Showing 1 - 20 results of 45 for search '"перитонеальные макрофаги"', query time: 0.70s Refine Results
  1. 1
    Academic Journal

    Source: Drug development & registration; Том 11, № 2 (2022); 59-64 ; Разработка и регистрация лекарственных средств; Том 11, № 2 (2022); 59-64 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/1217/966; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1217/1154; Akinrinmade O. A., Chetty S., Daramola A. K., Islam M-u., Thepen T., Barth S. CD64: An attractive immunotherapeutic target for M1-type macrophage mediated chronic inflammatory diseases. Biomedicines. 2017;5(3):56. DOI:10.3390/biomedicines5030056.; Bogdan C., Röllinghoff M., Diefenbach A. The role of nitric oxide in innate immunity. Immunological Reviews. 2000;173:17–26. DOI:10.1034/j.1600-065x.2000.917307.; Funes S. C., Rios M., Escobar-Vera J., Kalergis A. M. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–195. DOI:10.1111/imm.12910.; García-Ortiz A., Serrador J. M. Nitric Oxide Signaling in T CellMediated Immunity. Trends in Molecular Medicine. 2018;24(4):412–427. DOI:10.1016/j.molmed.2018.02.002.; Kumar S., Singh R. K., Bhardwaj T. R. Therapeutic role of nitric oxide as emerging molecule. Biomedicine & Pharmacotherapy. 2017;85:182–201. DOI:10.1016/j.biopha.2016.11.125; Lind M., Hayes A., Caprnda M., Petrovic D., Rodrigo L., Kruzliak P., Zulli A. Inducible nitric oxide synthase: Good or bad? Biomedicine & Pharmacotherapy. 2017;93:370–375. DOI:10.1016/j.biopha.2017.06.036.; Moncada S., Higgs E. A. The discovery of nitric oxide and its role in vascular biology. British Journal of Pharmacology. 2006;147(1):193–201. DOI:10.1038/sj.bjp.0706458-2.; Moreira Lopes T. C., Mosser D. M., Gonçalves R. Macrophage polarization in intestinal inflammation and gut homeostasis. Inflammation Research. 2020;69:1163–1172. DOI:10.1007/s00011-020-01398-y.; Schepetkin I. A., Quinn M. T. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. International Immunopharmacology. 2006;6:317–333. DOI:10.1016/j.intimp.2005.10.005.; Thiriot J. D., Martinez-Martinez Y. B., Endsley J. J., Torres A. G. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathogens and Disease. 2020;78(1). DOI:10.1093/femspd/ftaa009.; Thwe P. M., Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Letters. 2018;412:236–242. DOI:10.1016/j.canlet.2017.10.032.; Решетов Я. Е., Белоусов М. В., Авдеева Е. Ю., Шурупова М. Н. Сравнительное исследование элементного состава и биологически активных веществ растений рода Saussurea DC. флоры Восточной Сибири. Химия растительного сырья. 2018;4:205–214. DOI:10.14258/jcprm.2018043710.; https://www.pharmjournal.ru/jour/article/view/1217

  2. 2
    Academic Journal

    Contributors: The studies were carried out within the framework of the state- th assignment, number of state registration of the topic No. AAAA-A19-119112290007-7. The article was published within the framework of the V All-Russian scientific and practical conference of young scientists with international participation "Fundamental and applied aspects in medicine and biology", Исследования проведены в рамках государственного задания, номер государственной регистрации темы № АААА-А19-119112290007-7. Статья опубликована в рамках V Всероссийской научно-практической конференции молодых учёных с международным участием «Фундаментальные и прикладные аспекты в медицине и биологии»

    Source: Acta Biomedica Scientifica; Том 7, № 5-1 (2022); 266-273 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3854/2456; Janecka A., Staniszewska R., Fichna J. Endomorphin analogs. Curr Med Chem. 2007; 14 (30): 3201-3208. doi:10.2174/092986707782793880; Pomorska D. K., Gach K., Janecka A. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors. Mini Rev Med Chem. 2014; 14 (14): 1148-1155. doi:10.2174/1389557515666150101095237; Bodnar Rю J. Endogenous opiates and behavior. Peptides. 2010; 31 (12): 2325-2359. doi:10.1016/j.peptides.2010.09.016; Fichna J., Janecka A., Costentin J., Do Rego J. C. The endomorphin system and its evolving neurophysiological role. Pharmacol Rev. 2007; 59 (1): 88-123. doi:10.1124/pr.59.1.3; Sedqi M., Roy S., Ramakrishnan S., Elde R., Loh H. H. Complementary DNA cloning of a muopioid receptor from rat peritoneal macrophages. Biochem Biophys Res Commun. 1995; 209 (2): 563-574. doi:10.1006/bbrc.1995.1538; Гейн С. В. Эндоморфины: структура, локализация, иммунорегуляторная активность / С. В. Гейн, Т. А. Баева // Проблемы эндокринологии. – 2020. – 66 (1): 78-86. doi:10.14341/probl10364; Yang Y., Bazhin A., Werner J., Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013; 32 (3): 249-270. doi:10.3109/08830185.2012.755176; Гейн С. В. Влияние эндоморфинов-1,2 на функциональную активность нейтрофилов и моноцитов периферической крови in vitro / С. В. Гейн, Я. А. Кадочникова // Физиология человека. – 2021. – 47 (6): 65-71. doi:10.31857/S0131164621060023; Frimel G. Immunological methods. Moscow: Meditsina Publ.; 1987.; Plein L. M., Rittner H. L. Opioids and the immune system – friend or foe. Br J Pharmacol. 2018; 175 (14): 2717-2725. doi:10.1111/bph.13750; Sarić A., Balog T., Sobocanec S., Marotti T. Endomorphin 1 activates nitric oxide synthase 2 activity аnd downregulates nitric oxide synthase 2 mRNA еxpression. Neuroscience. 2007; 144 (4): 1454-1461. doi:10.1016/j.neuroscience.2006.11.020; Balog T., Sarić A., Sobocanec S., Kusić B., Marotti T. Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages. Neuropeptides. 2010; 44 (1): 25-29. doi:10.1016/j.npep.2009.11.004; Riquelme P., Tomiuk S., Kammler A., Fändrich F., Schlitt H. J., Geissler E. K., et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol Ther. 2013; 21 (2): 409-422. doi:10.1038/mt.2012.168; Azuma Y., Ohura K. Endomorphins 1 and 2 inhibit IL-10 and IL-12 production and innate immune functions, and potentiate NF-jB DNA binding in THP-1 differentiated to macrophage-like cells. Scand J Immunol. 2002; 56 (3): 209-260. doi:10.1046/j.1365-3083.2002.01128.x; Inui Y., Azuma Y., Ohura K. Differential alteration of functions of rat peritoneal macrophages responsive to endogenous opioid peptide endomorphin-1. Int Immunopharmacol. 2002; 2 (8): 1133-1142. doi:10.1016/s1567-5769(02)00065-6; Azuma Y., Ohura K. Endomorphin-2 modulates productions of TNF-a, IL-1b, IL-10, and IL-12, and alters functions related to innate immune of macrophages. Inflammation. 2002; 26 (5): 223-232. URL: https://pubmed.ncbi.nlm.nih.gov/12238565/; https://www.actabiomedica.ru/jour/article/view/3854

  3. 3
    Academic Journal

    Contributors: The authors are grateful to Head of the Shared Access Center "Cell technologies” Institute of Cytology and Genetics, Novosibirsk, for access to the microscope. This work was supported by the companies Activator MAF and BA Pharma and by State Budgeted Project 0324-2019-0042 (registration ID АААА-А17-117071240065-4)

    Source: Vavilov Journal of Genetics and Breeding; Том 24, № 3 (2020); 284-291 ; Вавиловский журнал генетики и селекции; Том 24, № 3 (2020); 284-291 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2596/1382; Гржибовский А.М. Анализ трех и более независимых групп количественных данных. Экология человека. 2008;3:50-58.; Останин А.А., Кирикович С.С., Долгова Е.В., Проскурина А.С., Черных Е.Р., Богачев С.С. Тернистый путь макрофаг-активирующего фактора (GcMAF): от открытия к клинической практике. Вавиловский журнал генетики и селекции. 2019;23(5):624-631. DOI 10.18699/VJ19.535.; Asaoka Y., Ota M., Yoshida K., Sasaki Y., Nishizuka Y. Role of ly-sophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc. Natl. Acad. Sci. USA. 1992;89(14):6447-6451. DOI 10.1073/pnas.89.14.6447.; Borges C.R., Rehder C.R. Glycan structure of Gc protein-derived macrophage activating factor as revealed by mass spectrometry. Arch. Biochem. Biophys. 2016;606:167-179. DOI 10.1016/j.abb.2016.08.006.; Cassetta L., Cassol E., Poli G. Macrophage polarization in health and disease. Sci. World J. 2011;11:2391-2402. DOI 10.1100/2011/213962.; Delanghe J.R., Speeckaert R., Speeckaert M.M. Behind the scenes of vitamin D binding protein: more than vitamin D binding. Best Pract. Res. Clin. Endocrinol. Metab. 2015;29(5):773-786. DOI 10.1016/j.beem.2015.06.006.; de Souza M.G., Grossi A.L., Pereira E.L., da Cruz C.O., Mendes F.M., Cameron L.C., Paiva C.L. Actin immobilization on chitin for purifying myosin II: a laboratory exercise that integrates concepts of molecular cell biology and protein chemistry. Biochem. Mol. Biol. Educ. 2008;36(1):55-60. DOI 10.1002/bmb.122.; Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3(1):23-35. DOI 10.1038/nri978.; Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982;126(1):131-138. DOI 10.1016/0003-2697(82)90118-x.; Greilberger J., Herwig R. Vitamin D - deglycosylated vitamin D-bind-ing protein dimer: positive synergistic effects on recognition, activation, phagocytosis and oxidative stress on macrophages. Clin. Lab. 2020;66(1):169-177. DOI 10.7754/Clin.Lab.2019.191121.; Haddad J.G., Kowalski M.A., Sanger J.W. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins). Biochem. J. 1984;218(3):805-810. DOI 10.1042/bj2180805.; Hammarstrom S., Kabat E.A. Studies on specificity and binding properties of the blood group A reactive hemagglutinin from Helix pomatia. Biochemistry. 1971;10(9):1684-1692. DOI 10.1021/bi00785a028.; Inui T., Amitani H., Kubo K., Kuchike D., Uto Y., Nishikata T., Mette M. Case report: a non-small cell lung cancer patient treated with GcMAF, sonodynamic therapy and tumor treating fields. Anticancer Res. 2016a;36:3767-3770. PMID: 27354652.; Inui T., Katsuura G., Kubo K., Kuchiike D., Chenery L., Uto Y., Nishikata T., Mette M. Case report: GcMAF treatment in a patient with multiple sclerosis. Anticancer Res. 2016b;36:3771-3774. PMID: 27354653.; Inui T., Kuchiike D., Kubo K., Mette M., Uto Y., Hori H., Sakamoto N. Clinical experience of integrative cancer immunotherapy with GcMAF. Anticancer Res. 2013;33(7):2917-2919. PMID: 23780980.; Ioannou Y.A., Bishop D.F., Desnick R.J. Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J. Cell Biol. 1992; 119:1137-1150. DOI 10.1083/jcb.119.5.1137.; Ishikawa M., Inoue T., Inui T., Kuchiike D., Kubo K., Uto Y., Nishi-kata T. A novel assay system for macrophage-activating factor activity using a human U937 cell line. Anticancer Res. 2014;34(8): 4577-4581. PMID: 25075102.; Kisker O., Onizuka S., Becker C.M., Fannon M., Flynn E., D’Amato R., Zetter B., Folkman J., Ray R., Swamy N., Pirie-Shepherd S. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice. Neoplasia. 2003; 5(1):32-40. DOI 10.1016/S1476-5586(03)80015-5.; Klokol D., Teppone M. Management of metastatic colorectal carcinoma with GcMAF Forte and thymus peptides: a case report. J. Clin. Cell. Immunol. 2016;7:4. DOI 10.4172/2155-9899.1000449.; Korbelik M., Naraparaju V.R., Yamamoto N. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br. J. Cancer. 1997;75(2):202-207. DOI 10.1038/bjc.1997.34.; Korbelik M., Naraparaju V.R., Yamamoto N. The value of serum a-N-acetylgalactosaminidase measurement for the assessment of tumour response to radio- and photodynamic therapy. Br. J. Cancer. 1998; 77:1009-1014. DOI 10.1038/bjc.1998.166.; Kuchiike D., Uto Y., Mukai H., Ishiyama N., Abe C., Tanaka D., Kawai T., Kubo K., Mette M., Inui T., Endo Y., Hori H. Degalacto-sylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity. Anticancer Res. 2013;33(7):2881-2885. PMID: 23780974.; Lamagna C., Aurrand-Lions M., Imhof B.A. Dual role of macrophages in tumor growth and angiogenesis. J. Leukoc. Biol. 2006;80(4):705-713. DOI 10.1189/jlb.1105656.; Link R.P., Perlman K.L., Pierce E.A., Schnoes H.K., DeLuca H.F. Purification of human serum vitamin D-binding protein by 25-hydro-xyvitamin D3-Sepharose chromatography. Anal. Biochem. 1986; 157(2):262-269. DOI 10.1016/0003-2697(86)90624-x.; Malik S., Fu L., Juras D.J., Karmali M., Wong B.Y., Gozdzik A., Cole D.E. Common variants of the vitamin D binding protein gene and adverse health outcomes. Crit. Rev. Clin. Lab. Sci. 2013;50(1): 1-22. DOI 10.3109/10408363.2012.750262.; Matsuura T., Uematsu T., Yamaoka M., Furusawa K. Effect of salivary gland adenocarcinoma cell-derived a-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor. Int. J. Oncol. 2004; 24(3):521-528. DOI 10.3892/ijo.24.3.521.; Mohamad S.B., Nagasawa H., Uto Y., Hori H. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities. Anticancer Res. 2002; 22(6C):4297-4300. PMID: 12553073.; Mosser D.M. The many faces of macrophage activation. J. Leukoc. Biol. 2003;73(2):209-212. DOI 10.1189/jlb.0602325.; Moya R., Chan M.K.S., Klokol D., Pan S.Yi. Active specific immunotherapy (ASI) and GcMAF Forte in management of metastatic invasive carcinoma - overview of the therapeutic modalities and a case report. J. Clin. Exp. Immunol. 2018;3(2):1-4.; Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011;11:723-737. DOI 10.1038/nri3073.; Nagasawa H., Uto Y., Sasaki H., Okamura N., Murakami A., Kubo S., Kirk K.L., Hori H. Gc protein (vitamin D-binding protein): Gc ge-notyping and GcMAF precursor activity. Anticancer Res. 2005;25: 3689-3696. PMID: 16302727.; Naraparaju V.R., Yamamoto N. Roles of P-galactosidase of B lymphocytes and sialidase of T lymphocytes in inflammation-primed activation of macrophages. Immunol. Lett. 1994;43(3):143-148. DOI 10.1016/0165-2478(94)90214-3.; Ngwenya B.Z., Yamamoto N. Effects of inflammation products on immune systems. Lysophosphatidylcholine stimulates macrophages. Cancer Immunol. Immunother. 1986;21(3):174-182. DOI 10.1007/bf00199358.; Pacini S., Punzi T., Morucci G., Gulisano M., Ruggiero M. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells. Anticancer Res. 2012;32(1):45-52. PMID: 22213287.; Paduraru D.N., Bouariu A., Ion D., Andronic O., Dumitrascu M.C., Bolocan A. Considerations regarding GcMAF treatement in breast cancer. Rom. Biotechnol. Lett. 2019;24(5):851-855. DOI 10.25083/rbl/24.5/851.855.; Rehder D.S., Nelson R.W., Borges C.R. Glycosylation status of vitamin D binding protein in cancer patients. Protein Sci. 2009;18(10): 2036-2042. DOI 10.1002/pro.214.; Ruggiero M., Reinwald H., Pacini S. Is chondroitin sulfate responsible for the biological effect attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)? Med. Hypotheses. 2016;94: 126-131. DOI 10.1016/j.mehy.2016.07.012.; Ruggiero M., Ward E., Smith R., Branca J.J., Noakes D., Morucci G., Taubmann M., Thyer L., Pacini S. Oleic acid, deglycosylated vitamin D-binding protein, nitric oxide: a molecular triad made lethal to cancer. Anticancer Res. 2014;34(7):3569-3578. PMID: 24982371.; Saburi E., Saburi A., Ghanei M. Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Caspian J. Intern. Med. 2017a;8(4):228-238. DOI 10.22088/cjim.8.4.228.; Saburi E., Tavakol-Afshari J., Biglari S., Mortazavi Y. Is a-N-acetyl-galactosaminidase the key to curing cancer? A mini-review and hypothesis. JBUON. 2017b;22(6):1372-1377. PMID: 29332325.; Sica A., Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 2007;117(5):1155-1166. DOI 10.1172/JCI31422.; Smith R., Thyer L., Ward E., Meacci E., Branca J.J.V., Morucci G., Gu-lisano M., Ruggiero M., Pacini A., Paternostro F., Mannelli L.D.C., Noakes D.J., Pacini S. Effects of Gc-macrophage activating factor in human neurons; implications for treatment of chronic fatigue syndrome. Am. J. Immunol. 2013;9(4):120-129. DOI 10.3844/ajisp.2013.120.129.; Spudich J.A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 1971;246(15):4866-4871. PMID: 4254541.; Swamy N., Ray R. 25-Hydroxy[26,27-methyl-3H]vitamin D3-3P-(1,2-epoxypropyl)ether: an affinity labeling reagent for human vitamin D-binding protein. Arch. Biochem. Biophys. 1995;319(2):504-507. DOI 10.1006/abbi.1995.1323.; Thyer L., Ward E., Smith R., Branca J.J., Morucci G., Gulisano M., Noakes D., Eslinger R., Pacini S. GC protein-derived macrophageactivating factor decreases a-N-acetylgalactosaminidase levels in advanced cancer patients. Oncoimmunology. 2013a;2(8):e25769. DOI 10.4161/onci.25769.; Thyer L., Ward E., Smith R., Fiore M.G., Magherini S., Branca J.J., Morucci G., Gulisano M., Ruggiero M., Pacini S. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages. Nutrients. 2013b;5(7):2577-2589. DOI 10.3390/nu5072577.; Toyohara Y., Hashitani S., Kishimoto H., Noguchi K., Yamamoto N., Urade M. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line. Oncol. Lett. 2011;2(4):685-691. DOI 10.3892/ol.2011.306.; Ugarte A., Bouche G., Meheus L. Inconsistencies and questionable reliability of the publication “Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophages-acti-vating, GcMAF” by Yamamoto et al. Cancer Immunol. Immunother. 2014;63(12):1347-1348. DOI 10.1007/s0262-014-1587-y.; Yamamoto N. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production. Mol. Immunol. 1996;33:1157-1164. PMID: 8360493.; Yamamoto N., Homma S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes. Proc. Natl. Acad. Sci. USA. 1991;88(19):8539-8543. DOI 10.1073/pnas. 88.19.8539.; Yamamoto N., Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells. J. Immunol. 1993;151(5):2794-2802. PMID: 8360493.; Yamamoto N., Naraparaju V.R., Asbell S.O. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res. 1996;56(12):2827-2831. PMID: 8665521.; Yamamoto N., Suyama H., Yamamoto N. Immunotherapy for prostate cancer with Gc protein-derived macrophage-activating factor, GcMAF. Transl. Oncol. 2008;1(2):65-72. DOI 10.1593/tlo.08106.; https://vavilov.elpub.ru/jour/article/view/2596

  4. 4
    Academic Journal

    Contributors: Авторы выражают благодарность руководству «ООО «МБЦ «Генериум» в лице генерального директора Р. А. Хамитова.

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 20, № 1 (2020); 42-49 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 20, № 1 (2020); 42-49 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2020-20-1

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/270/279; Zimran A. How I treat Gaucher disease. Blood. 2011;118(6): 1463–71. https://doi.org/10.1182/blood-2011-04-308890; Dekker N, van Dussen L, Hollak CE, Overkleeft H, Scheij S, Ghauharali K, et al. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011;118(16):118–27. https://doi.org/10.1182/blood-2011-05-352971; Sato Y, Beutler E. Binding, internalization, and degradation of mannose-terminated glucocerebrosidase by macrophages. J Clin Invest. 1993;91(5):1909–17. https://doi.org/10.1172/JCI116409; Friedman B, Vaddi K, Preston C, Mahon E, Cataldo JR, McPherson JM. A comparison of the pharmacological properties of carbohydrate remodeled recombinant and placental-derived beta-glucocerebrosidase: implications for clinical efficacy in treatment of Gaucher disease. Blood. 1999;93(9):2807–16.; Novo JB, Morganti L, Moro AM, Paes Leme AF, Serrano SM, Raw I, Ho PL. Generation of a Chinese hamster ovary cell line producing recombinant human glucocerebrosidase. J Biomed Biotechnol. 2012;2012:875383. http://doi.org/10.1155/2012/875383; Zhu Y, Li X, Schuchman EH, Desnick RJ, Cheng SH. Dexamethasone-mediated up-regulation of the mannose receptor improves the delivery of recombinant glucocerebrosidase to Gaucher macrophages. J Pharmacol Exp Ther. 2004;308(2):705–11. https://doi.org/10.1124/jpet.103.060236; Simmons BM, Stahl PD, Russell JH. Mannose receptormediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation. J Biol Chem. 1986;261(17):7912–20.; Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, et al. Characterization of gene-activated human acid-β-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology. 2010;20(1):24–32. https://doi.org/10.1093/glycob/cwp138; Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J. 2007;5(5):579–90. https://doi.org/10.1111/j.14677652.2007.00263.x; Tekoah Y, Tzaban S, Kizhner T, Hainrichson M, Gantman A, Golembo M, et al. Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep. 2013;33(5):e00071. https://doi.org/10.1042/BSR20130081; Carballo-Uicab G, Linares-Trejo JE, Mellado-Sanchez G, Lopez-Morales CA, Velasco-Velazquez M, Pavon L, et al. Validation of a cell proliferation assay to assess the potency of a dialyzable leukocyte extract intended for batch release. Molecules. 2019;24(19):E3426. https://doi.org/10.3390/molecules24193426; Mejia-Calvo I, Munoz-Garcia L, Jimenez-Uribe A, CamachoSandoval R, Gonzalez-Gonzalez E, Mellado-Sanchez G, et al. Validation of a cell-based colorimetric reporter gene assay for the evaluation of Type I Interferons. Biotechnol Rep (Amst). 2019;22:e00331. https://doi.org/10.1016/j.btre.2019.e00331; Azad AK, Rajaram MVS, Schlesinger LS. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J Cytol Mol Biol. 2014;10(1):1000003. https://doi.org/10.13188/23254653.1000003; Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, et al. Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology. 2007;17(5):467–78. https://doi.org/10.1093/glycob/cwm008; https://www.biopreparations.ru/jour/article/view/270

  5. 5
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 3, № 4 (2018); 47-52 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/649/642; Адамс Р. Методы культуры клеток для биохимиков. – М.: Мир, 1983. – 264 с. Adams R. (1983). Methods of cell culture for biochemists [Metody kul’tury kletok dlya biokhimikov]. Moskva, 264 p.; Ляпун И.Н., Плехова Н.Г., Компанец Г.Г., Смирнов И.С., Сомова Л.М. Морфофункциональная характеристика нейтрофилов, заражённых хантавирусом // Бюл. СО РАМН. – 2013. – Т. 33, № 2. – С. 26–32. Lyapun IN, Plekhova NG, Kompanets GG, Smirnov IS, Somova LM. (2013). Morphofunctional characteristics of neutrophils infected with hantavirus [Morfofunktsional’naya kharakteristika neytrofilov, zarazhennykh khantavirusom]. Byul. SO RAMN, 33 (2), 26-33.; Компанец Г.Г., Иунихина О.В., Потт А.Б. Антигенные характеристики штаммов ортохантавирусов, выделенных от мышей семейства Аpodemus // Международный журнал прикладных и фундаментальных исследований. – 2017. – № 12 (1). – С. 108– 111. Kompanets GG, Iunihina OV, Pott AB. (2017). Antigenic characteristics of strains of orthochantaviruses isolated from mice of the Apodemus family [Antigennye kharakteristiki shtammov ortokhantavirusov, vydelennykh ot myshey semeystva Apodemus]. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy, 12 (1), 108-111.; Плехова Н.Г., Сомова Л.М., Слонова Р.А., Компанец Г.Г., Лукьянова В.В., Якубович Н.В. Метаболическая активность макрофагов, заражённых hantaviruses – возбудителями геморрагической лихорадки с почечным синдромом // Биохимия. – 2005. – Т. 70, № 9. – С. 1198–1208. Plekhova NG, Somova LM, Slonova RA, Kompanets GG, Luk’yanova VV, Yakubovich NV. (2005). Metabolic activity of macrophages infected with hantaviruses – pathogens of hemorrhagic fever with renal syndrome [Metabolicheskaya aktivnost’ makrofagov, zarazhennykh hantaviruses – vozbuditelyami gemorragicheskoy likhoradki s pochechnym sindromom]. Biokhimiya, 70 (9), 1198-1208.; Плехова Н.Г., Сомова Л.М., Компанец Г.Г., Слонова Р.А. Роль клеток моноцитарного происхождения в патогенезе хантавирусных инфекций // Тихоокеанский медицинский журнал. – 2008. – № 2. – С. 32–36. Plekhova NG, Somova LM, Kompanets GG, Slonova RA. (2008). The role of cells of monocytic origin in the pathogenesis of hantavirus infections [Rol’ kletok monotsitarnogo proiskhozhdeniya v patogeneze khantavirusnykh infektsiy]. Tikhookeanskiy meditsinskiy zhurnal, (2), 32-36.; Потт А.Б., Компанец Г.Г. Изучение вирулентности штаммов геноварианта Amur и ортохантавируса Hantaan // Здоровье. Медицинская экология. Наука. – 2017. – № 5 (72). – С. 82–86. DOI:10.5281/zenodo.1115481 Pott AB, Kompanets GG. (2017). The study of the virulence of strains of the Amur genovariant and Hantaan orthohantavirus [Izuchenie virulentnosti shtammov genovarianta Amur i ortokhantavirusa Hantaan]. Zdorov’e. Meditsinskaya ekologiya. Nauka, 5 (72), 82-86. DOI:10.5281/zenodo.1115481; Ткаченко Е.А., Бернштейн А.Д., Дзагурова Т.К., Морозов В.Г., Слонова Р.А., Иванов Л.И., Транквилевский Д.В., Крюгер Д. Актуальные проблемы геморрагической лихорадки с почечным синдромом // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2013. – № 1. – С. 51–58. Tkachenko EA, Bernshtejn AD, Dzagurova TK, Morozov VG, Slonova RA, Ivanov LI, Trankvilevskij DV, Kryuger D. (2013). Actual problems of hemorrhagic fever with renal syndrome [Aktual’nye problemy gemorragicheskoy likhoradki s pochechnym sindromom]. Zhurnal mikrobiologii, epidemiologii i immunobiologii, (1), 51- 58.; Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon H, Siddell SG. (2017). Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch Virol, 162 (8), 2505-2538. DOI:10.1007/s00705-017-3358-5; Easterbrook JD, Klein SL. (2008). Immunological mechanisms mediating hantavirus persistence in rodent reservoirs. PLoS Pathog, 4 (11), 1-5. DOI:10.1371/journal.ppat.1000172; Geimonen E, Neff S, Raymond T, Kocer SS, Gavrilovskaya IN, Mackow ER. (2002). Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci USA, 99, 13837-13842. DOI:10.1073/pnas.192298899; Lee PW, Gibbs CJ, Gajdusek DC, Yanagihara R. (1985). Serotypic classification of hantaviruses by indirect immunofluorescent antibody and plaque reduction neutralization tests. J Clin Microbiol, 22 (6), 940-944.; Nagai T, Tanishita O, Takahashi Y, Yamanouchi T, Domae K. (1985). Isolation of hemorrhagic fever with renal syndrome virus from leukocytes of rats and virus- replication in cultures of rat and human macrophages. J Gen Virol, (66), 1271-1278. DOI:10.1099/0022- 1317-66-6-1271; Shin S, Yanagihara R, Song J-W. (2012). Distinct innate immune responses in human macrophages and endothelial cells infected with shrew-borne hantaviruses. Virology, 434 (1), 43-49. DOI: 10 0.1016/j.virol.2012.08.004; Yashina LN, Patrushev NA, Mishin VP, Kuzina II, Safronov PF, Chizhikov VE, Netesov SV, Ivanov LI, Zdanovskaya NI, Slonova RA, Kompanez GG, Schmaljohn C. (2000). Genetic diversity of hantaviruses associated with hemorrhagic fever with renal syndrome in the Far East of Russia. Virus Research, 70 (1-2), 31-44.; https://www.actabiomedica.ru/jour/article/view/649

  6. 6
  7. 7
  8. 8
    Academic Journal

    File Description: application/pdf

    Relation: Куюн Л. О. Особливості локального імунітету і функціональні характеристики імунокомпетентних клітин при експериментальному перитоніті / Л. О. Куюн, Т. С. Брюзгіна // Вісник проблем біології і медицини. – 2017. – Вип. 4, т. 1 (139). – С. 185–189.; https://repository.pdmu.edu.ua/handle/123456789/13689

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20