-
1Academic Journal
Authors: V. A. Mikhailova, K. L. Belyakova, L. P. Vyazmina, A. R. Sheveleva, S. A. Selkov, D. I. Sokolov, В. А. Михайлова, К. Л. Белякова, Л. П. Вязьмина, А. Р. Шевелева, С. А. Сельков, Д. И. Соколов
Contributors: The present work was supported by the Russian Foundation for Basic Research grant No. 17-04- 00679 (cell cultures) and the Russian Science Foundation grant No. 17-15-01230 (evaluation of the NK-92 cell line phenotype and their microvesicles)., Работа поддержана грантом РФФИ № 17-04- 00679 (культивирование клеток) и грантом РНФ № 17-15-01230 (оценка фенотипических характеристик линии NK-92 и их микрочастиц).
Source: Medical Immunology (Russia); Том 20, № 2 (2018); 251-254 ; Медицинская иммунология; Том 20, № 2 (2018); 251-254 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2018-2
Subject Terms: поверхностные рецепторы, flow cytometry, microvesicles, microparticles, cell culture, NK-92, cell surface receptors, проточная цитофлуориметрия, микровезикулы, микрочастицы, клеточная культура
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/1482/1018; Agouni A., Ducluzeau P. H., Benameur T., Faure S., Sladkova M., Duluc L., Leftheriotis G., Pechanova O., Delibegovic M., Martinez M.C., Andriantsitohaina R. Microparticles from patients with metabolic syndrome induce vascular hypo-reactivity via Fas/Fas-ligand pathway in mice. PLoS ONE, 2011, Vol. 6, no. 11, e27809. doi:10.1371/journal.pone.0027809.; Albanese J., Meterissian S., Kontogiannea M., Dubreuil C., Hand A., Sorba S., Dainiak N. Biologically active Fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles. Blood, 1998, Vol. 91, no. 10, pp. 3862-3874.; Camussi G., Deregibus M.C., Bruno S., Grange C., Fonsato V., Tetta C. Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am. J. Cancer Res., 2011, Vol. 1, no. 1, pp. 98-110.; Diehl P., Fricke A., Sander L., Stamm J., Bassler N., Htun N., Ziemann M., Helbing T., El-Osta A., Jowett J.B., Peter K., Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc. Res., 2012, Vol. 93, no. 4, pp. 633-644.; Gelderman M.P., Simak J. Flow cytometric analysis of cell membrane microparticles. Methods Mol. Biol., 2008, Vol. 484, pp. 79-93.; Gyorgy B., Szabo T. G., Pasztoi M., Pal Z., Misjak P., Aradi B., Laszlo V., Pallinger E., Pap E., Kittel A., Nagy G., Falus A., Buzas E. I. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and Molecular Life Sciences, 2011, Vol. 68, no. 16, pp. 2667-2688.; Jayachandran M., Litwiller R.D., Owen W.G., Heit J.A., Behrenbeck T., Mulvagh S.L., Araoz P.A., Budoff M.J., Harman S.M., Miller V.M. Characterization of blood borne microparticles as markers of premature coronary calcification in newly menopausal women. Am. J. Physiol. Heart Circ. Physiol., 2008, Vol. 295, no. 3, pp. H931-H938.; Mause S.F., Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res., 2010, Vol. 107, no. 9, pp. 1047-1057.; Mikhailova V.A., Ovchinnikova O.M., Zainulina M.S., Sokolov D.I., Selkov S.A. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bulletin of Experimental Biology and Medicine, 2014, Vol. 157, no. 6, pp. 721-727.; Roos M.A., Gennero L., Denysenko T., Reguzzi S., Cavallo G., Pescarmona G.P., Ponzetto A. Microparticles in physiological and in pathological conditions. Cell Biochemistry and Function, 2010, Vol. 28, no. 7, pp. 539-548.; Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.; van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.; Xu R., Greening D.W., Zhu H.J., Takahashi N., Simpson R.J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest., 2016, Vol. 126, no. 4, pp. 1152-1162.; https://www.mimmun.ru/mimmun/article/view/1482