Showing 1 - 20 results of 389 for search '"политетрафторэтилен"', query time: 0.88s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Contributors: The study was carried out within the framework of the state assignment No. 075-01438-22-07 of 28.10.2022 (FSEE-2022-0019)., Исследование выполнено в рамках Государственного задания № 075-01438-22-07 от 28.10.2022 г. (FSEE-2022-0019).

    Source: Journal of the Russian Universities. Radioelectronics; Том 26, № 6 (2023); 16-26 ; Известия высших учебных заведений России. Радиоэлектроника; Том 26, № 6 (2023); 16-26 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/814/728; Wideband high gain fractal antenna for wireless applications / A. Desai, T. Upadhyaya, R. Petel, S. Bhatt, P. Mankodi // Progress in Electromagnetics Research Let. 2018. Vol. 74. P. 125–130. doi:10.2528/PIERL18011504; Elsheakh D. M., Nermeen A. E., Esmat A. A. Ultra wide bandwidth high gain Vivaldi antenna for wireless communications // Progress in Electromagnetics Research Let. 2017. Vol. 69. P. 105–111. doi:10.2528/PIERL17060507; Marno V. R., Odendaal J. W., Joubert J. J. High-gain directional antenna for WLAN and WiMAX applications // IEEE Antennas and Wireless Propagation Let. 2016. Vol. 16. P. 286–289. doi:10.1109/LAWP.2016.2573594; Marno V. R., Odendaal J. W., Joubert J. J. Compact low-cross-polarization horn antennas with serpentine-shaped taper // IEEE Trans. Antennas Propag. 2004. Vol. 52, no. 10. P. 2510–2516. doi:10.1109/TAP.2004.834423; Mohammad N., Faisal M. A. Design, simulation and analysis of a high gain small size array antenna for 5G wireless communication // Wireless Personal Communications. 2021. Vol. 116. P. 2761–2776. doi:10.1007/s11277-020-07819-9; Platonov R. A., Altynnikov A. A., Kozyrev A. B. A Tunable Beamforming Ferroelectric Lens for Millimeter Wavelength Ranges // Coatings. 2020. Vol. 10, no. 2. P. 180. doi:10.3390/coatings10020180; Wideband High-Gain Double-Sided Dielectric Lens Integrated with a Dual-Bowtie Antenna / G. H. Lee, S. Kumar, H. C. Choi, K. W. Kim // IEEE Antennas Wireless Propag. Let. 2021. Vol. 20. P. 293–297. doi:10.1109/LAWP.2020.3048165; Konstantinidis K., Feresidis A., Hall P. Dual‐slot feeding technique for broadband Fabry–Perot cavity antennas // IET Microwaves, Antennas & Propagation, 2015. Vol. 9, iss. 9. P. 861–866. doi:10.1049/ietmap.2014.0530; Ultra-Wideband and High Gain Fabry-Perot Cavity Antenna Using Frequency Selective Surface and Parasitic Patch / Z. Li, J. Ma, B. Shi, L. Peng // 12th Intern. Symp. on Antennas Propagation and EM Theory (ISAPE). Hangzhou, China, 3 Dec. 2018. Hangzhou Dianzi University, 2018. P. 1–3. doi:10.1109/ISAPE.2018.8634123; A compact wideband circular polarized Fabry-Perot antenna using resonance structure of thin dielectric slabs / Nguyen-Trong Nghia, Huy Hung Tran, Truong Khang Nguyen, Amin M. Abbosh // IEEE Access. 2018. Vol. 6. P. 56333–56339. doi:10.1109/ACCESS.2018.2872571; A Frequency Reconfigurable Fabry-Perot Cavity Antenna / L. Ji, Z. Pei, L. Zhang, J. Li // IEEE Intern. Symp. on Antennas and Propagation and North American Radio Science Meeting, Montreal, Canada, 5 July 2020. IEEE, 2020. P. 337–338. doi:10.1109/IEEECONF35879.2020.9330231; High Gain and Wide Bandwidth Fabry-Perot Frequency-Reconfigurable Antenna for Multiple LTE Radio Wireless Communication / T. K. Nguyen, M. T. Phan, R. Borowiec, A. Narbudowicz // IEEE Ninth Intern. Conf. on Communications and Electronics (ICCE), Phu Quoc Island, Vietnam, 13 Jan. 2021. IEEE, 2020. P. 260–264. doi:10.1109/ICCE55644.2022.9852085; Characterization of the properties of barium–strontium titanate films and controlled elements based on them in the frequency range of 1–60 GHz / A. G. Altynnikov, A. G. Gagarin, A. V. Tumarkin, I. V. Kotel’nikov // Technical Physics Let. 2019. Vol. 45. P. 540–543. doi:10.1134/S1063785019060026; Исследование свойств композитного материала для СВЧ-применений на основе PTFE с различной концентрацией и размером частиц керамического наполнителя / А. Б. Козырев, А. Е. Комлев, А. М. Сосунов, А. Г. Алтынников, Р. А. Платонов // J. of the Russian Universities. Radioelectronics. 2023. Т. 26, № 2. С. 16–24. doi:10.32603/1993-8985-2023-26-2-16-24; Nader B., Sarabandi K. A varactor-tuned dual-band slot antenna // IEEE Transactions on Antennas and Propagation. 2006. Vol. 54, no. 2. P. 401–408. doi:10.1109/TAP.2005.863373; Latif S. I., Shafai L., Sharma S. K. Bandwidth enhancement and size reduction of microstrip slot antennas // IEEE Trans. Antennas Propag. 2005. Vol. 53. P. 994–1003. doi:10.1109/TAP.2004.842674; https://re.eltech.ru/jour/article/view/814

  18. 18
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 26, № 2 (2023); 16-24 ; Известия высших учебных заведений России. Радиоэлектроника; Том 26, № 2 (2023); 16-24 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/733/674; Recent advances in lead-free dielectric materials for energy storage / K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He // Materials Research Bulletin. 2019. Vol. 113. P. 190–201. doi:10.1016/j.materresbull.2019.02.002; Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application / R. Shi, Zh. Lou, Sh. Chen, G. Shen // Science China Materials. 2018. Vol. 61, № 12. P. 1587–1595.; Research progress of high dielectric constant zirconia-based materials for gate dielectric application / J. Xie, Zh. Zhu, H. Tao, Sh. Zhou, Zh. Liang, Zh. Li, R. Yao, Y. Wang, H. Ning, J. Peng // Coatings. 2020. Vol. 10, № 7. P. 698. doi:10.3390/coatings10070698; Microwave composite dielectrics based on magnesium titanates / A. G. Belous, O. Ovchar, D. Durylin, M. Valant // J. of the European Ceramic Society. 2007. Vol. 27, № 8–9. P. 2963–2966. doi:10.1016/j.jeurceramsoc.2006.11.022; Microwave dielectric characterisation of 3Dprinted BaTiO3/ABS polymer composites / F. Castles, D. Isakov, A. Lui, Q. Lei, C. E. J. Dancer, Y. Wang, J. M. Janurudin, S. C. Speller, C. R. M. Grovenor, P. S. Grant // Scientific Reports. 2016. Vol. 6, № 1. P. 1–8. doi:10.1038/srep22714; High-performance microwave dielectric composite ceramics sintered at low temperature without sintering-aids / R. Peng, Y. Li, Y. Lu, Y. Yun, W. Du, Zh. Tao, B. Liao // J. of Alloys and Compounds. 2020. Vol. 831. P. 154878. doi:10.1016/j.jallcom.2020.154878; Electromagnonic crystals based on ferrite–ferroelectric–ferrite multilayers / A. A. Nikitin, A. A. Nikitin, I. L. Mylnikov, A. B. Ustinov, B. A. Kalinikos // IET Microwaves, Antennas & Propagation. 2020. Vol. 14, № 12. P. 1304–1309. doi:10.1049/iet-map.2020.0162; Multilayer RF PCB for space applications: technological and interconnections trade-off / M. Paillard, F. Bodereau, C. Drevon, P. Monfraix, J. L. Cazaux, L. Bodin, P. Guyon // European Microwave Conf. 2005. Vol. 3. P. 1642. doi:10.1109/EUMC.2005.1610270; Ye Y., Guo T. L. Hole metallisation technology for microwave printed circuit board // Transactions of the IMF. 2009. Vol. 87, № 4. P. 217–220. doi:10.1179/174591909X438866; Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode / W. Fuscaldo, F. Maita, L. Maiolo, R. Beccherelli, D. C. Zografopoulos // Applied Sciences. 2022. Vol. 12, № 16. P. 8259. doi:10.3390/app12168259; Novel high dielectric constant and low loss PTFE/CNT composites / H. Peng, H. Ren, M. Dang, Y. Zhang, X. Yao, H. Lin // Ceramics International. 2018. Vol. 44, № 14. P. 16556–16560. doi:10.1016/j.ceramint.2018.06.077; Yuan Y., Zhang S. R., Zhou Z. H. MgTiO3 filled PTFE composites for microwave substrate applications // Materials Chemistry and Physics. 2013. Vol. 141, № 1. P. 175–179. doi:10.1016/j.matchemphys.2013.04.043; Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene‐reinforced poly (lactic acid) composites / A. Huang, H. Kharbas, T. Ellingham, H. Mi, L. Sh. Turng, X. Peng // Polymer Engineering & Science. 2017. Vol. 57, № 5. P. 570–580. doi:10.1002/pen.24454; Luukkonen O., Maslovski S. I., Tretyakov S. A. A stepwise Nicolson–Ross–Weir-based material parameter extraction method // IEEE Antennas and Wireless Propagation Let. 2011. Vol. 10. P. 1295–1298. doi:10.1109/LAWP.2011.2175897; Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials / E. J. Rothwell, J. L. Frasch, S. M. Ellison, P. Chahal, R. O. Ouedraogo // Progress In Electromagnetics Research. 2016. Vol. 157. P. 31–47. doi:10.2528/PIER16071706; https://re.eltech.ru/jour/article/view/733

  19. 19
  20. 20