.nih.gov/pubmed/34807820
http://hdl.handle.net/10852/92609
https://doi.org/10.1109/TMI.2021.3129700
http://urn.fi/urn:nbn:fi-fe2022082956590
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001007865 -
2Academic Journal
Authors: E. D. Semenov, A. A. Vitkov, I. V. Kozlova, I. I. Asinovskova, Е. Д. Семенов, А. А. Витков, И. В. Козлова, И. И. Асиновскова
Source: National Journal glaucoma; Том 23, № 2 (2024); 95-106 ; Национальный журнал Глаукома; Том 23, № 2 (2024); 95-106 ; 2311-6862 ; 2078-4104
Subject Terms: оптическая когерентная томография ангиография, confocal scanning laser ophthalmoscopy, scanning laser polarimetry, optical coherence tomography, optical coherence tomography angiography, конфокальная сканирующая лазерная офтальмоскопия, сканирующая лазерная поляриметрия, оптическая когерентная томография
File Description: application/pdf
Relation: https://www.glaucomajournal.ru/jour/article/view/527/470; Quigley HA, Broman AT. The number of people with glaucoma world-wide in 2010 and 2020. Br J Ophthalmol 2006; 90(3):262-267. https://doi.org/10.1136/bjo.2005.081224.; Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013.; Основные показатели первичной инвалидности взрослого населения Российской Федерации за 2021 год. ФГБУ «Центральный научно-исследовательский институт организации и информатизации здравоохранения»: Министерство здравоохранения Российской Федерации; 2022. 100 с.; Национальное руководство по глаукоме для практикующих врачей. Изд. 4-е, испр. и доп. Под ред. Егорова Е.А., Еричева В.П. М: ГЭОТАР-Медиа 2019; 384.; European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition. Br J Ophthalmol 2021; 105(Suppl 1):1-169. https://doi.org/10.1136/bjophthalmol-2021-egsguidelines.; Еричев В.П., Антонов А.А., Витков А.А., Григорян Л.А. Статическая периметрия в диагностике глаукомы. Часть 1. Базовые принципы. Вестник офтальмологии 2021; 137(5-2):281-288. https://doi.org/10.17116/oftalma2021137052281; Еричев В.П., Антонов А.А., Витков А.А., Григорян Л.А. Статическая периметрия в диагностике глаукомы. Часть 2. Протокол исследования, классификации глаукомы, периметрические дефекты через призму структурно-функциональной корреляции. Вестник офтальмологии 2021; 137(5-2):289299. https://doi.org/10.17116/oftalma2021137052289; Антонов А.А., Козлова И.В., Витков А.А. Максимальная медикаментозная терапия глаукомы — что есть в нашем арсенале? Национальный журнал глаукома 2020; 19(2):51-58. https://doi.org/10.25700/NJG.2020.02.06; Еричев В.П., Онищенко А.Л., Куроедов А.В., Петров С.Ю., Брежнев А.Ю., Антонов А.А., Витков А.А., Мураховска Ю.К. Офтальмологические факторы риска развития первичной открытоугольно глаукомы. Российский медицинский журнал. РМЖ Клиническая офтальмология 2019; 2:81-86. https://doi.org/10.323642311772920191928186; Еричев В.П., Петров С.Ю., Козлова И.В., Макарова А.С., Рещикова В.С. Современные методы функциональной диагностики и мониторинга глаукомы. Часть 3. Роль морфофункциональных взаимоотношений в раннем выявлении и мониторинге глаукомы. Национальный журнал глаукома 2016; 15(2):96-101.; Kotowski J, Wollstein G, Ishikawa H, Schuman JS. Imaging of the optic nerve and retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring. Surv Ophthalmol 2014; 59(4):458-467. https://doi.org/10.1016/j.survophthal.2013.04.007.; Агаева Ф.А., Эфендиева М.Э. Гейдельбергская ретинальная томография. Офтальмология 2013; 3(13):93-96; Vessani RM, Moritz R, Batis L, Zagui RB, Bernardoni S, Susanna R. Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. J Glaucoma 2009; 18(3):253-261. https://doi.org/10.1097/IJG.0b013e31818153da.; Harasymowycz PJ, Papamatheakis DG, Fansi AK, Gresset J, Lesk MR. Validity of screening for glaucomatous optic nerve damage using confocal scanning laser ophthalmoscopy (Heidelberg Retina Tomagraph II) in high-risk populations: a pilot study. Ophthalmology 2005; 112(12):2164-2171. https://doi.org/10.1016/j.ophtha.2005.09.009.; Betz P. Photographie stéréoscopique et photogrammétrie de l'excavation physiologique de la papille. 1981.; Iester M, Mikelberg FS, Drance SM. The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 1997; 104(3):545-548. https://doi.org/10.1016/s0161-6420(97)30277-2.; Koch EC, Plange N, Fuest M, Schimitzek H, Kuerten D. [Diagnostic Precision of the Confocal Scanning Laser Ophthalmoscopy in the Large Optic Disc with Physiological Excavation — a Long-Term Study]. Klin Monbl Augenheilkd 2019; 236(1):88-95. https://doi.org/10.1055/s-0043-111798.; Healey PR, Lee AJ, Aung T, Wong TY, Mitchell P. Diagnostic accuracy of the Heidelberg Retina Tomograph for glaucoma a population-based assessment. Ophthalmology 2010; 117(9):1667-1673. https://doi.org/10.1016/j.ophtha.2010.07.001.; Zheng Y, Wong TY, Lamoureux E, Mitchell P, Loon SC, Saw SM, Aung T. Diagnostic ability of Heidelberg Retina Tomography in detecting glaucoma in a population setting: the Singapore Malay Eye Study. Ophthalmology 2010; 117(2):290-297. https://doi.org/10.1016/j.ophtha.2009.07.018.; Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 2000; 107(12):2272-2277. https://doi.org/10.1016/s0161-6420(00)00363-8.; Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci 2000; 41(7):1730-1742.; Куроедов А.В., Городничий В.В. Компьютерная ретинотомография (HRT): диагностика, динамика, достоверность. М: 2007; 236.; Danias J, Serle J. Can Visual Field Progression be Predicted by Confocal Scanning Laser Ophthalmoscopic Imaging of the Optic Nerve Head in Glaucoma? (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2015; 113:T4.; Saarela V, Falck A, Airaksinen PJ, Tuulonen A. The sensitivity and specificity of Heidelberg Retina Tomograph parameters to glaucomatous progression in disc photographs. Br J Ophthalmol 2010; 94(1): 68-73. https://doi.org/10.1136/bjo.2009.159251.; Bowd C, Balasubramanian M, Weinreb RN, Vizzeri G, Alencar LM, O'Leary N, Sample PA, Zangwill LM. Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression. Invest Ophthalmol Vis Sci 2009; 50(2): 691-701. https://doi.org/10.1167/iovs.08-2136.; Chauhan BC, Hutchison DM, Artes PH, Caprioli J, Jonas JB, LeBlanc RP, Nicolela MT. Optic disc progression in glaucoma: comparison of confocal scanning laser tomography to optic disc photographs in a prospective study. Invest Ophthalmol Vis Sci 2009; 50(4):1682-1691. https://doi.org/10.1167/iovs.08-2457.; Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 1992; 99(1):19-28. https://doi.org/10.1016/s0161-6420(92)32018-4.; Weinreb RN, Bowd C, Zangwill LM. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol 2003; 121(2):218-224. https://doi.org/10.1001/archopht.121.2.218.; Reus NJ, Lemij HG. Scanning laser polarimetry of the retinal nerve fiber layer in perimetrically unaffected eyes of glaucoma patients. Ophthalmology 2004;111(12):2199-2203. https://doi.org/10.1016/j.ophtha.2004.06.018.; Zheng W, Baohua C, Qun C, Zhi Q, Hong D. Retinal nerve fiber layer images captured by GDx-VCC in early diagnosis of glaucoma. Ophthalmologica 2008; 222(1):17-20. https://doi.org/10.1159/000109273.; Dimopoulos AT, Katsanos A, Mikropoulos DG, Giannopoulos T, Empeslidis T, Teus MA, Hollo G, Konstas AG. Scanning laser polarimetry in eyes with exfoliation syndrome. Eur J Ophthalmol 2013; 23(5): 743-750. https://doi.org/10.5301/ejo.5000247.; Ara M, Ferreras A, Pajarin AB, Calvo P, Figus M, Frezzotti P. Repeatability and Reproducibility of Retinal Nerve Fiber Layer Parameters Measured by Scanning Laser Polarimetry with Enhanced Corneal Compensation in Normal and Glaucomatous Eyes. Biomed Res Int 2015; 2015:729392. https://doi.org/10.1155/2015/729392.; Wang Z, Liu XW, Li XY, Zhang WJ, Dai H. [Detection of the changes of retinal nerve fiber layer thickness by GDx-VCC laser scanning polarimetry in primary open angle glaucoma patients]. Zhonghua Yan Ke Za Zhi 2012; 48(6):497-501.; Wang G, Qiu KL, Lu XH, Sun LX, Liao XJ, Chen HL, Zhang MZ. The effect of myopia on retinal nerve fibre layer measurement: a comparative study of spectral-domain optical coherence tomography and scanning laser polarimetry. Br J Ophthalmol 2011; 95(2):255-260. https://doi.org/10.1136/bjo.2009.176768.; Dada T, Aggarwal A, Bali SJ, Sharma A, Shah BM, Angmo D, Panda A. Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC). Nepal J Ophthalmol 2013; 5(1):3-8. https://doi.org/10.3126/nepjoph.v5i1.7814.; Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk. Am J Ophthalmol 2006; 142(3):475-482. https://doi.org/10.1016/j.ajo.2006.04.053.; Bozkurt B, Irkec M, Tatlipinar S, Erdener U, Orhan M, Gedik S, Karaagaoglu E. Retinal nerve fiber layer analysis and interpretation of GDx parameters in patients with tilted disc syndrome. Int Ophthalmol 2001; 24(1):27-31. https://doi.org/10.1023/a:1014490414688.; Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science 1991; 254(5035):1178-1181. https://doi.org/10.1126/science.1957169.; Schuman JS, Hee MR, Arya AV, Pedut-Kloizman T, Puliafito CA, Fujimoto JG, Swanson EA. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995; 6(2):89-95. https://doi.org/10.1097/00055735-199504000-00014.; Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113(5):586-596. https://doi.org/10.1001/archopht.1995.01100050054031.; Стоюхина А.С., Будзинская М.В., Стоюхин С.Г., Асламазова А.Э. Оптическая когерентная томография-ангиография в офтальмоонкологии. Вестник офтальмологии 2019; 135(1):104-111. https://doi.org/ 10.17116/oftalma2019135011104; Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002; 7(3):457-463. https://doi.org/10.1117/1.1482379.; Garas A, Vargha P, Hollo G. Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 2010; 117(4):738-746. https://doi.org/10.1016/j.ophtha.2009.08.039.; Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, Schuman JS. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol 2009; 93(8):1057-1063. https://doi.org/10.1136/bjo.2009.157875.; Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R, Jr., Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 2005; 139(1):44-55. https://doi.org/10.1016/j.ajo.2004.08.069.; Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology 2005; 112(1):3-9. https://doi.org/10.1016/j.ophtha.2004.06.039.; Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005; 46(7):2440-2443. https://doi.org/10.1167/iovs.04-1174.; Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology 2009; 116(12):2294-2299. https://doi.org/10.1016/j.ophtha.2009.06.012.; Vizzeri G, Balasubramanian M, Bowd C, Weinreb RN, Medeiros FA, Zangwill LM. Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. Opt Express 2009; 17(5):4004-4018. https://doi.org/10.1364/oe.17.004004.; Park SB, Sung KR, Kang SY, Kim KR, Kook MS. Comparison of glauco- ma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 2009; 127(12):1603-1609. https://doi.org/10.1001/archophthalmol.2009.296.; Hung KC, Wu PC, Poon YC, Chang HW, Lai IC, Tsai JC, Lin PW, Teng MC. Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia. Optom Vis Sci 2016; 93(2):126-135. https://doi.org/10.1097/OPX.0000000000000776.; Chua J, Tan B, Ke M, Schwarzhans F, Vass C, Wong D, Nongpiur ME, Wei Chua MC, Yao X, Cheng CY, Aung T, Schmetterer L. Diagnostic Ability of Individual Macular Layers by Spectral-Domain OCT in Different Stages of Glaucoma. Ophthalmol Glaucoma 2020; 3(5):314-326. https://doi.org/10.1016/j.ogla.2020.04.003.; Morales-Fernandez L, Jimenez-Santos M, Martinez-de-la-Casa JM, Sanchez-Jean R, Nieves M, Saenz-Frances F, Garcia-Saenz S, Perucho L, Gomez-de-Liano R, Garcia-Feijoo J. Diagnostic capacity of SD-OCT segmented ganglion cell complex versus retinal nerve fiber layer analysis for congenital glaucoma. Eye (Lond) 2018; 32(8):1338-1344. https://doi.org/10.1038/s41433-018-0077-4.; Aksoy FE, Altan C, Yilmaz BS, Yilmaz I, Tunc U, Kesim C, Kocamaz M, Pasaoglu I. A comparative evaluation of segmental analysis of macu- lar layers in patients with early glaucoma, ocular hypertension, and healthy eyes. J Fr Ophtalmol 2020; 43(9):869-878. https://doi.org/10.1016/j.jfo.2019.12.020.; Leung CK, Cheung CY, Weinreb RN, Qiu K, Liu S, Li H, Xu G, Fan N, Pang CP, Tse KK, Lam DS. Evaluation of retinal nerve fiber layer pro- gression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci 2010; 51(1):217-222. https://doi.org/10.1167/iovs.09-3468.; Nguyen AT, Greenfield DS, Bhakta AS, Lee J, Feuer WJ. Detecting Glaucoma Progression Using Guided Progression Analysis with OCT and Visual Field Assessment in Eyes Classified by International Classification of Disease Severity Codes. Ophthalmol Glaucoma 2019; 2(1):36-46. https://doi.org/10.1016/j.ogla.2018.11.004.; Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology 2012; 119(9):1858-1866. https://doi.org/10.1016/j.ophtha.2012.03.044. 58. Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology 2012; 119(2):308-313. https://doi.org/10.1016/j.ophtha.2011.08.022.; Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H, Ghahari E, Manalastas PIC, Proudfoot J, Weinreb RN. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glau- coma. Ophthalmology 2019; 126(7):980-988. https://doi.org/10.1016/j.ophtha.2019.03.003.; Mwanza JC, Sayyad FE, Budenz DL. Choroidal thickness in unilateral advanced glaucoma. Invest Ophthalmol Vis Sci 2012; 53(10):6695-6701. https://doi.org/10.1167/iovs.12-10388.; Li L, Bian A, Zhou Q, Mao J. Peripapillary choroidal thickness in both eyes of glaucoma patients with unilateral visual field loss. Am J Ophthalmol 2013; 156(6):1277-1284 e1271. https://doi.org/10.1016/j.ajo.2013.07.011.; Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, Xin C, Kono R, Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coher- ence tomography-based microangiography. Quant Imaging Med Surg 2016; 6(2):125-133. https://doi.org/10.21037/qims.2016.03.05.; Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudum- bai RC, Johnstone MA, Chen PP, Wang RK. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography. Invest Ophthalmol Vis Sci 2016; 57(9):OCT475-485. https://doi.org/10.1167/iovs.15-18909.; Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the Foveal Avascular Zone Measured by Optical Coherence Tomography Angiography in Glaucoma Patients With Central Visual Field Defects. Invest Ophthalmol Vis Sci 2017; 58(3):1637-1645. https://doi.org/10.1167/iovs.16-21079.; Braaf B, Vermeer KA, Vienola KV, de Boer JF. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt Express 2012; 20(18):20516-20534. https://doi.org/10.1364/OE.20.020516.; Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol 2015; 133(9):1045-1052. https://doi.org/10.1001/jamaophthalmol.2015.2225.; Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014; 121(7):1322-1332. https://doi.org/10.1016/j.ophtha.2014.01.021.; Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3(12):3127-3137. https://doi.org/10.1364/BOE.3.003127.; Bojikian KD, Chen CL, Wen JC, Zhang Q, Xin C, Gupta D, Mudumbai RC, Johnstone MA, Wang RK, Chen PP. Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography. PLoS One 2016; 11(5):e0154691. https://doi.org/10.1371/journal.pone.0154691.; Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Invest Ophthalmol Vis Sci 2017; 58(9):3637-3645. https://doi.org/10.1167/iovs.17-21846.; Alnawaiseh M, Lahme L, Muller V, Rosentreter A, Eter N. Correla- tion of flow density, as measured using optical coherence tomography angiography, with structural and functional parameters in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 2018; 256(3):589-597. https://doi.org/10.1007/s00417-017-3865-9.; Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci 2016; 57(9):OCT451-459. https://doi.org/10.1167/iovs.15-18944.; Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, Fu H, Lim C, Tay ELT, Loo-Valdez RG, Teo HY, Lim Ph A, Yip LWL. Optical Coherence Tomography Angiography of Optic Disc and Macula Vessel Density in Glaucoma and Healthy Eyes. J Glaucoma 2019; 28(1):80-87. https://doi.org/10.1097/IJG.0000000000001125.; Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, Penteado RC, Weinreb RN. Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glau- coma Suspect, and Healthy Eyes. Am J Ophthalmol 2018; 190:69-77. https://doi.org/10.1016/j.ajo.2018.03.026.; Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Association of Myopia With Peripapillary Perfused Capillary Density in Patients With Glaucoma: An Optical Coherence Tomogra- phy Angiography Study. JAMA Ophthalmol 2018; 136(5):507-513. https://doi.org/10.1001/jamaophthalmol.2018.0776.; Akil H, Chopra V, Al-Sheikh M, Ghasemi Falavarjani K, Huang AS, Sadda SR, Francis BA. Swept-source OCT angiography imaging of the macular capillary network in glaucoma. Br J Ophthalmol 2017; 132(4):515-519. https://doi.org/10.1136/bjophthalmol-2016-309816.; Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, Akagi T, Christopher M, Yarmohammadi A, Moghimi S, Weinreb RN. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glau- coma. J Glaucoma 2018; 27(6):481-489. https://doi.org/10.1097/IJG.0000000000000964.; Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, Webers CAB. Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage. J Glaucoma 2017; 26(10):888-895. https://doi.org/10.1097/IJG.0000000000000758.; Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, Barboni P, Bandello F. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Invest Ophthalmol Vis Sci 2017; 58(13):5713-5722. https://doi.org/10.1167/iovs.17-22865.; Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol 2017; 182:107-117. https://doi.org/10.1016/j.ajo.2017.07.011.; Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, Christopher M, Yarmohammadi A, Manalastas PIC, Shoji T, Bowd C, Weinreb RN. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthal- mology 2018; 125(11):1720-1728. https://doi.org/10.1016/j.ophtha.2018.05.006.; Moghimi S, Hosseini H, Riddle J, Lee GY, Bitrian E, Giaconi J, Caprioli J, Nouri-Mahdavi K. Measurement of optic disc size and rim area with spectral-domain OCT and scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2012; 53(8):4519-4530. https://doi.org/10.1167/iovs.11-8362.; Stoor K, Karvonen E, Leiviska I, Liinamaa J, Saarela V. Comparison of imaging parameters between OCT, GDx and HRT in the Northern Finland birth cohort eye study. Acta Ophthalmol 2022; 100(5): e1103-e1111. https://doi.org/10.1111/aos.15046.; Badala F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Cap- rioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol 2007;144(5):724-732. https://doi.org/10.1016/j.ajo.2007.07.010.; Karvonen E, Stoor K, Luodonpaa M, Hagg P, Lintonen T, Liinamaa J, Tuulonen A, Saarela V. Diagnostic performance of modern imaging instruments in glaucoma screening. Br J Ophthalmol 2020; 104(10): 1399-1405. https://doi.org/10.1136/bjophthalmol-2019-314795.; Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN. Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 2001; 119(7):985-993. https://doi.org/10.1001/archopht.119.7.985.; Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004; 122(6):827-837. https://doi.org/10.1001/archopht.122.6.827.; Sato S, Hirooka K, Baba T, Shiraga F. Comparison of optic nerve head parameters using Heidelberg Retina Tomograph 3 and spectral-domain optical coherence tomography. Clin Exp Ophthalmol 2012; 40(7):721-726. https://doi.org/10.1111/j.1442-9071.2012.02782.x.; Moreno-Montanes J, Anton A, Garcia N, Olmo N, Morilla A, Fallon M. Comparison of retinal nerve fiber layer thickness values using Stratus Optical Coherence Tomography and Heidelberg Retina Tomograph-III. J Glaucoma 2009; 18(7):528-534. https://doi.org/10.1097/IJG.0b013e318193c29f.; Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology 2012; 119(11):2261-2269. https://doi.org/10.1016/j.ophtha.2012.06.009.; Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology 2008; 115(8):1340-1346. https://doi.org/10.1016/j.ophtha.2007.11.008.; Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Sample PA, Girkin CA, Liebmann JM, Medeiros FA. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest Ophthalmol Vis Sci 2010; 51(7):3531-3539. https://doi.org/10.1167/iovs.09-4350.; Kim HG, Heo H, Park SW. Comparison of scanning laser polarimetry and optical coherence tomography in preperimetric glaucoma. Optom Vis Sci 2011; 88(1):124-129. https://doi.org/10.1097/OPX.0b013e3181fdef9c.; Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand 2006; 84(5):650-655. https://doi.org/10.1111/j.1600-0420.2006.00747.x.; Horn FK, Mardin CY, Laemmer R, Baleanu D, Juenemann AM, Kruse FE, Tornow RP. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest Ophthalmol Vis Sci 2009; 50(5):1971-1977. https://doi.org/10.1167/iovs.08-2405.; Xu G, Weinreb RN, Leung CKS. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance. Ophthalmology 2013; 120(12):2493-2500. https://doi.org/10.1016/j.ophtha.2013.07.027.; Lever M, Halfwassen C, Unterlauft JD, Bechrakis NE, Manthey A, Bohm MRR. Retinal nerve fibre layer thickness measurements in childhood glaucoma: the role of scanning laser polarimetry and optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2021; 259(12):3777-3786. https://doi.org/10.1007/s00417-021-05276-z.; Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: A meta-analysis. Surv Ophthalmol 2017; 62(4): 446-461. https://doi.org/10.1016/j.survophthal.2017.01.001.; https://www.glaucomajournal.ru/jour/article/view/527
-
3Academic Journal
Source: Сучасна педіатрія. Україна; № 5(133) (2023): Сучасна педіатрія. Україна; 24-30
Modern Pediatrics. Ukraine; No. 5(133) (2023): Modern pediatrics. Ukraine; 24-30
Modern Pediatrics. Ukraine; № 5(133) (2023): Modern pediatrics. Ukraine; 24-30Subject Terms: diagnosis, пневмонія, COVID-19, диагностика, діти, дети, laser polarimetry, діагностика, 3. Good health, children, pulmonary expiratory condensate, pneumonia, пневмония, лазерная поляриметрия, легочный экспират, лазерна поляриметрія, легеневий експірат
File Description: application/pdf
Access URL: http://mpu.med-expert.com.ua/article/view/289299
-
4Academic Journal
Authors: Achimova, E.A., Akimova, E.A., Abaşkin, V.G., Abashkin, V.G., Aбашкин, В.Г., Meşalchin, A.I., Meshalkin, A.Y., Loşmanschii, C.S., Loshmansky, C., Botnari, V.S.
Source: Электронная обработка материалов 59 (4) 33-41
Subject Terms: polarization holography, поляриметрия, поляризационная голография, азополимеры, Polarimetry, динамический и геометрический фазовый сдвиг, azopolymers, анизотропия, dynamic and geometric phases shift
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/186437
-
5Academic Journal
Authors: Garazdiuk, M. S., Bachynskyi, V. T.
Source: Буковинський медичний вісник; Том 24, № 3 (95) (2020); 9-15
Буковинский медицинский вестник; Том 24, № 3 (95) (2020); 9-15
Bukovinian Medical Herald; Том 24, № 3 (95) (2020); 9-15Subject Terms: 2. Zero hunger, давность образования кровоизлияния, лазерная поляриметрия, age of hemorrhage formation, laser polarimetry, давність утворення крововиливу, лазерна поляриметрія, 3. Good health
File Description: application/pdf
-
6Academic Journal
Source: Судебно-медицинская экспертиза; № 2 (2020); 29-38
Forensic-medical examination; № 2 (2020); 29-38
Судово-медична експертиза; № 2 (2020); 29-38Subject Terms: угарный газ, этанол, отравления, лазерная поляриметрия, чадний газ, етанол, отруєння, лазерна поляриметрія, carbon monoxide, ethanol, poisoning, laser polarimetry, 3. Good health
File Description: application/pdf
-
7Academic Journal
Source: Forensic-medical examination; № 1 (2020); 61-69
Судебно-медицинская экспертиза; № 1 (2020); 61-69
Судово-медична експертиза; № 1 (2020); 61-69Subject Terms: time since death, postmortem interval, vitreous body, laser polarimetry, autofluorescence, давність настання смерті, посмертний інтервал, склисте тіло, лазерна поляриметрія, автофлуоресценція, 4. Education, давность наступления смерти, посмертный интервал, стекловидное тело, лазерная поляриметрия, автофлуоресценция, 3. Good health
File Description: application/pdf
-
8Academic Journal
Source: Офтальмология. Восточная Европа. :182-194
Subject Terms: a personalized approach to treatment, 03 medical and health sciences, 0302 clinical medicine, сканирующая лазерная поляриметрия, персонифицированный подход к лечению, optical coherence tomography, оптическая когерентная томография, anterior ischemic optic neuropathy, передняя ишемическая оптическая нейропатия, scanning laser polarimetry, 3. Good health
-
9Academic Journal
Source: Офтальмология. Восточная Европа. :166-175
Subject Terms: сканирующая лазерная поляриметрия, primary open-angle glaucoma, optical coherence tomography, первичная открытоугольная глаукома, degenerative optoneuropathies, multiple sclerosis, 3. Good health, дегенеративные оптиконейропатии, рассеянный склероз, 03 medical and health sciences, 0302 clinical medicine, критерии дегенеративных оптиконейропатий, оптическая когерентная томография, scanning laser polarimetry, criteria for degenerative optoneuropathies
-
10Academic Journal
Authors: Sarkisova, Y. V.
Source: Буковинський медичний вісник; Том 24, № 1 (93) (2020); 128-133
Буковинский медицинский вестник; Том 24, № 1 (93) (2020); 128-133
Bukovinian Medical Herald; Том 24, № 1 (93) (2020); 128-133Subject Terms: 03 medical and health sciences, 0302 clinical medicine, лазерная поляриметрия, судебная медицина, давность наступления смерти, стекловидное тело, 4. Education, лазерна поляриметрія, судова медицина, давність настання смерті, склоподібне тіло, 16. Peace & justice, laser polarimetry, forensic medicine, time since death, vitreous body
File Description: application/pdf
-
11Academic Journal
Authors: Garazdiuk, Marta Slavivna, Bachynskyi, Viktor Teodosovych, Garazdiuk, Oleksandr Ivanovych, Ivaskevych, Ihor Bohdanovych
Source: Forensic-medical examination; № 1 (2019); 12-17
Судебно-медицинская экспертиза; № 1 (2019); 12-17
Судово-медична експертиза; № 1 (2019); 12-17Subject Terms: давность наступления смерти, спинномозговая жидкость, этиловый спирт, лазерная поляриметрия, автофлуоресценция, давність настання смерті, спинномозкова рідина, етиловий спирт, лазерна поляриметрія, автофлуоресценція, time since death, cerebrospinal fluid, ethyl alcohol, laser polarimetry, autofluorescence, 3. Good health
File Description: application/pdf
-
12Academic Journal
Source: Forensic-medical examination; № 1 (2019); 23-28
Судебно-медицинская экспертиза; № 1 (2019); 23-28
Судово-медична експертиза; № 1 (2019); 23-28Subject Terms: 03 medical and health sciences, Гостра крововтрата, лазерна поляриметрія, судово-медична експертиза, 0302 clinical medicine, acute blood loss, laser polarimetry, forensic medicine, 4. Education, острая кровопотеря, лазерная поляриметрия, судебно-медицинская экспертиза, 3. Good health
File Description: application/pdf
-
13Academic Journal
Authors: Alexander Ushenko, Anton Sdobnov, Alexander Dubolazov, Marta Grytsiuk, Yuriy Ushenko, Alexander Bykov, Igor Meglinski
Source: IEEE journal of selected topics in quantum electronics. 2019. Vol. 25, № 1. P. 7101612 (1-12)
Subject Terms: поляриметрическая визуализация, ellipsometry and polarimetry, polarization, поляриметрия, 0103 physical sciences, Polarimetric imaging, биологические ткани, Эллипсометрия, Stokes-correlometry, 01 natural sciences, 0104 chemical sciences
File Description: application/pdf
Linked Full TextAccess URL: http://jultika.oulu.fi/files/nbnfi-fe2019041512267.pdf
https://ieeexplore.ieee.org/document/8438957
https://ui.adsabs.harvard.edu/abs/2019IJSTQ..2565443U/abstract
http://jultika.oulu.fi/files/nbnfi-fe2019041512267.pdf
https://research.aston.ac.uk/en/publications/stokes-correlometry-analysis-of-biological-tissues-with-polycryst
http://jultika.oulu.fi/Record/nbnfi-fe2019041512267
http://urn.fi/urn:nbn:fi-fe2019041512267
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000703483 -
14Academic Journal
Source: Bukovinian Medical Herald; Том 22, № 2 (86) (2018); 144-148
Буковинский медицинский вестник; Том 22, № 2 (86) (2018); 144-148
Буковинський медичний вісник; Том 22, № 2 (86) (2018); 144-148Subject Terms: laser, laser therapy, laser surgery, laser polarimetry, laser spectroscopy, лазер, лазерна терапія, лазерна хірургія, лазерна поляриметрія, лазерна спектроскопія, лазерная терапия, лазерная хирургия, лазерная поляриметрия, лазерная спектроскопия, 3. Good health
File Description: application/pdf
-
15Academic Journal
Source: Судебно-медицинская экспертиза; № 1 (2018); 94-97
Forensic-medical examination; № 1 (2018); 94-97
Судово-медична експертиза; № 1 (2018); 94-97Subject Terms: острая кровопотеря, судебно-медицинская экспертиза, лазерная поляриметрия, acute blood loss, forensic medical examination, laser polarimetry, гостра крововтрата, судово-медична експертиза, лазерна поляриметрія
File Description: application/pdf
-
16Academic Journal
Subject Terms: дистанцiйне спостереження, тепловiзор, iнфрачервона поляриметрiя, дистанционное наблюдение, тепловизор, инфракрасная поляриметрия, remote sensing, thermal imager, infrared polarimetry, 621.384.3
File Description: Pp. 21-26; application/pdf
Relation: Вісник НТУУ «КПІ». Радіотехніка, радіоапаратобудування : збірник наукових праць, Вип. 85; Комп’ютерно-iнтегрований метод виявлення об’єктiв поляризацiйним тепловiзором / Колобродов В. Г., Микитенко В. I., Пiнчук Б. Ю., Сокол Б. В., Тягур В. М. // Вісник НТУУ «КПІ». Радіотехніка, радіоапаратобудування : збірник наукових праць. – 2021. – Вип. 85. – С. 21-26. – Бібліогр.: 19 назв.; https://ela.kpi.ua/handle/123456789/56057; https://doi.org/10.20535/RADAP.2021.85.21-26; orcid:0000-0003-0941-0252; orcid:0000-0001-7213-9368; orcid:0000-0002-0360-2512; orcid:0000-0002-3706-9867; orcid:0000-0002-7616-7945
-
17Academic Journal
Authors: Бачинський, В., Павлюкович, О., Ванчуляк, О., Савка, І.
Source: Bukovinian Medical Herald; Vol. 14 No. 4 (56) (2010); 119-121 ; Буковинский медицинский вестник; Том 14 № 4 (56) (2010); 119-121 ; Буковинський медичний вісник; Том 14 № 4 (56) (2010); 119-121 ; 2413-0737 ; 1684-7903
Subject Terms: death, asphyxia, blood loss, laser, polarimetry, смерть, асфиксия, кровопотеря, лазер, поляриметрия, асфіксія, крововтрата, поляриметрія
File Description: application/pdf
Availability: http://e-bmv.bsmu.edu.ua/article/view/241140
-
18Academic Journal
Authors: Ванчуляк, О., Бачинський, В., Никля, О., Заволович, А.
Source: Bukovinian Medical Herald; Vol. 15 No. 2(58) (2011); 148-151 ; Буковинский медицинский вестник; Том 15 № 2(58) (2011); 148-151 ; Буковинський медичний вісник; Том 15 № 2(58) (2011); 148-151 ; 2413-0737 ; 1684-7903
Subject Terms: лазерна поляриметрія, гостра коронарна недостатність міокарда, судово-медична експертиза, лазерная поляриметрия, миокард, острая коронарная недостатосность, судебно-медицинская экспертиза, laser polarimetry, acute coronary insufficiency, forensic medical examination
File Description: application/pdf
Availability: http://e-bmv.bsmu.edu.ua/article/view/233914
-
19Academic Journal
Authors: Ванчуляк, О.
Source: Bukovinian Medical Herald; Vol. 15 No. 3(59) (2011); 143-146 ; Буковинский медицинский вестник; Том 15 № 3(59) (2011); 143-146 ; Буковинський медичний вісник; Том 15 № 3(59) (2011); 143-146 ; 2413-0737 ; 1684-7903
Subject Terms: laser polarimetry, acute coronary insufficiency, Stoke’s vector, diagnostics, лазерная поляриметрия, острая коронарная недостаточность, вектор Стокса, диагностика, лазерна поляриметрія, гостра коронарна недостатність, діагностика
File Description: application/pdf
Availability: http://e-bmv.bsmu.edu.ua/article/view/232443
-
20Academic Journal
Authors: Ванчуляк, О., Бачинський, В., Олар, О., Григорова, О.
Source: Bukovinian Medical Herald; Vol. 15 No. 4(60) (2011); 132-134 ; Буковинский медицинский вестник; Том 15 № 4(60) (2011); 132-134 ; Буковинський медичний вісник; Том 15 № 4(60) (2011); 132-134 ; 2413-0737 ; 1684-7903
Subject Terms: laser polarimetry, myocardial structure, sudden cardial death, diagnostics, лазерная поляриметрия, структура миокарда, внезапная сердечная смерть, диагностика, лазерна поляриметрія, структура міокарда, раптова серцева смерть, діагностика
File Description: application/pdf
Availability: http://e-bmv.bsmu.edu.ua/article/view/229803